Prissättning av optioner

Storlek: px
Starta visningen från sidan:

Download "Prissättning av optioner"

Transkript

1 TDB,projektpresentation Niklas Burvall Hua Dong Mikael Laaksonen Peter Malmqvist Daniel Nibon Sammanfattning Optioner är en typ av finansiella derivat. Detta dokument behandlar prissättningen av dessa och hur denna prissättning kan lösas med hjälp av Black-Scholes ekvation. Vi har arbetat med radiella basfunktioner för att approximera lösningen. Vi har experimenterat med olika parametrar har påverkat lösningen. Detta har varit projekt delen av kursen teknisk databehandling (TDB) vårterminen Det är en liten del av ett större projekt om användningen av radiella basfunktioner och Black-Scholes ekvation.

2 INNEHÅLL INNEHÅLL Innehåll 1 Introduktion 1 2 Teori & Detaljer Aktier och optioner Black-Sholes ekvation Radiella basfunktioner (RBF) Minsta-kvadratskattning (MK-skattning) Exempel på problemet Tillvägagångssätt Experiment Observationer Slutsats av plottarna Slutsats 14 i

3 1 Introduktion I den ekonomiska världen omsätter idag aktiehandeln många miljoner kronor varje sekund. Ett sätt att handla med aktier är att betala för en aktie idag och hoppas att värdet stiger över tiden. En annan omfattande marknad är att handla med så kallade finansiella derivat. Ett av de vanligaste derivaten är optioner, vilka ger innehavaren rätten men inte skyldigheten att genomföra en bestämd aktieaffär vid eller före någon bestämd tidpunkt längre fram i tiden. En viktig detalj vid handel med dessa derivat är att bestämma ett värde på optionen så att köpet innebär en viss risk för innehavaren. Skulle priset vara för lågt innebär köpet en säker vinst, vilket självklart inte är önskat. Tvärtom ifall priset är för högt skulle varje affär innebära en förlust. Därför behöver man någon matematisk metod för att spekulera i optionspris, fär sätta optionspriset på en sådan nivå att man skapar en balanserad risk i att handla med dessa derivat. Om man utgår från vissa antaganden om hur den finansiella marknaden fungerar använder man idag Black-Sholes ekvation för att bestämma priset på optioner. För vissa väldigt enkla optioner som har få underliggande aktier, kan denna lösas analytiskt. I de övriga och allra flesta fall löser man dessa med sannolikhet och statistiska metoder, däribland olika Monte-Carlo-metoder, eller med så kallade finita differenser. Men de metoderna blir mer och mer ineffektiva för de optioner som innehåller ett ökande antal underliggande aktier. Därför försöker man hitta alternativa tillvägagångssätt att approximera priset på optionen. Denna rapport behandlar radiella-basfunktions-metoden. Vi har inför projektet fått tillgång till program och kod för att approximera ett optionspris med hjälp av Black-Sholes ekvation (BS) och radiella basfunktioner (RBF ). Vi kommer att lösa ett 1D-problem i minstakvadrat-mening med hjälp av radiella basfunktioner och jämföra vår lösning med den analytiska lösningen för problemet. Vår uppgift är att analysera vilka värden på problemparametrarna som ger minst fel i förhållande till beräkningskostnaden. Den viktigaste parametern är här antalet minstakvadrat-punkter. Nedan följer en mer detaljerad beskrivning av det aktuella problemet samt vår uppgift. 12 maj

4 2 Teori & Detaljer 2.1 Aktier och optioner En aktie är ett andelsbevis som ger delägarskap i ett aktiebolag. I teorin räcker det med en aktie för att vara med och bestämma och att ta del av bolagets vinst, utdelningen. En anledning till att det finns aktier är för att snabbt kunna bygga upp ett företag. Aktiebolaget kan ge ut nya aktier och sälja dem med rabatt och på så sätt skaffa mer pengar till forskning och utveckling. För bolaget är det bättre än att låna, om företaget inte går med vinst kan de strunta i att betala ränta dvs. utdelning. En akties pris varierar beroende på hur bra bolaget går, vilka framtidsprognoser de ger och vad diverse investerare tycker och förutspår. I ekonomiska sammanhang ger en option innehavaren rätt men inte skyldighet att köpa eller sälja något (ofta värdepapper) vid eller före en specificerad tidpunkt. Syftet med köpoptioner med aktier är att skapa en möjlighet för placerare att ta del i en kursuppgång utan att behöva köpa de underliggande värdepappren. Antag att en placerare tror att en viss aktie kommer att stiga kraftigt de närmaste månaderna. I stället för att köpa 100 aktier till börskursen 100 kr placeraren då köpa ett köpoptionskontrakt avseende 100 aktier med t.ex. en löptid på tre månader och ett lösenpris på 110 kr. för en premie på 300 kr. Ligger kursen stilla eller stiger till högst 110 kr blir optionen värdelös och placeraren förlorar sina satsade 300 kr. Stiger kursen till 113 kr går innehavaren plus minus noll (efter ränta och transaktionskostnader). För varje krona som kursen stiger därutöver tjänar innehavaren 100 kr. 2.2 Black-Sholes ekvation Ekvationen som man använder för att bestämma värdet av en option för en specificerad tidpunkt och ett antal underliggande aktier kallas Black- Sholes ekvation. Varje sekund löses ekvationen för ett stort antal optioner av världens aktiehandlare såsom börser och banker. Black-Sholes ekvation ges av F (t, s) t F (t, s) + rd + 1 s 2 σ2 s 2 2 F (t, s) rf (t, s) = 0 s 2 12 maj

5 där F (t, s) är optionens värde vid tiden t och aktiepriset s, r är den så kallade korta räntan och σ anger aktiens volatilitet. Volatilitet är ett mått på hur mycket en akties värde varierar. Oscillerar värdets kurva mycket har aktien en hög volatilitet. En specifik option är den Europeiska köpoptionen vilket vi kommer att arbeta kring i detta projekt. Den har en speciell kontraktsfunktion som ger optionens värde vid sluttiden T, F (T, s) = max(s K, 0) där K är det så kallade inlösenpriset. Inlösenpriset står för det pris man enligt optionen får köpa ett antal aktier för vid tiden T, till skillnad från att köpa dem direkt för aktiernas aktuella värden. Grafen för den funktionen ges av där O är värdet på optionen och S är aktievärdet. För att försöka förstå grafen följer vi S-axeln som är priset på de underliggande aktierna. När S understiger K betyder det att aktievärdet är lägre än inlösenpriset som är skrivet i optionen. Innehavaren av optionen har alltså ett erbjudande om att köpa en aktie för ett pris som är högre än aktiens värde för tillfället. Uppenbarligen en väldigt dålig affär och optionen är i detta fall värdelös. När S överstiger K betyder det att innehavaren får köpa en aktie för priset K, vilket är lägre än det aktuella värdet på aktien. Självklart är det en lönande affär att köpa en aktie för ett pris lägre än dess värde. Därför ser vi att värdet på optionen ökar för att täcka skillnaden mellan inlösenpriset och det aktievärdet. Problemet är nu att approximera denna modell med någon numerisk metod. Vi kommer att lösa Black-Scholes ekvation på följande form: 12 maj

6 u u (t, x) =rx t x σ2 x 2 2 u, x2 x (0, 4) (1) u (t, 0) =0, t (2) u t (t, 4) =re rt, (3) u(0, x) = max(0, x 1) (4) Här är problemet omskalat så att inlösenpriset K är lika med 1. Dessutom är ekvationen transformerad så att vi räknar framåt i tiden, istället för bakåt. För att lösa problemet använder vi oss av radiella basfunktioner. 2.3 Radiella basfunktioner (RBF) Radiella basfunktioner är globala funktioner som tidigare använts till att ge funktionsapproximationer av utspridda data, men som på senare tid börjat användas till att lösa partiella differentialekvationer. En fördel är att metoden är nätfri vilket innebär att man kan placera beräkningspunkterna vart man vill i ett område. Vill man approximera en kurva utifrån vissa givna data kan man alltså placera dessa funktioner vart man vill längst x-axeln (i ett endimensionellt problem), eller vart som helst i planet (i två dimensioner). En annan fördel är att man får en mycket snabb minskning av felet när man lägger till fler beräkningspunkter. 12 maj

7 Vi vill att våra RBFer ska vara centrerade kring ett antal beräkningspunkter och låter en linjärkombination av dessa bilda vår lösningsapproximation. Vi gör alltså ansatsen N ũ(t, x) = λ k φ( x x k ) k=1 där det vanligaste lösningsförfarandet är att man helt enkelt kräver att approximationen uppfyller ekvationen i vissa punkter, t.ex. centrumpunkterna. Centrumpunkterna är de punkter där vi placerat ut våra RBFer längs med S-axeln i detta problem. Detta leder till att vi får ett ekvationssystem att lösa där koefficienterna λ är obekanta. Vi kommer istället lösa problemet i minsta-kvadratbemärkelse. Vi kräver alltså att ũ ska uppfylla ekvationen så bra som möjligt i ett stort antal punkter. 2.4 Minsta-kvadratskattning (MK-skattning) Minsta-kvadratskattning är en metod som försöker finna en bästa möjliga lösning givet data genom att minimera summan av kvadraten på skillnaden (kallas residualen) mellan en funktion och en given data. Om vi i nedanstående graf skulle vilja approximera en rät linje är det uppenbart att den inte kommer att uppfylla alla punkter, den kommer alltså inte att passera igenom alla givna punkter. Istället uppskattar vi en linje där vi minimerar residualen (r i grafen nedan) mellan en rät linje och samtliga givna data. En uppskattad linje skulle då se ut något som den streckade linjen i grafen nedan där de givna data är representerade som punkter. Mellan våra RBF-funktioner försöker vi uppskatta mellanliggande punkter med hjälp av minsta-kvadratskattning. 12 maj

8 2.5 Exempel på problemet Då vår uppgift är att se på felet som uppstår när vi använder våra RB- Fer måste vi först veta var det är prioriterat att minimera felet, eftersom aktiepriset är definierat från 0 till oändligheten. Genom att studera hur optioner och aktier fungerar på marknaden inser man att det intressanta området är när aktiepriset S är nära inlösenpriset K. Som tidigare nämnt är optionen värdelös då S är mindre än K och alla fall där S är större än K kommer optioninnehavaren att göra en vinst på S K. Det område man brukar intressera sig av är 0 till 4K, vilket äp praxis att arbeta över i dessa sammanhang. För att illustrera exemplet kan vi anta att vi skapar en option för Ericssons B-aktie. Idag ( ) är aktien värd 21, 40 SEK och vi låter optionen gälla för tidpunkten T ( ), alltså om exakt ett år. Det område vi tittar på är då K uppskattas till 25 är 14 K 30 dvs. [0.7K, 1.5K]. För att titta på det finansiellt sett mest intressanta området, väljer vi intervallet [K/3, 5K/3], vilket är tillräckligt för en Europeisk köpoption. För att titta på det mest intressanta området kring S lika med K, väljer vi intervallet [K/3, 5K/3], vilket är ett tillräckligt stort område för en Europeisk köpoption. Vi kommer alltså att approximera lösningen till Black-Scholes ekvation med hjälp av RBFer. I grafen nedan ser man hur vi placerat ut några centrumpunkter symetriskt kring K. 12 maj

9 2.6 Tillvägagångssätt Experimentet sker med nedan stående specifikationer: T = 1 R = 0.05 σ = 0.3 T är tiden tills optionen får inlösas, angiven i år. Konstant ränta över tiden. Ett mått på hur en aktie förändras över tiden (volatilitet). De parametrar vi varierar är: N M K punkter Antalet centrumpunkter för de radiella basfunktionerna. Antalet minstakvadrat-punkter kring varje utsatt centrumpunkt som ekvationen ska uppfylla så bra som möjligt. 12 maj

10 3 Experiment Målet med alla numeriska metoder är att vi approximera en lösning till den korrekta (analytiska) lösningen. Vi vill alltså minska felet i den numeriska lösningen. Det finns flera metoder för att minska felet då vi i detta projekt kommer justera vissa parametrar som kan påverka resultatet. Antal radiella basfunktioner: Ju fler basfunktioner vi använder, desto bättre lösning. Men antal basfunktioner ökar även storleken på ekvationsystemet. Antal minstakvadratpunkter: Om vi försöker anpassa en lösning till flera punkter får vi en bättre noggranhet på lösningen. Med ökande punkter blir minstkvadrat-problemet större men problemets beräkningar ökar inte lika snabbt som när man ökar antal basfunktioner. Antal tidssteg: Med ökande tidsteg, blir det noggrannare approximationer pga. att vi analyserar fler intervall. Däremot måste vi lösa rumssystemet flera gånger. För att få en tillräckligt bra lösning utan onödigt arbete vill vi med denna undersökning försöka balansera effektivitet och noggrannhet. Vi börjar med ett fixt tidssteg, och varierar antal radiella basfunktioner samt antal minstakvadrat punkter. Experimenten visar det maximala felet vid sluttiden under hela beräkningsområdet samt det tidigare nämnda intressanta intervallet [1/3till5/3]. Vi varierar antal basfunktioner och minstakvadratpunkter och nedan är våra observationer samt synpunkter. 12 maj

11 De testvärden vi varierar är: Antal basfunktioner: 28, 33, 37 Antal mk-punkter: 1 till 16 d.v.s. 1 till 16* antalet basfunktioner. Vi tittar på hela intervallet (0Ktill4K) samt det intressanta området (1/3Ktill5/3K). För varje antal basfunktioner vi använder (28, 33, 37) plottar vi tre olika grafer. I varje graf representerar x-axeln antal minstakvadratpunkter och y-axeln representerar felet. Varje graf finns i 3 olika format, normala x- och y-axlar, logaritmisk skalan på både x- och y-axlarna samt logaritmisk skala på y-axeln. Dessutom kommer varje graf att plottas både i det intressanta intervallet (1/3till5/3) samt över hela beräkningsområdet. 12 maj

12 Intervall:[0K, 4K] Intervall:[1/3K, 5/3K] 12 maj

13 Intervall: [0K, 4K] Intervall: [1/3K, 5/3K] 12 maj

14 Intervall: [0K, 4K] Intervall: [1/3K, 5/3K 12 maj

15 3.1 Observationer Det blir en ökning av felet vid ett visst antal mkp, men när antal mkp är tillräklig stort minskar felet. Vid mkp = 1, är maxfelet hos 33 och 37 större än när man använder 28 basfunktioner, felet minskar snabbt vid högre antal mkp för 33 och 37, och minskning är stabil, samt felet vid högre mkp för 33 och 37 är mycket bättre än 28. Nästan linjär minskning på grafen (283337) intervall loglog, under den intressanta området) hos 37,33, dvs felet minskar med e c n där n < 0, så felet minskar snabbt i detta fall. 3.2 Slutsats av plottarna Om man tittar på alla serie av plottar, märker vi att man får en bättre lösning med hjälp av fler antal minstakvadratpunkter. Felet minskar vid fler antal punkter, men minskar mindre och mindre ju fler punkter vi använder. Felet minskar knappt efter 4 mkp per basfunktion om man tittar på hela intervallen. Men i det intressanta området blir felet stabil efter ca 5 eller 6 mkp. Beloppet av felet är mindre vid 37 och 33 än 28, men skilnad mellan 33 och 37 är ganska liten(särskilt under den intressanta området). 12 maj

16 4 Slutsats Antal basfunktioner påverkar resultat, men påverkning minskar, vid 33 och 37 är felen ganska nära varandrar. Vid antal mkp > 4 (hela intervall, eller antal mkp > 6 under den intressanta området), så få man ganska litet fel på alla 3 olika antal basfunktioner, fast med 33 och 37 är resultat bättre än 28. Dvs, större antal mkp än 4 behövs inte (6 om man är mer intresserad av intervallet 1/3 till 5/3), så 33 basfunktioner och ca 5 minstakvadratpunkter funkar ju bra som parametrar för att få noggrant svar med relativt mindre arbetet. 12 maj

17 Referenser Gunnar Marcusson, Option pricing using radial basis functions, UPTEC report F04 078, School of Engineering, Uppsala Univ.,Uppsala,Sweden, maj

Del 3 Utdelningar. Strukturakademin

Del 3 Utdelningar. Strukturakademin Del 3 Utdelningar Strukturakademin Innehåll 1. Implicita tillgångar 2. Vad är utdelningar? 3. Hur påverkar utdelningar optioner? 4. Utdelningar och Forwards 5. Prognostisera utdelningar 6. Implicita utdelningar

Läs mer

Del 17 Optionens lösenpris

Del 17 Optionens lösenpris Del 17 Optionens lösenpris Innehåll Optioner... 3 Optionens lösenkurs... 3 At the money... 3 In the money... 3 Out of the money... 4 Priset... 4 Kapitalskyddet... 5 Sammanfattning... 6 Strukturerade placeringar

Läs mer

Del 16 Kapitalskyddade. placeringar

Del 16 Kapitalskyddade. placeringar Del 16 Kapitalskyddade placeringar Innehåll Kapitalskyddade placeringar... 3 Obligationer... 3 Prissättning av obligationer... 3 Optioner... 4 De fyra positionerna... 4 Konstruktion av en kapitalskyddad

Läs mer

Del 18 Autocalls fördjupning

Del 18 Autocalls fördjupning Del 18 Autocalls fördjupning Innehåll Autocalls... 3 Autocallens beståndsdelar... 3 Priset på en autocall... 4 Känslighet för olika parameterar... 5 Avkastning och risk... 5 del 8 handlade om autocalls.

Läs mer

Warranter En investering med hävstångseffekt

Warranter En investering med hävstångseffekt Warranter En investering med hävstångseffekt Investerarprofil ÄR WARRANTER RÄTT TYP AV INVESTERING FÖR DIG? Innan du bestämmer dig för att investera i warranter bör du fundera över vilken risk du är beredd

Läs mer

Del 1 Volatilitet. Strukturakademin

Del 1 Volatilitet. Strukturakademin Del 1 Volatilitet Strukturakademin Innehåll 1. Implicita tillgångar 2. Vad är volatilitet? 3. Volatility trading 4. Historisk volatilitet 5. Hur beräknas volatiliteten? 6. Implicit volatilitet 7. Smile

Läs mer

Del 2 Korrelation. Strukturakademin

Del 2 Korrelation. Strukturakademin Del 2 Korrelation Strukturakademin Innehåll 1. Implicita tillgångar 2. Vad är korrelation? 3. Hur fungerar sambanden? 4. Hur beräknas korrelation? 5. Diversifiering 6. Korrelation och Strukturerade Produkter

Läs mer

OPTIONSSTRATEGIER SNABBGUIDE AKTIEOPTIONER

OPTIONSSTRATEGIER SNABBGUIDE AKTIEOPTIONER OPTIONSSTRATEGIER SNABBGUIDE AKTIEOPTIONER Optioner ger investerare många möjligheter eftersom det finns strategier för alla olika marknadslägen. De är också effektiva verktyg för att försäkra innehav

Läs mer

Del 13 Andrahandsmarknaden

Del 13 Andrahandsmarknaden Del 13 Andrahandsmarknaden Strukturakademin Strukturakademin Srukturinvest Fondkommission 1 Innehåll 1. Produktens värde på slutdagen 2. Produktens värde under löptiden 3. Köp- och säljspread 4. Obligationspriset

Läs mer

STOCKHOLMS UNIVERSITET MATEMATISKA INSTITUTIONEN Avd. för Matematisk statistik Thomas Höglund FINANSMATEMATIK I. ÖVNINGAR TILL DAG 3.

STOCKHOLMS UNIVERSITET MATEMATISKA INSTITUTIONEN Avd. för Matematisk statistik Thomas Höglund FINANSMATEMATIK I. ÖVNINGAR TILL DAG 3. STOCKHOLMS UNIVERSITET MATEMATISKA INSTITUTIONEN Avd. för Matematisk statistik Thomas Höglund FINANSMATEMATIK I. ÖVNINGAR TILL DAG 2. Luenberger: 2:1-5, 9, 11, 12. Övning 1. Du lånar 200000 kr i en bank

Läs mer

Del 15 Avkastningsberäkning

Del 15 Avkastningsberäkning Del 15 Avkastningsberäkning 1 Innehåll 1. Framtida förväntat pris 2. Price return 3. Total Return 5. Excess Return 6. Övriga alternativ 7. Avslutande ord 2 I del 15 går vi igenom olika möjliga alternativ

Läs mer

VAD ÄR EN TILLVÄXTOPTION?

VAD ÄR EN TILLVÄXTOPTION? TILLVÄXTOPTIONER VAD ÄR EN TILLVÄXTOPTION? Låt företaget investera i en kapitalskyddad placering och ta själv del av avkastningen! Tillväxtoptionens egenskaper ger dig flera fördelar jämfört med traditionella

Läs mer

Vi ska här utgå ifrån att vi har en aktie och ska med denna som grund konstruera tre olika optionsportföljer.

Vi ska här utgå ifrån att vi har en aktie och ska med denna som grund konstruera tre olika optionsportföljer. STOCKHOLMS UNIVERSITET MATEMATISKA INSTITUTIONEN Avd för Matematisk statistik TH FINANSMATEMATIK I, HT 01 KOMPLEMENT DAG 12 Version 01 12 10 TRE OPTIONSSTRATEGIER Vi ska här utgå ifrån att vi har en aktie

Läs mer

Del 6 Valutor. Strukturakademin

Del 6 Valutor. Strukturakademin Del 6 Valutor Strukturakademin Innehåll 1. Strukturerade produkter och valutor 2. Hur påverkar valutor? 3. Metoder att hantera valutor 4. Quanto Valutaskyddad 5. Composite Icke valutaskyddad 6. Lokal Icke

Läs mer

120 110 S t : 100 100 90 80 Vi ska här betrakta ett antal portföljer som vid t = 0 är värda 100 SEK.

120 110 S t : 100 100 90 80 Vi ska här betrakta ett antal portföljer som vid t = 0 är värda 100 SEK. STOCKHOLMS UNIVERSITET MATEMATISKA INSTITUTIONEN Avd. för Matematisk statistik Thomas Höglund FINANSMATEMATIK I. KOMPLEMENT DAG 5. HANDELSSTRATEGIER Låt S t beteckna priset på en aktie vid tiden t. Vi

Läs mer

Fonden regleras i enlighet med den norska lagen om värdepappersfonder av den 25 november 2011 ( vpfl ).

Fonden regleras i enlighet med den norska lagen om värdepappersfonder av den 25 november 2011 ( vpfl ). Fondbestämmelser för värdepappersfonden SKAGEN Kon-Tiki 1 Värdepappersfondens och förvaltningsbolagets namn Värdepappersfonden SKAGEN Kon-Tiki förvaltas av förvaltningsbolaget SKAGEN AS (SKAGEN). Fonden

Läs mer

Juli/Augusti 2003. Valutawarranter. sverige

Juli/Augusti 2003. Valutawarranter. sverige Juli/Augusti 2003 Valutawarranter sverige in troduktion Valutamarknaden är en av de mest likvida finansiella marknaderna, där många miljarder omsätts i världens olika valutor varje dag. Marknaden drivs

Läs mer

Fonden regleras i enlighet med den norska lagen om värdepappersfonder av den 25 november 2011 (lov om verdipapirfond, vpfl ).

Fonden regleras i enlighet med den norska lagen om värdepappersfonder av den 25 november 2011 (lov om verdipapirfond, vpfl ). Fondbestämmelser för värdepappersfonden SKAGEN Global 1 Värdepappersfondens och förvaltningsbolagets namn Värdepappersfonden SKAGEN Global förvaltas av förvaltningsbolaget SKAGEN AS (SKAGEN). Fonden är

Läs mer

Approximation av funktioner

Approximation av funktioner Vetenskapliga beräkningar III 8 Kapitel Approximation av funktioner Vi skall nu övergå till att beskriva, hur man i praktiken numeriskt beräknar funktioner I allmänhet kan inte ens elementära funktioner

Läs mer

Lösningar till tentamen i Grundläggande nansmatematik. 21 december 2006 kl. 914

Lösningar till tentamen i Grundläggande nansmatematik. 21 december 2006 kl. 914 STOCKHOLMS UNIVERSITET MS 3290 MATEMATISKA INSTITUTIONEN TENTAMEN Avd. Matematisk statistik 21 december 2006 Lösningar till tentamen i Grundläggande nansmatematik 21 december 2006 kl. 914 Uppgift 1 Priset

Läs mer

För några av er kanske strukturerade placeringar är okänt medan andra kanske upplever placeringsformen som snårig. Vilka möjligheter och risker finns

För några av er kanske strukturerade placeringar är okänt medan andra kanske upplever placeringsformen som snårig. Vilka möjligheter och risker finns 1 För några av er kanske strukturerade placeringar är okänt medan andra kanske upplever placeringsformen som snårig. Vilka möjligheter och risker finns det? Under detta pass ska jag besvara frågorna Vad,

Läs mer

Fonden kännetecknas normalt av en förhållandevis hög volatilitet. Riskprofilen beskrivs utförligare i fondens faktablad.

Fonden kännetecknas normalt av en förhållandevis hög volatilitet. Riskprofilen beskrivs utförligare i fondens faktablad. Fondbestämmelser för värdepappersfonden SKAGEN m 2 1 Värdepappersfondens och förvaltningsbolagets namn Värdepappersfonden SKAGEN m 2 förvaltas av förvaltningsbolaget SKAGEN AS. Fonden är godkänd i Norge

Läs mer

Räntemodeller och marknadsvärdering av skulder

Räntemodeller och marknadsvärdering av skulder Räntemodeller och marknadsvärdering av skulder Fredrik Armerin Matematisk statistik, KTH Aktuarieföreningen 17-18 november 2004 Dag 2 NOLLKUPONGSKURVOR 1 Nollkupongsobligationer En nollkupongsobligation

Läs mer

Punkt 16 a) principer för ersättning och andra anställningsvillkor för bolagsledningen

Punkt 16 a) principer för ersättning och andra anställningsvillkor för bolagsledningen Atlas Copco AB Styrelsens fullständiga förslag avseende Punkt 16: a) principer för ersättning och andra anställningsvillkor för bolagsledningen, och b) ett prestationsbaserat personaloptionsprogram för

Läs mer

AID:... Uppgift 1 (2 poäng) Definiera kortfattat följande begrepp. a) IRR b) APR c) Going concern d) APV. Lösningsförslag: Se Lärobok och/alt Google.

AID:... Uppgift 1 (2 poäng) Definiera kortfattat följande begrepp. a) IRR b) APR c) Going concern d) APV. Lösningsförslag: Se Lärobok och/alt Google. Notera att det är lösningsförslag. Inga utförliga lösningar till triviala definitioner och inga utvecklade svar på essä-typ frågor. Och, att kursen undervisas lite olika år från år. År 2013 mera från Kap

Läs mer

Provlektion till Uppdrag: Matte 9

Provlektion till Uppdrag: Matte 9 Provlektion till Uppdrag: Matte 9 Linjära funktioner En resa i biljettdjungeln I läromedlet Uppdrag: Matte arbetar eleverna med två spår, Uppdrag eller Räkna på. Här kommer ett prov på en lektion där uppdraget

Läs mer

Del 4 Emittenten. Strukturakademin

Del 4 Emittenten. Strukturakademin Del 4 Emittenten Strukturakademin Innehåll 1. Implicita risker och tillgångar 2. Emittenten 3. Obligationer 4. Prissättning på obligationer 5. Effekt på villkoren 6. Marknadsrisk och Kreditrisk 7. Implicit

Läs mer

Tentamen Finansiering I (FÖ3006) 22/8 2013

Tentamen Finansiering I (FÖ3006) 22/8 2013 1 Tentamen Finansiering I (FÖ3006) 22/8 2013 Hjälpmedel: Räknare Betyg: G = 13 p, VG = 19 p Maxpoäng 25 p OBS: Glöm ej att redovisa dina delberäkningar som har lett till ditt svar! För beräkningsuppgifterna:

Läs mer

Warranter och optioner En prisjämförelse En kvantitativ studie av hur avkastning och pris skiljer sig mellan warranter och optioner.

Warranter och optioner En prisjämförelse En kvantitativ studie av hur avkastning och pris skiljer sig mellan warranter och optioner. Institutionen för Fastigheter och Byggande Examensarbete nr. 303 Fastighet och Finans Kandidatnivå, 15 hp Finans Warranter och optioner En prisjämförelse En kvantitativ studie av hur avkastning och pris

Läs mer

KOMMISSIONENS DELEGERADE FÖRORDNING (EU) nr / av den 17.12.2014

KOMMISSIONENS DELEGERADE FÖRORDNING (EU) nr / av den 17.12.2014 EUROPEISKA KOMMISSIONEN Bryssel den 17.12.2014 C(2014) 9656 final KOMMISSIONENS DELEGERADE FÖRORDNING (EU) nr / av den 17.12.2014 om komplettering av Europaparlamentets och rådets direktiv 2004/109/EG

Läs mer

Dagens föreläsning (F15)

Dagens föreläsning (F15) Dagens föreläsning (F15) Problemlösning med datorer Carl-Mikael Zetterling bellman@kth.se KP2+EKM http://www.ict.kth.se/courses/2b1116/ 1 Innehåll Programmering i Matlab kap 5 EKM Mer om labben bla Deluppgift

Läs mer

Föreläsningen ger en introduktion till differentialekvationer och behandlar stoff från delkapitel 18.1, 18.3 och 7.9 i Adams. 18.

Föreläsningen ger en introduktion till differentialekvationer och behandlar stoff från delkapitel 18.1, 18.3 och 7.9 i Adams. 18. Föreläsningen ger en introduktion till differentialekvationer och behandlar stoff från delkapitel 18.1, 18.3 och 7.9 i Adams. 18.1 Delkapitlet introducerar en del terminologi och beteckningar som används.

Läs mer

Föreläsning 12: Regression

Föreläsning 12: Regression Föreläsning 12: Regression Matematisk statistik David Bolin Chalmers University of Technology Maj 15, 2014 Binomialfördelningen Låt X Bin(n, p). Vi observerar x och vill ha information om p. p = x/n är

Läs mer

Introduktion till nationalekonomi. Föreläsningsunderlag 4, Thomas Sonesson. Marknadens utbud = Σ utbud från enskilda företag (ett eller flera)

Introduktion till nationalekonomi. Föreläsningsunderlag 4, Thomas Sonesson. Marknadens utbud = Σ utbud från enskilda företag (ett eller flera) Produktion Marknadens utbud = Σ utbud från enskilda företag (ett eller flera) Företaget i ekonomisk teori Produktionsresurser FÖRETAGET färdiga produkter (inputs) (produktionsprocesser) (output) Efterfrågan

Läs mer

Handelsbanken Capital Markets

Handelsbanken Capital Markets Handelsbanken säljwarrant Nordea AB aktie Lösenpris: EUR 6 Slutdag: 25.11.2005 Handelsbanken Capital Markets Warrantspecifika villkor 23.8.2004 Dessa warrantspecifika villkor utgör tillsammans med de allmänna

Läs mer

Med ett samband menar vi hur något beror av någonting annat. Det skulle t.ex. kunna vara (sant eller inte):

Med ett samband menar vi hur något beror av någonting annat. Det skulle t.ex. kunna vara (sant eller inte): Linjära samband Räta linjens ekvation Förmågan att se, analsera och förstå olika samband är egenskaper som är viktiga att ha i vardagslivet men oundvikliga för kommande studier och arbetsliv. Med ett samband

Läs mer

II. IV. Stordriftsfördelar. Ifylles av examinator GALLRINGSFÖRHÖR 12.6.1998. Uppgift 1 (10 poäng)

II. IV. Stordriftsfördelar. Ifylles av examinator GALLRINGSFÖRHÖR 12.6.1998. Uppgift 1 (10 poäng) Uppgift 1: poäng Uppgift 1 (10 poäng) a) Vilka av följande värdepapper köps och säljs på penningmarknaden? (rätt eller fel) (5 p) Rätt Fel statsobligationer [ ] [ ] aktier [ ] [ ] kommuncertifikat [ ]

Läs mer

Handelsbanken Capital Markets

Handelsbanken Capital Markets Handelsbanken säljwarrant Ericsson AB aktie Lösenpris: SEK 8 Slutdag: 28.5.2004 Handelsbanken Capital Markets Warrantspecifika villkor Dessa warrantspecifika villkor utgör tillsammans med de allmänna villkoren

Läs mer

Påbyggnad/utveckling av lagen om ett pris Effektiv marknad: Priserna på en finansiell marknad avspeglar all relevant information

Påbyggnad/utveckling av lagen om ett pris Effektiv marknad: Priserna på en finansiell marknad avspeglar all relevant information Föreläsning 4 ffektiva marknader Påbyggnad/utveckling av lagen om ett pris ffektiv marknad: Priserna på en finansiell marknad avspeglar all relevant information Konsekvens: ndast ny information påverkar

Läs mer

Handelsbanken Capital Markets

Handelsbanken Capital Markets Handelsbanken köpwarrant Ericsson AB aktie Lösenpris: SEK 20 Slutdag: 25.11.2005 Handelsbanken Capital Markets Warrantspecifika villkor 23.8.2004 Dessa warrantspecifika villkor utgör tillsammans med de

Läs mer

VÄSENTLIG INFORMATION AVSEENDE CERTIFIKAT MINI FUTURE SHORT

VÄSENTLIG INFORMATION AVSEENDE CERTIFIKAT MINI FUTURE SHORT VÄSENTLIG INFORMATION AVSEENDE CERTIFIKAT MINI FUTURE SHORT Hur ska jag använda detta dokument? Detta dokument förser dig med information om väsentliga egenskaper och risker för en investering i Certifikat

Läs mer

Grundkurs i nationalekonomi, hösten 2014, Jonas Lagerström

Grundkurs i nationalekonomi, hösten 2014, Jonas Lagerström Wall Street har ingen aning om hur dåligt det är därute. Ingen aning! Ingen aning! Dom är idioter! Dom förstår ingenting! Jim Cramer, programledare CNN (tre veckor före finanskrisen) Grundkurs i nationalekonomi,

Läs mer

Aktieindexobligationer hög avkastning till låg risk

Aktieindexobligationer hög avkastning till låg risk Aktieindexobligationer hög avkastning till låg risk Utvärdering av Handelsbankens aktieindexobligationer 1994-2007 Sammanfattning Avkastning jämförbar med aktier Handelsbankens aktieindexobligationer har

Läs mer

Information om lägenhetsnummer Lägenheterna har fått lägenhetsnummer enligt nedan i det lägenhetsregister som Lantmäteriverket just nu bygger upp.

Information om lägenhetsnummer Lägenheterna har fått lägenhetsnummer enligt nedan i det lägenhetsregister som Lantmäteriverket just nu bygger upp. RBF GÖTEBORGSHUS 34 01 0092, ORKESTERG 1 0902 RBF GÖTEBORGSHUS 34 01 0093, ORKESTERG 1 0901 RBF GÖTEBORGSHUS 34 01 0094, ORKESTERG 1 1003 RBF GÖTEBORGSHUS 34 01 0095, ORKESTERG 1 1002 RBF GÖTEBORGSHUS

Läs mer

Finansiell ekonomi Föreläsning 1

Finansiell ekonomi Föreläsning 1 Finansiell ekonomi Föreläsning 1 Presentation lärare - Johan Holmgren (kursansvarig) Presentation kursupplägg och examination - Övningsuppgifter med och utan svar - Börssalen - Portföljvalsprojekt 10p

Läs mer

Linjära ekvationssystem. Avsnitt 1. Vi ska lära oss en metod som på ett systematiskt sätt löser alla linjära ekvationssystem. Linjära ekvationssystem

Linjära ekvationssystem. Avsnitt 1. Vi ska lära oss en metod som på ett systematiskt sätt löser alla linjära ekvationssystem. Linjära ekvationssystem Avsnitt Linjära ekvationssystem Elementära radoperationer Gausseliminering Exempel Räkneschema Exempel med exakt en lösning Exempel med parameterlösning Exempel utan lösning Slutschema Avläsa lösningen

Läs mer

NpMa2b Muntlig del vt 2012

NpMa2b Muntlig del vt 2012 Till eleven - Information inför den muntliga provdelen Du kommer att få en uppgift som du ska lösa skriftligt och sedan ska du presentera din lösning muntligt. Om du behöver får du ta hjälp av dina klasskamrater

Läs mer

Memorandum. Inbjudan till teckning av aktier i. Trading Times Hedge Nordic AB Org nr: 556929-1478

Memorandum. Inbjudan till teckning av aktier i. Trading Times Hedge Nordic AB Org nr: 556929-1478 Memorandum Inbjudan till teckning av aktier i Trading Times Hedge Nordic AB Org nr: 556929-1478 www.times.se info@times.se Styrelse och ledning Jarl Frithiof, chef för Strategisk utveckling och Globala

Läs mer

Övningar till datorintroduktion

Övningar till datorintroduktion Institutionen för Fysik Umeå Universitet Ylva Lindgren Sammanfattning En samling uppgifter att göra i MATLAB, vilka ska utföras enskilt eller i grupp om två. Datorintroduktion Handledare: (it@tekniskfysik.se)

Läs mer

Prov 1 2. Ellips 12 Numeriska och algebraiska metoder lösningar till övningsproven uppdaterad 20.5.2010. a) i) Nollställen för polynomet 2x 2 3x 1:

Prov 1 2. Ellips 12 Numeriska och algebraiska metoder lösningar till övningsproven uppdaterad 20.5.2010. a) i) Nollställen för polynomet 2x 2 3x 1: Ellips Numeriska och algebraiska metoder lösningar till övningsproven uppdaterad.. Prov a) i) ii) iii) =,, = st 9,876 =,9876,99 = 9,9,66,66 =,7 =,7 Anmärkning. Nollor i början av decimaltal har ingen betydelse

Läs mer

BULL & BEAR INTE BARA ATT TUTA OCH KÖRA

BULL & BEAR INTE BARA ATT TUTA OCH KÖRA BULL & BEAR INTE BARA ATT TUTA OCH KÖRA En investering i värdepapper kan både öka och minska i värde och det är inte säkert att du får tillbaka hela det investerade kapitalet. Historisk utveckling utgör

Läs mer

Information till aktieägarna i East Capital Financials Investors AB (publ) SE0001599622

Information till aktieägarna i East Capital Financials Investors AB (publ) SE0001599622 Information till aktieägarna i East Capital Financials Investors AB (publ) SE0001599622 Information till aktieägarna inför extra bolagsstämma den 5 juli 2013 avseende styrelsens förslag om aktiesplit och

Läs mer

Vikingen Börs. Vikingen Börs är ett lättanvänt basprogram och ett tryggt och bra alternativ att börja med för dig som är ny användare.

Vikingen Börs. Vikingen Börs är ett lättanvänt basprogram och ett tryggt och bra alternativ att börja med för dig som är ny användare. Vikingen Börs Vikingen Börs är ett lättanvänt basprogram och ett tryggt och bra alternativ att börja med för dig som är ny användare. Det fantastiska med Vikingen är att programmet gör jobbet åt dig genom

Läs mer

Handelsbanken Capital Markets

Handelsbanken Capital Markets Handelsbanken köpwarrant Nokia Abp aktie Lösenpris: EUR 10 Slutdag: 26.11.2004 Handelsbanken Capital Markets Warrantspecifika villkor 18.8.2004 Dessa warrantspecifika villkor utgör tillsammans med de allmänna

Läs mer

Modern kapitalförvaltning kundanpassning med flexibla lösningar

Modern kapitalförvaltning kundanpassning med flexibla lösningar Modern kapitalförvaltning kundanpassning med flexibla lösningar (Från Effektivt Kapital, Vinell m.fl. Norstedts förlag 2005) Ju rikare en finansmarknad är på oberoende tillgångar, desto större är möjligheterna

Läs mer

Bygg smartare portföljer. Pensionskapital Vilande bolag Överlikviditet Långsiktigt sparande

Bygg smartare portföljer. Pensionskapital Vilande bolag Överlikviditet Långsiktigt sparande Bygg smartare portföljer Pensionskapital Vilande bolag Överlikviditet Långsiktigt sparande BYGG SMARTARE PORTFÖLJER MED HJÄLP AV GARANTUM FÖR ALLA TYPER AV PLACERINGSBEHOV Mer kapital i tillväxt, mindre

Läs mer

Laboration 2. Artificiell Intelligens, Ht 2004 2004-10-19 Lärare: Christina Olsén Handledare: Therese Edvall Daniel Ölvebrink

Laboration 2. Artificiell Intelligens, Ht 2004 2004-10-19 Lärare: Christina Olsén Handledare: Therese Edvall Daniel Ölvebrink Artificiell Intelligens, Ht 2004 2004-10-19 Lärare: Christina Olsén Handledare: Therese Edvall Daniel Ölvebrink Laboration 2 Laboranter: Johan Bystedt (dit02lbt) Alexander Pettersson (dit02apn) Stefan

Läs mer

Slutliga Villkor för Lån 3114 under Skandinaviska Enskilda Banken AB:s (publ) ( SEB eller Banken ) svenska MTN-program

Slutliga Villkor för Lån 3114 under Skandinaviska Enskilda Banken AB:s (publ) ( SEB eller Banken ) svenska MTN-program Slutliga Villkor för Lån 3114 under Skandinaviska Enskilda Banken AB:s (publ) ( SEB eller Banken ) svenska MTN-program För Lånet skall gälla allmänna villkor för rubricerat MTN-program av den 27 juni 2012

Läs mer

Referenser... 16 Appendix A... 17 Appendix B... 18

Referenser... 16 Appendix A... 17 Appendix B... 18 Contents Inledning... 3 Teori... 3 Stokastisk process... 3 Olika typer av optioner... 3 Köp och säljoption... 3 Digital option... 4 Asiatiska optioner... 4 Lookbackoption... 5 Barriäroption... 5 Spreadoption...

Läs mer

ANDREAS REJBRAND 2007-11-03 Elektromagnetism http://www.rejbrand.se. Coulombs lag och Maxwells första ekvation

ANDREAS REJBRAND 2007-11-03 Elektromagnetism http://www.rejbrand.se. Coulombs lag och Maxwells första ekvation ANDREA REJBRAND 2007-11-03 Elektromagnetism http://www.rejbrand.se oulombs lag och Maxwells första ekvation oulombs lag och Maxwells första ekvation Inledning Två punktladdningar q 1 samt q 2 i rymden

Läs mer

XACT Bull och XACT Bear. Så fungerar XACTs börshandlade fonder med hävstång

XACT Bull och XACT Bear. Så fungerar XACTs börshandlade fonder med hävstång XACT Bull och XACT Bear Så fungerar XACTs börshandlade fonder med hävstång 1 Så fungerar fonder med hävstång Den här broschyren är avsedd att ge en beskrivning av XACTs börshandlade fonder ( Exchange Traded

Läs mer

LÖSNINGSFÖRSLAG Tentamen Finansiering I (FÖ3006) 22/2 2013

LÖSNINGSFÖRSLAG Tentamen Finansiering I (FÖ3006) 22/2 2013 LÖSNINGSFÖRSLAG Tentamen Finansiering I (FÖ006) 22/2 20 Hjälpmedel: Räknare samt formler på sidan. Betyg: G = p, VG = 9 p Maxpoäng 25 p OBS: Glöm ej att redovisa dina delberäkningar som har lett till ditt

Läs mer

Styrelsens förslag till beslut om långsiktigt prestationsbaserat incitamentsprogram samt återköp och överlåtelse av egna aktier

Styrelsens förslag till beslut om långsiktigt prestationsbaserat incitamentsprogram samt återköp och överlåtelse av egna aktier Punkt 18: Styrelsens förslag till beslut om långsiktigt prestationsbaserat incitamentsprogram samt återköp och överlåtelse av egna aktier A. Långsiktigt prestationsbaserat incitamentsprogram Programmet

Läs mer

VÄSENTLIG INFORMATION AVSEENDE BULL-CERTIFIKAT

VÄSENTLIG INFORMATION AVSEENDE BULL-CERTIFIKAT VÄSENTLIG INFORMATION AVSEENDE BULL-CERTIFIKAT Hur ska jag använda detta dokument? Detta dokument förser dig med information om väsentliga egenskaper och risker för en investering i Bull-certifikat (även

Läs mer

Investeringssparkonto med förenklad värdepappersskatt

Investeringssparkonto med förenklad värdepappersskatt Investeringssparkonto med förenklad värdepappersskatt investeringssparkonto förenklad värdepappersskatt från årsskiftet Investeringssparkonto, ISK, är en ny kontoform för investerare som är tillgänglig

Läs mer

LÖSNINGSFÖRLAG 2010-10-27

LÖSNINGSFÖRLAG 2010-10-27 Linköpings universitet 100928 IEI/Nek Bo Sjö LÖSNINGSFÖRLAG 2010-10-27 Tentamen 2010-10-01, kl. 08:00-13:00 Finansiell ekonomi, 7,5Hp Affärsjuridiska programmet (730G32) Skrivningen består av 4 uppgifter

Läs mer

Beräkningsvetenskap. Vad är beräkningsvetenskap? Vad är beräkningsvetenskap? stefan@it.uu.se. Informationsteknologi. Informationsteknologi

Beräkningsvetenskap. Vad är beräkningsvetenskap? Vad är beräkningsvetenskap? stefan@it.uu.se. Informationsteknologi. Informationsteknologi Beräkningsvetenskap stefan@it.uu.se Finns några olika namn för ungefär samma sak Numerisk analys (NA) Klassisk NA ligger nära matematiken: sats bevis, sats bevis, mer teori Tekniska beräkningar Mer ingenjörsmässigt,

Läs mer

Institutionen för Matematik TENTAMEN I LINJÄR ALGEBRA OCH NUMERISK ANALYS F1, TMA671 2009-01-16. DAG: Fredag 16 januari 2009 TID: 14.00-18.

Institutionen för Matematik TENTAMEN I LINJÄR ALGEBRA OCH NUMERISK ANALYS F1, TMA671 2009-01-16. DAG: Fredag 16 januari 2009 TID: 14.00-18. Institutionen för Matematik Göteborg TENTAMEN I LINJÄR ALGEBRA OCH NUMERISK ANALYS F, TMA67 9--6 DAG: Fredag 6 januari 9 TID: 4. - 8. SAL: V Ansvarig: Ivar Gustafsson, tel: 77 94 Förfrågningar: Ivar Gustafsson

Läs mer

Vi gör förändringar i Access Trygg den 2 april 2014

Vi gör förändringar i Access Trygg den 2 april 2014 Stockholm mars 2014 1(3) Vi gör förändringar i Access Trygg den 2 april 2014 Vår ambition är att erbjuda dig ett modernt och attraktivt utbud av fonder med hög kvalitet. Det innebär att vi kontinuerligt

Läs mer

RÖRELSE. - Mätningar och mätinstrument och hur de kan kombineras för att mäta storheter, till exempel fart, tryck och effekt.

RÖRELSE. - Mätningar och mätinstrument och hur de kan kombineras för att mäta storheter, till exempel fart, tryck och effekt. RÖRELSE Inledning När vi går, springer, cyklar etc. förflyttar vi oss en viss sträcka på en viss tid. Ibland, speciellt när vi har bråttom, tänker vi på hur fort det går. I det här experimentet undersöker

Läs mer

räntebevis Högre avkastning än räntesparande Lägre marknadsrisk än aktiesparande

räntebevis Högre avkastning än räntesparande Lägre marknadsrisk än aktiesparande räntebevis Högre avkastning än räntesparande Lägre marknadsrisk än aktiesparande räntebevis Dagens historiskt låga räntenivåer ger mycket låg avkastning i ett traditionellt räntesparande såsom räntefonder

Läs mer

Information till aktieägarna i East Capital Financials Investors AB (publ) SE0005337821

Information till aktieägarna i East Capital Financials Investors AB (publ) SE0005337821 Information till aktieägarna i East Capital Financials Investors AB (publ) SE0005337821 Information till aktieägarna inför extra bolagsstämma den 10 februari 2014 avseende styrelsens förslag om aktiesplit

Läs mer

Investeringsaktiebolaget Cobond AB. Kvartalsrapport december 2014

Investeringsaktiebolaget Cobond AB. Kvartalsrapport december 2014 Investeringsaktiebolaget Cobond AB Kvartalsrapport december 2014 INNEHÅLL Huvudpunkter 3 Nyckeltal 3 Aktiekurs och utdelningar 4 Allmänt om bolaget 6 2 KVARTALSRAPPORT DECEMBER 2014 HUVUDPUNKTER Aktiekursen

Läs mer

c S X Värdet av investeringen visas av den prickade linjen.

c S X Värdet av investeringen visas av den prickade linjen. VFTN01 Fastighetsvärderingssystem vt 2011 Svar till Övning 2011-01-21 1. Förklara hur en köpoptions (C) värde förhåller sig till den underliggande tillgångens (S) värde. a. Grafiskt: Visa sambandet, märk

Läs mer

www.handelsbanken.se/certifikat Certifikat BEAR HM H Avseende: Hennes & Mauritz B Med emissionsdag: 17 april 2009

www.handelsbanken.se/certifikat Certifikat BEAR HM H Avseende: Hennes & Mauritz B Med emissionsdag: 17 april 2009 www.handelsbanken.se/certifikat Certifikat BEAR HM H Avseende: Hennes & Mauritz B Med emissionsdag: 17 april 2009 Slutliga Villkor Certifikat Fullständig information om Handelsbanken och erbjudandet kan

Läs mer

BULL & BEAR INVESTERING MED TYDLIG HÄVSTÅNG

BULL & BEAR INVESTERING MED TYDLIG HÄVSTÅNG DECEMBER 2013 BÖRSHANDLADE PRODUKTER BULL & BEAR INVESTERING MED TYDLIG HÄVSTÅNG BUILDING TEAM SPIRIT TOGETHER RISKINFORMATION VEM BÖR INVESTERA? Bull & Bear-produkter är lämpade för svenska sofistikerade

Läs mer

Delårsrapport Januari - mars 2010

Delårsrapport Januari - mars 2010 Pressmeddelande från SäkI AB (publ) 2010-04-19, Nr 3 Delårsrapport Januari - mars 2010 Resultatet efter skatt uppgick till 53,2 MSEK (17,7) Resultatet per aktie efter skatt uppgick till 1,06 kronor (0,35)

Läs mer

FÖRESLAGEN INCITAMENTSPLAN ( PLANEN ) I KORTHET

FÖRESLAGEN INCITAMENTSPLAN ( PLANEN ) I KORTHET FÖRESLAGEN INCITAMENTSPLAN ( PLANEN ) I KORTHET Planen baseras på följande grundprinciper: Cirka 100 ledande befattningshavare och andra nyckelpersoner i koncernen är inbjudna Kräver personlig investering

Läs mer

TENTAMEN I STATISTIKENS GRUNDER 2

TENTAMEN I STATISTIKENS GRUNDER 2 STOCKHOLMS UNIVERSITET Statistiska institutionen Michael Carlson HT2012 TENTAMEN I STATISTIKENS GRUNDER 2 2012-11-20 Skrivtid: kl 9.00-14.00 Godkända hjälpmedel: Miniräknare, språklexikon Bifogade hjälpmedel:

Läs mer

Black-Scholes. En prissättningsmodell för optioner. Linnea Lindström

Black-Scholes. En prissättningsmodell för optioner. Linnea Lindström Black-Scholes En prissättningsmodell för optioner Linnea Lindström Vt 2010 Examensarbete 1, 15 hp Kandidatexamen i matematik, 180 hp Institutionen för matematik och matematisk statistik Sammanfattning

Läs mer

Kapitel. 9-1 Innan graflösning används 9-2 Analys av en funktionsgraf

Kapitel. 9-1 Innan graflösning används 9-2 Analys av en funktionsgraf Kapitel Graflösning Det går att använda följande metoder för att analysera funktionsgrafer och approximera resultat. Beräkning av roten Bestämning av lokalt maximivärde och lokalt minimivärde Bestämning

Läs mer

Börshandlade certifikat Bull & Bear

Börshandlade certifikat Bull & Bear Börshandlade certifikat Bull & Bear Bull & Bear-certifikat passar dig som har en bestämd marknadstro, oavsett om du tror på uppgång eller nedgång. Bull & Bear-certifikat är hävstångsprodukter vilket betyder

Läs mer

FÖRESLAGEN INCITAMENTSPLAN ( PLANEN ) I KORTHET

FÖRESLAGEN INCITAMENTSPLAN ( PLANEN ) I KORTHET FÖRESLAGEN INCITAMENTSPLAN ( PLANEN ) I KORTHET Planen baseras på följande grundprinciper: Cirka 100 ledande befattningshavare och andra nyckelpersoner i koncernen är inbjudna Kräver personlig investering

Läs mer

Föreläsning 3. Kapitalmarknaden, Utrikeshandeln och valutan. Nationalekonomi VT 2010 Maria Jakobsson

Föreläsning 3. Kapitalmarknaden, Utrikeshandeln och valutan. Nationalekonomi VT 2010 Maria Jakobsson Föreläsning 3 Kapitalmarknaden, Utrikeshandeln och valutan 1 Idag! Kapitalmarknaden " Vad är kapitalmarknaden, vad är dess syfte? " Vad handlas på kapitalmarknaden? " Hur fungerar den?! Utrikeshandel och

Läs mer

Rapporteringsexempel för transaktionsrapportering

Rapporteringsexempel för transaktionsrapportering Version 1.3 1 (39) Rapporteringsexempel för transaktionsrapportering Version 1.3 2 (39) Ändringshistorik Version Ändring Datum Version 1.0 Remissversion 30.11.2012 Anknyter till TREM version 3.0 Version

Läs mer

TENTAMEN I SF1906 (f d 5B1506) MATEMATISK STATISTIK GRUNDKURS,

TENTAMEN I SF1906 (f d 5B1506) MATEMATISK STATISTIK GRUNDKURS, Avd. Matematisk statistik TENTAMEN I SF1906 (f d 5B1506) MATEMATISK STATISTIK GRUNDKURS, TORSDAGEN DEN 7 JUNI 2012 KL 14.00 19.00 Examinator:Gunnar Englund, 073 3213745 Tillåtna hjälpmedel: Formel- och

Läs mer

Fri flytträtt - Min syn (Gustaf Rentzhog)

Fri flytträtt - Min syn (Gustaf Rentzhog) Fri flytträtt - Min syn (Gustaf Rentzhog) 1 Fördelar med att införa en fri flytträtt 93% av svenskarna vill ha det Tvingar försäkringsbolagen att skapa en rättvis prissättning mellan kundgrupperna Skärper

Läs mer

Handelsbankens Warranter

Handelsbankens Warranter Handelsbankens Warranter Underliggande Ericsson AB, B-aktie Neste Oil Abp, aktie Nordea Bank AB, FDR Stora Enso Abp, R-aktie Tietoenator AB, aktie TeliaSonera AB, aktie UPM-Kymmene Abp, aktie Första emissionsdag

Läs mer

AID:... För definitioner se läroboken. För att få poäng krävs mer än att man bara skriver ut namnet på förkortningen.

AID:... För definitioner se läroboken. För att få poäng krävs mer än att man bara skriver ut namnet på förkortningen. Lösningsförslag aktiedelen Tenta augusti 11, 2014 Uppgift 1 (4 poäng) 2014-08-25 Definiera kortfattat följande begrepp a) CAPM b) WACC c) IRR d) Fria kassaflöden För definitioner se läroboken. För att

Läs mer

Global Fastighet Tillväxt 2007 AB

Global Fastighet Tillväxt 2007 AB O B L I G O I N V E S T M E N T M A N A G E M E N T Global Fastighet Tillväxt 2007 AB Kvartalsrapport mars 2015 INNEHÅLL Huvudpunkter 3 Nyckeltal 3 Beräknat värde per aktie och utdelningar 4 Kursutveckling

Läs mer

Algebra & Ekvationer. Svar: Sammanfattning Matematik 2

Algebra & Ekvationer. Svar: Sammanfattning Matematik 2 Algebra & Ekvationer Algebra & Ekvationer Parenteser En parentes När man multiplicerar en term med en parentes måste man multiplicera båda talen i parentesen. Förenkla uttrycket 42 9. 42 9 4 2 4 9 8 36

Läs mer

Revisionsrapport. Granskning av förekomst och följsamhet av gällande lagstiftning och regelverk vid handel med Derivat. Landstinget Dalarna

Revisionsrapport. Granskning av förekomst och följsamhet av gällande lagstiftning och regelverk vid handel med Derivat. Landstinget Dalarna Revisionsrapport Granskning av förekomst och följsamhet av gällande lagstiftning och regelverk vid handel med Derivat. Landstinget Dalarna Emil Forsling Fredrik Winter Februari 2014 Innehållsförteckning

Läs mer

Själva handeln, eller fondbytet, tar 2-3 dagar. Ytterligare dagar för administration, bland annat den första dagen då det enda som händer är att

Själva handeln, eller fondbytet, tar 2-3 dagar. Ytterligare dagar för administration, bland annat den första dagen då det enda som händer är att 1 1. Det finns tre syften med premiepensionen. För det första ger ett fonderat system pensionsspararna möjlighet att investera på kapitalmarknaden och därigenom tillgodogöra sig den riskpremie som sådana

Läs mer

STYRANDE SATSER. 1) Skriv ett program som räknar ut hur många år du har till pensionen. Vi räknar här med att man pensioneras det år man fyller 65 år.

STYRANDE SATSER. 1) Skriv ett program som räknar ut hur många år du har till pensionen. Vi räknar här med att man pensioneras det år man fyller 65 år. STYRANDE SATSER 1) Skriv ett program som räknar ut hur många år du har till pensionen. Vi räknar här med att man pensioneras det år man fyller 65 år. Vilket år är du född? 1971 Då har du bara 35 år kvar

Läs mer

VECKOOPTIONER PÅ AKTIER

VECKOOPTIONER PÅ AKTIER VECKOOPTIONER PÅ AKTIER VECKOOPTIONER PÅ SVENSKA AKTIER Veckooptioner har samma kontraktsspecifikationer och utmärkande drag som våra vanliga standardiserade aktieoptioner. Skillnaden ligger i att löptiden

Läs mer

Säsongrensning i tidsserier.

Säsongrensning i tidsserier. Senast ändrad 200-03-23. Säsongrensning i tidsserier. Kompletterande text till kapitel.5 i Tamhane och Dunlop. Inledning. Syftet med säsongrensning är att dela upp en tidsserie i en trend u t, en säsongkomponent

Läs mer

Försättsblad Tentamen

Försättsblad Tentamen Försättsblad Tentamen (Används även till tentamenslådan.) Måste alltid lämnas in. OBS! Eventuella lösblad måste alltid fästas ihop med tentamen. Institution Ekonomihögskolan Skriftligt prov i delkurs Makro

Läs mer

Slutliga Villkor för Lån SEBS005 under Skandinaviska Enskilda Banken AB:s (publ) ( Banken eller SEB ) svenska MTN-program

Slutliga Villkor för Lån SEBS005 under Skandinaviska Enskilda Banken AB:s (publ) ( Banken eller SEB ) svenska MTN-program Slutliga Villkor för Lån SEBS005 under Skandinaviska Enskilda Banken AB:s (publ) ( Banken eller SEB ) svenska MTN-program För Lånet skall gälla allmänna villkor för rubricerat MTN-program av den 27 juni

Läs mer

EDUCATED TRADING. Daglig hävstång BULL & BEAR-CERTIFIKAT. Förstärkt avkastning för dig med kort placeringshorisont

EDUCATED TRADING. Daglig hävstång BULL & BEAR-CERTIFIKAT. Förstärkt avkastning för dig med kort placeringshorisont BNP PARIBAS EDUCATED TRADING Daglig hävstång BULL & BEAR-CERTIFIKAT Förstärkt avkastning för dig med kort placeringshorisont En investering i värdepapper kan både öka och minska i värde och det är inte

Läs mer