Ytterligare övningsfrågor finansiell ekonomi NEKA53

Save this PDF as:
 WORD  PNG  TXT  JPG

Storlek: px
Starta visningen från sidan:

Download "Ytterligare övningsfrågor finansiell ekonomi NEKA53"

Transkript

1 Ytterligare övningsfrågor finansiell ekonomi NEKA53 Modul 2: Pengars tidsvärde, icke arbitrage, och vad vi menar med finansiell risk. Fråga 1: Enkel och effektiv ränta a) Antag att den enkla årsräntan är 8%. Vad är den effektiva årsräntan med veckovis ränta på ränta (weekly compounding)? b) Vad är den kontinuerliga årsräntan? c) Antag att den effektiva årsräntan med månatlig ränta på ränta är 7%. Vad är den enkla årsräntan? Fråga 2: Förväntad avkastning och risk Det finns tre olika tillgångar A, B, C och fem olika möjliga framtida tillstånd 1, 2,..., 5 för marknaden. Ett av dessa tillstånd kommer att realiseras men vi vet idag inte vilket. Tillgångarnas avkastning i respektive tillstånd och tillståndens sannolikheter finns i tabellen nedan. Tillstånd Sannolikhet r(a) r(b) r(c) a) Beräkna tillgångarnas förväntade avkastning. b) Beräkna tillgångarnas risk (volatilitet). c) Beräkna tillgångarnas skevhet. Skevheten definieras analogt med standardavvikelsen (formel 4.2 i boken) enligt

2 n 3 p i r i i 1 s (med n tillstånd). 3 / 2 Fråga 3: Riskpreferenser a) Vilken tillgång skulle en riskneutral investerare välja? b) Vilken tillgång skulle en riskaversiv investerare välja? Modul 3: Kassaflödesvärdering av obligationer och aktier. Fråga 4: Obligationer a) Vad är priset på en riskfri nollkupongobligation med 3.5 års återstående löptid och nominellt värde 1 miljon om den riskfria räntan är 5% på årsbasis? b) Vad är priset på en riskfri kupongobligation med 3.5 års återstående löptid och nominellt värde 1 miljon om kupongräntan är 4% och den riskfria räntan är 5% på årsbasis? c) Vad är priset om kupongräntan istället är 5%? d) Antag istället att kupongen betalas ut två gånger per år (med 4% årlig kupongränta). Vad är då obligationens pris? Fråga 5: Aktier a) Vad är priset på en aktie idag som endast förväntas existera i ytterligare tre år om aktiens utdelning förväntas bli 10 per år och aktiens förväntade avkastning är 7% per år? b) Vad är priset på aktien om företaget istället förväntas existera oändligt länge? c) Vad är priset om företaget förväntas existera oändligt länge med en årlig utdelningstillväxt på 2%?

3 Modul 4: Portföljval Fråga 6: Minsta varians portföljen Antag att investerare endast kan handla aktier i 10 % intervall, d.v.s. investerare kan välja att investera 0%, 10%, 20%,..., 100% i en viss tillgång. Antag att det finns ytterligare en tillgång D med förväntad avkastning 0.04 och volatilitet Antag att korrelationerna mellan tillgångarna är korr(a,b) = +1 korr(a,d) = 1 och korr(b,d) = a) Vilken portfölj har minst varians om det är möjligt att investera endast i tillgångarna A och B? b) Vilken portfölj har minst varians om det är möjligt att investera endast i tillgångarna A och D? c) Vilken portfölj har minst varians om det är möjligt att investera endast i tillgångarna B och D? Fråga 7: Portföljval och riskaversion Antag att en investerares nyttofunktion definierad över portföljens 2 förväntade avkastning E och varians är r p p U E r p 2 p där 0 är en riskaversionsparameter; ju högre desto större riskaversion. En mean variance investerare har en nyttofunktion i enlighet med ovan och högre förväntad avkastning ger alltså högre nytta medan högre varians ger lägre nytta (allt annat lika). Observera också att det endast är förväntad avkastning och varians som har betydelse för nyttan; t.ex. har skevhet ingen påverkan på den nytta portföljen ger investeraren. a) Vilken portfölj är optimal om det är möjligt att investera endast i tillgångarna A och B och 3 resp. 10?

4 b) Vilken portfölj är optimal om det är möjligt att investera endast i tillgångarna A och D och 3 resp. 10? c) Vilken portfölj är optimal om det är möjligt att investera endast i tillgångarna B och D och 3 resp. 10? d) Antag att det finns en riskfri tillgång med förväntad avkastning 1 % och att det är möjligt att investera i tillgångarna B och D. Antag att tangentportföljen består av 20 % i tillgång B och 80 % i tillgång D. Vilken portfölj är optimal för en investerare med riskaversion 3 resp. 10? Modul 5: CAPM Fråga 8: Beta Antag att korrelationerna mellan tillgångarna A, B, C och marknadsportföljen M är korr(a,m) = +1.0, korr(b,m) = +0.8 och korr(c,m) = 0. a) Vad är beta för tillgångarna A, B, C om marknadens volatilitet är 10%? b) Vilken tillgång är mest riskfylld? Jämför tillgångarna i termer av risk när risk mäts dels som beta och dels när risk mäts som volatilitet (se fråga 4 ovan). Förklara skillnaden. Fråga 9: Riskpremium, CML och SML Antag utöver tidigare förutsättningar att den riskfria räntan är 1% och att marknadens förväntade avkastning är 2%. a) Vad är riskpremien för tillgångarna A, B och C enligt CAPM? Ge en verbal tolkning av riskpremien. b) Skriv upp ekvationerna för CML och SML. c) Beräkna lutningarna för CML och SML. Tolka lutningarna i ekonomiska termer.

5 Modul 6: Derivat: terminer och optioner. Fråga 10: Terminspriset Antag att aktiepriset idag är 100 och att den riskfria räntan är 2% per år. a) Vad är det arbitragefria terminspriset idag för att köpa aktien om ett år? b) Hur kan du göra en arbitragevinst om terminspriset på marknaden är 5 lägre än det terminspris du beräknade i a)? Hur stor blir arbitragevinsten (per termin)? c) Hur kan du göra en arbitragevinst om terminspriset på marknaden är 5 högre än det terminspris du beräknade i a)? Hur stor blir arbitragevinsten (per termin)? d) Vad är det arbitragefria terminspriset idag för att köpa aktien om 6 månader? Fråga 11: Hedgning med terminer a) Antag att du idag vet att du kommer att få en valutautbetalning om ett år i en utländsk valuta och vill hedga denna position med hjälp av terminer. Hur skulle du gå tillväga? b) Rita i ett digram den ohedgade positionens kassaflöde, terminens kassaflöde och den hedgade positionens kassaflöde som en funktion av den framtida valutakursen (kursen om ett år). c) Antag att du idag vet att du kommer att göra en valutautbetalning i en utländsk valuta om ett år och vill hedga denna position med hjälp av terminer. Hur skulle du gå tillväga? d) Rita i ett digram den ohedgade positionens kassaflöde, terminens kassaflöde och den hedgade positionens kassaflöde som en funktion av den framtida valutakursen (kursen om ett år).

6 Fråga 12: Optionspriset Antag i alla frågorna nedan att den riskfria räntan är 2% per år. a) Låt aktiepriset och lösenpriset vara 100, återstående löptid ett år och aktiens volatilitet 20% per år. Använd Black Scholes formel för att beräkna priset på en europeisk köpoption och en europeisk säljoption med förutsättningarna ovan. b) Undersök hur optionspriserna förändras om förutsättningrna ovan ändras, d.v.s. gör en känslighetsanalys och jämför med tabell 8.1 i boken. Du ska beräkna nya köp och säljoptionspriser genom att ändra en variabel/parameter i taget enligt: S = 90, 100, 110 (allt annat lika, d.v.s. enligt a)) X = 90, 100, 110 (allt annat lika) T = 6 mån, 1 år, 1.5 år (allt annat lika) = 15%, 20%, 25% (allt annat lika). c) Ge intuitiva förklaringar till varför optionspriserna ändras i den riktning de gör enligt dina beräkningar (och enligt tabell 8.1). Fråga 13: Put Call Parity a) Visa att Put Call parity håller för de optionspriser du beräknat i a) ovan. b) Antag att köpoptionspriset på marknaden är 2 (kr) högre än det pris du beräknat i a) ovan. Hur kan du utnyttja detta för att göra en arbitragevinst? Fråga 14: Hedgning med optioner a) Antag att du idag vet att du kommer att få en valutautbetalning i en utländsk valuta om ett år och vill hedga denna position med hjälp av optioner. Hur skulle du gå tillväga?

7 b) Rita i ett digram den ohedgade positionens kassaflöde, optionens kassaflöde och den hedgade positionens kassaflöde som en funktion av den framtida valutakursen (kursen om ett år).

Formelsamling för kursen Grundläggande finansmatematik

Formelsamling för kursen Grundläggande finansmatematik STOCKHOLMS UNIVERSITET 13 december 006 Matematiska institutionen Avd. för matematisk statistik Mikael Andersson Formelsamling för kursen Grundläggande finansmatematik 1 Fundamental Theorem of Asset Pricing

Läs mer

CAPM (capital asset pricing model)

CAPM (capital asset pricing model) CAPM (capital asset pricing model) CAPM En teoretisk modell för förväntad avkastning i jämvikt, d.v.s. när utbudet av varje tillgång är lika med efterfrågan på motsvarande tillgång. Detta betyder att CAPM

Läs mer

Strukturakademin Strukturinvest Fondkommission FIGUR 1. Utdelning. Återinvesterade utdelningar Ej återinvesterade utdelningar

Strukturakademin Strukturinvest Fondkommission FIGUR 1. Utdelning. Återinvesterade utdelningar Ej återinvesterade utdelningar Del 3 Utdelningar Innehåll Implicita tillgångar... 3 Vad är utdelningar?... 3 Hur påverkar utdelningar optioner?... 3 Utdelningar och forwards... 3 Prognostisera utdelningar... 4 Implicita utdelningar...

Läs mer

STOCKHOLMS UNIVERSITET MATEMATISKA INSTITUTIONEN Avd. för Matematisk statistik Thomas Höglund FINANSMATEMATIK I. ÖVNINGAR TILL DAG 3.

STOCKHOLMS UNIVERSITET MATEMATISKA INSTITUTIONEN Avd. för Matematisk statistik Thomas Höglund FINANSMATEMATIK I. ÖVNINGAR TILL DAG 3. STOCKHOLMS UNIVERSITET MATEMATISKA INSTITUTIONEN Avd. för Matematisk statistik Thomas Höglund FINANSMATEMATIK I. ÖVNINGAR TILL DAG 2. Luenberger: 2:1-5, 9, 11, 12. Övning 1. Du lånar 200000 kr i en bank

Läs mer

Del 3 Utdelningar. Strukturakademin

Del 3 Utdelningar. Strukturakademin Del 3 Utdelningar Strukturakademin Innehåll 1. Implicita tillgångar 2. Vad är utdelningar? 3. Hur påverkar utdelningar optioner? 4. Utdelningar och Forwards 5. Prognostisera utdelningar 6. Implicita utdelningar

Läs mer

Asa Hansson. Sign: ECTS: D Civilekonom D Ekon.kand. D Pol.kand. D Fristående D LTH D Utbytesstudent D Annat. Betyg: Nationalekonomiska institutionen

Asa Hansson. Sign: ECTS: D Civilekonom D Ekon.kand. D Pol.kand. D Fristående D LTH D Utbytesstudent D Annat. Betyg: Nationalekonomiska institutionen Nationalekonomiska institutionen Sign: Lunds universitet TENTAMEN Leg OK: D Kurs: NEKA12 Finansiell ekonomi Lokal & tid: _E_ft_e_r_n_a_m_n_=------------------------------~P_e_~_o_n_n_r_: ~VIC 1 +2 08-13

Läs mer

under en options löptid. Strukturakademin Strukturinvest Fondkommission

under en options löptid. Strukturakademin Strukturinvest Fondkommission Del 1 Volatilitet Innehåll Implicita tillgångar... 3 Vad är volatilitet?... 3 Volatility trading... 3 Historisk volatilitet... 3 Hur beräknas volatiliteten?... 4 Implicit volatilitet... 4 Smile... 4 Vega...

Läs mer

Räntemodeller och marknadsvärdering av skulder

Räntemodeller och marknadsvärdering av skulder Räntemodeller och marknadsvärdering av skulder Fredrik Armerin Matematisk statistik, KTH Aktuarieföreningen 17-18 november 2004 Dag 2 NOLLKUPONGSKURVOR 1 Nollkupongsobligationer En nollkupongsobligation

Läs mer

Del 1 Volatilitet. Strukturakademin

Del 1 Volatilitet. Strukturakademin Del 1 Volatilitet Strukturakademin Innehåll 1. Implicita tillgångar 2. Vad är volatilitet? 3. Volatility trading 4. Historisk volatilitet 5. Hur beräknas volatiliteten? 6. Implicit volatilitet 7. Smile

Läs mer

Del 2 Korrelation. Strukturakademin

Del 2 Korrelation. Strukturakademin Del 2 Korrelation Strukturakademin Innehåll 1. Implicita tillgångar 2. Vad är korrelation? 3. Hur fungerar sambanden? 4. Hur beräknas korrelation? 5. Diversifiering 6. Korrelation och Strukturerade Produkter

Läs mer

TENTA 2011-08-15 723G28/723G29 (uppdaterad 2014-02-03)

TENTA 2011-08-15 723G28/723G29 (uppdaterad 2014-02-03) TENTA 2011-08-15 723G28/723G29 (uppdaterad 2014-02-03) LÖSNINGSFÖRSLAG: Notera förslag och att det är skisser inte fullständiga svar på definitioner och essäfrågor Uppgift 1 (2 poäng) Definiera kortfattat

Läs mer

Strukturakademin Strukturinvest Fondkommission LÅNG KÖPOPTION. Värde option. Köpt köpoption. Utveckling marknad. Rättighet

Strukturakademin Strukturinvest Fondkommission LÅNG KÖPOPTION. Värde option. Köpt köpoption. Utveckling marknad. Rättighet Del 11 Indexbevis Innehåll Grundpositionerna... 3 Köpt köpoption... 3 Såld köpoption... 3 Köpt säljoption... 4 Såld säljoption... 4 Konstruktion av Indexbevis... 4 Avkastningsanalys... 5 knock-in optioner...

Läs mer

AID:... Uppgift 1 (2 poäng) Definiera kortfattat följande begrepp. a) IRR b) APR c) Going concern d) APV. Lösningsförslag: Se Lärobok och/alt Google.

AID:... Uppgift 1 (2 poäng) Definiera kortfattat följande begrepp. a) IRR b) APR c) Going concern d) APV. Lösningsförslag: Se Lärobok och/alt Google. Notera att det är lösningsförslag. Inga utförliga lösningar till triviala definitioner och inga utvecklade svar på essä-typ frågor. Och, att kursen undervisas lite olika år från år. År 2013 mera från Kap

Läs mer

TENTA: 2012-05-04 723G29/28 Uppdaterar 20140914

TENTA: 2012-05-04 723G29/28 Uppdaterar 20140914 TENTA: 2012-05-04 723G29/28 Uppdaterar 20140914 Notera att det är lösningsförslag. Inga utförliga lösningar till triviala definitioner och inga utvecklade svar på essä-typ frågor. Och, att kursen undervisas

Läs mer

Tentamen Finansiering (2FE253) Torsdagen den 16 februari 2017

Tentamen Finansiering (2FE253) Torsdagen den 16 februari 2017 Tentamen Finansiering (FE3) Torsdagen den 16 februari 017 Skrivtid: 4 timmar (kl. 08:00 1:00) Hjälpmedel: Kalkylator och kursens formelblad. OBS! Endast formler som står med på formelbladet får programmeras

Läs mer

Lösningar till tentamen i Grundläggande nansmatematik. 21 december 2006 kl. 914

Lösningar till tentamen i Grundläggande nansmatematik. 21 december 2006 kl. 914 STOCKHOLMS UNIVERSITET MS 3290 MATEMATISKA INSTITUTIONEN TENTAMEN Avd. Matematisk statistik 21 december 2006 Lösningar till tentamen i Grundläggande nansmatematik 21 december 2006 kl. 914 Uppgift 1 Priset

Läs mer

(A -A)(B -B) σ A σ B. på att tillgångarna ej uppvisar något samband i hur de varierar.

(A -A)(B -B) σ A σ B. på att tillgångarna ej uppvisar något samband i hur de varierar. Del 2 Korrelation Innehåll Implicita tillgångar... 3 Vad är korrelation?... 3 Hur fungerar sambanden?... 3 Hur beräknas korrelation?... 3 Diversifiering... 4 Korrelation och strukturerade produkter...

Läs mer

Tentamen Finansiering (2FE253) Onsdagen den 28 september 2016

Tentamen Finansiering (2FE253) Onsdagen den 28 september 2016 Tentamen Finansiering (2FE253) Onsdagen den 28 september 2016 Skrivtid: 4 timmar (kl. 14:00 18:00) Hjälpmedel: Kalkylator och kursens formelblad. OBS! Endast formler som står med på formelbladet får programmeras

Läs mer

Tentamen Finansiering (2FE253) Onsdagen den 17 februari 2016, kl. 08:00-12:00

Tentamen Finansiering (2FE253) Onsdagen den 17 februari 2016, kl. 08:00-12:00 Tentamen Finansiering (2FE253) Onsdagen den 17 februari 2016, kl. 08:00-12:00 Skrivtid: 4 timmar (kl. 08:00 12:00) Hjälpmedel: Kalkylator och kursens formelblad. OBS! Endast formler som står med på formelbladet

Läs mer

Juli/Augusti 2003. Valutawarranter. sverige

Juli/Augusti 2003. Valutawarranter. sverige Juli/Augusti 2003 Valutawarranter sverige in troduktion Valutamarknaden är en av de mest likvida finansiella marknaderna, där många miljarder omsätts i världens olika valutor varje dag. Marknaden drivs

Läs mer

Del 16 Kapitalskyddade. placeringar

Del 16 Kapitalskyddade. placeringar Del 16 Kapitalskyddade placeringar Innehåll Kapitalskyddade placeringar... 3 Obligationer... 3 Prissättning av obligationer... 3 Optioner... 4 De fyra positionerna... 4 Konstruktion av en kapitalskyddad

Läs mer

Del 18 Autocalls fördjupning

Del 18 Autocalls fördjupning Del 18 Autocalls fördjupning Innehåll Autocalls... 3 Autocallens beståndsdelar... 3 Priset på en autocall... 4 Känslighet för olika parameterar... 5 Avkastning och risk... 5 del 8 handlade om autocalls.

Läs mer

Finansiering. Föreläsning 7 Portföljteori och kapitalkostnad BMA: Kap Jonas Råsbrant

Finansiering. Föreläsning 7 Portföljteori och kapitalkostnad BMA: Kap Jonas Råsbrant Finansiering Föreläsning 7 Portföljteori och kapitalkostnad BMA: Kap. 8-9 Jonas Råsbrant jonas.rasbrant@fek.uu.se Förväntad avkastning och volatilitet i portföljer Förväntad avkastning och volatilitet

Läs mer

Tentamen Finansiering (2FE253) Lördagen den 21 mars 2015, kl. 09:00-13:00

Tentamen Finansiering (2FE253) Lördagen den 21 mars 2015, kl. 09:00-13:00 Tentamen Finansiering (2FE253) Lördagen den 21 mars 2015, kl. 09:00-13:00 Skrivtid: 4 timmar (kl. 09:00 13:00) Hjälpmedel: Kalkylator och kursens formelblad. OBS! Endast formler som står med på formelbladet

Läs mer

Övningsexempel i Finansiell Matematik

Övningsexempel i Finansiell Matematik KTH Matematik Harald Lang 27/3-04 Övningsexempel i Finansiell Matematik 1. Riskjusterade sannolikhetsmått 1. Vi betraktar en stokastisk utbetalning X(ω) som ger utdelning enligt tabellen ω 1 ω 2 ω 2 pris

Läs mer

Fastighetsmarknaden VFT 015 Höstterminen 2014

Fastighetsmarknaden VFT 015 Höstterminen 2014 Fastighetsmarknaden VFT 015 Höstterminen 2014 Ordinarie tentamen - SVAR Examinator: Ingemar Bengtsson Skriftlig tentamen Datum 2014-10-28 Tid 08:00-13:00 Plats Vic 1B Anvisningar Besvara frågorna på lösa

Läs mer

Del 15 Avkastningsberäkning

Del 15 Avkastningsberäkning Del 15 Avkastningsberäkning Innehåll Framtida förväntat pris... 3 Price return... 3 Total Return... 4 Excess Return... 5 Övriga alternativ... 6 Avslutande ord... 6 I del 15 går vi igenom olika möjliga

Läs mer

Kurs 311. Finansiell ekonomi

Kurs 311. Finansiell ekonomi Handelshögskolan i Stockholm Finansiell ekonomi, kurs 311 Per Hiller 2003-09-01 Kurs 311 Finansiell ekonomi Tentamensfrågor med lösningsförslag från läsåret 2002/2003 Tentamenstiden är 4 timmar och tentamen

Läs mer

LÖSNINGSFÖRSLAG Tentamen Finansiering I (FÖ3006) 22/2 2013

LÖSNINGSFÖRSLAG Tentamen Finansiering I (FÖ3006) 22/2 2013 LÖSNINGSFÖRSLAG Tentamen Finansiering I (FÖ006) 22/2 20 Hjälpmedel: Räknare samt formler på sidan. Betyg: G = p, VG = 9 p Maxpoäng 25 p OBS: Glöm ej att redovisa dina delberäkningar som har lett till ditt

Läs mer

Del 15 Avkastningsberäkning

Del 15 Avkastningsberäkning Del 15 Avkastningsberäkning 1 Innehåll 1. Framtida förväntat pris 2. Price return 3. Total Return 5. Excess Return 6. Övriga alternativ 7. Avslutande ord 2 I del 15 går vi igenom olika möjliga alternativ

Läs mer

Vad handlar Boken Kapitel och föreläsningar om? En synopsis av kursen

Vad handlar Boken Kapitel och föreläsningar om? En synopsis av kursen 2015-04-25/Bo Sjö Översikt Finansiell Ekonomi 723G29 Vad handlar Boken Kapitel och föreläsningar om? En synopsis av kursen Kap 1 Introduktion (Översiktligt) Det asymmetriska informations problemet, som

Läs mer

Provmoment: Ladokkod: Tentamen ges för:

Provmoment: Ladokkod: Tentamen ges för: Finansiell ekonomi Provmoment: Ladokkod: Tentamen ges för: Namn: (Ifylles av student) Personnummer: (Ifylles av student) Tentamensdatum: 27/3 2015 Tid: 14:00 19:00 21FE1B Nationalekonomi 1-30 hp, omtentamen

Läs mer

Del 6 Valutor. Strukturakademin

Del 6 Valutor. Strukturakademin Del 6 Valutor Strukturakademin Innehåll 1. Strukturerade produkter och valutor 2. Hur påverkar valutor? 3. Metoder att hantera valutor 4. Quanto Valutaskyddad 5. Composite Icke valutaskyddad 6. Lokal Icke

Läs mer

Tentamen Finansiering (2FE253) Lördagen den 19 november 2016

Tentamen Finansiering (2FE253) Lördagen den 19 november 2016 Tentamen Finansiering (2FE253) Lördagen den 19 november 2016 Skrivtid: 4 timmar (kl. 09:00 13:00) Hjälpmedel: Kalkylator och kursens formelblad. OBS! Endast formler som står med på formelbladet får programmeras

Läs mer

Ekonomisk styrning Delkurs Finansiering

Ekonomisk styrning Delkurs Finansiering Ekonomisk styrning Delkurs Finansiering Föreläsning 10 Optioner BMA: Kap. 20 Jonas Råsbrant jonas.rasbrant@indek.kth.se Föreläsningens innehåll Vad är en option? Köp- och säljoptioner Olika typer av optioner

Läs mer

Warranter En investering med hävstångseffekt

Warranter En investering med hävstångseffekt Warranter En investering med hävstångseffekt Investerarprofil ÄR WARRANTER RÄTT TYP AV INVESTERING FÖR DIG? Innan du bestämmer dig för att investera i warranter bör du fundera över vilken risk du är beredd

Läs mer

Del 13 Andrahandsmarknaden

Del 13 Andrahandsmarknaden Del 13 Andrahandsmarknaden Strukturakademin Strukturakademin Srukturinvest Fondkommission 1 Innehåll 1. Produktens värde på slutdagen 2. Produktens värde under löptiden 3. Köp- och säljspread 4. Obligationspriset

Läs mer

Finansiering. Föreläsning 6 Risk och avkastning BMA: Kap. 7. Jonas Råsbrant

Finansiering. Föreläsning 6 Risk och avkastning BMA: Kap. 7. Jonas Råsbrant Finansiering Föreläsning 6 Risk och avkastning BMA: Kap. 7 Jonas Råsbrant jonas.rasbrant@fek.uu.se Föreläsningens innehåll Historisk avkastning för finansiella tillgångar Beräkning av avkastning och risk

Läs mer

Tentamen Finansiering (2FE253) Lördagen den 7 november 2015, kl. 09:00-13:00

Tentamen Finansiering (2FE253) Lördagen den 7 november 2015, kl. 09:00-13:00 Tentamen Finansiering (2FE253) Lördagen den 7 november 2015, kl. 09:00-13:00 Skrivtid: 4 timmar (kl. 09:00 13:00) Hjälpmedel: Kalkylator och kursens formelblad. OBS! Endast formler som står med på formelbladet

Läs mer

Del 4 Emittenten. Strukturakademin

Del 4 Emittenten. Strukturakademin Del 4 Emittenten Strukturakademin Innehåll 1. Implicita risker och tillgångar 2. Emittenten 3. Obligationer 4. Prissättning på obligationer 5. Effekt på villkoren 6. Marknadsrisk och Kreditrisk 7. Implicit

Läs mer

Provmoment: Ladokkod: Tentamen ges för:

Provmoment: Ladokkod: Tentamen ges för: Finansiell ekonomi Provmoment: Ladokkod: Tentamen ges för: Namn: (Ifylles av student) Personnummer: (Ifylles av student) Tentamensdatum: 23/8 13 Tid: 09:00 14:00 Hjälpmedel: Miniräknare SFE011 Nationalekonomi

Läs mer

OPTIONER OCH FUTURES PÅ VETE

OPTIONER OCH FUTURES PÅ VETE OPTIONER OCH FUTURES PÅ VETE En studie av optioner, volatilitet och investeringsstrategier på råvarumarknaden Sammanfattning I rapporten analyseras den europeiska och amerikanska marknaden för optioner

Läs mer

Apoteket AB:s Pensionsstiftelse. Absolutavkastning 2014-04-09

Apoteket AB:s Pensionsstiftelse. Absolutavkastning 2014-04-09 Absolutavkastning 2014-04-09 Innehåll Affärside och mål Portföljstruktur Risker och riskkontroll Nyckeltal Affärside och mål Skapa en jämn genomsnittlig årsavkastning på 7 % inom intervallet 0-15 %. Låg

Läs mer

Del 11 Indexbevis. Strukturakademin. Strukturakademin. Strukturinvest Fondkommission

Del 11 Indexbevis. Strukturakademin. Strukturakademin. Strukturinvest Fondkommission Del 11 Indexbevis 1 Innehåll 1. Grundpositionerna 1.1 Köpt köpoption 1.2 Såld köpoption 1.3 Köpt säljoption 1.4 Såld säljoption 2. Konstruktion av indexbevis 3. Avkastningsanalys 4. Knock-in optioner 5.

Läs mer

Provmoment: Ladokkod: Tentamen ges för:

Provmoment: Ladokkod: Tentamen ges för: Finansiell ekonomi Provmoment: Ladokkod: Tentamen ges för: 21FE1B Nationalekonomi 1-30 hp, ordinarie tentamen 7,5 högskolepoäng Tentamensdatum: 18/3 16 Tid: 09:00 13:00 Hjälpmedel: Miniräknare, rutat papper,

Läs mer

OPTIONSSTRATEGIER SNABBGUIDE AKTIEOPTIONER

OPTIONSSTRATEGIER SNABBGUIDE AKTIEOPTIONER OPTIONSSTRATEGIER SNABBGUIDE AKTIEOPTIONER Optioner ger investerare många möjligheter eftersom det finns strategier för alla olika marknadslägen. De är också effektiva verktyg för att försäkra innehav

Läs mer

Tentamen Finansiering I (FÖ3006) 22/8 2013

Tentamen Finansiering I (FÖ3006) 22/8 2013 1 Tentamen Finansiering I (FÖ3006) 22/8 2013 Hjälpmedel: Räknare Betyg: G = 13 p, VG = 19 p Maxpoäng 25 p OBS: Glöm ej att redovisa dina delberäkningar som har lett till ditt svar! För beräkningsuppgifterna:

Läs mer

LÖSNINGSFÖRLAG 2010-10-27

LÖSNINGSFÖRLAG 2010-10-27 Linköpings universitet 100928 IEI/Nek Bo Sjö LÖSNINGSFÖRLAG 2010-10-27 Tentamen 2010-10-01, kl. 08:00-13:00 Finansiell ekonomi, 7,5Hp Affärsjuridiska programmet (730G32) Skrivningen består av 4 uppgifter

Läs mer

Hedging och Försäkring (prisskydd/prisförsäkring)

Hedging och Försäkring (prisskydd/prisförsäkring) Hedging och Försäkring (prisskydd/prisförsäkring) Hedging En hedge kan översättas med ett skydd eller en säkring ; till exempel ett valutaskydd eller en valutasäkring i en transaktion som ska ske i framtiden.

Läs mer

Provmoment: Ladokkod: Tentamen ges för:

Provmoment: Ladokkod: Tentamen ges för: Finansiell ekonomi Provmoment: Ladokkod: Tentamen ges för: Skriftlig tentamen 21FE1B Nationalekonomi 1-30 hp 7,5 högskolepoäng Namn: (Ifylles av student) Personnummer: (Ifylles av student) Tentamensdatum:

Läs mer

AID:... LÖSNINGSFÖRSLAG TENTA 2013-05-03. Aktiedelen, uppdaterad 2014-04-30

AID:... LÖSNINGSFÖRSLAG TENTA 2013-05-03. Aktiedelen, uppdaterad 2014-04-30 LÖSNINGSFÖRSLAG TENTA 013-05-03. Aktiedelen, udaterad 014-04-30 Ugift 1 (4x0.5 = oäng) Definiera kortfattat följande begre a) Beta värde b) Security Market Line c) Duration d) EAR Se lärobok, oweroints.

Läs mer

AID:... För definitioner se läroboken. För att få poäng krävs mer än att man bara skriver ut namnet på förkortningen.

AID:... För definitioner se läroboken. För att få poäng krävs mer än att man bara skriver ut namnet på förkortningen. Lösningsförslag aktiedelen Tenta augusti 11, 2014 Uppgift 1 (4 poäng) 2014-08-25 Definiera kortfattat följande begrepp a) CAPM b) WACC c) IRR d) Fria kassaflöden För definitioner se läroboken. För att

Läs mer

Tentamen Finansiering (2FE253) Lördagen den 11 november 2017

Tentamen Finansiering (2FE253) Lördagen den 11 november 2017 Tentamen Finansiering (2FE253) Lördagen den 11 november 2017 Skrivtid: 4 timmar (kl. 14:00 18:00) Hjälpmedel: Kalkylator och kursens formelblad. OBS! Endast formler som står med på formelbladet får programmeras

Läs mer

Black-Scholes. En prissättningsmodell för optioner. Linnea Lindström

Black-Scholes. En prissättningsmodell för optioner. Linnea Lindström Black-Scholes En prissättningsmodell för optioner Linnea Lindström Vt 2010 Examensarbete 1, 15 hp Kandidatexamen i matematik, 180 hp Institutionen för matematik och matematisk statistik Sammanfattning

Läs mer

Tentamen Finansiering (2FE253) Tisdagen den 29 september 2015, kl. 14:00-18:00

Tentamen Finansiering (2FE253) Tisdagen den 29 september 2015, kl. 14:00-18:00 Tentamen Finansiering (2FE253) Tisdagen den 29 september 2015, kl. 14:00-18:00 Skrivtid: 4 timmar (kl. 14:00 18:00) Hjälpmedel: Kalkylator och kursens formelblad. OBS! Endast formler som står med på formelbladet

Läs mer

Tentamen Finansiering (2FE253) Fredagen den 20 februari 2015, kl. 08:00-12:00

Tentamen Finansiering (2FE253) Fredagen den 20 februari 2015, kl. 08:00-12:00 Tentamen Finansiering (2FE253) Fredagen den 20 februari 2015, kl. 08:00-12:00 Skrivtid: 4 timmar (kl. 08:00 12:00) Hjälpmedel: Kalkylator och kursens formelblad. OBS! Endast formler som står med på formelbladet

Läs mer

Tentamen Finansiering (2FE253) Lördagen den 8 november 2014, kl. 09:00-13:00

Tentamen Finansiering (2FE253) Lördagen den 8 november 2014, kl. 09:00-13:00 Tentamen Finansiering (2FE253) Lördagen den 8 november 2014, kl. 09:00-13:00 Skrivtid: 4 timmar (kl. 09:00 13:00) Hjälpmedel: Kalkylator och kursens formelblad OBS! Endast formler som står med på formelbladet

Läs mer

AVANCERAD OPTIONSHANDEL NASDAQ STOCKHOLM 23 NOVEMBER 2017

AVANCERAD OPTIONSHANDEL NASDAQ STOCKHOLM 23 NOVEMBER 2017 AVANCERAD OPTIONSHANDEL NASDAQ STOCKHOLM 23 NOVEMBER 2017 DISCLAIMER Detta informationsmaterial är riktat till de deltagare som genomgått det seminarium som materialet avser med angiven tid och plats.

Läs mer

Del 17 Optionens lösenpris

Del 17 Optionens lösenpris Del 17 Optionens lösenpris Innehåll Optioner... 3 Optionens lösenkurs... 3 At the money... 3 In the money... 3 Out of the money... 4 Priset... 4 Kapitalskyddet... 5 Sammanfattning... 6 Strukturerade placeringar

Läs mer

Del 12 Genomsnittsberäkning

Del 12 Genomsnittsberäkning Del 12 Genomsnittsberäkning Innehåll Asiatiska optioner... 3 Asiatiska optioner i strukturerade produkter... 3 Hur fungerar det?... 3 Effekt på avkastningen... 4 Effekt på volatilitet... 4 Effekt på löptid...

Läs mer

Innehåll. Översikt 2012. Värde. Konsumtion, Nytta & Företag. Kassaflöden. Finansiella Marknader

Innehåll. Översikt 2012. Värde. Konsumtion, Nytta & Företag. Kassaflöden. Finansiella Marknader Översikt 2012 Detta är en översikt av frågeställningar som tagits upp förutom rena beräkningar efter formler. Alla frågor finns besvarade i boken, eller i power points, eller pånätet. 723G29 & 730G21 Innehåll

Läs mer

Prissättning av optioner

Prissättning av optioner TDB,projektpresentation Niklas Burvall Hua Dong Mikael Laaksonen Peter Malmqvist Daniel Nibon Sammanfattning Optioner är en typ av finansiella derivat. Detta dokument behandlar prissättningen av dessa

Läs mer

Del 20 Optimalfunktionen

Del 20 Optimalfunktionen Del 20 Optimalfunktionen Innehåll Optionens start- och slutkurs... 3 Skillnaden mellan genomsnittsberäkning och optimalstart/slut... 3 Fastställande av startkurs... 4 Användningsområden... 4 Prissättning

Läs mer

Del 7 Barriäroptioner

Del 7 Barriäroptioner Del 7 Barriäroptioner Innehåll Barriäroptioner... 3 Exotisk option... 3 Barriäroptioner med knock-in eller knock-out... 3 Varför barriäroptioner?... 3 Fyra huvudtyper av barriäroptioner... 4 Avläsning

Läs mer

payout = max [0,X 0(ST-K)]

payout = max [0,X 0(ST-K)] Del 6 Valutor Innehåll Strukturerade produkter och valutor... 3 Hur påverkar valutor?... 3 Metoder att hantera valutor... 3 Quanto valutaskyddad... 3 icke valutaskyddad... 4 icke valutaskyddad... 4 Hur

Läs mer

Optionspriser och marknadens förväntningar

Optionspriser och marknadens förväntningar Optionspriser och marknadens förväntningar AV JAVIERA AGUILAR OCH PETER HÖRDAHL Verksamma vid penning- och valutapolitiska avdelningen Att ta fram information ur finansiella priser är av intresse både

Läs mer

Finansiell ekonomi. Instuderingsuppgifter. Göran Hägg, Johan Holmgren & Linn Lones Luthman

Finansiell ekonomi. Instuderingsuppgifter. Göran Hägg, Johan Holmgren & Linn Lones Luthman Finansiell ekonomi Göran Hägg, Johan Holmgren & Linn Lones Luthman Instuderingsuppgifter Finansiell ekonomi... 1 Instuderingsuppgifter... 1 1 Begrepp och termer...2 2 TVM och värdering av tillgångar...

Läs mer

Påbyggnad/utveckling av lagen om ett pris Effektiv marknad: Priserna på en finansiell marknad avspeglar all relevant information

Påbyggnad/utveckling av lagen om ett pris Effektiv marknad: Priserna på en finansiell marknad avspeglar all relevant information Föreläsning 4 ffektiva marknader Påbyggnad/utveckling av lagen om ett pris ffektiv marknad: Priserna på en finansiell marknad avspeglar all relevant information Konsekvens: ndast ny information påverkar

Läs mer

Practice Set #3 and Solutions

Practice Set #3 and Solutions Bo Sjö 2012-04-19 Practice Set #3 and Solutions What to do with this practice set? Practice sets are handed out to help students master the material of the course and prepare for the final exam. These

Läs mer

Innehåll. Kursfallsskydd... 3 Lock & Secure... 3 Konstruktion av Lock & Secure funktionen... 3 Avkastning och risk... 4

Innehåll. Kursfallsskydd... 3 Lock & Secure... 3 Konstruktion av Lock & Secure funktionen... 3 Avkastning och risk... 4 Del 21 Lock & Secure Innehåll Kursfallsskydd... 3 Lock & Secure... 3 Konstruktion av Lock & Secure funktionen... 3 Avkastning och risk... 4 Autocalls och indexbevis har normalt ett kursfallsskydd som innebär

Läs mer

I n f o r m a t i o n o m a k t i e o p t i o n e r

I n f o r m a t i o n o m a k t i e o p t i o n e r I n f o r m a t i o n o m a k t i e o p t i o n e r Här kan du läsa om aktieoptioner, och hur de kan användas. Du hittar också exempel på investeringsstrategier. Aktieoptioner kan vara upptagna till handel

Läs mer

warranter ett placeringsalternativ med hävstång

warranter ett placeringsalternativ med hävstång warranter ett placeringsalternativ med hävstång /// www.warrants.commerzbank.com ////////////////////////////////////////////////////////////////// Warranter en definition En warrant är ett finansiellt

Läs mer

Portföljsammanställning för Landstinget Västerbotten. avseende perioden

Portföljsammanställning för Landstinget Västerbotten. avseende perioden Portföljsammanställning för avseende perioden Informationen i denna rapport innehåller kurser och värden. Värderingar av instrument är förvaltares rapporterade värden och Investment Consulting Group AB

Läs mer

Placeringsalternativ kopplat till tre strategier på G10 ländernas valutor

Placeringsalternativ kopplat till tre strategier på G10 ländernas valutor www.handelsbanken.se/mega Strategiobligation SHB FX 1164 Placeringsalternativ kopplat till tre strategier på G10 ländernas valutor Strategierna har avkastat 14,5 procent per år sedan år 2000 Låg korrelation

Läs mer

The Permanent Portfolio, med och utan modifieringar, går det att investera efter konjunkturen? Test av fyra olika portföljvalsstrategier

The Permanent Portfolio, med och utan modifieringar, går det att investera efter konjunkturen? Test av fyra olika portföljvalsstrategier The Permanent Portfolio, med och utan modifieringar, går det att investera efter konjunkturen? Test av fyra olika portföljvalsstrategier Författare: Fredrik Gertzell 860220-3674 Handledare: Erik Norrman

Läs mer

Finansiell ekonomi Föreläsning 1

Finansiell ekonomi Föreläsning 1 Finansiell ekonomi Föreläsning 1 Presentation lärare - Johan Holmgren (kursansvarig) Presentation kursupplägg och examination - Övningsuppgifter med och utan svar - Börssalen - Portföljvalsprojekt 10p

Läs mer

Ekonomisk styrning Delkurs Finansiering

Ekonomisk styrning Delkurs Finansiering konomisk styrning elkurs Finansiering Föreläsning 8-9 Kapitalstruktur BMA: Kap. 17-19 Jonas Råsbrant jonas.rasbrant@indek.kth.se Föreläsningarnas innehåll Företags finansieringskällor Mätning av företagets

Läs mer

Empirisk undersökning av aktieindexobligationer Till vilken grad tar innehavaren del av underliggande index avkastning?

Empirisk undersökning av aktieindexobligationer Till vilken grad tar innehavaren del av underliggande index avkastning? UPPSALA UNIVERSITET 2007-01-12 Företagsekonomiska institutionen C-UPPSATS Examensarbete C HT-2006 Handledare: Niklas Ström Empirisk undersökning av aktieindexobligationer Till vilken grad tar innehavaren

Läs mer

Marknadsföringsmaterial oktober 2014. Nyhet! Valutabevis. Låt dina pengar upptäcka världen

Marknadsföringsmaterial oktober 2014. Nyhet! Valutabevis. Låt dina pengar upptäcka världen Marknadsföringsmaterial oktober 2014 Nyhet! Valutabevis Låt dina pengar upptäcka världen I dag är marknadsräntorna låga och det är svårt att hitta placeringar som ger en hög ränta, med regelbundna ränteutbetalningar.

Läs mer

I n f o r m a t i o n o m v a l u t a o p t i o n s k o n t r a k t

I n f o r m a t i o n o m v a l u t a o p t i o n s k o n t r a k t I n f o r m a t i o n o m v a l u t a o p t i o n s k o n t r a k t Här hittar du allmän information om valutaoptionskontrakt som handlas hos Danske Bank. Valutaoptioner kan handlas OTC med oss som motpart.

Läs mer

Strukturerade produkter - Aktieindexobligationer En studie om aktieindexobligationers beståndsdelar, avkastning och prissättning

Strukturerade produkter - Aktieindexobligationer En studie om aktieindexobligationers beståndsdelar, avkastning och prissättning NATIONALEKONOMISKA INSTUTIONEN Uppsala Universitet Examensarbete C Författare: Elinore Ström Handledare: Martin Holmén Vårterminen 2007 Strukturerade produkter - Aktieindexobligationer En studie om aktieindexobligationers

Läs mer

Hur man gör och varför.

Hur man gör och varför. FINANS ENLIGT MARKUS 2 Hur man gör och varför. o Innehåll: Kommenterad sammanfattning, Brealey & Myers, Principles of Corporate Finance, upplaga 6: kapitel 3 (nuvärdesberäkningar), 4 (aktievärdering),

Läs mer

Valuation of biotechnology firms with real options

Valuation of biotechnology firms with real options Magisteruppsats i Internationella Ekonomprogrammet LIU-EKI/IEP-D--06/012 SE Värdering av bioteknikföretag med reala optioner Valuation of biotechnology firms with real options Författare: David Andersson

Läs mer

Bilaga 1 till Underlag för Standard för pensionsprognoser

Bilaga 1 till Underlag för Standard för pensionsprognoser Bilaga 1 2012-10-17 1 (5) Pensionsadministrationsavdelningen Håkan Tobiasson Bilaga 1 till Underlag för Standard för pensionsprognoser Utgångspunkter för avkastningsantagande Det finns flera tungt vägande

Läs mer

Småbolagseffekten. Anna Ljungberg. Handledare: Anne-Marie Pålsson

Småbolagseffekten. Anna Ljungberg. Handledare: Anne-Marie Pålsson Småbolagseffekten Anna Ljungberg Handledare: Anne-Marie Pålsson Kandidatuppsats VT 2011 Sammanfattning Titel: Småbolagseffekten Kurs: Kandidatuppsats i Nationalekonomi, 15 HP Författare: Anna Ljungberg

Läs mer

Olika typer av Emittenter: Växande företag: behöver lån för att komma igång Yngre hushåll: studenter Länder under utveckling: T.ex. Grekland.

Olika typer av Emittenter: Växande företag: behöver lån för att komma igång Yngre hushåll: studenter Länder under utveckling: T.ex. Grekland. Instuderingsfrågor finans 1. Förklara typerna av finansiella aktörer: Emittenter(har underskott: behöver låna) och placerare(har överskott, vill spara). Olika typer av placerare: AP fonder Försäkringsbolag

Läs mer

SPAX - En studie om aktieindexobligationers avkastning, risk och optimala allokering, ex post.

SPAX - En studie om aktieindexobligationers avkastning, risk och optimala allokering, ex post. Nationalekonomiska institutionen Kandidatuppsats Ekonomihögskolan vid april 2006 Lunds Universitet SPAX - En studie om aktieindexobligationers avkastning, risk och optimala allokering, ex post. Handledare:

Läs mer

Tentamen Finansiering (2FE253) Lördagen den 2 april 2016

Tentamen Finansiering (2FE253) Lördagen den 2 april 2016 Tentamen Finansiering (2FE253) Lördagen den 2 april 2016 Skrivtid: 4 timmar (kl. 09:00 13:00) Hjälpmedel: Kalkylator och kursens formelblad. OBS! Endast formler som står med på formelbladet får programmeras

Läs mer

TURBOWARRANTER och hur du blir tillräckligt snabb för att hänga med

TURBOWARRANTER och hur du blir tillräckligt snabb för att hänga med TURBOWARRANTER och hur du blir tillräckligt snabb för att hänga med En investering i värdepapper kan både öka och minska i värde och det är inte säkert att du får tillbaka hela det investerade kapitalet.

Läs mer

Finansiell Ekonomi i Praktiken

Finansiell Ekonomi i Praktiken Finansiell Ekonomi i Praktiken Seminarium den 16 februari 2005 Program 14.00-14.15 Inledning 14.15-15.00 Att fastställa en kunds riskbenägenhet 15.15-16.00 Olika placeringars risk 16.15-17.00 Rådgivning

Läs mer

Tenta 20110506 Lösningsförslag fråga 1-8

Tenta 20110506 Lösningsförslag fråga 1-8 Udaterad 05047 Tenta 00506 Lösningsförslag fråga -8 Notera att det är lösningsförslag. Inga lösningar till triviala definitioner och inga utvecklade svar å essä-ty frågor. Och, att kursen undervisas lite

Läs mer

BNP PARIBAS TURBOWARRANTER EDUCATED TRADING

BNP PARIBAS TURBOWARRANTER EDUCATED TRADING BNP PARIBAS TURBOWARRANTER EDUCATED TRADING En investering i värdepapper kan både öka och minska i värde och det är inte säkert att du får tillbaka hela det investerade kapitalet. Turbowarranter är högriskplaceringar

Läs mer

Finansiell ekonomi. Svarslösningar. Göran Hägg, Johan Holmgren & Linn Lones Luthman

Finansiell ekonomi. Svarslösningar. Göran Hägg, Johan Holmgren & Linn Lones Luthman Projekt Affärsrätt Datum 2007-09-06 Dokumentnummer 1 Titel Instuderingsuppgifter med svarslösningar Rev 0 Finansiell ekonomi Göran Hägg, Johan Holmgren & Linn Lones Luthman Upprättat av Göran Hägg Godkänt

Läs mer

Betavärdet som mått på systematisk risk inom aktievärdering

Betavärdet som mått på systematisk risk inom aktievärdering Institutionen för ekonomi Dick Rehnström Betavärdet som mått på systematisk risk inom aktievärdering The Beta Value as a Measure of Systematic Risk within Share Valuation Nationalekonomi C-uppsats Termin:

Läs mer

I n f o r m a t i o n o m r å v a r u o p t i o n e r

I n f o r m a t i o n o m r å v a r u o p t i o n e r I n f o r m a t i o n o m r å v a r u o p t i o n e r Här finner du allmän information om råvaruoptioner som handlas genom Danske Bank. Råvaror är obearbetade eller delvis bearbetade varor som handlas

Läs mer

1. FLACK RÄNTA Med flack ränta ska vi här mena att räntan är densamma oavsett bindningstid

1. FLACK RÄNTA Med flack ränta ska vi här mena att räntan är densamma oavsett bindningstid STOCKHOLMS UNIVERSITET MATEMATISKA INSTITUTIONEN Avd. för Matematisk statistik Thomas Höglund Version 02 10 25. RÄNTA 1. FLACK RÄNTA Med flack ränta ska vi här mena att räntan är densamma oavsett bindningstid

Läs mer

TENTAMEN. Finansiell Planering 7,5 poäng

TENTAMEN. Finansiell Planering 7,5 poäng HÖGSKOLAN I BORÅS Institutionen Handelsoch IT-högskolan (HIT) TENTAMEN Finansiell Planering 7,5 poäng 2014-10-29 kl 09.00-14.00 Hjälpmedel: Miniräknare Max poäng: 40 Väl godkänt: 30 Godkänt: 20 OBS! För

Läs mer

OMTENTAMEN. Finansiell Planering 7,5 poäng Lönsamhetsanalys & Finansiering för fatighetsmäklare7,5 poäng

OMTENTAMEN. Finansiell Planering 7,5 poäng Lönsamhetsanalys & Finansiering för fatighetsmäklare7,5 poäng HÖGSKOLAN I BORÅS Institutionen Handelsoch IT-högskolan (HIT) OMTENTAMEN Finansiell Planering 7,5 poäng Lönsamhetsanalys & Finansiering för fatighetsmäklare7,5 poäng 2014-03-29 kl 09.30-14.30 Hjälpmedel:

Läs mer

VECKOOPTIONER PÅ AKTIER

VECKOOPTIONER PÅ AKTIER VECKOOPTIONER PÅ AKTIER VECKOOPTIONER PÅ SVENSKA AKTIER Veckooptioner har samma kontraktsspecifikationer och utmärkande drag som våra vanliga standardiserade aktieoptioner. Skillnaden ligger i att löptiden

Läs mer

1997 års ekonomipristagare: Robert C. Merton och Myron S. Scholes

1997 års ekonomipristagare: Robert C. Merton och Myron S. Scholes BERTIL NÄSLUND & TORSTEN PERSSON 1997 års ekonomipristagare: Robert C. Merton och Myron S. Scholes Robert C. Merton och Myron S. Scholes har tillsammans med den framlidne Fischer Black utvecklat en banbrytande

Läs mer