Fouriers metod, egenfunktionsutvecklingar.

Storlek: px
Starta visningen från sidan:

Download "Fouriers metod, egenfunktionsutvecklingar."

Transkript

1 Vårterminen 2008 KONTINUERLIGA SYSTEM, några viktiga begrepp och metoder Fysikaliska modeller Kontinuitetesekvationen: q t + div j = k kommer från ökning + utöde = nyproduktion. Här är q = densitet (mängd/m 3 ), j = strömtäthet (mängd/m 2 s) och k = källtäthet (mängd/m 3 s) Diusionsekvationen: q t D q = k fås ur kontinuitetsekvationen och Fick's lag j = D grad q. D kallas diusionskonstanten. Värmeledningsekvationen: ρcu t λ u = k fås på samma sätt som diusionsekvationen. Energidensiteten q och temperaturen u kopplas ihop genom q t = ρcu t. Motsvarigheten till Fick's lag är Fouriers lag j = λ grad u (λ är värmeledningsförmågan). Vågekvationen: u tt c 2 u = f/ρ, där f = kraftfördelning, ρ = massdensitet och u = utböjningen. För ljudvågor är u = relativa tryckstörningen (= (p p 0 )/p 0 ). Laplaces ekvation u = 0 och Poissons ekvation u = f kan tolkas som stationär diusion, stationär värmeledning, stationär svängning, stationär potentialströmning eller elektrostatisk potential. Randvillkor kan vara av typ Dirichlet (u given), Neumann ( u n given) eller blandade. Homogena randvillkor innebär u = 0 eller u u n = 0 eller αu + β n = 0. För värmeledning och diusion gäller j n = λ grad u n = λ u n Ett Neumann-villkor betyder alltså att ödets normalkomponent är given. I en dimension har de homogena randvillkoren följande tolkningar. Värmeledning (diusion) u(a, t) = 0 temperaturen (koncentrationen) i a är 0 u (a, t) = 0 inget utöde i a, isolerad (sluten) ände αu(a, t) + β u (a, t) = 0 Newtons avsvalningslag gäller i a (omgivningens temp = 0) Transversella och longitudinella svängningar. u(a, t) = 0 utböjningen i a är 0 fast ände u (a, t) = 0 kraften i a är 0 lös ände αu(a, t) + β u (a, t) = 0 fjäderkraft verkar i änden Ljudvågor u(a, t) = 0 tryckstörningen i a är 0 öppen ände u (a, t) = 0 hastigheten i a är 0 sluten ände Fouriers metod, egenfunktionsutvecklingar. Värmeledning i en begränsad stav med variabelseparation Problem: u t au xx = 0 i 0 < x < L, t > 0 med homogena randvillkor och givna begynnelsevillkor. ut au Sök först icke-triviala lösningar av typ u(x, t) = T (t)x(x) xx = 0 till hom. randvillkor T X at X = 0 hom. randvillkor 1 a T = X X = λ hom. randvillkor T T + aλt = 0 X = λx hom. randvillkor

2 Dierentialekvationerna för X resp T kan nu lösas var för sig. Ekvationen för X tillsammans med randvillkoren ger diskreta värden på λ, egenvärdena λ k och tillhörande egenfunktioner X k (x) = ϕ k (x). Totalt får man u k (x, t) = c k e aλ kt ϕ k (x). För homogena Dirichletvillkor är λ k = k 2 π 2 /L 2 och ϕ k (x) = sin(kπx/l), k = 1, 2,... För homogena Neumannvillkor är λ k = k 2 π 2 /L 2 och ϕ k (x) = cos(kπx/l), k = 0, 1,... Med superposition nner vi er lösningar u(x, t) = k c ke aλ kt ϕ k (x). Konstanterna c k bestäms av begynnelsevillkoren. (Oftast med lämplig Fourierserieutveckling.) Värmeledning i en begränsad stav med ansatsmetod Detta är en förkortad variant av föregående och används om man vet vilka egenfunktionerna ϕ k är. Problem: u t au xx = 0 i 0 < x < L, t > 0 med homogena Dirichlet- eller Neumannvillkor och givna begynnelsevillkor. Ansätt då direkt u = u k (t) sin(kπx/l) (Dirichlet) eller u = k=1 u k (t) cos(kπx/l) (Neumann) Derivera termvis och sätt in i dierentialekvationen. Detta leder till dierentialekvationerna u k (t) + aλ ku k (t) = 0 med lösningarna u k (t) = c k e aλ kt. Koecienterna c k bestäms av begynnelsevillkoret. Kommentar: En fördel med denna metod är att den också fungerar för inhomogena dierentialekvationer (u t au xx = f(x, t)). Skillnaden är att man får en inhomogen dierentialekvation för u k (t), se nedan. Samma ansatser fungerar ockå för den endimensionella vågekvation (odämpad u tt c 2 u xx = f(x, t) eller dämpad u tt au t c 2 u xx = f(x, t)) med homogena Dirichlet- eller Neumannvillkor, och för Laplace/Poissons ekvation ( u = f) på en rektangel med homogena Dirichlet- eller Neumannvillkor i x-led. k=0 Diusion och värmeledning med homogena randvillkor i operatorform. Detta är en vidarutveckling av föregående och kan användas på allmännare dierentialekvationer med allmännare homogena randvillkor. Med A = (eller en allmännare dierentialoperator av Sturm-Liouvilletyp) och D A = u C 2 (Ω) αu + β u = 0} kan värmeledningsproblemet formuleras n ut + aau = f u(x, 0) = g Bestäm först egenfunktioner och egenvärden till A genom att lösa Au = λu, u 0 u D A (Om problemet är välbekant och man redan vet vilka egenfunktionerna är behöver man naturligtvis inte räkna ut dem.) Ansätt en lösning u(x, t) = k u k (t)ϕ k (x). Utveckla f och g i egenfunktioner till A. Här utnyttjas att dessa är en ortogonal bas i L 2. f(x, t) = k f k ϕ k (x), g(x) = k g k ϕ k (x) 2

3 Koecienterna f k och g k beräknas med projektionsformeln t ex f k = (ϕ k f)/(ϕ k ϕ k ). (I fallet med sinus- eller cosinusserier är detta de vanliga formlerna för beräkning av Fourierkoecienter.) Derivera u termvis (använd Aϕ k = λ k ϕ k ), sätt in i värmeledningsekvationen och begynnelsevillkoret. Detta leder till följande dierentialekvation för u k (t) u k (t) + aλ ku k (t) = f k (t), u k (0) = g k. Lösningen kan skrivas som summan av en partikulärlösning u k,part och allmänna homogena lösningen c k e aλkt. Konstanterna c k bestäms av begynnelsevärdet (u k (0) = g k ). Alternativ om f inte beror på t. Låt u stat vara en stationär (= tidsoberoende) lösning till diffekvationen och randvillkoren. v = u u stat uppfyller då ekvationen t + aav = 0 v. v(x, 0) = g u stat Denna löses som ovan, med ansatsen v(x, t) = k v k(t)ϕ k (x), och ger en homogen dierentialekvation för v k. Totala lösningen är av formen u = u stat + k c ke aλkt ϕ k (x). Här ses att om alla λ k > 0 så u u stat, t (ungefär som e aλ1t, där λ 1 är det minsta egenvärdet). I detta alternativet kan man alltså direkt utläsa den asymptotiska (= stationära) lösningen u stat. I lösningen till det förra alternativet kan man se den stationära lösningen i form av en serie. Vågekvationen med homogena randvillkor, begränsat område Med A =, D A = u C 2 (Ω), homogena randvillkor} kan problemet formuleras utt + c 2 Au = 0 u(x, 0) = g(x), u t (x, 0) = h(x) Problemet löses analogt med värmeledningsekvationen. Starta med att bestämma egenfunktioner till A. Utveckla i dessa u(x, t) = k u k (t)ϕ k (x), g(x) = k g k ϕ k (x), h(x) = k h k ϕ k (x). Insättning i vågekvationen leder till med lösningar av typ u k (t) + c2 λ k u k (t) = 0, u k (0) = g k, u k (0) = h k u k (t) = a k cos c λ k t + b k sin c λ k t om λ k > 0 och u k (t) = a + bt om λ k = 0. a k och b k bestäms av begynnelsevärdena. Lösningen blir en överlagring av stående vågor med egenvinkelfrekvenserna ω k = c λ k. Svängningen är odämpad och 'behåller sin form'. Inhomogena randvillkor Starta med att homogenisera randvillkoren genom att sätta v = u ũ där ũ uppfyller randvillkoren. Välj ũ så enkel som möjligt. Ofta går det bra med en konstant eller ett första- eller andragradspolynom. Dirichlets problem u = f i Ω, u = 0 på Ω kan för vissa Ω lösas analogt med variabelseparation och egenfunktionsutveckling. För en rektangel separerar man i variablerna x och y. (Lösningsmetoden är mycket lik motsvarande för den endimensionella vågekvationen på ett begränsat intervall.) För icke-homogena Dirichletvillkor kan det vara bra att dela upp i delproblem och använda superposition (se ex 3.9 i boken). För Ω = enhetscirkeln används polära koordinater variabelseparation (ex 3.17 i boken). För detta problem, med g(θ) = δ(θ), går serien att summera och man kommer fram till Poissons formel för enhetscirkeln (kap 5.2.2). 3

4 Hilbertrum, operatorer, egenfunktioner Ett linjärt rum H är en mängd med addition och multiplikation med skalärer, som följer de vanliga räknelagarna. Tex R n och C 2 (Ω). (u v) är skalärprodukt i H om (u λ 1 v 1 + λ 2 v 2 ) = λ 1 (u v 1 ) + λ 2 (u v 2 ) (u v) = (v u) (u u) 0 med likhet u = 0 Speciellt gäller att (u λv) = λ(u v) och (λu v) = λ(u v). Normen av u är u = (u u). Linjära rum med skalärprodukt kallas prehilbertrum. Ett fullständigt prehilbertrum kallas Hilbertrum. Ett viktigt exempel på Hilbertrum är L 2 (w, Ω) med skalärprodukten och normen (u v) = Ω ( 1/2 u(x)v(x)w(x) dx resp u = u(x) 2 w(x) dx). Ω Funktionen w(x) > 0 kallas viktfunktion. I prehilbertrum gäller Pythagoras sats: u v = u + v 2 = u 2 + v 2 Schwarz olikhet: (u v) u v med likhet då och endast då u och v är proportionella. Triangelolikheten: u + v u + v. Ortogonalitet: Funktionerna ϕ k } 1 är parvis ortogonala i pre-hilbertrummet H om (ϕ k ϕ l ) = 0 då k l. Om dessutom ϕ k 2 = (ϕ k ϕ k ) = 1 är systemet ortonormerat. Projektioner Låt ϕ 1,, ϕ n vara parvis ortogonala och låt M = [ϕ 1,, ϕ n ] vara det linjära höljet av ϕ 1,, ϕ n. Projektionen på M av ett godtyckligt u H denieras av P M u = n 1 1 ρ k (ϕ k u)ϕ k där ρ k = ϕ k 2 = (ϕ k ϕ k ) Minsta-kvadrat-metoden är en följd av projektionssatsen som säger att inf u v M v 2 = u P M u 2, dvs att P M u är det element i M som bäst approximerar u om avvikelsen mäts i norm. Med hjälp av Pythagoras sats ses att avvikelsen u P M u 2 = u 2 P M u 2 = u 2 n (ϕ k u) 2. k=1 ρ k Gram-Schmidts ortogonaliseringsprocess: Ur en linjärt oberoende följd skapas ett ortogonalt system som har samma linjära hölje som den ursprungliga följden. Om 1, x, x 2,... ortogonaliseras med skalärprodukten i L 2 (w, Ω) fås olika ortogonalpolynom. Med viktsfunktionen w(x) = 1 och intervallet Ω = [ 1, 1] fås Legendrepolynomen P n. Konvergens i norm: u n u i H u n u 0. Generaliserade Fourierserier Låt u vara ett element i ett pre-hilbertrum H och ϕ k } 1 parvis ortogonala i H, då är c k = 1 ρ k (ϕ k u) de generaliserade Fourierkoecienterna för u och 1 c kϕ k är den generaliserade Fourierserien för u. Det är inte säkert att serien konvergerar mot u. Om varje u H kan skrivas u = 1 c ku k (konvergens i norm), så säger man att ϕ k } 1 är en ortogonal bas för H. 4

5 Exempel: e ikπx } är en ortogonal bas i L 2 ([ 1, 1]) sin kπx} 1 är en ortogonal bas i L 2 ([0, 1]) cos kπx} 0 är en ortogonal bas i L 2 ([0, 1]) Legendrepolynomen P k (x)} 0 är en ortogonal bas i L 2 ([ 1, 1]) sin kπx sin jπy} j,k=1 är en ortogonal bas i L 2 (Ω), Ω : 0 x 1, 0 y 1 Jn (α n,k r) cos nθ, J n (α n,k ) sin nθ är en ortogonal bas i L 2 (r, Ω), J 0 (α 0,k r), n, k = 1, 2,... Ω : 0 r 1, 0 θ < 2π Parsvals formel: Om ϕ k } 1 c k 2 ϕ k 2. är en ortogonal bas för H och u = 1 c kϕ k så är u 2 = k En operator A har egenfunktionen ϕ med egenvärdet λ om Aϕ = λϕ, ϕ 0 och ϕ D A. En operator A är symmetrisk om (Au v) = (u Av) för alla u, v D A. En symmetrisk operator har reella egenvärden och egenfunktioner hörande till olika egenvärden är ortogonala. A är positivt semidenit om (Au u) 0 för alla u D A, då är alla egenvärden 0. Sturm-Liouvilleoperatorerna Au = 1 w ( (pu ) + qu) (w, p > 0, q 0) med homogena randvillkor, av typ αu + β u = 0 (α, β 0, ej båda = 0) på randen Ω, är symmetriska och positivt n semidenita. Dess egenfunktioner bildar en ortogonal bas i L 2 (w, Ω). (Observera viktfunktionen.) För att nna en ortogonal bas av egenfunktioner till en operator i era variabler kan man göra en variabelseparation och ett täthetsresonemang som visar att varje u L 2 (w, Ω) kan approximeras godtyckligt bra med linjärkombinationer av de separerade egenfunktionerna. (Se ex H.27, S.4 och S.6 ( Ex 28 i kap H, Ex 3 och Ex 6 i kap S i gamla kompendiet)). Härvid uppkommer några endimensionella dierentialekvationer som man måste behärska. Variabelseparation i u = λu i polära koordinater (2 dimensioner) Separationen u(r, θ) = R(r)Θ(θ) i u = λu ger upphov till (Se ex S4): Θ-ekvationen: Θ + cθ = 0. Har man 2π-periodiska randvillkor (Θ(π) = Θ( π), Θ (π) = Θ ( π)) nns icketriviala lösningar om och endast om c = n 2 där n = 0, 1, 2,.... Dessa är cos nθ, sin nθ} 0 eller einθ }. I detta fall är egenvärdena dubbla om n 0. (Se ex H.25.) R-ekvationen: R + 1 r R + (λ ν2 )R = 0 R(r) = r2 aj ν (r λ) + by ν (r λ) om λ > 0 ar ν + br ν om λ = 0, ν 0 a ln r + b om ν = λ = 0. I Sturm-Liouvilleform kan R-ekvationen skrivas 1 r ( (rr ) + ν2 R) = λr (obs w = r). r (För λ 0 nns lösningen på formelbladet. För λ = 0 är diekvationen Eulerhomogen och kan i de esta fall lösas med ansatsen R = r p. Fallet λ = ν = 0 behandlas speciellt, se lemma S.1) Variabelseparation i u = λu i sfäriska koordinater (3 dimensioner) Separationen u(r, s, φ) = R(r)S(s)Φ(φ), där s = cos θ i u = λu ger upphov till (se ex S.6): Φ-ekvationen: Φ + dφ = 0. S-ekvationen: ((1 s 2 )S ) + (l(l + 1) m2 )S = 0 1 s2 S(s) = apl m (s) + bqm l (s), l = 0, 1, 2,..., m = 0... l 5

6 Se formelbladet. ( I kvantmekaniken, där man använder exponentiell framställning av φ-funktionerna används m = l... l.) R-ekvationen: R + 2 l(l + 1) r R + (λ r 2 )R = 0 ar l + br l 1 om λ = 0, l = 0, 1, 2,... R(r) = aj l (r λ) + by l (r λ) om λ > 0, l = 0, 1, 2,... I Sturm-Liouvilleform kan R-ekvationen skrivas 1 r 2 ( (r2 R ) + l(l + 1)R) = λr (obs w = r 2 ). (För λ 0 nns lösningen på formelbladet. För λ = 0 är dierentialekvationen Eulerhomogen, pröva anatsen R = r p. I fallet l = 0 kan ekvationen lösas med elementära metoder, se ex S.5.) Integraltransformer, intgralformler, Greenfunktioner Värmeledning, diusion på R. Kan lösas med Fouriertransform (eller Laplacetransform) i x-led. För problemet ut au xx = 0, x R, t > 0 u(x, 0) = g(x) kan lösningen direkt skrivas med formeln u(x, t) = G(x α, t)g(α) dα = G g(x, t) där G(x, t) = e x2 /4at / 4πat (se formelblad) är Greenfunktionen för värmeledning. Lösningarna innehåller ofta erf(x) = 2 x π 0 e y2 dy (spec är erf( ) = 1), se formelblad. Alltså 2 är erf(x) en primitiv funktion till π e x2 och således är b a e y2 dy = π 2 (erf(b) erf(a)). Halvoändliga områden Problem på halvoändliga områden (x 0) kan utvidgas till hela R med hjälp av speglingar. Gör en udda spegling om u(0, t) är given (Dirichletvillkor) och jämn spegling om u x (0, t) är given (Neumannvillkor). För beräkning av derivator med avseende på x används (se avsnitt D.11 i boken) (u ) xx = (u xx ) + 2u(0, t)δ respektive (u + ) xx = (u xx ) + + 2u x (0, t)δ. Dessa regler blir speciellt enkla om randvillkoren vid x = 0 är homogena (u(0, t) = 0 resp u x (0, t) = 0). För icke-homogena randvillkor är det därför ofta bra att först homogenisera. För problem på ändliga intervall (0 x L) använder man vanligen egenfunktionsutvecklingar, men vissa problem kan också lösas med upprepade speglingar. Vågekvationen Den homogena endimensionella vågekvationen u tt c 2 u xx = 0 har alltid den allmänna lösningen u(x, t) = ϕ(x ct)+ψ(x+ct). Svårigheten är att hitta lösningar som uppfyller givna begynnelseoch randvillkor. Vågekvationen på R kan lösas med Laplace- eller Fouriertransformation i x-led. Till problemet u tt c 2 u xx = 0, x R, t > 0 u(x, 0) = g(x) u t(x, 0) = h(x) 6

7 kan lösningen direkt skrivas med d'alemberts formel (se formelblad). u(x, t) = 1 2 (g(x ct) + g(x + ct)) + 1 2c x+ct x ct h(y) dy. Problem på halvoändliga områden (x 0), t ex svängande halvoändlig sträng, kan utvidgas till hela R med hjälp av speglingar. Udda spegling om u(0, t) = 0 (fast inspänd ände) och jämn spegling om u x (0, t) = 0 (lös ände). Lösningarna kan också (i enkla fall) konstrueras med geometriska resonemang, fortskridande vågor, reektion i ändpunkter (speglingar). För problem på ändliga intervall (0 x L) använder man vanligen egenfunktionsutvecklingar, men man kan också använda med upprepade speglingar. Poissons/Laplaces ekvation u = f Problem i ett halvplan (x R, y 0) kan lösas med Fourier(Laplace)transform i x-led. För Dirichlets problem i ett halvplan (med f = 0): uxx + u yy = 0, x R, y > 0 u(x, 0) = g(x) kan lösningen direkt skrivas med Poissons integralformel, u(x, y) = P (x α, y)g(α) dα = P g(x, y), där P (x, y) = y/(π(x 2 + y 2 )) är Poissonkärnan för halvplan (se formelblad). För motsvarande problem i enhetscirkeln (Ω : x 2 + y 2 < 1) är lösningen π u(r, θ) = P (r, θ α)g(α) dα = P g(r, θ) π där P (r, θ) = (1 r 2 )/(2π(1 + r 2 2r cos θ)) är Poissonkärnan för enhetscirkeln (se formelblad). Liknande problem i kvartsplan eller halvcirkel (x > 0) kan utvidgas till halvplan respektive cirkel med hjälp av spegling (av g och u), udda om u(0, y) är given och jämn om u x (0, y) är given. För det allmännare problemet (Dirichlets problem för Laplaceoperatorn på Ω), u = f i Ω u = g på Ω kan lösningen skrivas (se formelblad) med hjälp av Greenfunktionen G(x; α) för Dirichlets problem på Ω (denition se formelblad) G u(x) = G(x; α)f(α) dα (x; α)g(α) ds α. n α Ω Svårigheten är att bestämma Greenfunktionen G(x; α) Beräkning av Greenfunktionen G(x, a) för några enkla områden Ω. 1. För Ω = R n är Greenfunktionen G(x; α) = K(x α), där K(x) är fundamentallösning till Laplaceoperatorn ( K = δ). För Ω = R 2 eller R 3 nns fundamentallösningarna på formelbladet. 2. För Ω = halvplan eller halvrum spegla udda och använd punkt 1. Greenfunktionen är G(x; α) = K(x α) K(x α), där α är spegelpunkt till α. För kvartsplan spegla först i ena axeln sen i den andra (totalt 4 punkter). Ω 7

8 3. Om Ω är cirkelskivan eller klotet x < ρ spegla udda i cirkeln och använd fundamentallösningar. Greenfunktionen är G(x; α) = K(x α) K(C(x α)), där α är konjugerad punkt (se boken kap 5.5) till α och konstanten C = α /ρ är vald så att G = 0 på randen Ω. Kommentarer: För begränsade områden kan Greenfunktioner bestämmas med egenfunktionsutvecklingar. För halvplan/halvrum med homogena Neumannvillkor kan man använda jämna speglingar. 8

Fouriers metod, egenfunktionsutvecklingar.

Fouriers metod, egenfunktionsutvecklingar. Vårterminen 2002 KONTINUERLIGA SYSTEM, några viktiga begrepp och metoder i kap 3 och H (partiellt) Fouriers metod, egenfunktionsutvecklingar Värmeledning i en begränsad stav med variabelseparation Problem:

Läs mer

Sammanfattning. Fouriers metod, egenfunktionsutvecklingar. Värmeledning i en begränsad stav med variabelseparation

Sammanfattning. Fouriers metod, egenfunktionsutvecklingar. Värmeledning i en begränsad stav med variabelseparation Sammanfattning Kontinuerliga system vt 2017 Fysikaliska modeller Kontinuitetesekvationen: q t +div j = k kommer från ökning + utflöde = nyproduktion. Här är q = densitet (mängd/m 3 ), j = strömtäthet (mängd/m

Läs mer

KONTINUERLIGA SYSTEM, några viktiga begrepp och metoder. Fysikaliska modeller. Fouriers metod, egenfunktionsutvecklingar.

KONTINUERLIGA SYSTEM, några viktiga begrepp och metoder. Fysikaliska modeller. Fouriers metod, egenfunktionsutvecklingar. Vårterminen 00 KONTINUERLIGA SYSTEM, några vitiga begrepp och metoder Fysialisa modeller Kontinuitetesevationen: q t divj ommer från öning + utflöde = nyprodution. Här är q densitet (mängd/m 3 ), j strömtäthet

Läs mer

Ht Läsanvisningar till Hilbertrum och partiella differentialekvationer. Del 1. Ur Anton, Rorres; Elementary Linear Algebra

Ht Läsanvisningar till Hilbertrum och partiella differentialekvationer. Del 1. Ur Anton, Rorres; Elementary Linear Algebra Ht-2010 Umeå universitet Institutionen för matematik och matematisk statistik PAB Läsanvisningar till Hilbertrum och partiella differentialekvationer Del 1 Ur Anton, Rorres; Elementary Linear Algebra 10.1-10.

Läs mer

Uppsala Universitet Matematiska Institutionen Bo Styf. Sammanfattning av föreläsningarna 11-14, 16/11-28/

Uppsala Universitet Matematiska Institutionen Bo Styf. Sammanfattning av föreläsningarna 11-14, 16/11-28/ Uppsala Universitet Matematiska Institutionen Bo Styf Transformmetoder, 5 hp gy, IT, W, X 2011-10-26 Sammanfattning av föreläsningarna 11-14, 16/11-28/11 2012. Här lär vi oss använda transformer för att

Läs mer

Institutionen för matematik KTH. Tentamensskrivning, , kl B1202/2 Diff och Trans 2 del 2, för F och T.

Institutionen för matematik KTH. Tentamensskrivning, , kl B1202/2 Diff och Trans 2 del 2, för F och T. Institutionen för matematik KTH Tentamensskrivning, 3-5-6, kl. 14. 19.. 5B1/ Diff och Trans del, för F och T. Hjälpmedel: BETA, Mathematics Handbook. För godkänt betyg 3 krävs 18 poäng, medan för betyg

Läs mer

Lösningar av uppgifter hörande till övning nr 5.

Lösningar av uppgifter hörande till övning nr 5. Lösningar av uppgifter hörande till övning nr 5. H.7 a) Antag att p är ett polynom med grad p < n. Då kan p skrivas som en linjärkombination av ortogonalpolynomen p k, där k < n. Alltså är p c k p k, m

Läs mer

Rita även upp grafen till Fourierseriens summa på intervallet [ 2π, 3π], samt ange summans värde i punkterna π, 0, π, 2π. (5) S(t) = c n e int,

Rita även upp grafen till Fourierseriens summa på intervallet [ 2π, 3π], samt ange summans värde i punkterna π, 0, π, 2π. (5) S(t) = c n e int, Institutionen för matematik KTH Tentamensskrivning, 003-08-5, kl. 14.00 19.00. 5B10/ Diff och Trans del, för F och T. Hjälpmedel: BETA, Mathematics Handbook. För godkänt betyg 3) krävs 18 poäng, medan

Läs mer

Lösning till tentamen i SF1633 Differentialekvationer I för BD, M och P, , kl

Lösning till tentamen i SF1633 Differentialekvationer I för BD, M och P, , kl KTH Matematik Bengt Ek och Olle Stormark. Lösning till tentamen i SF633 Differentialekvationer I för BD, M och P, 008 0 6, kl. 4.00 9.00. Hjälpmedel: BETA. Uppgifterna 5 motsvarar kursens fem moduler.

Läs mer

FFM234, Klassisk fysik och vektorfält - Föreläsningsanteckningar

FFM234, Klassisk fysik och vektorfält - Föreläsningsanteckningar FFM234, Klassisk fysik och vektorfält - Föreläsningsanteckningar Christian Forssén, Institutionen för fysik, Chalmers, Göteborg, Sverige Oct 16, 2018 9. Lösningar av Poissons ekvation Vi vet att Poissons

Läs mer

ÖVN 11 & 12 DEL A - DIFFTRANS - DEL2 - SF Nyckelord och innehåll. Inofficiella mål

ÖVN 11 & 12 DEL A - DIFFTRANS - DEL2 - SF Nyckelord och innehåll. Inofficiella mål ÖVN 11 & 12 DEL A - DIFFTRANS - DEL2 - SF1683 HTTP://KARLJODIFFTRANS.WORDPRESS.COM KARL JONSSON Nyckelord och innehåll Komplexa vektorrum U och underrum V U. Linjära höljet: V = span(v 1, v 2,..., v N

Läs mer

Edwin Langmann (Epost: x u(x, t); f (x) = df(x)

Edwin Langmann (Epost:   x u(x, t); f (x) = df(x) KTH Teoretisk Fysik Omtentamen i Fysikens matematiska metoder SI12; SI114 Del 2; SI1143 Lördagen den 9 juni 218 kl 9. 14. Anteckna på varje blad: namn, personnummer, och problemnummer. Tillåtna hjälpmedel:

Läs mer

Kontsys F7 Skalärprodukt och normer

Kontsys F7 Skalärprodukt och normer Repetition Skalärprodukt Norm Kontsys F7 Skalärprodukt och normer Pelle 11 februari 2019 Linjära rum Repetition Skalärprodukt Norm Linjära rum Linjärt underrum Ett linjärt rum över R är en mängd H där

Läs mer

Introduktion till Sturm-Liouvilleteori och generaliserade Fourierserier

Introduktion till Sturm-Liouvilleteori och generaliserade Fourierserier KAPITEL 5 Introduktion till Sturm-Liouvilleteori och generaliserade Fourierserier Vi inleder med några förberedande exempel. 5.. Cauchys ekvation Den homogena Euler-Cauchys ekvation (Leonhard Euler och

Läs mer

= y(0) för vilka lim y(t) är ändligt.

= y(0) för vilka lim y(t) är ändligt. Lösningsförslag till tentamensskrivning i SF633 Differentialekvationer I och SF637 Differentialekvationer och transformer III Lördagen den 4 februari, kl 4-9 Hjälpmedel: BETA, Mathematics Handbook Redovisa

Läs mer

KTH Matematik Tentamensskrivning i Differentialekvationer och transformer III, SF1637.

KTH Matematik Tentamensskrivning i Differentialekvationer och transformer III, SF1637. KTH Matematik Tentamensskrivning i Differentialekvationer och transformer III, SF637. Måndagen den 7 oktober, kl 8-3. Hjälpmedel: BETA, Mathematics Handbook. Redovisa lösningarna på ett sådant sätt att

Läs mer

= = i K = 0, K =

= = i K = 0, K = ösningsförslag till tentamensskrivning i SF1633, Differentialekvationer I Tisdagen den 14 augusti 212, kl 14-19 Hjälpmedel: BETA, Mathematics Handbook Redovisa lösningarna på ett sådant sätt att beräkningar

Läs mer

ÖVN 11 & 12 DEL B - DIFFTRANS - DEL2 - SF Nyckelord och innehåll

ÖVN 11 & 12 DEL B - DIFFTRANS - DEL2 - SF Nyckelord och innehåll ÖVN 11 & 12 DEL B - DIFFTRANS - DEL2 - SF1683 HTTP://KARLJODIFFTRANS.WORDPRESS.COM KARL JONSSON Nyckelord och innehåll Partiella differentialekvationer Separation av variabler Operatorer A definierade

Läs mer

Rita även grafen till Fourierserien på intervallet [ 2π, 4π]. (5) 1 + cos(2t),

Rita även grafen till Fourierserien på intervallet [ 2π, 4π]. (5) 1 + cos(2t), Institutionen för matematik KTH Tentamensskrivning, 24-1-13, kl. 14. 19.. 5B122/2 Diff och Trans 2 del 2, för F, E, T. Hjälpmedel: BETA, Mathematics Handbook. För godkänt betyg 3 krävs 18 poäng, medan

Läs mer

Del I. Modul 1. Betrakta differentialekvationen

Del I. Modul 1. Betrakta differentialekvationen Lösningsförslag till Tentamen, SF1633, Differentialekvationer I den 24 oktober 2016 kl 8:00-13:00 För godkänt (betyg E) krävs tre godkända moduler från del I Varje moduluppgift består av tre frågor För

Läs mer

= e 2x. Integrering ger ye 2x = e 2x /2 + C, vilket kan skrivas y = 1/2 + Ce 2x. Här är C en godtycklig konstant.

= e 2x. Integrering ger ye 2x = e 2x /2 + C, vilket kan skrivas y = 1/2 + Ce 2x. Här är C en godtycklig konstant. Lösningsförslag till Tentamen, SF1633, Differentialekvationer I den 19 december 216 kl 8: - 13: För godkänt (betyg E krävs tre godkända moduler från del I Varje moduluppgift består av tre frågor För att

Läs mer

För startpopulationer lika med de stationära lösningarna kommer populationerna att förbli konstant.

För startpopulationer lika med de stationära lösningarna kommer populationerna att förbli konstant. Lösningsförslag till tentamensskrivning i Differentialekvationer I, SF633(5B6) Tisdagen den 6 augusti, kl -9 Hjälpmedel: BETA, Mathematics Handbook Redovisa lösningarna på ett sådant sätt att beräkningar

Läs mer

Tentamen, SF1629, Differentialekvationer och Transformer II (del 2) 11 april 2017 kl. 8:00-13:00

Tentamen, SF1629, Differentialekvationer och Transformer II (del 2) 11 april 2017 kl. 8:00-13:00 KTH, Matematik Tentamen, SF1629, Differentialekvationer och Transformer II (del 2) 11 april 2017 kl. 8:00-13:00 Tentamen består av åtta uppgifter där vardera uppgift ger maximalt fyra poäng. Preliminära

Läs mer

1+v(0)kt. + kt = v(0) . Detta ger sträckan. x(t) = x(0) + v(0) = x(0) + 1 k ln( 1 + v(0)kt ).

1+v(0)kt. + kt = v(0) . Detta ger sträckan. x(t) = x(0) + v(0) = x(0) + 1 k ln( 1 + v(0)kt ). . (3 poäng) Antag att en partikel rör sig i ett medium där friktionskraften är proportionell mot kvadraten av hastigheten v(t) R så att dv(t) = k ( v(t) ), t > för en konstant k >. Bestäm v(t) som funktion

Läs mer

Chalmers tekniska högskola Datum: kl Telefonvakt: Milo Viviani MVE500, TKSAM-2

Chalmers tekniska högskola Datum: kl Telefonvakt: Milo Viviani MVE500, TKSAM-2 Chalmers tekniska högskola Datum: 7--8 kl. 8.. Tentamen Telefonvakt: Milo Viviani MVE5, TKSAM- Tentan rättas och bedöms anonymt. Skriv tentamenskoden tydligt på placeringlista och samtliga inlämnade papper.

Läs mer

8. Euklidiska rum 94 8 EUKLIDISKA RUM

8. Euklidiska rum 94 8 EUKLIDISKA RUM 94 8 EUKLIDISKA RUM 8. Euklidiska rum Definition 8.. En skalärprodukt på vektorrummet V är en funktion som till varje par av element u och v i V ordnar ett reellt tal u v eller u v med följande egenskaper:.

Läs mer

Egenvärden och egenvektorer

Egenvärden och egenvektorer Föreläsning 10, Linjär algebra IT VT2008 1 Egenvärden och egenvektorer Denition 1 Antag att A är en n n-matris. En n-vektor v 0 som är sådan att A verkar som multiplikation med ett tal λ på v, d v s Av

Läs mer

Lösningsskiss för tentamen Vektorfält och klassisk fysik (FFM232)

Lösningsskiss för tentamen Vektorfält och klassisk fysik (FFM232) Lösningsskiss för tentamen Vektorfält och klassisk fysik (FFM232) Tid och plats: Lösningsskiss: Tisdagen den 20 december 2016 klockan 0830-1230 i M-huset Christian Forssén Detta är enbart en skiss av den

Läs mer

KTH Matematik Tentamensskrivning i Differentialekvationer I, SF1633.

KTH Matematik Tentamensskrivning i Differentialekvationer I, SF1633. KTH Matematik Tentamensskrivning i Differentialekvationer I, SF1633. Måndagen den 17 oktober 11, kl 8-13. Hjälpmedel: BETA, Mathematics Handbook. Redovisa lösningarna på ett sådant sätt att beräkningar

Läs mer

} + t { z t -1 - z t (16-8)t t = 4. d dt. (5 + t) da dt. {(5 + t)a} = 4(5 + t) + A = 4(5 + t),

} + t { z t -1 - z t (16-8)t t = 4. d dt. (5 + t) da dt. {(5 + t)a} = 4(5 + t) + A = 4(5 + t), Tentamensskrivning i Matematik IV, 5B110 Måndagen den 1 oktober 005, kl 1400-1900 Hjälpmedel: BETA, Mathematics Handbook Redovisa lösningarna på ett sådant sätt att beräkningar och resonemang är lätta

Läs mer

Linjär Algebra, Föreläsning 9

Linjär Algebra, Föreläsning 9 Linjär Algebra, Föreläsning 9 Tomas Sjödin Linköpings Universitet Euklidiska rum Vi ska nu införa en extra struktur på vektorrum, en så kallad skalärprodukt, vilken vi kan använda för att definiera längd

Läs mer

Tentamen i: Matematisk fysik Ämneskod M0014M. Tentamensdatum Totala antalet uppgifter: 6 Skrivtid Lärare: Thomas Strömberg

Tentamen i: Matematisk fysik Ämneskod M0014M. Tentamensdatum Totala antalet uppgifter: 6 Skrivtid Lärare: Thomas Strömberg Tentamen i: Matematisk fysik Ämneskod M004M Tentamensdatum 200-03-24 Totala antalet uppgifter: 6 Skrivtid 09.00-4.00 Lärare: Thomas Strömberg Jourhavande lärare: Thomas Strömberg Tel: 0920-49944 Resultatet

Läs mer

SF1633, Differentialekvationer I Tentamen, torsdagen den 7 januari Lösningsförslag. Del I

SF1633, Differentialekvationer I Tentamen, torsdagen den 7 januari Lösningsförslag. Del I Institutionen för matematik, KTH Serguei Shimorin SF6, Differentialekvationer I Tentamen, torsdagen den 7 januari 26 Lösningsförslag Del I Moduluppgift En liter av lösningen som innehåller 2 gram av kemiska

Läs mer

Oändligtdimensionella vektorrum

Oändligtdimensionella vektorrum Oändligtdimensionella vektorrum Vi har i den här kursen huvudsakligen studerat ändligtdimensionella vektorrum. Dessa är mycket användbara objekt och matriskalkyl ger en bra metod att undersöka dom med.

Läs mer

Fourierserier: att bryta ner periodiska förlopp

Fourierserier: att bryta ner periodiska förlopp Analys 36 En webbaserad analyskurs Funktionsutvecklingar Fourierserier: att bryta ner periodiska förlopp Anders Källén MatematikCentrum LTH anderskallen@gmail.com Fourierserier: att bryta ner periodiska

Läs mer

Tentamen SF1633, Differentialekvationer I, den 23 oktober 2017 kl

Tentamen SF1633, Differentialekvationer I, den 23 oktober 2017 kl Matematiska Institutionen, KTH Tentamen SF633, Differentialekvationer I, den 23 oktober 27 kl 8.- 3.. Examinator: Pär Kurlberg OBS: Inga hjälpmedel är tillåtna på tentamensskrivningen. För full poäng krävs

Läs mer

Tentamen i tmv036c och tmv035c, Analys och linjär algebra C för K, Kf och Bt A =, = det(a λi) = e 2t + c 2. x(t) = c 1. = c 1.

Tentamen i tmv036c och tmv035c, Analys och linjär algebra C för K, Kf och Bt A =, = det(a λi) = e 2t + c 2. x(t) = c 1. = c 1. Institutionen för matematiska vetenskaper Chalmers tekniska högskola Niklas Eriksen Tentamen i tmv6c och tmv5c, Analys och linjär algebra C för K, Kf och Bt Lösningar 9--6. Lös initialvärdesproblemet x

Läs mer

Lösningsförslag till tentamen i SF1629, Differentialekvationer och Transformer II (del 1)

Lösningsförslag till tentamen i SF1629, Differentialekvationer och Transformer II (del 1) KTH, Matematik Maria Saprykina Lösningsförslag till tentamen i SF1629, Differentialekvationer och Transformer II (del 1) 1 a). Lös ekvationen 3p. 3y 2 y +16x = 2xy 3. b). Finn en lösning som är begränsad

Läs mer

Uppsala Universitet Matematiska Institutionen Thomas Erlandsson, Sebastian Pöder

Uppsala Universitet Matematiska Institutionen Thomas Erlandsson, Sebastian Pöder Uppsala Universitet Matematiska Institutionen Thomas Erlandsson, Sebastian Pöder Tentamen ENVARIABELANALYS M 204-2-08 SVAR OCH ANVISNINGAR UPPGIFTER. e 3x2 lim = e x2 ( 3x 2 +...) = lim ( x 2 +...) = lim

Läs mer

Om ortonormerade baser i oändligtdimensionella rum

Om ortonormerade baser i oändligtdimensionella rum Analys 360 En webbaserad analyskurs Funktionsutvecklingar Om ortonormerade baser i oändligtdimensionella rum Anders Källén MatematikCentrum LTH anderskallen@gmail.com Om ortonormerade baser i oändligtdimensionella

Läs mer

1 Linjära ekvationssystem. 2 Vektorer

1 Linjära ekvationssystem. 2 Vektorer För. 1 1 Linjära ekvationssystem Gaußelimination - sriv om systemet för att få ett trappformat system genom att: byta ordningen mellan ekvationer eller obekanta; multiplicera en ekvation med en konstant

Läs mer

Tentamensskrivning i Differentialekvationer I, SF1633(5B1206).

Tentamensskrivning i Differentialekvationer I, SF1633(5B1206). Tentamensskrivning i Differentialekvationer I, SF633(5B6) Torsdagen den 3 oktober 8, kl 8-3 Hjälpmedel: BETA, Mathematics Handbook Redovisa lösningarna på ett sådant sätt att beräkningar och resonemang

Läs mer

Innehåll 1. Kapitel 6: Separation of Variables 1

Innehåll 1. Kapitel 6: Separation of Variables 1 SF629 - DIFFERENTIALEKVATIONER OCH TRANSFORMER II - ÖVNING 5 KARL JONSSON Innehåll. Kapitel 6: Separation of Variables.. Upp. 6.2: Dirichlets problem på enhetsskivan med randdata polära koordinater) u,

Läs mer

KTH Fysik Tentamen i 5A1301/5A1304 Fysikens matematiska metoder Onsdagen den 24 augusti 2004 kl

KTH Fysik Tentamen i 5A1301/5A1304 Fysikens matematiska metoder Onsdagen den 24 augusti 2004 kl KTH Fysik Tentamen i 5A131/5A134 Fysikens matematiska metoder Onsdagen den 24 augusti 24 kl 14. 19. Anteckna på varje blad: namn, utbildningslinje, årskurs och problemnummer. Notera på första tentabladet

Läs mer

ENDIMENSIONELL ANALYS DELKURS A3/B kl HJÄLPMEDEL. Lösningarna skall vara försedda med ordentliga motiveringar.

ENDIMENSIONELL ANALYS DELKURS A3/B kl HJÄLPMEDEL. Lösningarna skall vara försedda med ordentliga motiveringar. LUNDS TEKNISKA HÖGSKOLA MATEMATIK TENTAMENSSKRIVNING ENDIMENSIONELL ANALYS DELKURS A/B 5 6 5 kl 8 INGA HJÄLPMEDEL. Lösningarna skall vara försedda med ordentliga motiveringar.. a) Bestäm Maclaurinpolynomet

Läs mer

Partiella differentialekvationer och randvärdesproblem Separabla PDE Klassiska ekvationer och randvärdesproblem

Partiella differentialekvationer och randvärdesproblem Separabla PDE Klassiska ekvationer och randvärdesproblem Partiella differentialekvationer och randvärdesroblem. 12.1. Searabla PDE 12.2. Klassiska ekvationer och randvärdesroblem. 12.3. Värmeledningsekvationen. 12.4. Vågekvationen. 12.5. alace ekvation. Variabelsearation.

Läs mer

FFM234, Klassisk fysik och vektorfält - Föreläsningsanteckningar

FFM234, Klassisk fysik och vektorfält - Föreläsningsanteckningar FFM234, Klassisk fysik och vektorfält - Föreläsningsanteckningar Christian Forssén, Institutionen för fysik, Chalmers, Göteborg, Sverige Oct 2, 2017 10. Värmeledning, diffusionsekvation Betrakta ett temperaturfält

Läs mer

Lösningsförslag till tentamen i SF1629, Differentialekvationer och Transformer II (del 2) 8 januari 2018

Lösningsförslag till tentamen i SF1629, Differentialekvationer och Transformer II (del 2) 8 januari 2018 KTH, Matematik Maria Saprykina Lösningsförslag till tentamen i SF169, Differentialekvationer och Transformer II (del ) 8 januari 18 Tentamen består av sex uppgifter där vardera uppgift ger maximalt fyra

Läs mer

Lösningsförslag till tentamen i SF1683, Differentialekvationer och Transformmetoder (del 2) 4 april < f,g >=

Lösningsförslag till tentamen i SF1683, Differentialekvationer och Transformmetoder (del 2) 4 april < f,g >= KTH, Matematik Maria Saprykina Lösningsförslag till tentamen i SF683, Differentialekvationer och Transformmetoder (del 2) 4 april 28 Tentamen består av sex uppgifter där vardera uppgift ger maximalt fyra

Läs mer

y(0) = e + C e 1 = 1

y(0) = e + C e 1 = 1 KTH-matematik Tentamensskrivning, 006-01-14, kl. 14.00 19.00. 5B106 Differentialekvationer I, för BDMP. Hjälpmedel: BETA, Mathematics Handbook. För godkänt betyg (3) krävs minst 17 poäng, för betyg 4 krävs

Läs mer

MVE500, TKSAM Avgör om talserierna är konvergenta eller divergenta (fullständig motivering krävs). (6p) 2 n. n n (a) n 2.

MVE500, TKSAM Avgör om talserierna är konvergenta eller divergenta (fullständig motivering krävs). (6p) 2 n. n n (a) n 2. MATEMATIK Hjälpmedel: inga Chalmers tekniska högskola Datum: 07-08-4 kl. 4.00 8.00 Tentamen MVE500, TKSAM- Telefonvakt: Anders Hildeman 03 77 535 Tentan rättas och bedöms anonymt. Skriv tentamenskoden

Läs mer

SVAR: Det är modell 1 som är rimlig för en avsvalningsprocess. Föremålets temperatur efter lång tid är 20 grader Celsius.

SVAR: Det är modell 1 som är rimlig för en avsvalningsprocess. Föremålets temperatur efter lång tid är 20 grader Celsius. Lösningsförslag till tentamensskrivning i SF633 Differentialekvationer I Onsdagen den maj 03, kl 0800-300 Hjälpmedel: BETA, Mathematics Handbook Redovisa lösningarna på ett sådant sätt att beräkningar

Läs mer

Egenvärdesproblem för matriser och differentialekvationer

Egenvärdesproblem för matriser och differentialekvationer CTH/GU STUDIO 7 TMV36b - 14/15 Matematiska vetenskaper 1 Inledning Egenvärdesproblem för matriser och differentialekvationer Vi skall se lite på egenvärdesproblem för matriser och differentialekvationer.

Läs mer

Tentamen: Lösningsförslag

Tentamen: Lösningsförslag Tentamen: Lösningsförslag Onsdag 5 mars 7 8:-3: SF674 Flervariabelanalys Inga hjälpmedel är tillåtna. Max: 4 poäng. 4 poäng Avgör om följande gränsvärde existerar och beräkna gränsvärdet om det existerar:

Läs mer

1. (a) Bestäm lösningen u = u(x, y) till Laplaces ekvation u = 0 inom rektangeln 0 < x < a och 0 < y < b med följande randvillkor 1

1. (a) Bestäm lösningen u = u(x, y) till Laplaces ekvation u = 0 inom rektangeln 0 < x < a och 0 < y < b med följande randvillkor 1 KTH Teoretisk Fysik Tentamen i 5A131/5A135 Fysikens matematiska metoder Fredagen den 2 oktober 26, kl 8:-13: Anteckna på varje blad: namn, utbildningslinje, årskurs problemnummer. Notera på första tentabladet

Läs mer

Notera på första tentabladet om du har hemtal tillgodo från tidigare kurs

Notera på första tentabladet om du har hemtal tillgodo från tidigare kurs Fysik KTH TENTAMEN Fysikens matematiska metoder 5A1301/5A1304 Onsdag 003-03-1, kl. 08.00-13.00 Notera på första tentabladet om du har hemtal tillgodo från tidigare kurs Anteckna på varje blad: Namn, utbildningslinje,

Läs mer

SF1625 Envariabelanalys Lösningsförslag till tentamen DEL A

SF1625 Envariabelanalys Lösningsförslag till tentamen DEL A SF165 Envariabelanalys Lösningsförslag till tentamen 15-4-7 DEL A 1. Låt f(x) = arcsin x + 1 x. A. Bestäm definitionsmängden till funktionen f. B. Bestäm funktionens största och minsta värde. (Om du har

Läs mer

Lösningsförslag till tentamensskrivning i SF1633 Differentialekvationer I. Tisdagen den 7 januari 2014, kl

Lösningsförslag till tentamensskrivning i SF1633 Differentialekvationer I. Tisdagen den 7 januari 2014, kl Lösningsförslag till tentamensskrivning i SF1633 Differentialekvationer I Tisdagen den 7 januari 14, kl 8-13 Del 1 Modul 1 Befolkningen i en liten stad växer med en hastighet som är proportionell mot befolkningsmängden

Läs mer

Institutionen för matematik KTH. Tentamensskrivning, , kl B1210 och 5B1230 Matematik IV, för B, M, och I.

Institutionen för matematik KTH. Tentamensskrivning, , kl B1210 och 5B1230 Matematik IV, för B, M, och I. Institutionen för matematik KTH Tentamensskrivning, 23--9, kl 4 9 5B2 och 5B23 Matematik IV, för B, M, och I Hjälpmedel: BETA, Mathematics Handbook För godkänt betyg 3 krävs 7 poäng, medan för betyg 4

Läs mer

Instuderingsfrågor i Funktionsteori

Instuderingsfrågor i Funktionsteori Instuderingsfrågor i Funktionsteori Anvisningar. Avsikten med dessa instuderingsfrågor är att ge Dig möjlighet att fortlöpande kontrollera att Du någorlunda behärskar kursens teori. Om Du märker att Du

Läs mer

FEM1: Randvärdesproblem och finita elementmetoden i en variabel.

FEM1: Randvärdesproblem och finita elementmetoden i en variabel. MVE255/TMV191 Matematisk analys i flera variabler M/TD FEM1: Randvärdesproblem och finita elementmetoden i en variabel. 1 Inledning Vi ska lösa partiella differentialekvationer PDE, dvs ekvationer som

Läs mer

TATA42: Föreläsning 9 Linjära differentialekvationer av ännu högre ordning

TATA42: Föreläsning 9 Linjära differentialekvationer av ännu högre ordning TATA42: Föreläsning 9 Linjära differentialekvationer av ännu högre ordning Johan Thim 4 mars 2018 1 Linjära DE av godtycklig ordning med konstanta koefficienter Vi kommer nu att betrakta linjära differentialekvationer

Läs mer

SF1626 Flervariabelanalys Lösningsförslag till tentamen DEL A

SF1626 Flervariabelanalys Lösningsförslag till tentamen DEL A SF1626 Flervariabelanalys Lösningsförslag till tentamen 215-3-16 DEL A 1. Låt f(x, y) = 1 x 2 y 2. (a) Skissa nivåkurvorna f(x, y) = c till f för c =, c = 1 och c = 2. (1 p) (b) Beräkna gradf(x, y) i de

Läs mer

= 1, fallet x > 0 behandlas pga villkoret. x:x > 1

= 1, fallet x > 0 behandlas pga villkoret. x:x > 1 Lösningsförslag till tentamensskrivning i Diff & Trans I, 5B00 Torsdagen den 0 januari 00, kl 400-900 Hjälpmedel: BETA, Mathematics Handbook Redovisa lösningarna på ett sådant sätt att beräkningar och

Läs mer

1. (a) Bestäm funktionen u = u(x, y), 0 < x < a och 0 < y < a, som uppfyller u xx (x, y) + u yy (x, y) = 0

1. (a) Bestäm funktionen u = u(x, y), 0 < x < a och 0 < y < a, som uppfyller u xx (x, y) + u yy (x, y) = 0 KTH Fysik Tentamen i 5A1306 Fysikens matematiska metoder: PDE-tentamen Fredagen den 8 juni 2007 kl 08.00 13.00 Anteckna på varje blad: namn, utbildningslinje, årskurs och problemnummer. Tillåtna hjälpmedel:

Läs mer

Tentamen SF1626, Analys i flera variabler, Svar och lösningsförslag. 2. en punkt på randkurvan förutom hörnen, eller

Tentamen SF1626, Analys i flera variabler, Svar och lösningsförslag. 2. en punkt på randkurvan förutom hörnen, eller Tentamen SF66, Analys i flera variabler, --8 Svar och lösningsförslag. Låt fx, y) = ye x y. Bestäm största och minsta värde till f på den slutna kvadraten med hörn i, ),, ),, ) och, ). Lösning. f är kontinuerlig

Läs mer

Tentamen, SF1629, Differentialekvationer och Transformer II (del 2) 10 januari 2017 kl. 14:00-19:00. a+bx e x 2 dx

Tentamen, SF1629, Differentialekvationer och Transformer II (del 2) 10 januari 2017 kl. 14:00-19:00. a+bx e x 2 dx KTH, Matematik Tentamen, SF1629, Differentialekvationer och Transformer II (del 2) 10 januari 2017 kl. 14:00-19:00 Tentamen består av åtta uppgifter där vardera uppgift ger maximalt fyra poäng. Preliminära

Läs mer

1. (4p) Para ihop följande ekvationer med deras riktingsfält. 1. y = 2 + x y 2. y = 2y + x 2 e 2x 3. y = e x + 2y 4. y = 2 sin(x) y

1. (4p) Para ihop följande ekvationer med deras riktingsfält. 1. y = 2 + x y 2. y = 2y + x 2 e 2x 3. y = e x + 2y 4. y = 2 sin(x) y 1 Matematiska Institutionen, KTH Tentamen SF1633, Differentialekvationer I, den 18 december 2017 kl 08.00-13.00. Examinator: Pär Kurlberg. Betygsgränser: A: 85%. B: 75%. C: 65%. D: 55%. E: 45%. Fx: 42%.

Läs mer

SF1626 Flervariabelanalys Lösningsförslag till tentamen DEL A. 1. En svängningsrörelse beskrivs av

SF1626 Flervariabelanalys Lösningsförslag till tentamen DEL A. 1. En svängningsrörelse beskrivs av SF166 Flervariabelanalys Lösningsförslag till tentamen 13-3-1 DEL A 1. En svängningsrörelse beskrivs av ( πx ) u(x, t) = A cos λ πft där amplituden A, våglängden λ och frekvensen f är givna konstanter.

Läs mer

x ( f u 2y + f v 2x) xy = 24 och C = f

x ( f u 2y + f v 2x) xy = 24 och C = f Institutionen för Matematik, KTH Torbjörn Kolsrud SF160, Differential- och integralkalkyl II, del 2, flervariabel, för F1. Tentamen onsdag 0 maj 2012, 8.00-1.00 Förslag till lösningar 1. Bestäm tangentplanet

Läs mer

2. För ljudvågor i en gas, innesluten i ett sfärisk skal, gäller vågekvationen. u tt = c 2 u

2. För ljudvågor i en gas, innesluten i ett sfärisk skal, gäller vågekvationen. u tt = c 2 u KTH Fysik Tentamen i 5A3/5A35 Fysikens matematiska metoder Fredagen den 4 januari 25, kl 4. 9. Anteckna på varje blad: namn, utbildningslinje, årskurs och problemnummer. Notera på första tentabladet om

Läs mer

Hjälpmedel: utdelad ordlista, ej räknedosa Chalmers tekniska högskola Datum: kl

Hjälpmedel: utdelad ordlista, ej räknedosa Chalmers tekniska högskola Datum: kl MATEMATIK Hjälpmedel: utdelad ordlista, ej räknedosa Chalmers tekniska högskola atum: 2-3-9 kl. 8.3 2.3 Tentamen Telefonvakt: Richard Lärkäng tel. 73-8834 TMV36 Analys och Linjär Algebra K Kf Bt, del C

Läs mer

Lösningsförslag v1.1. Högskolan i Skövde (SK) Svensk version Tentamen i matematik

Lösningsförslag v1.1. Högskolan i Skövde (SK) Svensk version Tentamen i matematik Lösningsförslag v1.1 Högskolan i Skövde (SK) Svensk version Tentamen i matematik Kurs: MA15G Matematisk Analys MA13G Matematisk analys för ingenjörer Tentamensdag: 1-8-8 kl 8.3-13.3 Hjälpmedel : Inga hjälpmedel

Läs mer

SF1626 Flervariabelanalys Lösningsförslag till tentamen DEL A

SF1626 Flervariabelanalys Lösningsförslag till tentamen DEL A SF626 Flervariabelanalys Lösningsförslag till tentamen 23-- DEL A. Bestäm en ekvation för tangentplanet i punkten (,, 2 till ellipsoiden 2x 2 +3y 2 +z 2 = 9. (4 p Lösning. Vi uppfattar ytan som nivåytan

Läs mer

TENTAMEN I VEKTORANALYS SI1146 och SI1140 Del 1, VT18

TENTAMEN I VEKTORANALYS SI1146 och SI1140 Del 1, VT18 TENTAMEN I EKTORANALY I46 och I40 Del, T8 Torsdagen 3 maj 4:00-9:00 Anteckna på varje blad: Namn, utbildningslinje, årskurs och problemnummer. Tillåtna hjälpmedel: Formelblad som delas ut. Räknedosa ej

Läs mer

6.1 Skalärprodukt, norm och ortogonalitet. TMV141 Linjär algebra E VT 2011 Vecka 6. Lärmål 6.1. Skalärprodukt. Viktiga begrepp

6.1 Skalärprodukt, norm och ortogonalitet. TMV141 Linjär algebra E VT 2011 Vecka 6. Lärmål 6.1. Skalärprodukt. Viktiga begrepp 6.1 Skalärprodukt, norm och ortogonalitet TMV141 Linjär algebra E VT 2011 Vecka 6 Skalärprodukt Norm/längd Normerad vektor/enhetsvektor Avståndet mellan två vektorer Ortogonala vektorer Ortogonala komplementet

Läs mer

= 0. Båda skärningsvinklarna är således π/2 (ortogonala riktningsvektorer).

= 0. Båda skärningsvinklarna är således π/2 (ortogonala riktningsvektorer). Institutionen för Matematik, KTH Torbjörn Kolsrud SF163, ifferential- och integralkalkyl II, del 2, flervariabel, för F1. Tentamen torsdag 19 augusti 21, 14. - 19. Inga hjälpmedel är tillåtna. Svar och

Läs mer

Vektorgeometri för gymnasister

Vektorgeometri för gymnasister Vektorgeometri för gymnasister Per-Anders Svensson http://homepage.lnu.se/staff/psvmsi/vektorgeometri/gymnasiet.html Fakulteten för teknik Linnéuniversitetet Diagonalisering av linjära avbildningar III

Läs mer

Inför tentamen i Linjär algebra TNA002.

Inför tentamen i Linjär algebra TNA002. Inför tentamen i Linjär algebra TNA002. 1. Linjära ekvationssytem (a) Omskrivningen av ekvationssystem på matrisform samt utföra radoperationer. (b) De 3 typer av lösningar som dyker upp vid lösning av

Läs mer

Datorövning 2. - Tag med lärobok och övningshäfte till övningen. - Fyll före övningenen i svaren på frågorna på sidan 5 i denna handledning.

Datorövning 2. - Tag med lärobok och övningshäfte till övningen. - Fyll före övningenen i svaren på frågorna på sidan 5 i denna handledning. Kontinuerliga system vt 2015 Datorövning 2 Inledning Syftet med denna datorövning är att du med hjälp av Maple skall få ökad förståelse av vissa begrepp presenterade i kapitel H. Exempelvis behandlas skalärprodukt,

Läs mer

SF1625 Envariabelanalys Lösningsförslag till tentamen DEL A

SF1625 Envariabelanalys Lösningsförslag till tentamen DEL A SF1625 Envariabelanalys Lösningsförslag till tentamen 215-1-27 DEL A 4 1. Betrakta funktionen f som ges av f(x) = 1 + x + (x 2). 2 A. Bestäm definitionsmängden till f. B. Bestäm alla intervall där f är

Läs mer

AB2.8: Laplacetransformation av derivator och integraler. Differentialekvationer

AB2.8: Laplacetransformation av derivator och integraler. Differentialekvationer AB2.8: Laplacetransformation av derivator och integraler. Differentialekvationer Laplacetransformen som an analytisk funktion SATS 1 Om Laplaceintegralen F (s) = L (f) = e st f(t)dt är konvergent för s

Läs mer

Lösningsmetodik för FMAF01: Funktionsteori

Lösningsmetodik för FMAF01: Funktionsteori Lösningsmetodik för FMAF0: Funktionsteori Johannes Larsson, I2 0 mars 204 Allmänt Detta är lösningsmetoder för de vanligaste tentauppgifterna, grupperade efter hur ofta de kommer på tentan och därmed också

Läs mer

Tentamen, Matematik påbyggnadskurs, 5B1304 fredag 20/ kl

Tentamen, Matematik påbyggnadskurs, 5B1304 fredag 20/ kl Institutionen för Matematik KTH Mattias Dahl Tentamen, Matematik påbyggnadskurs, 5B134 fredag /8 4 kl. 14. 19. Lösningar 1. Lös differentialekvationen x 3 y + x y xy + y x 3 ln x, x >. Lösning: Motsvarande

Läs mer

A = D. r s r t dsdt. [(1 + 4t 2 ) 3/2 1]dt (1) där det sista steget fås genom variabelbytet u = 1 + 4s 2. Integralen. (1 + 4t 2 ) 3/2 dt

A = D. r s r t dsdt. [(1 + 4t 2 ) 3/2 1]dt (1) där det sista steget fås genom variabelbytet u = 1 + 4s 2. Integralen. (1 + 4t 2 ) 3/2 dt TATA44 Lösningar till tentamen 27/8/2..) Arean A av ytstycket ges av formeln A r s r t dsdt där : s t, t. En enkel räkning ger r s r t ( 2s 2 cos t, 2s 2 sin t, s) av vilket det följer att A s2 + 4s 4

Läs mer

(x + 1) dxdy där D är det ändliga område som begränsas av kurvorna

(x + 1) dxdy där D är det ändliga område som begränsas av kurvorna UPPSALA UNIVERSITET Matematiska institutionen Anders Källström Prov i matematik ES, W Flervariabelanalys 8 1 1 Skrivtid: 9-1. Inga hjälpmedel. Lösningarna skall åtföljas av förklarande text/figurer. Varje

Läs mer

Vektorgeometri för gymnasister

Vektorgeometri för gymnasister Vektorgeometri för gymnasister Per-Anders Svensson http://homepage.lnu.se/staff/psvmsi/vektorgeometri/gymnasiet.html Fakulteten för teknik Linnéuniversitetet Linjära avbildningar I Innehåll En liten tillbakablick:

Läs mer

(4 2) vilket ger t f. dy och X = 1 =

(4 2) vilket ger t f. dy och X = 1 = Lösningsförslag till tentamensskrivning i SF633 Differentialekvationer I. Torsdagen den 3 maj, kl 8-3. Hjälpmedel: BETA, Mathematics Handbook. Redovisa lösningarna på ett sådant sätt att beräkningar och

Läs mer

Lösningar till tentamen i Transformmetoder okt 2007

Lösningar till tentamen i Transformmetoder okt 2007 Lösningar till tentamen i Transformmetoder okt 7. Låt Y (s beteckna Laplacetransformen till funktionen y. Laplacetransformering av den givna ekvationen ger: varav följer att. (a För s > a är Y (s + s Y

Läs mer

SF1625 Envariabelanalys Lösningsförslag till tentamen DEL A

SF1625 Envariabelanalys Lösningsförslag till tentamen DEL A SF1625 Envariabelanalys Lösningsförslag till tentamen 2012-10-17 DEL A 1. Visa att ekvationen x 3 12x + 1 = 0 har tre lösningar i intervallet 4 x 4. Motivera ordentligt! (4 p) Lösningsförslag. Vi skall

Läs mer

Edwin Langmann (tel: Epost: DEL 1

Edwin Langmann (tel: Epost:   DEL 1 KTH Teoretisk Fysik Tentamen i Fysikens matematiska metoder (PDE tentamen, F variant) SI114 och SI1143 Del 2; SI1141; 5A136, 5A135 och 5A131 PDE tentamen Onsdagen 29 maj 213 kl 8. 13. OBS: Det finns två

Läs mer

Svar till övningar. Nanovetenskapliga tankeverktyg.

Svar till övningar. Nanovetenskapliga tankeverktyg. Svar till övningar. Nanovetenskapliga tankeverktyg. January 18, 2010 Vecka 2 Komplexa fourierserier 1. Fourierkomponenterna ges av dvs vi har fourierserien f(t) = π 2 + 1 π n 0 { π n = 0 c n = 2 ( 1) n

Läs mer

ÚÚ dxdy = ( 4 - x 2 - y 2 È Î

ÚÚ dxdy = ( 4 - x 2 - y 2 È Î Lösningsförslag till tentamensskrivning i Matematik IV, 5B0 Måndagen den 0 oktober 00, kl 400-900 Hjälpmedel: BETA, Mathematics Handbook Redovisa lösningarna på ett sådant sätt att beräkningar och resonemang

Läs mer

k=0 kzk? (0.2) 2. Bestäm alla holomorfa funktioner f(z) = f(x + iy) = u(x, y) + iv(x, y) sådana att u(x, y) = x 2 2xy y 2. 1 t, 0 t 1, f(t) =

k=0 kzk? (0.2) 2. Bestäm alla holomorfa funktioner f(z) = f(x + iy) = u(x, y) + iv(x, y) sådana att u(x, y) = x 2 2xy y 2. 1 t, 0 t 1, f(t) = LUNDS TEKNISKA HÖGSKOLA MATEMATIK TENTAMENSSKRIVNING Funktionsteori 5 9 kl 4 9 Hjälpmedel: Bifogat formelblad. Lösningarna skall vara försedda med ordentliga motiveringar. Skriv fullständiga meningar och

Läs mer

Tentamensskrivning, Kompletteringskurs i matematik 5B1114. Onsdagen den 18 december 2002, kl

Tentamensskrivning, Kompletteringskurs i matematik 5B1114. Onsdagen den 18 december 2002, kl Institutionen för Matematik TH irsti Mattila Tentamensskrivning, ompletteringskurs i matematik 5B4 Onsdagen den 8 december, kl 8.-. Preliminära betgsgränser för, 4 och 5 är 8, 4 och 54 poäng. Inga hjälpmedel

Läs mer

SF1625 Envariabelanalys Lösningsförslag till tentamen

SF1625 Envariabelanalys Lösningsförslag till tentamen SF1625 Envariabelanalys Lösningsförslag till tentamen 216-6-1 1. Derivera nedanstående funktioner med avseende på x och ange för vilka x derivatan existerar. Endast svar krävs. A. f(x) = arctan 1 x B.

Läs mer

Tentamensskrivning i Differentialekvationer I, SF1633(5B1206). Webbaserad kurs i differentialekvationer I, SF1656.

Tentamensskrivning i Differentialekvationer I, SF1633(5B1206). Webbaserad kurs i differentialekvationer I, SF1656. Tentamensskrivning i Differentialekvationer I, SF1633(5B1206) Webbaserad kurs i differentialekvationer I, SF1656 Torsdagen den 8 januari 2009, kl 1400-1900 Hjälpmedel: BETA, Mathematics Handbook Redovisa

Läs mer

Datorövning 2. För att få tillgång till några mer avancerade ritkommandon kör

Datorövning 2. För att få tillgång till några mer avancerade ritkommandon kör Kontinuerliga system vt 2019 Datorövning 2 Inledning Detta är en textversion av det ett maple worksheet som heter Datorovning_2.mw och som kan laddas ner från hemsidan. Den ska öppnas inifrån maple. Då

Läs mer

BEGREPPSMÄSSIGA PROBLEM

BEGREPPSMÄSSIGA PROBLEM BEGREPPSMÄSSIGA PROBLEM Större delen av de rekommenderade uppgifterna i boken är beräkningsuppgifter. Det är emellertid även viktigt att utveckla en begreppsmässig förståelse för materialet. Syftet med

Läs mer

Hjälpmedel: Det för kursen ociella formelbladet samt TeFyMa. 0 x < 0

Hjälpmedel: Det för kursen ociella formelbladet samt TeFyMa. 0 x < 0 LÖSNINGAR TILL Deltentamen i kvantformalism, atom och kärnfysik med tillämpningar för F3 9-1-15 Tid: kl 8.-1. (MA9A. Hjälpmedel: Det för kursen ociella formelbladet samt TeFyMa. Poäng: Vid varje uppgift

Läs mer