Lösningar till tentamen i Grundläggande nansmatematik. 21 december 2006 kl. 914

Storlek: px
Starta visningen från sidan:

Download "Lösningar till tentamen i Grundläggande nansmatematik. 21 december 2006 kl. 914"

Transkript

1 STOCKHOLMS UNIVERSITET MS 3290 MATEMATISKA INSTITUTIONEN TENTAMEN Avd. Matematisk statistik 21 december 2006 Lösningar till tentamen i Grundläggande nansmatematik 21 december 2006 kl. 914 Uppgift 1 Priset för aktien S(n) för t = nτ där τ = 1/12 blir n < < < < S(n) < < < < < < Den månatliga räntan blir r = ( ) 1/12 1 = och den riskneutrala sannolikheten blir p = r d ( 0.02) = = u d 0.03 ( 0.02) a) Värdet av en europeisk köpoption vid n = 4 blir C E (4) = (S(4) 120) + och tidigare tidpunkter ges rekursivt av C E (n; s n ) = r I tabellform blir resultatet av dessa beräkningar ( ) p C E (n + 1; s n u) + (1 p )C E (n + 1; s n d) n < 8.00 < < 5.11 < C E (n) 3.23 < 2.89 < < 1.04 < 0.47 < < 0.00

2 Grundläggande nansmatematik, 21 december Resultatet blir alltså C E (0) = b) Värdet av en amerikansk säljoption vid n = 4 blir P A (4) = (124 S(4)) + och tidigare tidpunkter ges rekursivt av P A (n; s n ) = max { (124 S(n; s n )) +, I tabellform blir resultatet av dessa beräkningar 1 ( ) } p P A (n + 1; s n u) + (1 p )P A (n + 1; s n d) 1 + r n < 0.51 < < 0.94 < P A (n) 4.38 < 3.29 < < 5.29 < 8.75 < < Resultatet blir alltså P A (0) = Uppgift 2 Terminsräntorna ges av ekvationssystemet vilket har lösningen = 100e y(0,1) = 10e y(0,1) + 60e 2y(0,2) = 20e y(0,1) + 20e 2y(0,2) + 220e 3y(0,3) ( ) y(0, 1) = ln = y(0, 2) = 1 ( ) e y(0,1) 2 ln = 1 ( ) ln = y(0, 3) = 1 ( e y(0,1) 3 ln 20e 2y(0,2) ) 220 = 1 ( ) ln = Durationen för första obligationen blir D 1 = 1 eftersom det är en nollkupongsobligation. ör de två övriga obligationerna får vi D 2 = 1 10e y(0,1) e 2y(0,2) 10e y(0,1) + 60e 2y(0,2) = 1.85 D 3 = 1 20e y(0,1) e 2y(0,2) e 3y(0,3) 20e y(0,1) + 20e 2y(0,2) + 220e 3y(0,3) = 2.75

3 Grundläggande nansmatematik, 21 december Vi söker nu en portfölj av formen V (0) = x 1 B(0, 1) + x 2 B(0, 2) + x 3 B(0, 3) med durationen D V = 2 där x 1 0, x 2 0 och x 3 0. Ett sätt att åstadkomma detta är att sätta x 2 = 0 och fördela beloppet på obligation 1 och 3 så att w 1 D 1 + w 3 D 3 = w 1 D 1 + (1 w 1 )D 3 = 2 vilket ger w 1 = D 3 2 D 3 D 1 = Lotta kan alltså köpa ettåriga obligationer och x 1 = 10000w x 3 = 10000(1 w 1) 230 = 42.9 = 24.8 treåriga obligationer. Ett alternativ är att sätta x 1 = 0 och fördela beloppet på obligation 2 och 3 så att vilket ger Lotta kan alltså köpa tvååriga obligationer och w 2 D 2 + w 3 D 3 = w 2 D 2 + (1 w 2 )D 3 = 2 w 2 = D 3 2 D 3 D 2 = x 2 = 10000w 2 65 x 3 = 10000(1 w 2) 230 = = 7.2 treåriga obligationer. I allmänhet kan portföljer innehållande samtliga obligationer väljas så att med restriktionerna w 1 D 1 + w 2 D 2 + w 3 D 3 = (1 w 2 w 3 )D 1 + w 2 D 2 + w 3 D 3 = 2 0 w w w

4 Grundläggande nansmatematik, 21 december Uppgift 3 Låt S A (t) beteckna värdet av Alpha-fonden och S B (t) värdet av Beta-fonden. Värdet av portföljen kan då skrivas V (t) = x A S A (t) + x B S B (t) Betafaktorn för portföljen kan nu skrivas där vikterna w A och w B ges av w A = w B = β V = w A β A + w B β B x A S A (0) x A S A (0) + x B S B (0) x B S B (0) x A S A (0) + x B S B (0) Om vi gör antagandet att V (0) = S A (0) = S B (0) = 1 förenklas vikterna till w A = x A och w B = x B, vilket ger V (t) = w A S A (t) + (1 w A )S B (t) örväntad årlig avkastning kan nu skrivas och risken µ V = E[V (1)] = E[w A S A (1) + (1 w A )S B (1)] = µ B + w A (µ A µ B ) σ 2 V = Var[V (1)] = Var[w A S A (1) + (1 w A )S B (1)] = w 2 Aσ 2 A + (1 w A ) 2 σ 2 B a) Den diversierbara risken kan skrivas Var(ε V ) = σ 2 V β 2 V σ 2 M = w 2 Aσ 2 A + (1 w A ) 2 σ 2 B (w A β A + (1 w A )β B ) 2 σ 2 M Partiella derivatan med avseende på w A blir Var(ε V ) w A Sätter vi sedan detta lika med 0 och löser ut w A får vi = 2w A σ 2 A 2(1 w A )σ 2 B 2(w A β A + (1 w A )β B )(β A β B )σ 2 M w A = b) örväntad avkastning blir σ2 B + β B(β A β A )σ 2 M σ 2 A + σ2 B (β A β B ) 2 σ 2 M = och risken µ V = µ B + w A (µ A µ B ) = 0.25 σ 2 V = w 2 Aσ 2 A + (1 w A ) 2 σ 2 B = 0.029

5 Grundläggande nansmatematik, 21 december Uppgift 4 Antag först att S(0) X 2 e rt > C E P E gäller. Bilda sedan en portfölj bestående av En lång position i köpoptionen. En kort position i säljoptionen. En kort position i aktien. Beloppet S(0) + P E C E i riskfri tillgång. V rdet av denna portfölj vid t = 0 är V (0) = 0. Vid tiden t = T nns tre möjligheter: S(T ) < X 1 : Säljoptionen löses ut, men inte köpoptionen, vilket ger portföljvärdet V (T ) = 0 (X 2 S(T )) S(T ) + (S(0) + P E C E )e rt = (S(0) X 2 e rt C E + P E )e rt > 0 X 1 S(T ) X 2 : Båda optionerna löses ut, vilket ger V (T ) = (S(T ) X 1 ) (X 2 S(T )) S(T ) + (S(0) + P E C E )e rt = ((S(0) X 2 e rt C E + P E )e rt + S(T ) X 1 > 0 X 2 < S(T ): Köpoptionen löses ut, men inte säljoptionen, vilket ger V (T ) = (S(T ) X 1 ) 0 S(T ) + (S(0) + P E C E )e rt = ((S(0) X 2 e rt C E + P E )e rt + X 2 X 1 > 0 Vi har gjort en arbitragevinst. Antag sedan att C E P E > S(0) X 1 e rt gäller. Nu kan vi bilda portföljen En kort position i köpoptionen. En lång position i säljoptionen. En lång position i aktien. Beloppet C E P E S(0) i riskfri tillgång. V rdet av denna portfölj vid t = 0 är V (0) = 0. Vid tiden t = T nns samma möjligheter som innan: S(T ) < X 1 : Säljoptionen löses ut, men inte köpoptionen, vilket ger portföljvärdet V (T ) = 0 + (X 2 S(T )) + S(T ) + (C E P E S(0))e rt = (C E P E S(0) + X 1 e rt )e rt + X 2 X 1 > 0

6 Grundläggande nansmatematik, 21 december X 1 S(T ) X 2 : Båda optionerna löses ut, vilket ger V (T ) = (S(T ) X 1 ) + (X 2 S(T )) + S(T ) + (C E P E S(0))e rt = ((C E P E S(0) X 1 e rt )e rt + X 2 S(T ) > 0 X 2 < S(T ): Köpoptionen löses ut, men inte säljoptionen, vilket ger V (T ) = (S(T ) X 1 ) S(T ) + (C E P E S(0))e rt = ((C E P E S(0) X 1 e rt )e rt > 0 Vi har återigen gjort en arbitragevinst och därmed visat olikheten. Uppgift 5 I tentatesen saknades information om riskfria räntan r = a) Black-Scholes formel ger och d 1 = d 2 = ln ( ) = ln ( ) = C E (0) = 248N(0.33) 250e N(0.27) = e = 8.23 b) Låt V (t) = xs(t) + zc E (t). Value at Risk med kondensgrad 95 % denieras som den undre gräns för förlusten som uppfyller P(16000e 0.5r V (0.5) > VaR) = 0.95 Vi börjar med att bestämma en undre gräns för Brownska rörelsen W (t). Eftersom W (t) är normalfördelad med väntevärde 0 och varians t får vi att vilket medför att P ( W (t) 0 t > 1.64 ) = 0.95 P(W (0.5) > ) = P(W (0.5) > 1.16) = 0.95 Med hjälp av detta kan vi nu bestämma en undre gräns för aktievärdet S(0.5) efter ett halvår enligt P(S(0.5) = 248e W (0.5) > 248e ( 1.16) = 240) = 0.95 Om vi börjar med portföljen bestående av enbart aktier så har vi råd att köpa x = = 64.5

7 Grundläggande nansmatematik, 21 december stycken. Om aktievärdet går ner till S(0.5) = 240 blir portföljen värd V (0.5) = = Value at Risk blir i det här fallet VaR = 16000e = 925 Om vi lägger hälften i aktier och hälften i köpoptioner så har vi råd att köpa x = = 32.3 stycken aktier och z = = 972 stycken optioner. Om aktievärdet går ner till S(0.5) = 240 blir optionerna värdelösa och portföljen blir värd V (0.5) = = 7740 Nu blir Value at Risk VaR = 16000e = 8650 Uppgift 6 Vi börjar med att beräkna den korta räntan B(0, 1) r(0) = y(0, 1) = ln = ln = B(1, 2;u) r(1;u) = y(1, 2;u) = ln = ln = B(1, 2;d) r(1;d) = y(1, 2;d) = ln = ln = B(2, 3;uu) r(2;uu) = y(2, 3;uu) = ln = ln = B(2, 3;ud) r(2;ud) = y(2, 3;ud) = ln = ln = B(2, 3;du) r(2;du) = y(2, 3;du) = ln = ln = B(2, 3;dd) r(2;dd) = y(2, 3;dd) = ln = ln = för alla tillstånd i trädet. Detta ger oss de stokastiska kupongerna C 1 = (e r(0) 1) = (e ) 100 = 5.13 C 2 (u) = (e r(1;u) 1) = (e ) 100 = 4.31 C 2 (d) = (e r(1;d) 1) = (e ) 100 = 9.77 C 3 (uu) = (e r(2;uu) 1) = (e ) 100 = 0.98 C 3 (ud) = (e r(2;ud) 1) = (e ) 100 = 5.35 C 3 (du) = (e r(2;du) 1) = (e ) 100 = 4.03 C 3 (dd) = (e r(2;dd) 1) = (e ) 100 = Vidare behöver vi även de riskneutrala sannolikheterna p (0, 3) = er(0) e k(1,3;d) 100 e k(1,3;u) e k(1,3;d) = = 0.475

8 Grundläggande nansmatematik, 21 december och p (1, 3;u) = p (1, 3;d) = er(1;u) e k(2,3;ud) 100 e k(2,3;uu) e k(2,3;ud) = er(1;d) e k(2,3;dd) 100 e k(2,3;du) e k(2,3;dd) = = = Nu kan vi beräkna nuvärdet för ett cap-kontrakt D(0) och varje väg i trädet enligt D(0;uu) = 5.13e r(0) e (r(0)+r(1;u)) e (r(0)+r(1;u)+r(2;uu)) = 5.13e e e = 100 D(0;ud) = 5.13e r(0) e (r(0)+r(1;u)) e (r(0)+r(1;u)+r(2;ud)) = 5.13e e e = 100 D(0;du) = 5.13e r(0) e (r(0)+r(1;d)) e (r(0)+r(1;d)+r(2;du)) = 5.13e e e = D(0;dd) = 5.13e r(0) e (r(0)+r(1;d)) e (r(0)+r(1;d)+r(2;dd)) = 5.13e e e = Det slutliga priset får vi genom att väga ihop dessa värden enligt de riskneutrala sannolikheterna D(0) = D(0; uu)p(uu) + D(0; ud)p(ud) + D(0; du)p(du) + D(0; dd)p(dd) = = Hassan måste i så fall inta = 3031 korta positioner för att kunna låna beloppet SEK. Efter tre år återbetalar han = SEK Lycka till!

Formelsamling för kursen Grundläggande finansmatematik

Formelsamling för kursen Grundläggande finansmatematik STOCKHOLMS UNIVERSITET 13 december 006 Matematiska institutionen Avd. för matematisk statistik Mikael Andersson Formelsamling för kursen Grundläggande finansmatematik 1 Fundamental Theorem of Asset Pricing

Läs mer

STOCKHOLMS UNIVERSITET MATEMATISKA INSTITUTIONEN Avd. för Matematisk statistik Thomas Höglund FINANSMATEMATIK I. ÖVNINGAR TILL DAG 3.

STOCKHOLMS UNIVERSITET MATEMATISKA INSTITUTIONEN Avd. för Matematisk statistik Thomas Höglund FINANSMATEMATIK I. ÖVNINGAR TILL DAG 3. STOCKHOLMS UNIVERSITET MATEMATISKA INSTITUTIONEN Avd. för Matematisk statistik Thomas Höglund FINANSMATEMATIK I. ÖVNINGAR TILL DAG 2. Luenberger: 2:1-5, 9, 11, 12. Övning 1. Du lånar 200000 kr i en bank

Läs mer

Övningsexempel i Finansiell Matematik

Övningsexempel i Finansiell Matematik KTH Matematik Harald Lang 27/3-04 Övningsexempel i Finansiell Matematik 1. Riskjusterade sannolikhetsmått 1. Vi betraktar en stokastisk utbetalning X(ω) som ger utdelning enligt tabellen ω 1 ω 2 ω 2 pris

Läs mer

Ytterligare övningsfrågor finansiell ekonomi NEKA53

Ytterligare övningsfrågor finansiell ekonomi NEKA53 Ytterligare övningsfrågor finansiell ekonomi NEKA53 Modul 2: Pengars tidsvärde, icke arbitrage, och vad vi menar med finansiell risk. Fråga 1: Enkel och effektiv ränta a) Antag att den enkla årsräntan

Läs mer

Vi ska här utgå ifrån att vi har en aktie och ska med denna som grund konstruera tre olika optionsportföljer.

Vi ska här utgå ifrån att vi har en aktie och ska med denna som grund konstruera tre olika optionsportföljer. STOCKHOLMS UNIVERSITET MATEMATISKA INSTITUTIONEN Avd för Matematisk statistik TH FINANSMATEMATIK I, HT 01 KOMPLEMENT DAG 12 Version 01 12 10 TRE OPTIONSSTRATEGIER Vi ska här utgå ifrån att vi har en aktie

Läs mer

1. FLACK RÄNTA Med flack ränta ska vi här mena att räntan är densamma oavsett bindningstid

1. FLACK RÄNTA Med flack ränta ska vi här mena att räntan är densamma oavsett bindningstid STOCKHOLMS UNIVERSITET MATEMATISKA INSTITUTIONEN Avd. för Matematisk statistik Thomas Höglund Version 02 10 25. RÄNTA 1. FLACK RÄNTA Med flack ränta ska vi här mena att räntan är densamma oavsett bindningstid

Läs mer

120 110 S t : 100 100 90 80 Vi ska här betrakta ett antal portföljer som vid t = 0 är värda 100 SEK.

120 110 S t : 100 100 90 80 Vi ska här betrakta ett antal portföljer som vid t = 0 är värda 100 SEK. STOCKHOLMS UNIVERSITET MATEMATISKA INSTITUTIONEN Avd. för Matematisk statistik Thomas Höglund FINANSMATEMATIK I. KOMPLEMENT DAG 5. HANDELSSTRATEGIER Låt S t beteckna priset på en aktie vid tiden t. Vi

Läs mer

Räntemodeller och marknadsvärdering av skulder

Räntemodeller och marknadsvärdering av skulder Räntemodeller och marknadsvärdering av skulder Fredrik Armerin Matematisk statistik, KTH Aktuarieföreningen 17-18 november 2004 Dag 2 NOLLKUPONGSKURVOR 1 Nollkupongsobligationer En nollkupongsobligation

Läs mer

Del 16 Kapitalskyddade. placeringar

Del 16 Kapitalskyddade. placeringar Del 16 Kapitalskyddade placeringar Innehåll Kapitalskyddade placeringar... 3 Obligationer... 3 Prissättning av obligationer... 3 Optioner... 4 De fyra positionerna... 4 Konstruktion av en kapitalskyddad

Läs mer

Tentamen Finansiering (2FE253) Lördagen den 21 mars 2015, kl. 09:00-13:00

Tentamen Finansiering (2FE253) Lördagen den 21 mars 2015, kl. 09:00-13:00 Tentamen Finansiering (2FE253) Lördagen den 21 mars 2015, kl. 09:00-13:00 Skrivtid: 4 timmar (kl. 09:00 13:00) Hjälpmedel: Kalkylator och kursens formelblad. OBS! Endast formler som står med på formelbladet

Läs mer

Asa Hansson. Sign: ECTS: D Civilekonom D Ekon.kand. D Pol.kand. D Fristående D LTH D Utbytesstudent D Annat. Betyg: Nationalekonomiska institutionen

Asa Hansson. Sign: ECTS: D Civilekonom D Ekon.kand. D Pol.kand. D Fristående D LTH D Utbytesstudent D Annat. Betyg: Nationalekonomiska institutionen Nationalekonomiska institutionen Sign: Lunds universitet TENTAMEN Leg OK: D Kurs: NEKA12 Finansiell ekonomi Lokal & tid: _E_ft_e_r_n_a_m_n_=------------------------------~P_e_~_o_n_n_r_: ~VIC 1 +2 08-13

Läs mer

STOCKHOLMS UNIVERSITET MATEMATISKA INSTITUTIONEN Avd. för Matematisk statistik Thomas Höglund Version 06 04 04. Finansmatematik II Kapitel 1

STOCKHOLMS UNIVERSITET MATEMATISKA INSTITUTIONEN Avd. för Matematisk statistik Thomas Höglund Version 06 04 04. Finansmatematik II Kapitel 1 1 STOCKHOLMS UNIVERSITET MATEMATISKA INSTITUTIONEN Avd. för Matematisk statistik Thomas Höglund Version 06 04 04 Finansmatematik II Kapitel 1 Ränta 2 Finansmatematik II 1 Rak ränta Med rak ränta ska vi

Läs mer

Del 17 Optionens lösenpris

Del 17 Optionens lösenpris Del 17 Optionens lösenpris Innehåll Optioner... 3 Optionens lösenkurs... 3 At the money... 3 In the money... 3 Out of the money... 4 Priset... 4 Kapitalskyddet... 5 Sammanfattning... 6 Strukturerade placeringar

Läs mer

Strukturakademin Strukturinvest Fondkommission LÅNG KÖPOPTION. Värde option. Köpt köpoption. Utveckling marknad. Rättighet

Strukturakademin Strukturinvest Fondkommission LÅNG KÖPOPTION. Värde option. Köpt köpoption. Utveckling marknad. Rättighet Del 11 Indexbevis Innehåll Grundpositionerna... 3 Köpt köpoption... 3 Såld köpoption... 3 Köpt säljoption... 4 Såld säljoption... 4 Konstruktion av Indexbevis... 4 Avkastningsanalys... 5 knock-in optioner...

Läs mer

Del 18 Autocalls fördjupning

Del 18 Autocalls fördjupning Del 18 Autocalls fördjupning Innehåll Autocalls... 3 Autocallens beståndsdelar... 3 Priset på en autocall... 4 Känslighet för olika parameterar... 5 Avkastning och risk... 5 del 8 handlade om autocalls.

Läs mer

Modern kapitalförvaltning kundanpassning med flexibla lösningar

Modern kapitalförvaltning kundanpassning med flexibla lösningar Modern kapitalförvaltning kundanpassning med flexibla lösningar (Från Effektivt Kapital, Vinell m.fl. Norstedts förlag 2005) Ju rikare en finansmarknad är på oberoende tillgångar, desto större är möjligheterna

Läs mer

Strukturakademin Strukturinvest Fondkommission FIGUR 1. Utdelning. Återinvesterade utdelningar Ej återinvesterade utdelningar

Strukturakademin Strukturinvest Fondkommission FIGUR 1. Utdelning. Återinvesterade utdelningar Ej återinvesterade utdelningar Del 3 Utdelningar Innehåll Implicita tillgångar... 3 Vad är utdelningar?... 3 Hur påverkar utdelningar optioner?... 3 Utdelningar och forwards... 3 Prognostisera utdelningar... 4 Implicita utdelningar...

Läs mer

AMatematiska institutionen avd matematisk statistik

AMatematiska institutionen avd matematisk statistik Kungl Tekniska Högskolan AMaemaiska insiuionen avd maemaisk saisik TENTAMEN I 5B86 STOKASTISK KALKYL OCH KAPITALMARKNADSTE- ORI FÖR F4 OCH MMT4 LÖRDAGEN DEN 5 AUGUSTI KL 8. 3. Examinaor : Lars Hols, el.

Läs mer

Innehåll. Kursfallsskydd... 3 Lock & Secure... 3 Konstruktion av Lock & Secure funktionen... 3 Avkastning och risk... 4

Innehåll. Kursfallsskydd... 3 Lock & Secure... 3 Konstruktion av Lock & Secure funktionen... 3 Avkastning och risk... 4 Del 21 Lock & Secure Innehåll Kursfallsskydd... 3 Lock & Secure... 3 Konstruktion av Lock & Secure funktionen... 3 Avkastning och risk... 4 Autocalls och indexbevis har normalt ett kursfallsskydd som innebär

Läs mer

Del 3 Utdelningar. Strukturakademin

Del 3 Utdelningar. Strukturakademin Del 3 Utdelningar Strukturakademin Innehåll 1. Implicita tillgångar 2. Vad är utdelningar? 3. Hur påverkar utdelningar optioner? 4. Utdelningar och Forwards 5. Prognostisera utdelningar 6. Implicita utdelningar

Läs mer

AID:... Uppgift 1 (2 poäng) Definiera kortfattat följande begrepp. a) IRR b) APR c) Going concern d) APV. Lösningsförslag: Se Lärobok och/alt Google.

AID:... Uppgift 1 (2 poäng) Definiera kortfattat följande begrepp. a) IRR b) APR c) Going concern d) APV. Lösningsförslag: Se Lärobok och/alt Google. Notera att det är lösningsförslag. Inga utförliga lösningar till triviala definitioner och inga utvecklade svar på essä-typ frågor. Och, att kursen undervisas lite olika år från år. År 2013 mera från Kap

Läs mer

AID:... LÖSNINGSFÖRSLAG TENTA 2013-05-03. Aktiedelen, uppdaterad 2014-04-30

AID:... LÖSNINGSFÖRSLAG TENTA 2013-05-03. Aktiedelen, uppdaterad 2014-04-30 LÖSNINGSFÖRSLAG TENTA 013-05-03. Aktiedelen, udaterad 014-04-30 Ugift 1 (4x0.5 = oäng) Definiera kortfattat följande begre a) Beta värde b) Security Market Line c) Duration d) EAR Se lärobok, oweroints.

Läs mer

Kurs 311. Finansiell ekonomi

Kurs 311. Finansiell ekonomi Handelshögskolan i Stockholm Finansiell ekonomi, kurs 311 Per Hiller 2003-09-01 Kurs 311 Finansiell ekonomi Tentamensfrågor med lösningsförslag från läsåret 2002/2003 Tentamenstiden är 4 timmar och tentamen

Läs mer

Tentamen Finansiering (2FE253) Onsdagen den 17 februari 2016, kl. 08:00-12:00

Tentamen Finansiering (2FE253) Onsdagen den 17 februari 2016, kl. 08:00-12:00 Tentamen Finansiering (2FE253) Onsdagen den 17 februari 2016, kl. 08:00-12:00 Skrivtid: 4 timmar (kl. 08:00 12:00) Hjälpmedel: Kalkylator och kursens formelblad. OBS! Endast formler som står med på formelbladet

Läs mer

Apoteket AB:s Pensionsstiftelse. Absolutavkastning 2014-04-09

Apoteket AB:s Pensionsstiftelse. Absolutavkastning 2014-04-09 Absolutavkastning 2014-04-09 Innehåll Affärside och mål Portföljstruktur Risker och riskkontroll Nyckeltal Affärside och mål Skapa en jämn genomsnittlig årsavkastning på 7 % inom intervallet 0-15 %. Låg

Läs mer

Provmoment: Ladokkod: Tentamen ges för:

Provmoment: Ladokkod: Tentamen ges för: Finansiell ekonomi Provmoment: Ladokkod: Tentamen ges för: Namn: (Ifylles av student) Personnummer: (Ifylles av student) Tentamensdatum: 23/8 13 Tid: 09:00 14:00 Hjälpmedel: Miniräknare SFE011 Nationalekonomi

Läs mer

Provmoment: Ladokkod: Tentamen ges för:

Provmoment: Ladokkod: Tentamen ges för: Finansiell ekonomi Provmoment: Ladokkod: Tentamen ges för: Skriftlig tentamen 21FE1B Nationalekonomi 1-30 hp 7,5 högskolepoäng Namn: (Ifylles av student) Personnummer: (Ifylles av student) Tentamensdatum:

Läs mer

Black-Scholes. En prissättningsmodell för optioner. Linnea Lindström

Black-Scholes. En prissättningsmodell för optioner. Linnea Lindström Black-Scholes En prissättningsmodell för optioner Linnea Lindström Vt 2010 Examensarbete 1, 15 hp Kandidatexamen i matematik, 180 hp Institutionen för matematik och matematisk statistik Sammanfattning

Läs mer

0 om x < 0, F X (x) = x. 3 om 0 x 1, 1 om x > 1.

0 om x < 0, F X (x) = x. 3 om 0 x 1, 1 om x > 1. Avd. Matematisk statistik TENTAMEN I SF9, SF95 SANNOLIKHETSTEORI OCH STATISTIK, MÅNDAGEN DEN 2:E JANUARI 25 KL 4. 9.. Kursledare: Gunnar Englund, 73 32 37 45 Tillåtna hjälpmedel: Formel- och tabellsamling

Läs mer

Warranter En investering med hävstångseffekt

Warranter En investering med hävstångseffekt Warranter En investering med hävstångseffekt Investerarprofil ÄR WARRANTER RÄTT TYP AV INVESTERING FÖR DIG? Innan du bestämmer dig för att investera i warranter bör du fundera över vilken risk du är beredd

Läs mer

Del 13 Andrahandsmarknaden

Del 13 Andrahandsmarknaden Del 13 Andrahandsmarknaden Strukturakademin Strukturakademin Srukturinvest Fondkommission 1 Innehåll 1. Produktens värde på slutdagen 2. Produktens värde under löptiden 3. Köp- och säljspread 4. Obligationspriset

Läs mer

Del 2 Korrelation. Strukturakademin

Del 2 Korrelation. Strukturakademin Del 2 Korrelation Strukturakademin Innehåll 1. Implicita tillgångar 2. Vad är korrelation? 3. Hur fungerar sambanden? 4. Hur beräknas korrelation? 5. Diversifiering 6. Korrelation och Strukturerade Produkter

Läs mer

Del 4 Emittenten. Strukturakademin

Del 4 Emittenten. Strukturakademin Del 4 Emittenten Strukturakademin Innehåll 1. Implicita risker och tillgångar 2. Emittenten 3. Obligationer 4. Prissättning på obligationer 5. Effekt på villkoren 6. Marknadsrisk och Kreditrisk 7. Implicit

Läs mer

Prissättning av optioner

Prissättning av optioner TDB,projektpresentation Niklas Burvall Hua Dong Mikael Laaksonen Peter Malmqvist Daniel Nibon Sammanfattning Optioner är en typ av finansiella derivat. Detta dokument behandlar prissättningen av dessa

Läs mer

Ränterisk för bostadsköpare

Ränterisk för bostadsköpare Nationalekonomiska Institutionen Lunds Universitet Kandidatuppsats poäng H 5 Ränterisk för bostadsköpare betydande eller marginell? Författare: Marcus Iorizzo Handledare: Hans Byström Abstract Med dagens

Läs mer

Optionspriser och marknadens förväntningar

Optionspriser och marknadens förväntningar Optionspriser och marknadens förväntningar AV JAVIERA AGUILAR OCH PETER HÖRDAHL Verksamma vid penning- och valutapolitiska avdelningen Att ta fram information ur finansiella priser är av intresse både

Läs mer

Del 1 Volatilitet. Strukturakademin

Del 1 Volatilitet. Strukturakademin Del 1 Volatilitet Strukturakademin Innehåll 1. Implicita tillgångar 2. Vad är volatilitet? 3. Volatility trading 4. Historisk volatilitet 5. Hur beräknas volatiliteten? 6. Implicit volatilitet 7. Smile

Läs mer

c S X Värdet av investeringen visas av den prickade linjen.

c S X Värdet av investeringen visas av den prickade linjen. VFTN01 Fastighetsvärderingssystem vt 2011 Svar till Övning 2011-01-21 1. Förklara hur en köpoptions (C) värde förhåller sig till den underliggande tillgångens (S) värde. a. Grafiskt: Visa sambandet, märk

Läs mer

TENTA: 2012-05-04 723G29/28 Uppdaterar 20140914

TENTA: 2012-05-04 723G29/28 Uppdaterar 20140914 TENTA: 2012-05-04 723G29/28 Uppdaterar 20140914 Notera att det är lösningsförslag. Inga utförliga lösningar till triviala definitioner och inga utvecklade svar på essä-typ frågor. Och, att kursen undervisas

Läs mer

STOCKHOLMS UNIVERSITET MATEMATISKA INSTITUTIONEN Avd. Matematisk statistik, GA 08 januari 2015. Lösningar

STOCKHOLMS UNIVERSITET MATEMATISKA INSTITUTIONEN Avd. Matematisk statistik, GA 08 januari 2015. Lösningar STOCKHOLMS UNIVERSITET MT712 MATEMATISKA INSTITUTIONEN LÖSNINGAR Avd. Matematisk statistik, GA 8 januari 215 Lösningar Tentamen i Livförsäkringsmatematik I, 8 januari 215 Uppgift 1 a) Först konstaterar

Läs mer

Tentamen Finansiering (2FE253) Tisdagen den 29 september 2015, kl. 14:00-18:00

Tentamen Finansiering (2FE253) Tisdagen den 29 september 2015, kl. 14:00-18:00 Tentamen Finansiering (2FE253) Tisdagen den 29 september 2015, kl. 14:00-18:00 Skrivtid: 4 timmar (kl. 14:00 18:00) Hjälpmedel: Kalkylator och kursens formelblad. OBS! Endast formler som står med på formelbladet

Läs mer

Övningsuppgifter för sf1627, matematik för ekonomer. 1. Förenkla följande uttryck så långt det går: 6. 7. 8. 9. 10. 2. Derivator 1. 2. 3. 4. 5. 6.

Övningsuppgifter för sf1627, matematik för ekonomer. 1. Förenkla följande uttryck så långt det går: 6. 7. 8. 9. 10. 2. Derivator 1. 2. 3. 4. 5. 6. KTH matematik Övningsuppgifter för sf1627, matematik för ekonomer Harald Lang 1. Förenkla följande uttryck så långt det går: 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. Svar: 1. 2. 5 3. 1 4. 5 5. 1 6. 6 7. 1 8. 0 9.

Läs mer

(A -A)(B -B) σ A σ B. på att tillgångarna ej uppvisar något samband i hur de varierar.

(A -A)(B -B) σ A σ B. på att tillgångarna ej uppvisar något samband i hur de varierar. Del 2 Korrelation Innehåll Implicita tillgångar... 3 Vad är korrelation?... 3 Hur fungerar sambanden?... 3 Hur beräknas korrelation?... 3 Diversifiering... 4 Korrelation och strukturerade produkter...

Läs mer

STYRNING AV PORTFÖLJER MED FLERA TILLGÅNGAR

STYRNING AV PORTFÖLJER MED FLERA TILLGÅNGAR 1 STOCKHOLMS UNIVERSITET MATEMATISKA INSTITUTIONEN Avd. för Matematisk statistik Thomas Höglund FINANSMATEMATIK I. KOMPLEMENT DAG 13. STYRNING AV PORTFÖLJER MED FLERA TILLGÅNGAR Hittills har vi betraktat

Läs mer

Juli/Augusti 2003. Valutawarranter. sverige

Juli/Augusti 2003. Valutawarranter. sverige Juli/Augusti 2003 Valutawarranter sverige in troduktion Valutamarknaden är en av de mest likvida finansiella marknaderna, där många miljarder omsätts i världens olika valutor varje dag. Marknaden drivs

Läs mer

TENTA 2011-08-15 723G28/723G29 (uppdaterad 2014-02-03)

TENTA 2011-08-15 723G28/723G29 (uppdaterad 2014-02-03) TENTA 2011-08-15 723G28/723G29 (uppdaterad 2014-02-03) LÖSNINGSFÖRSLAG: Notera förslag och att det är skisser inte fullständiga svar på definitioner och essäfrågor Uppgift 1 (2 poäng) Definiera kortfattat

Läs mer

Finansmatematik II Kapitel 2 Stokastiska egenskaper hos aktiepriser

Finansmatematik II Kapitel 2 Stokastiska egenskaper hos aktiepriser STOCKHOLMS UNIVERSITET MATEMATISKA INSTITUTIONEN Avd. för Matematisk statistik Thomas Höglund Version Finansmatematik II Kapitel Stokastiska egenskaper hos aktiepriser Finansmatematik II För att kunna

Läs mer

Del 15 Avkastningsberäkning

Del 15 Avkastningsberäkning Del 15 Avkastningsberäkning Innehåll Framtida förväntat pris... 3 Price return... 3 Total Return... 4 Excess Return... 5 Övriga alternativ... 6 Avslutande ord... 6 I del 15 går vi igenom olika möjliga

Läs mer

Provmoment: Ladokkod: Tentamen ges för:

Provmoment: Ladokkod: Tentamen ges för: Finansiell ekonomi Provmoment: Ladokkod: Tentamen ges för: Namn: (Ifylles av student) Personnummer: (Ifylles av student) Tentamensdatum: 27/3 2015 Tid: 14:00 19:00 21FE1B Nationalekonomi 1-30 hp, omtentamen

Läs mer

Finansmatematik II Kapitel 3 Risk och diversifiering

Finansmatematik II Kapitel 3 Risk och diversifiering STOCKHOLMS UNIVERSITET MATEMATISKA INSTITUTIONEN Avd. för Matematisk statistik Thomas Höglund Version 04 0 8 Finansmatematik II Kapitel 3 Risk och diversifiering 2 Finansmatematik II Risk och diversifiering

Läs mer

Tentamen Finansiering (2FE253) Onsdagen den 28 september 2016

Tentamen Finansiering (2FE253) Onsdagen den 28 september 2016 Tentamen Finansiering (2FE253) Onsdagen den 28 september 2016 Skrivtid: 4 timmar (kl. 14:00 18:00) Hjälpmedel: Kalkylator och kursens formelblad. OBS! Endast formler som står med på formelbladet får programmeras

Läs mer

Del 15 Avkastningsberäkning

Del 15 Avkastningsberäkning Del 15 Avkastningsberäkning 1 Innehåll 1. Framtida förväntat pris 2. Price return 3. Total Return 5. Excess Return 6. Övriga alternativ 7. Avslutande ord 2 I del 15 går vi igenom olika möjliga alternativ

Läs mer

Provmoment: Ladokkod: Tentamen ges för:

Provmoment: Ladokkod: Tentamen ges för: Finansiell ekonomi Provmoment: Ladokkod: Tentamen ges för: 21FE1B Nationalekonomi 1-30 hp, ordinarie tentamen 7,5 högskolepoäng Tentamensdatum: 18/3 16 Tid: 09:00 13:00 Hjälpmedel: Miniräknare, rutat papper,

Läs mer

Tentamen Finansiering (2FE253) Lördagen den 19 november 2016

Tentamen Finansiering (2FE253) Lördagen den 19 november 2016 Tentamen Finansiering (2FE253) Lördagen den 19 november 2016 Skrivtid: 4 timmar (kl. 09:00 13:00) Hjälpmedel: Kalkylator och kursens formelblad. OBS! Endast formler som står med på formelbladet får programmeras

Läs mer

LÖSNINGSFÖRLAG 2010-10-27

LÖSNINGSFÖRLAG 2010-10-27 Linköpings universitet 100928 IEI/Nek Bo Sjö LÖSNINGSFÖRLAG 2010-10-27 Tentamen 2010-10-01, kl. 08:00-13:00 Finansiell ekonomi, 7,5Hp Affärsjuridiska programmet (730G32) Skrivningen består av 4 uppgifter

Läs mer

Placeringsalternativ kopplat till tre strategier på G10 ländernas valutor

Placeringsalternativ kopplat till tre strategier på G10 ländernas valutor www.handelsbanken.se/mega Strategiobligation SHB FX 1164 Placeringsalternativ kopplat till tre strategier på G10 ländernas valutor Strategierna har avkastat 14,5 procent per år sedan år 2000 Låg korrelation

Läs mer

Tentamen Finansiering (2FE253) Lördagen den 8 november 2014, kl. 09:00-13:00

Tentamen Finansiering (2FE253) Lördagen den 8 november 2014, kl. 09:00-13:00 Tentamen Finansiering (2FE253) Lördagen den 8 november 2014, kl. 09:00-13:00 Skrivtid: 4 timmar (kl. 09:00 13:00) Hjälpmedel: Kalkylator och kursens formelblad OBS! Endast formler som står med på formelbladet

Läs mer

AID:... För definitioner se läroboken. För att få poäng krävs mer än att man bara skriver ut namnet på förkortningen.

AID:... För definitioner se läroboken. För att få poäng krävs mer än att man bara skriver ut namnet på förkortningen. Lösningsförslag aktiedelen Tenta augusti 11, 2014 Uppgift 1 (4 poäng) 2014-08-25 Definiera kortfattat följande begrepp a) CAPM b) WACC c) IRR d) Fria kassaflöden För definitioner se läroboken. För att

Läs mer

Valutaobligation USD/SEK

Valutaobligation USD/SEK www.handelsbanken.se/mega Valutaobligation USD/SEK Avkastningen är kopplad till en förstärkning av amerikanska dollar mot svenska kronor Dollarn är på den lägsta nivån mot kronan på 15 år Kapitalskyddad

Läs mer

TENTAMEN I SF1906 (f d 5B1506) MATEMATISK STATISTIK GRUNDKURS,

TENTAMEN I SF1906 (f d 5B1506) MATEMATISK STATISTIK GRUNDKURS, Avd. Matematisk statistik TENTAMEN I SF1906 (f d 5B1506) MATEMATISK STATISTIK GRUNDKURS, TORSDAGEN DEN 7 JUNI 2012 KL 14.00 19.00 Examinator:Gunnar Englund, 073 3213745 Tillåtna hjälpmedel: Formel- och

Läs mer

Portföljsammanställning för Landstinget Västerbotten. avseende perioden

Portföljsammanställning för Landstinget Västerbotten. avseende perioden Portföljsammanställning för avseende perioden Informationen i denna rapport innehåller kurser och värden. Värderingar av instrument är förvaltares rapporterade värden och Investment Consulting Group AB

Läs mer

5B1574 - Portföljteori och riskvärdering

5B1574 - Portföljteori och riskvärdering 5B1574 - Portföljteori och riskvärdering Laboration 1 Farid Bonawiede - 831219-0195 Alexandre Messo - 831119-7472 1 - Spotränteberäkningar I denna uppgift ska vi beräkna spoträntan för olika löptider.

Läs mer

Tentamen Finansiering (2FE253) Lördagen den 2 april 2016

Tentamen Finansiering (2FE253) Lördagen den 2 april 2016 Tentamen Finansiering (2FE253) Lördagen den 2 april 2016 Skrivtid: 4 timmar (kl. 09:00 13:00) Hjälpmedel: Kalkylator och kursens formelblad. OBS! Endast formler som står med på formelbladet får programmeras

Läs mer

(b) Bestäm sannolikheten att minst tre tåg är försenade under högst tre dagar en given vecka.

(b) Bestäm sannolikheten att minst tre tåg är försenade under högst tre dagar en given vecka. Avd. Matematisk statistik TENTAMEN I SF1901, SF1905 SANNOLIKHETSTEORI OCH STATISTIK, MÅNDAGEN DEN 11 JANUARI 2016 KL 14.00 19.00. Kursledare för CINEK2: Thomas Önskog, tel: 08 790 84 55 Kursledare för

Läs mer

Tenta 20110506 Lösningsförslag fråga 1-8

Tenta 20110506 Lösningsförslag fråga 1-8 Udaterad 05047 Tenta 00506 Lösningsförslag fråga -8 Notera att det är lösningsförslag. Inga lösningar till triviala definitioner och inga utvecklade svar å essä-ty frågor. Och, att kursen undervisas lite

Läs mer

4.3 Stokastiska variabler (slumpmässiga variabler) 4.4 Väntevärde och varians till stokastiska variabler

4.3 Stokastiska variabler (slumpmässiga variabler) 4.4 Väntevärde och varians till stokastiska variabler Föreläsning 2 4.3 Stokastiska variabler (slumpmässiga variabler) 4.4 Väntevärde och varians till stokastiska variabler Stokastiskavariabler Stokastisk variabel (eng: random variable) En variabel vars värde

Läs mer

P (t) = V 1 (t) V m (t) P (t + t) P (t) P (t) = v j (t)r j (t, t + t), v(t) Q t v(t),

P (t) = V 1 (t) V m (t) P (t + t) P (t) P (t) = v j (t)r j (t, t + t), v(t) Q t v(t), STOCKHOLMS UNIVERSITET MATEMATISKA INSTITUTIONEN Avd. för Matematisk statistik Thomas Höglund Version 02 22 RISK OCH DIVERSIFIERING Betrakta en portfölj bestående av m tillgångar som vi här ska kalla aktier.

Läs mer

σ 1 = (531)(64782), τ 1 = (18)(27)(36)(45), τ 1 σ 1 = (423871)(56).

σ 1 = (531)(64782), τ 1 = (18)(27)(36)(45), τ 1 σ 1 = (423871)(56). MATEMATISKA INSTITUTIONEN STOCKHOLMS UNIVERSITET Avd. Matematik Examinator: Övningstenta i Algebra och Kombinatorik 7,5 hp 2015-11-24 Exempel på hur tentan skulle kunna se ut om alla uppgifter var från

Läs mer

k x om 0 x 1, f X (x) = 0 annars. Om Du inte klarar (i)-delen, så får konstanten k ingå i svaret. (5 p)

k x om 0 x 1, f X (x) = 0 annars. Om Du inte klarar (i)-delen, så får konstanten k ingå i svaret. (5 p) Avd. Matematisk statistik TENTAMEN I SF1901 SANNOLIKHETSLÄRA OCH STATISTIK MÅNDAGEN DEN 17 AUGUSTI 2009 KL 08.00 13.00. Examinator: Gunnar Englund, tel. 790 74 16. Tillåtna hjälpmedel: Formel- och tabellsamling

Läs mer

Finansiell Statistik (GN, 7,5 hp,, HT 2008) Föreläsning 3

Finansiell Statistik (GN, 7,5 hp,, HT 2008) Föreläsning 3 Finansiell Statistik (GN, 7,5 hp,, HT 2008) Föreläsning 3 Kontinuerliga sannolikhetsfördelningar (LLL Kap 7 & 9) Department of Statistics (Gebrenegus Ghilagaber, PhD, Associate Professor) Financial Statistics

Läs mer

b) Teknologen Osquarulda känner inte till ML-metoden, men kom på intuitiva grunder fram till att p borde skattas med p = x 1 + 2x 2

b) Teknologen Osquarulda känner inte till ML-metoden, men kom på intuitiva grunder fram till att p borde skattas med p = x 1 + 2x 2 Avd. Matematisk statistik TENTAMEN I B14 MATEMATISK STATISTIK GRUNDKURS FÖR E gamlingar TISDAGEN DEN 14 DECEMBER 4 KL 8. 13. Examinator: Gunnar Englund, 79 7416 Tillåtna hjälpmedel: Formel- och tabellsamling

Läs mer

Portföljanalys Demo. Strategic Investment Advice

Portföljanalys Demo. Strategic Investment Advice Portföljanalys Demo Strategic Investment Advice Varför portföljanalys? Få en detaljerad överblick av portföljen Beräkna portföljens förväntade avkastning och risk Få en värdering av portföljsammansättningen

Läs mer

Föreläsning 11. Slumpvandring och Brownsk Rörelse. Patrik Zetterberg. 11 januari 2013

Föreläsning 11. Slumpvandring och Brownsk Rörelse. Patrik Zetterberg. 11 januari 2013 Föreläsning 11 Slumpvandring och Brownsk Rörelse Patrik Zetterberg 11 januari 2013 1 / 1 Stokastiska Processer Vi har tidigare sett exempel på olika stokastiska processer: ARIMA - Kontinuerlig process

Läs mer

I n f o r m a t i o n o m a k t i e o p t i o n e r

I n f o r m a t i o n o m a k t i e o p t i o n e r I n f o r m a t i o n o m a k t i e o p t i o n e r Här kan du läsa om aktieoptioner, och hur de kan användas. Du hittar också exempel på investeringsstrategier. Aktieoptioner kan vara upptagna till handel

Läs mer

Föreläsning 6 (kap 6.1, 6.3, ): Punktskattningar

Föreläsning 6 (kap 6.1, 6.3, ): Punktskattningar Föreläsning 6 (kap 6.1, 6.3, 7.1-7.3): Punktskattningar Marina Axelson-Fisk 4 maj, 2016 Stickprov (sample) Idag: Stickprovsmedelvärde och varians Statistika (statistic) Punktskattning (point estimation)

Läs mer

OPTIONSSTRATEGIER SNABBGUIDE AKTIEOPTIONER

OPTIONSSTRATEGIER SNABBGUIDE AKTIEOPTIONER OPTIONSSTRATEGIER SNABBGUIDE AKTIEOPTIONER Optioner ger investerare många möjligheter eftersom det finns strategier för alla olika marknadslägen. De är också effektiva verktyg för att försäkra innehav

Läs mer

TENTAMEN. Finansiell Planering 7,5 poäng

TENTAMEN. Finansiell Planering 7,5 poäng HÖGSKOLAN I BORÅS Institutionen Handelsoch IT-högskolan (HIT) TENTAMEN Finansiell Planering 7,5 poäng 2014-10-29 kl 09.00-14.00 Hjälpmedel: Miniräknare Max poäng: 40 Väl godkänt: 30 Godkänt: 20 OBS! För

Läs mer

Några vanliga fördelningar från ett GUM-perspektiv

Några vanliga fördelningar från ett GUM-perspektiv Några vanliga fördelningar från ett GUM-perspektiv I denna PM redovisas några av de vanligaste statistiska fördelningarna och deras hantering inom ramen för GUM: Guide to the Expression of Uncertainty

Läs mer

PExA AB. Värderingsutlåtande avseende teckningsoptioner gällande nya aktier i maj 2016

PExA AB. Värderingsutlåtande avseende teckningsoptioner gällande nya aktier i maj 2016 Värderingsutlåtande avseende teckningsoptioner gällande nya aktier i PExA AB 556956-9246 12 maj 2016 Sida 2 av 6 Värderingsutlåtande teckningsoptioner PExA AB Bakgrund Optionspartner har blivit ombedd

Läs mer

under en options löptid. Strukturakademin Strukturinvest Fondkommission

under en options löptid. Strukturakademin Strukturinvest Fondkommission Del 1 Volatilitet Innehåll Implicita tillgångar... 3 Vad är volatilitet?... 3 Volatility trading... 3 Historisk volatilitet... 3 Hur beräknas volatiliteten?... 4 Implicit volatilitet... 4 Smile... 4 Vega...

Läs mer

Valuation of biotechnology firms with real options

Valuation of biotechnology firms with real options Magisteruppsats i Internationella Ekonomprogrammet LIU-EKI/IEP-D--06/012 SE Värdering av bioteknikföretag med reala optioner Valuation of biotechnology firms with real options Författare: David Andersson

Läs mer

Matematisk statistik i praktiken: asset-liability management i ett försäkringsbolag

Matematisk statistik i praktiken: asset-liability management i ett försäkringsbolag Matematisk statistik i praktiken: asset-liability management i ett försäkringsbolag Andreas N. Lagerås AFA Försäkring Kapitalförvaltning Investeringsanalys Docentföreläsning SU 2010-11-10 1(21) Asset liability

Läs mer

Ekonomisk styrning Delkurs Finansiering

Ekonomisk styrning Delkurs Finansiering Ekonomisk styrning Delkurs Finansiering Föreläsning 10 Optioner BMA: Kap. 20 Jonas Råsbrant jonas.rasbrant@indek.kth.se Föreläsningens innehåll Vad är en option? Köp- och säljoptioner Olika typer av optioner

Läs mer

Ekonomisk styrning Delkurs Finansiering

Ekonomisk styrning Delkurs Finansiering konomisk styrning elkurs Finansiering Föreläsning 8-9 Kapitalstruktur BMA: Kap. 17-19 Jonas Råsbrant jonas.rasbrant@indek.kth.se Föreläsningarnas innehåll Företags finansieringskällor Mätning av företagets

Läs mer

Övningsuppgifter på derivator för sf1627, matematik för ekonomer (rev. 1) Produktregeln: derivera 1. 2. 3. 4.

Övningsuppgifter på derivator för sf1627, matematik för ekonomer (rev. 1) Produktregeln: derivera 1. 2. 3. 4. Övningsuppgifter på derivator för sf627, matematik för ekonomer (rev. ) Produktregeln: derivera. 2. 3. 4. 5. 6. Kvotregeln: derivera. 2. 3. 4. 5. Kedjeregeln: derivera. 2. 3. 4. 5. 6. Logaritmisk derivering

Läs mer

Tentamen Finansiering (2FE253) Torsdagen den 16 februari 2017

Tentamen Finansiering (2FE253) Torsdagen den 16 februari 2017 Tentamen Finansiering (FE3) Torsdagen den 16 februari 017 Skrivtid: 4 timmar (kl. 08:00 1:00) Hjälpmedel: Kalkylator och kursens formelblad. OBS! Endast formler som står med på formelbladet får programmeras

Läs mer

Hedging och Försäkring (prisskydd/prisförsäkring)

Hedging och Försäkring (prisskydd/prisförsäkring) Hedging och Försäkring (prisskydd/prisförsäkring) Hedging En hedge kan översättas med ett skydd eller en säkring ; till exempel ett valutaskydd eller en valutasäkring i en transaktion som ska ske i framtiden.

Läs mer

Fastighetsmarknaden VFT 015 Höstterminen 2014

Fastighetsmarknaden VFT 015 Höstterminen 2014 Fastighetsmarknaden VFT 015 Höstterminen 2014 Ordinarie tentamen - SVAR Examinator: Ingemar Bengtsson Skriftlig tentamen Datum 2014-10-28 Tid 08:00-13:00 Plats Vic 1B Anvisningar Besvara frågorna på lösa

Läs mer

(a) sannolikheten för att läkaren ställer rätt diagnos. (b) sannolikheten för att en person med diagnosen ej sjukdom S ändå har sjukdomen, dvs.

(a) sannolikheten för att läkaren ställer rätt diagnos. (b) sannolikheten för att en person med diagnosen ej sjukdom S ändå har sjukdomen, dvs. Avd. Matematisk statistik TENTAMEN I SF1901 SANNOLIKHETSTEORI OCH STATISTIK, TORSDAGEN DEN 31:E MAJ 2012 KL 08.00 13.00. Examinator: Tobias Rydén, tel 790 8469. Kursledare: Tatjana Pavlenko, tel 790 8466.

Läs mer

Påbyggnad/utveckling av lagen om ett pris Effektiv marknad: Priserna på en finansiell marknad avspeglar all relevant information

Påbyggnad/utveckling av lagen om ett pris Effektiv marknad: Priserna på en finansiell marknad avspeglar all relevant information Föreläsning 4 ffektiva marknader Påbyggnad/utveckling av lagen om ett pris ffektiv marknad: Priserna på en finansiell marknad avspeglar all relevant information Konsekvens: ndast ny information påverkar

Läs mer

Tentamen i matematisk statistik för BI2 den 16 januari 2009

Tentamen i matematisk statistik för BI2 den 16 januari 2009 Tentamen i matematisk statistik för BI den 6 januari 9 Uppgift : Ett graviditetstest att använda i hemmet är inte helt tillförlitligt. Ett speciellt test visar positivt resultat för kvinnor, som inte är

Läs mer

Statistisk analys av komplexa data

Statistisk analys av komplexa data Statistisk analys av komplexa data Trunkerade data och Tobitregression Bertil Wegmann Avdelning statistik, IDA, Linköpings universitet November 10, 2015 Bertil Wegmann (statistik, LiU) Trunkerade data

Läs mer

SF1901: Övningshäfte

SF1901: Övningshäfte SF1901: Övningshäfte 24 september 2013 Uppgifterna under rubriken Övning kommer att gås igenom under övningstillfällena. Uppgifterna under rubriken Hemtal är starkt rekommenderade och motsvarar nivån på

Läs mer

Del 11 Indexbevis. Strukturakademin. Strukturakademin. Strukturinvest Fondkommission

Del 11 Indexbevis. Strukturakademin. Strukturakademin. Strukturinvest Fondkommission Del 11 Indexbevis 1 Innehåll 1. Grundpositionerna 1.1 Köpt köpoption 1.2 Såld köpoption 1.3 Köpt säljoption 1.4 Såld säljoption 2. Konstruktion av indexbevis 3. Avkastningsanalys 4. Knock-in optioner 5.

Läs mer

TT091A, TVJ22A, NVJA02 Pu, Ti. 50 poäng

TT091A, TVJ22A, NVJA02 Pu, Ti. 50 poäng Matematisk statistik Provmoment: Ladokkod: Tentamen ges för: TT091A, TVJ22A, NVJA02 Pu, Ti 7,5 högskolepoäng Namn: (Ifylles av student) Personnummer: (Ifylles av student) Tentamensdatum: 2012-05-29 Tid:

Läs mer

Sannolikheten för att barnet skall få blodgrupp A0 A0 1/2 AA 1 AB 1/2 Övriga 0

Sannolikheten för att barnet skall få blodgrupp A0 A0 1/2 AA 1 AB 1/2 Övriga 0 Avd. Matematisk statistik TENTAMEN I SF191, SANNOLIKHETSTEORI OCH STATISTIK, ONSDAGEN DEN 1:A JUNI 216 KL 8. 13.. Kursledare: Thomas Önskog, 8-79 84 55 Tillåtna hjälpmedel: Formel- och tabellsamling i

Läs mer

OMTENTAMEN. Finansiell Planering 7,5 poäng Lönsamhetsanalys & Finansiering för fatighetsmäklare7,5 poäng

OMTENTAMEN. Finansiell Planering 7,5 poäng Lönsamhetsanalys & Finansiering för fatighetsmäklare7,5 poäng HÖGSKOLAN I BORÅS Institutionen Handelsoch IT-högskolan (HIT) OMTENTAMEN Finansiell Planering 7,5 poäng Lönsamhetsanalys & Finansiering för fatighetsmäklare7,5 poäng 2014-03-29 kl 09.30-14.30 Hjälpmedel:

Läs mer

b) antalet timmar Lukas måste arbeta för att sannolikheten att han ska hinna med alla 112 datorerna ska bli minst (3 p)

b) antalet timmar Lukas måste arbeta för att sannolikheten att han ska hinna med alla 112 datorerna ska bli minst (3 p) Avd. Matematisk statistik TENTAMEN I SF1901, SANNOLIKHETSTEORI OCH STATISTIK, MÅNDAGEN DEN 27:E OKTOBER 2014 KL 08.00 13.00. Kursledare: Tatjana Pavlenko, 08-790 84 66, Björn-Olof Skytt, 08-790 86 49.

Läs mer

Placeringspolicy, etiska riktlinjer

Placeringspolicy, etiska riktlinjer Placeringspolicy, etiska riktlinjer Hjärt-Lungfonden Beslutad av styrelsen 2012-06-15 Dokumentägare: Lars Lundquist Dokumentansvarig: Katarina Gunsell Innehåll Allmänt... 1 Förvaltningsorganisation...

Läs mer