Formelsamling för kursen Grundläggande finansmatematik

Save this PDF as:
 WORD  PNG  TXT  JPG

Storlek: px
Starta visningen från sidan:

Download "Formelsamling för kursen Grundläggande finansmatematik"

Transkript

1 STOCKHOLMS UNIVERSITET 13 december 006 Matematiska institutionen Avd. för matematisk statistik Mikael Andersson Formelsamling för kursen Grundläggande finansmatematik 1 Fundamental Theorem of Asset Pricing På en arbitragefri marknad existerar en sannolikhet P på mängden av alla scenarier Ω så att P (ω) > 0 för varje scenario ω Ω och att diskonterade priser för primära tillgångar S j (n) = S j (n)/a(n) och derivat D i (n) = D i (n)/a(n), där A(n) betecknar priset för en riskfri tillgång, bildar martingaler med avseende på P, det vill säga att E [ S j (n + 1) S(n)] = S j (n) E [ D i (n + 1) S(n)] = D i (n) Portföljoptimering.1 Minimal variansportfölj Den portfölj som har minimal varians av alla portföljer av formen V (t) = w 1 S 1 (t) + w S (t) w n S n (t) där w 1 + w w n = 1, har vikterna uc 1 w = uc 1 u T där w betecknar radvektorn bestående av vikterna w 1, w,..., w n, u är en radvektor av längd n innehållande ettor och C är kovariansmatrisen för avkastningarna.. Minimal varianslinje Den portfölj som har minimal varians av alla portföljer av formen V (t) = w 1 S 1 (t) + w S (t) w n S n (t) där w 1 + w w n = 1, och förväntad avkastning µ V har vikterna 1 uc 1 m T µ V mc 1 m T uc 1 + uc 1 u T 1 mc 1 u T µ V mc 1 w = uc 1 u T uc 1 m T mc 1 u T mc 1 m T där m betecknar radvektorn bestående av de förväntade avkastningarna. 1

2 .3 Effektiva fronten Vikterna w för varje portfölj på den effektiva fronten (utom minimala variansportföljen) uppfyller villkoret γwc = m µu för några reella tal γ > 0 och µ..4 Betafaktor Betafaktorn β V β V = Cov(K V, K M ) σ M för en portfölj definieras som där K M och σm betecknar avkastningen och risken för marknadsportföljen. Risken σ V delas upp enligt kan σ V = Var(ε V ) + β V σ M där Var(ε V ) är den diversifierbara risken och βv σ M förväntade avkastningen kan skrivas är den odiversifierbara risken. Den µ V = r F + (µ M r F )β V där r F är den riskfria räntan och µ M är förväntad avkastning för marknadsportföljen. 3 Optioner 3.1 Köp-säljparitet (Put-Call Parity) Priserna för en europeisk köption C E och en europeisk säljoption P E med löptid (exercise time) T och slutpris (exercise price) X på en aktie med nuvärde S(0) uppfyller villkoret C E P E = S(0) Xe rt där r är riskfri ränta under kontinuerlig avsättning. Priserna för en amerikansk köption C A och en amerikansk säljoption P A uppfyller villkoret S(0) X C A P A S(0) Xe rt 3. Intervall för optionspriser Priserna för europeiska optioner ligger alltid i intervallen (S(0) Xe rt ) + C E < S(0) ( S(0) + Xe rt ) + P E < Xe rt och priserna för amerikanska optioner ligger alltid i intervallen (S(0) Xe rt ) + C A < S(0) ( S(0) + X) + P A < X

3 3.3 Cox-Ross-Rubinsteins formel Priserna för en europeisk köption C E (0) och en europeisk säljoption P E (0) med löptid T = Nτ och slutpris X på en aktie vars värde kan beskrivas enligt en binomialträdsmodell med nuvärde S(0) ges av där C E (0) = S(0)[1 Φ(m 1, N, q)] (1 + r) N X[1 Φ(m 1, N, p )] P E (0) = S(0)Φ(m 1, N, q) + (1 + r) N XΦ(m 1, N, p ) Φ(m, N, p) = m k=0 ( ) N p k (1 p) N k k är fördelningsfunktionen för binomialfördelningen, m är det minsta heltal där S(0)(1 + u) m (1 + d) N m > X r är riskfri ränta under periodisk avsättning, p = r d u d är riskneutral sannolikhet och q = p 1 + u 1 + r 3.4 Black-Scholes formel Priserna för en europeisk köption C E (t) och en europeisk säljoption P E (t) med löptid T och slutpris X på en aktie vars värde kan beskrivas enligt modellen S(t) = S(0) exp(mt + σw (t)) med nuvärde S(0), där m och σ är driften och volatiliteten och W (t) är en Brownsk rörelse, ges av C E (t) = S(t)N(d 1 ) Xe r(t t) N(d ) P E (t) = S(t)N( d 1 ) + Xe r(t t) N( d ) där N(x) är fördelningsfunktionen för standard normalfördelning och d 1 = d = ln S(t) X ln S(t) X σ + (r + )(T t) σ T t σ + (r )(T t) σ T t 3

4 3.5 Hedging För en europeisk köpoption gäller delta C E = CE S = N(d 1) gamma C E = C E S = theta C E = CE t vega C E = CE σ 1 Sσ πt e d 1 / rho C E = CE r = T Xe rt N(d ) 4 Obligationer (Bonds) 4.1 Terminer = Sσ / πt e d 1 rxe rt N(d ) = S T e d 1 / π Priset B(n, N) för en enhetsobligation (F = 1) vid tiden t = nτ med löptid T = Nτ bestäms av B(n, N) = e (N n)τy(n,n) 4. Forwardränta Forwardräntan f(n, M, N) på en framtida investering (eller lån) bestäms av B(n, N) = B(n, M)e (N M)τf(n,M,N) 4.3 Duration Durationen D(y) för en kupongobligation med löptid T = n N τ, slutpris (face value) F och kuponger C 1, C,..., C N som utbetalas vid tidpunkterna t 1 = n 1 τ, t = n τ,..., t N = n N τ definieras som D(y) = t 1C 1 e t 1y(0,n 1 ) + t C e t y(0,n ) t N (C N + F )e t N y(0,n N ) C 1 e t 1y(0,n 1 ) + C e t y(0,n ) (C N + F )e t N y(0,n N ) 4.4 Prissättning av obligationer Priset för en obligation B(n, N; s n ) i en binomialträdsmodell uppfyller villkoret B(n, N; s n ) = [p B(n + 1, N; s n u) + (1 p )B(n + 1, N; s n d)] exp{ τr(n; s n )} där r(n; s n ) är korta räntan i tillstånd s n, p = exp{τr(n; s n )} exp{k(n + 1, N; s n d)} exp{k(n + 1, N; s n u)} exp{k(n + 1, N; s n d)} 4

5 är riskneutral sannolikhet och k(n, N; s n ) = ln är logaritmisk avkastning. B(n, N; s n ) B(n 1, N; s n ) 5

Lösningar till tentamen i Grundläggande nansmatematik. 21 december 2006 kl. 914

Lösningar till tentamen i Grundläggande nansmatematik. 21 december 2006 kl. 914 STOCKHOLMS UNIVERSITET MS 3290 MATEMATISKA INSTITUTIONEN TENTAMEN Avd. Matematisk statistik 21 december 2006 Lösningar till tentamen i Grundläggande nansmatematik 21 december 2006 kl. 914 Uppgift 1 Priset

Läs mer

Ytterligare övningsfrågor finansiell ekonomi NEKA53

Ytterligare övningsfrågor finansiell ekonomi NEKA53 Ytterligare övningsfrågor finansiell ekonomi NEKA53 Modul 2: Pengars tidsvärde, icke arbitrage, och vad vi menar med finansiell risk. Fråga 1: Enkel och effektiv ränta a) Antag att den enkla årsräntan

Läs mer

STOCKHOLMS UNIVERSITET MATEMATISKA INSTITUTIONEN Avd. för Matematisk statistik Thomas Höglund FINANSMATEMATIK I. ÖVNINGAR TILL DAG 3.

STOCKHOLMS UNIVERSITET MATEMATISKA INSTITUTIONEN Avd. för Matematisk statistik Thomas Höglund FINANSMATEMATIK I. ÖVNINGAR TILL DAG 3. STOCKHOLMS UNIVERSITET MATEMATISKA INSTITUTIONEN Avd. för Matematisk statistik Thomas Höglund FINANSMATEMATIK I. ÖVNINGAR TILL DAG 2. Luenberger: 2:1-5, 9, 11, 12. Övning 1. Du lånar 200000 kr i en bank

Läs mer

1. FLACK RÄNTA Med flack ränta ska vi här mena att räntan är densamma oavsett bindningstid

1. FLACK RÄNTA Med flack ränta ska vi här mena att räntan är densamma oavsett bindningstid STOCKHOLMS UNIVERSITET MATEMATISKA INSTITUTIONEN Avd. för Matematisk statistik Thomas Höglund Version 02 10 25. RÄNTA 1. FLACK RÄNTA Med flack ränta ska vi här mena att räntan är densamma oavsett bindningstid

Läs mer

Del 3 Utdelningar. Strukturakademin

Del 3 Utdelningar. Strukturakademin Del 3 Utdelningar Strukturakademin Innehåll 1. Implicita tillgångar 2. Vad är utdelningar? 3. Hur påverkar utdelningar optioner? 4. Utdelningar och Forwards 5. Prognostisera utdelningar 6. Implicita utdelningar

Läs mer

Strukturakademin Strukturinvest Fondkommission FIGUR 1. Utdelning. Återinvesterade utdelningar Ej återinvesterade utdelningar

Strukturakademin Strukturinvest Fondkommission FIGUR 1. Utdelning. Återinvesterade utdelningar Ej återinvesterade utdelningar Del 3 Utdelningar Innehåll Implicita tillgångar... 3 Vad är utdelningar?... 3 Hur påverkar utdelningar optioner?... 3 Utdelningar och forwards... 3 Prognostisera utdelningar... 4 Implicita utdelningar...

Läs mer

Vi ska här utgå ifrån att vi har en aktie och ska med denna som grund konstruera tre olika optionsportföljer.

Vi ska här utgå ifrån att vi har en aktie och ska med denna som grund konstruera tre olika optionsportföljer. STOCKHOLMS UNIVERSITET MATEMATISKA INSTITUTIONEN Avd för Matematisk statistik TH FINANSMATEMATIK I, HT 01 KOMPLEMENT DAG 12 Version 01 12 10 TRE OPTIONSSTRATEGIER Vi ska här utgå ifrån att vi har en aktie

Läs mer

Övningsexempel i Finansiell Matematik

Övningsexempel i Finansiell Matematik KTH Matematik Harald Lang 27/3-04 Övningsexempel i Finansiell Matematik 1. Riskjusterade sannolikhetsmått 1. Vi betraktar en stokastisk utbetalning X(ω) som ger utdelning enligt tabellen ω 1 ω 2 ω 2 pris

Läs mer

120 110 S t : 100 100 90 80 Vi ska här betrakta ett antal portföljer som vid t = 0 är värda 100 SEK.

120 110 S t : 100 100 90 80 Vi ska här betrakta ett antal portföljer som vid t = 0 är värda 100 SEK. STOCKHOLMS UNIVERSITET MATEMATISKA INSTITUTIONEN Avd. för Matematisk statistik Thomas Höglund FINANSMATEMATIK I. KOMPLEMENT DAG 5. HANDELSSTRATEGIER Låt S t beteckna priset på en aktie vid tiden t. Vi

Läs mer

Räntemodeller och marknadsvärdering av skulder

Räntemodeller och marknadsvärdering av skulder Räntemodeller och marknadsvärdering av skulder Fredrik Armerin Matematisk statistik, KTH Aktuarieföreningen 17-18 november 2004 Dag 2 NOLLKUPONGSKURVOR 1 Nollkupongsobligationer En nollkupongsobligation

Läs mer

Del 16 Kapitalskyddade. placeringar

Del 16 Kapitalskyddade. placeringar Del 16 Kapitalskyddade placeringar Innehåll Kapitalskyddade placeringar... 3 Obligationer... 3 Prissättning av obligationer... 3 Optioner... 4 De fyra positionerna... 4 Konstruktion av en kapitalskyddad

Läs mer

Strukturakademin Strukturinvest Fondkommission LÅNG KÖPOPTION. Värde option. Köpt köpoption. Utveckling marknad. Rättighet

Strukturakademin Strukturinvest Fondkommission LÅNG KÖPOPTION. Värde option. Köpt köpoption. Utveckling marknad. Rättighet Del 11 Indexbevis Innehåll Grundpositionerna... 3 Köpt köpoption... 3 Såld köpoption... 3 Köpt säljoption... 4 Såld säljoption... 4 Konstruktion av Indexbevis... 4 Avkastningsanalys... 5 knock-in optioner...

Läs mer

STOCKHOLMS UNIVERSITET MATEMATISKA INSTITUTIONEN Avd. för Matematisk statistik Thomas Höglund Version 06 04 04. Finansmatematik II Kapitel 1

STOCKHOLMS UNIVERSITET MATEMATISKA INSTITUTIONEN Avd. för Matematisk statistik Thomas Höglund Version 06 04 04. Finansmatematik II Kapitel 1 1 STOCKHOLMS UNIVERSITET MATEMATISKA INSTITUTIONEN Avd. för Matematisk statistik Thomas Höglund Version 06 04 04 Finansmatematik II Kapitel 1 Ränta 2 Finansmatematik II 1 Rak ränta Med rak ränta ska vi

Läs mer

Del 1 Volatilitet. Strukturakademin

Del 1 Volatilitet. Strukturakademin Del 1 Volatilitet Strukturakademin Innehåll 1. Implicita tillgångar 2. Vad är volatilitet? 3. Volatility trading 4. Historisk volatilitet 5. Hur beräknas volatiliteten? 6. Implicit volatilitet 7. Smile

Läs mer

Del 2 Korrelation. Strukturakademin

Del 2 Korrelation. Strukturakademin Del 2 Korrelation Strukturakademin Innehåll 1. Implicita tillgångar 2. Vad är korrelation? 3. Hur fungerar sambanden? 4. Hur beräknas korrelation? 5. Diversifiering 6. Korrelation och Strukturerade Produkter

Läs mer

Del 20 Optimalfunktionen

Del 20 Optimalfunktionen Del 20 Optimalfunktionen Innehåll Optionens start- och slutkurs... 3 Skillnaden mellan genomsnittsberäkning och optimalstart/slut... 3 Fastställande av startkurs... 4 Användningsområden... 4 Prissättning

Läs mer

Asa Hansson. Sign: ECTS: D Civilekonom D Ekon.kand. D Pol.kand. D Fristående D LTH D Utbytesstudent D Annat. Betyg: Nationalekonomiska institutionen

Asa Hansson. Sign: ECTS: D Civilekonom D Ekon.kand. D Pol.kand. D Fristående D LTH D Utbytesstudent D Annat. Betyg: Nationalekonomiska institutionen Nationalekonomiska institutionen Sign: Lunds universitet TENTAMEN Leg OK: D Kurs: NEKA12 Finansiell ekonomi Lokal & tid: _E_ft_e_r_n_a_m_n_=------------------------------~P_e_~_o_n_n_r_: ~VIC 1 +2 08-13

Läs mer

Tentamen Finansiering (2FE253) Lördagen den 21 mars 2015, kl. 09:00-13:00

Tentamen Finansiering (2FE253) Lördagen den 21 mars 2015, kl. 09:00-13:00 Tentamen Finansiering (2FE253) Lördagen den 21 mars 2015, kl. 09:00-13:00 Skrivtid: 4 timmar (kl. 09:00 13:00) Hjälpmedel: Kalkylator och kursens formelblad. OBS! Endast formler som står med på formelbladet

Läs mer

Black-Scholes. En prissättningsmodell för optioner. Linnea Lindström

Black-Scholes. En prissättningsmodell för optioner. Linnea Lindström Black-Scholes En prissättningsmodell för optioner Linnea Lindström Vt 2010 Examensarbete 1, 15 hp Kandidatexamen i matematik, 180 hp Institutionen för matematik och matematisk statistik Sammanfattning

Läs mer

Apoteket AB:s Pensionsstiftelse. Absolutavkastning 2014-04-09

Apoteket AB:s Pensionsstiftelse. Absolutavkastning 2014-04-09 Absolutavkastning 2014-04-09 Innehåll Affärside och mål Portföljstruktur Risker och riskkontroll Nyckeltal Affärside och mål Skapa en jämn genomsnittlig årsavkastning på 7 % inom intervallet 0-15 %. Låg

Läs mer

(A -A)(B -B) σ A σ B. på att tillgångarna ej uppvisar något samband i hur de varierar.

(A -A)(B -B) σ A σ B. på att tillgångarna ej uppvisar något samband i hur de varierar. Del 2 Korrelation Innehåll Implicita tillgångar... 3 Vad är korrelation?... 3 Hur fungerar sambanden?... 3 Hur beräknas korrelation?... 3 Diversifiering... 4 Korrelation och strukturerade produkter...

Läs mer

Del 15 Avkastningsberäkning

Del 15 Avkastningsberäkning Del 15 Avkastningsberäkning Innehåll Framtida förväntat pris... 3 Price return... 3 Total Return... 4 Excess Return... 5 Övriga alternativ... 6 Avslutande ord... 6 I del 15 går vi igenom olika möjliga

Läs mer

Kurs 311. Finansiell ekonomi

Kurs 311. Finansiell ekonomi Handelshögskolan i Stockholm Finansiell ekonomi, kurs 311 Per Hiller 2003-09-01 Kurs 311 Finansiell ekonomi Tentamensfrågor med lösningsförslag från läsåret 2002/2003 Tentamenstiden är 4 timmar och tentamen

Läs mer

Warranter En investering med hävstångseffekt

Warranter En investering med hävstångseffekt Warranter En investering med hävstångseffekt Investerarprofil ÄR WARRANTER RÄTT TYP AV INVESTERING FÖR DIG? Innan du bestämmer dig för att investera i warranter bör du fundera över vilken risk du är beredd

Läs mer

Del 15 Avkastningsberäkning

Del 15 Avkastningsberäkning Del 15 Avkastningsberäkning 1 Innehåll 1. Framtida förväntat pris 2. Price return 3. Total Return 5. Excess Return 6. Övriga alternativ 7. Avslutande ord 2 I del 15 går vi igenom olika möjliga alternativ

Läs mer

Ekonomisk styrning Delkurs Finansiering

Ekonomisk styrning Delkurs Finansiering Ekonomisk styrning Delkurs Finansiering Föreläsning 10 Optioner BMA: Kap. 20 Jonas Råsbrant jonas.rasbrant@indek.kth.se Föreläsningens innehåll Vad är en option? Köp- och säljoptioner Olika typer av optioner

Läs mer

Prissättning av optioner

Prissättning av optioner TDB,projektpresentation Niklas Burvall Hua Dong Mikael Laaksonen Peter Malmqvist Daniel Nibon Sammanfattning Optioner är en typ av finansiella derivat. Detta dokument behandlar prissättningen av dessa

Läs mer

under en options löptid. Strukturakademin Strukturinvest Fondkommission

under en options löptid. Strukturakademin Strukturinvest Fondkommission Del 1 Volatilitet Innehåll Implicita tillgångar... 3 Vad är volatilitet?... 3 Volatility trading... 3 Historisk volatilitet... 3 Hur beräknas volatiliteten?... 4 Implicit volatilitet... 4 Smile... 4 Vega...

Läs mer

Del 17 Optionens lösenpris

Del 17 Optionens lösenpris Del 17 Optionens lösenpris Innehåll Optioner... 3 Optionens lösenkurs... 3 At the money... 3 In the money... 3 Out of the money... 4 Priset... 4 Kapitalskyddet... 5 Sammanfattning... 6 Strukturerade placeringar

Läs mer

Hedging och Försäkring (prisskydd/prisförsäkring)

Hedging och Försäkring (prisskydd/prisförsäkring) Hedging och Försäkring (prisskydd/prisförsäkring) Hedging En hedge kan översättas med ett skydd eller en säkring ; till exempel ett valutaskydd eller en valutasäkring i en transaktion som ska ske i framtiden.

Läs mer

Provmoment: Ladokkod: Tentamen ges för:

Provmoment: Ladokkod: Tentamen ges för: Finansiell ekonomi Provmoment: Ladokkod: Tentamen ges för: Skriftlig tentamen 21FE1B Nationalekonomi 1-30 hp 7,5 högskolepoäng Namn: (Ifylles av student) Personnummer: (Ifylles av student) Tentamensdatum:

Läs mer

Del 18 Autocalls fördjupning

Del 18 Autocalls fördjupning Del 18 Autocalls fördjupning Innehåll Autocalls... 3 Autocallens beståndsdelar... 3 Priset på en autocall... 4 Känslighet för olika parameterar... 5 Avkastning och risk... 5 del 8 handlade om autocalls.

Läs mer

STYRNING AV PORTFÖLJER MED FLERA TILLGÅNGAR

STYRNING AV PORTFÖLJER MED FLERA TILLGÅNGAR 1 STOCKHOLMS UNIVERSITET MATEMATISKA INSTITUTIONEN Avd. för Matematisk statistik Thomas Höglund FINANSMATEMATIK I. KOMPLEMENT DAG 13. STYRNING AV PORTFÖLJER MED FLERA TILLGÅNGAR Hittills har vi betraktat

Läs mer

AID:... Uppgift 1 (2 poäng) Definiera kortfattat följande begrepp. a) IRR b) APR c) Going concern d) APV. Lösningsförslag: Se Lärobok och/alt Google.

AID:... Uppgift 1 (2 poäng) Definiera kortfattat följande begrepp. a) IRR b) APR c) Going concern d) APV. Lösningsförslag: Se Lärobok och/alt Google. Notera att det är lösningsförslag. Inga utförliga lösningar till triviala definitioner och inga utvecklade svar på essä-typ frågor. Och, att kursen undervisas lite olika år från år. År 2013 mera från Kap

Läs mer

Provmoment: Ladokkod: Tentamen ges för:

Provmoment: Ladokkod: Tentamen ges för: Finansiell ekonomi Provmoment: Ladokkod: Tentamen ges för: 21FE1B Nationalekonomi 1-30 hp, ordinarie tentamen 7,5 högskolepoäng Tentamensdatum: 18/3 16 Tid: 09:00 13:00 Hjälpmedel: Miniräknare, rutat papper,

Läs mer

Del 4 Emittenten. Strukturakademin

Del 4 Emittenten. Strukturakademin Del 4 Emittenten Strukturakademin Innehåll 1. Implicita risker och tillgångar 2. Emittenten 3. Obligationer 4. Prissättning på obligationer 5. Effekt på villkoren 6. Marknadsrisk och Kreditrisk 7. Implicit

Läs mer

Optionspriser och marknadens förväntningar

Optionspriser och marknadens förväntningar Optionspriser och marknadens förväntningar AV JAVIERA AGUILAR OCH PETER HÖRDAHL Verksamma vid penning- och valutapolitiska avdelningen Att ta fram information ur finansiella priser är av intresse både

Läs mer

OPTIONER OCH FUTURES PÅ VETE

OPTIONER OCH FUTURES PÅ VETE OPTIONER OCH FUTURES PÅ VETE En studie av optioner, volatilitet och investeringsstrategier på råvarumarknaden Sammanfattning I rapporten analyseras den europeiska och amerikanska marknaden för optioner

Läs mer

c S X Värdet av investeringen visas av den prickade linjen.

c S X Värdet av investeringen visas av den prickade linjen. VFTN01 Fastighetsvärderingssystem vt 2011 Svar till Övning 2011-01-21 1. Förklara hur en köpoptions (C) värde förhåller sig till den underliggande tillgångens (S) värde. a. Grafiskt: Visa sambandet, märk

Läs mer

Finansmatematik II Kapitel 5 Samvariation med marknaden

Finansmatematik II Kapitel 5 Samvariation med marknaden 1 STOCKHOLMS UNIVERSITET MATEMATISKA INSTITUTIONEN Avd. för Matematisk statistik Thomas Höglund Version 04 1 03 Finansmatematik II Kapitel 5 Samvariation med marknaden Finansmatematik II 1 Marknaden Med

Läs mer

Prissättning av europeiska köpoptioner då aktietillväxterna är NIG-fördelade

Prissättning av europeiska köpoptioner då aktietillväxterna är NIG-fördelade Mathematical Statistics Stockholm University Prissättning av europeiska köpoptioner då aktietillväxterna är NIG-fördelade Andreas Nordvall Lagerås Research Report 2003:4 ISSN 0282-9169 Postal address:

Läs mer

Finansmatematik II Kapitel 2 Stokastiska egenskaper hos aktiepriser

Finansmatematik II Kapitel 2 Stokastiska egenskaper hos aktiepriser STOCKHOLMS UNIVERSITET MATEMATISKA INSTITUTIONEN Avd. för Matematisk statistik Thomas Höglund Version Finansmatematik II Kapitel Stokastiska egenskaper hos aktiepriser Finansmatematik II För att kunna

Läs mer

Provmoment: Ladokkod: Tentamen ges för:

Provmoment: Ladokkod: Tentamen ges för: Finansiell ekonomi Provmoment: Ladokkod: Tentamen ges för: Namn: (Ifylles av student) Personnummer: (Ifylles av student) Tentamensdatum: 27/3 2015 Tid: 14:00 19:00 21FE1B Nationalekonomi 1-30 hp, omtentamen

Läs mer

Del 6 Valutor. Strukturakademin

Del 6 Valutor. Strukturakademin Del 6 Valutor Strukturakademin Innehåll 1. Strukturerade produkter och valutor 2. Hur påverkar valutor? 3. Metoder att hantera valutor 4. Quanto Valutaskyddad 5. Composite Icke valutaskyddad 6. Lokal Icke

Läs mer

EXAMENSARBETE. Finns det möjlighet till arbitrage på VINX30 aktieindexoptioner? En empirisk undersökning. Institutionen för teknik och samhälle

EXAMENSARBETE. Finns det möjlighet till arbitrage på VINX30 aktieindexoptioner? En empirisk undersökning. Institutionen för teknik och samhälle Institutionen för teknik och samhälle EXAMENSARBETE Finns det möjlighet till arbitrage på VINX30 aktieindexoptioner? En empirisk undersökning Examensarbete inom ämnet Finansiell ekonomi C-nivå, 15 hp.

Läs mer

Provmoment: Ladokkod: Tentamen ges för:

Provmoment: Ladokkod: Tentamen ges för: Finansiell ekonomi Provmoment: Ladokkod: Tentamen ges för: Namn: (Ifylles av student) Personnummer: (Ifylles av student) Tentamensdatum: 23/8 13 Tid: 09:00 14:00 Hjälpmedel: Miniräknare SFE011 Nationalekonomi

Läs mer

Räntemodeller och marknadsvärdering av skulder

Räntemodeller och marknadsvärdering av skulder Räntemodeller och marknadsvärdering av skulder Fredrik Armerin Matematisk statistik, KTH Aktuarieföreningen 17-18 november 2004 Dag 1 INTRODUKTION TILL RÄNTEMARKNADEN 1 Kreditmarknaden Penningmarknaden

Läs mer

Del 13 Andrahandsmarknaden

Del 13 Andrahandsmarknaden Del 13 Andrahandsmarknaden Strukturakademin Strukturakademin Srukturinvest Fondkommission 1 Innehåll 1. Produktens värde på slutdagen 2. Produktens värde under löptiden 3. Köp- och säljspread 4. Obligationspriset

Läs mer

Tentamen Finansiering (2FE253) Lördagen den 19 november 2016

Tentamen Finansiering (2FE253) Lördagen den 19 november 2016 Tentamen Finansiering (2FE253) Lördagen den 19 november 2016 Skrivtid: 4 timmar (kl. 09:00 13:00) Hjälpmedel: Kalkylator och kursens formelblad. OBS! Endast formler som står med på formelbladet får programmeras

Läs mer

AID:... LÖSNINGSFÖRSLAG TENTA 2013-05-03. Aktiedelen, uppdaterad 2014-04-30

AID:... LÖSNINGSFÖRSLAG TENTA 2013-05-03. Aktiedelen, uppdaterad 2014-04-30 LÖSNINGSFÖRSLAG TENTA 013-05-03. Aktiedelen, udaterad 014-04-30 Ugift 1 (4x0.5 = oäng) Definiera kortfattat följande begre a) Beta värde b) Security Market Line c) Duration d) EAR Se lärobok, oweroints.

Läs mer

Tentamen Finansiering (2FE253) Torsdagen den 16 februari 2017

Tentamen Finansiering (2FE253) Torsdagen den 16 februari 2017 Tentamen Finansiering (FE3) Torsdagen den 16 februari 017 Skrivtid: 4 timmar (kl. 08:00 1:00) Hjälpmedel: Kalkylator och kursens formelblad. OBS! Endast formler som står med på formelbladet får programmeras

Läs mer

I n f o r m a t i o n o m a k t i e o p t i o n e r

I n f o r m a t i o n o m a k t i e o p t i o n e r I n f o r m a t i o n o m a k t i e o p t i o n e r Här kan du läsa om aktieoptioner, och hur de kan användas. Du hittar också exempel på investeringsstrategier. Aktieoptioner kan vara upptagna till handel

Läs mer

TENTA 2011-08-15 723G28/723G29 (uppdaterad 2014-02-03)

TENTA 2011-08-15 723G28/723G29 (uppdaterad 2014-02-03) TENTA 2011-08-15 723G28/723G29 (uppdaterad 2014-02-03) LÖSNINGSFÖRSLAG: Notera förslag och att det är skisser inte fullständiga svar på definitioner och essäfrågor Uppgift 1 (2 poäng) Definiera kortfattat

Läs mer

Del 7 Barriäroptioner. Strukturakademin

Del 7 Barriäroptioner. Strukturakademin Del 7 Barriäroptioner Strukturakademin Innehåll 1. Barriäroptioner 2. Exotisk option 3. Barriäroptioner med knock-in eller knock-out 4. Varför barriäroptioner? 5. Fyra huvudtyper av barriäroptioner 6.

Läs mer

Inlämningsuppgift 1: Portföljvalsteori

Inlämningsuppgift 1: Portföljvalsteori STOCKHOLMS UNIVERSITET 20 november 2006 Matematiska institutionen Avd. för matematisk statistik Mikael Andersson Inlämningsuppgift 1: Portföljvalsteori Syftet med denna inlämningsuppgift är att ni skall

Läs mer

1997 års ekonomipristagare: Robert C. Merton och Myron S. Scholes

1997 års ekonomipristagare: Robert C. Merton och Myron S. Scholes BERTIL NÄSLUND & TORSTEN PERSSON 1997 års ekonomipristagare: Robert C. Merton och Myron S. Scholes Robert C. Merton och Myron S. Scholes har tillsammans med den framlidne Fischer Black utvecklat en banbrytande

Läs mer

AVANCERAD OPTIONSHANDEL NASDAQ STOCKHOLM 23 NOVEMBER 2017

AVANCERAD OPTIONSHANDEL NASDAQ STOCKHOLM 23 NOVEMBER 2017 AVANCERAD OPTIONSHANDEL NASDAQ STOCKHOLM 23 NOVEMBER 2017 DISCLAIMER Detta informationsmaterial är riktat till de deltagare som genomgått det seminarium som materialet avser med angiven tid och plats.

Läs mer

CAPM (capital asset pricing model)

CAPM (capital asset pricing model) CAPM (capital asset pricing model) CAPM En teoretisk modell för förväntad avkastning i jämvikt, d.v.s. när utbudet av varje tillgång är lika med efterfrågan på motsvarande tillgång. Detta betyder att CAPM

Läs mer

STOCKHOLMS UNIVERSITET MATEMATISKA INSTITUTIONEN Avd. Matematisk statistik, GA 08 januari 2015. Lösningar

STOCKHOLMS UNIVERSITET MATEMATISKA INSTITUTIONEN Avd. Matematisk statistik, GA 08 januari 2015. Lösningar STOCKHOLMS UNIVERSITET MT712 MATEMATISKA INSTITUTIONEN LÖSNINGAR Avd. Matematisk statistik, GA 8 januari 215 Lösningar Tentamen i Livförsäkringsmatematik I, 8 januari 215 Uppgift 1 a) Först konstaterar

Läs mer

Innehåll. Översikt 2012. Värde. Konsumtion, Nytta & Företag. Kassaflöden. Finansiella Marknader

Innehåll. Översikt 2012. Värde. Konsumtion, Nytta & Företag. Kassaflöden. Finansiella Marknader Översikt 2012 Detta är en översikt av frågeställningar som tagits upp förutom rena beräkningar efter formler. Alla frågor finns besvarade i boken, eller i power points, eller pånätet. 723G29 & 730G21 Innehåll

Läs mer

Innehåll. Kursfallsskydd... 3 Lock & Secure... 3 Konstruktion av Lock & Secure funktionen... 3 Avkastning och risk... 4

Innehåll. Kursfallsskydd... 3 Lock & Secure... 3 Konstruktion av Lock & Secure funktionen... 3 Avkastning och risk... 4 Del 21 Lock & Secure Innehåll Kursfallsskydd... 3 Lock & Secure... 3 Konstruktion av Lock & Secure funktionen... 3 Avkastning och risk... 4 Autocalls och indexbevis har normalt ett kursfallsskydd som innebär

Läs mer

Påbyggnad/utveckling av lagen om ett pris Effektiv marknad: Priserna på en finansiell marknad avspeglar all relevant information

Påbyggnad/utveckling av lagen om ett pris Effektiv marknad: Priserna på en finansiell marknad avspeglar all relevant information Föreläsning 4 ffektiva marknader Påbyggnad/utveckling av lagen om ett pris ffektiv marknad: Priserna på en finansiell marknad avspeglar all relevant information Konsekvens: ndast ny information påverkar

Läs mer

Finansiering. Föreläsning 6 Risk och avkastning BMA: Kap. 7. Jonas Råsbrant

Finansiering. Föreläsning 6 Risk och avkastning BMA: Kap. 7. Jonas Råsbrant Finansiering Föreläsning 6 Risk och avkastning BMA: Kap. 7 Jonas Råsbrant jonas.rasbrant@fek.uu.se Föreläsningens innehåll Historisk avkastning för finansiella tillgångar Beräkning av avkastning och risk

Läs mer

0 om x < 0, F X (x) = x. 3 om 0 x 1, 1 om x > 1.

0 om x < 0, F X (x) = x. 3 om 0 x 1, 1 om x > 1. Avd. Matematisk statistik TENTAMEN I SF9, SF95 SANNOLIKHETSTEORI OCH STATISTIK, MÅNDAGEN DEN 2:E JANUARI 25 KL 4. 9.. Kursledare: Gunnar Englund, 73 32 37 45 Tillåtna hjälpmedel: Formel- och tabellsamling

Läs mer

Tentamen Finansiering (2FE253) Tisdagen den 29 september 2015, kl. 14:00-18:00

Tentamen Finansiering (2FE253) Tisdagen den 29 september 2015, kl. 14:00-18:00 Tentamen Finansiering (2FE253) Tisdagen den 29 september 2015, kl. 14:00-18:00 Skrivtid: 4 timmar (kl. 14:00 18:00) Hjälpmedel: Kalkylator och kursens formelblad. OBS! Endast formler som står med på formelbladet

Läs mer

TENTAMEN. Finansiell Planering 7,5 poäng Lönsamhetsanalys & Finansiering 7,5 poäng Lönsamhetsanalys & Finansiering för fatighetsmäklare7,5 poäng

TENTAMEN. Finansiell Planering 7,5 poäng Lönsamhetsanalys & Finansiering 7,5 poäng Lönsamhetsanalys & Finansiering för fatighetsmäklare7,5 poäng HÖGSKOLAN I BORÅS Institutionen Handelsoch IT-högskolan (HIT) TENTAMEN Finansiell Planering 7,5 poäng Lönsamhetsanalys & Finansiering 7,5 poäng Lönsamhetsanalys & Finansiering för fatighetsmäklare7,5 poäng

Läs mer

LÖSNINGSFÖRLAG 2010-10-27

LÖSNINGSFÖRLAG 2010-10-27 Linköpings universitet 100928 IEI/Nek Bo Sjö LÖSNINGSFÖRLAG 2010-10-27 Tentamen 2010-10-01, kl. 08:00-13:00 Finansiell ekonomi, 7,5Hp Affärsjuridiska programmet (730G32) Skrivningen består av 4 uppgifter

Läs mer

Del 7 Barriäroptioner

Del 7 Barriäroptioner Del 7 Barriäroptioner Innehåll Barriäroptioner... 3 Exotisk option... 3 Barriäroptioner med knock-in eller knock-out... 3 Varför barriäroptioner?... 3 Fyra huvudtyper av barriäroptioner... 4 Avläsning

Läs mer

OMTENTAMEN. Finansiell Planering 7,5 poäng Lönsamhetsanalys & Finansiering för fatighetsmäklare7,5 poäng

OMTENTAMEN. Finansiell Planering 7,5 poäng Lönsamhetsanalys & Finansiering för fatighetsmäklare7,5 poäng HÖGSKOLAN I BORÅS Institutionen Handelsoch IT-högskolan (HIT) OMTENTAMEN Finansiell Planering 7,5 poäng Lönsamhetsanalys & Finansiering för fatighetsmäklare7,5 poäng 2014-03-29 kl 09.30-14.30 Hjälpmedel:

Läs mer

Värdering av warranter

Värdering av warranter ! " # Värdering av warranter Vad är praxis och hur reagerar marknaden? Påverkas bolagets aktiekurs då en materiell warrantemission annonseras? $% & '( )*)% &* +, Sammanfattning SAMMANFATTNING Den största

Läs mer

Information som saknas i media om hur försäkringstagarna påverkas av finanskrisen. Mikael Nyman Pensionsnyheterna Exakt Media AB

Information som saknas i media om hur försäkringstagarna påverkas av finanskrisen. Mikael Nyman Pensionsnyheterna Exakt Media AB Information som saknas i media om hur försäkringstagarna påverkas av finanskrisen. Mikael Nyman Pensionsnyheterna Exakt Media AB Disposition Var är krisen? Vilka drabbades? Hur det kan bli? Hur borde det

Läs mer

OPTIONSSTRATEGIER SNABBGUIDE AKTIEOPTIONER

OPTIONSSTRATEGIER SNABBGUIDE AKTIEOPTIONER OPTIONSSTRATEGIER SNABBGUIDE AKTIEOPTIONER Optioner ger investerare många möjligheter eftersom det finns strategier för alla olika marknadslägen. De är också effektiva verktyg för att försäkra innehav

Läs mer

Grundkurs i nationalekonomi, hösten 2014, Jonas Lagerström

Grundkurs i nationalekonomi, hösten 2014, Jonas Lagerström Wall Street har ingen aning om hur dåligt det är därute. Ingen aning! Ingen aning! Dom är idioter! Dom förstår ingenting! Jim Cramer, programledare CNN (tre veckor före finanskrisen) Grundkurs i nationalekonomi,

Läs mer

Hur man gör och varför.

Hur man gör och varför. FINANS ENLIGT MARKUS 2 Hur man gör och varför. o Innehåll: Kommenterad sammanfattning, Brealey & Myers, Principles of Corporate Finance, upplaga 6: kapitel 3 (nuvärdesberäkningar), 4 (aktievärdering),

Läs mer

Warranter och optioner En prisjämförelse En kvantitativ studie av hur avkastning och pris skiljer sig mellan warranter och optioner.

Warranter och optioner En prisjämförelse En kvantitativ studie av hur avkastning och pris skiljer sig mellan warranter och optioner. Institutionen för Fastigheter och Byggande Examensarbete nr. 303 Fastighet och Finans Kandidatnivå, 15 hp Finans Warranter och optioner En prisjämförelse En kvantitativ studie av hur avkastning och pris

Läs mer

Finansmatematik II Kapitel 3 Risk och diversifiering

Finansmatematik II Kapitel 3 Risk och diversifiering STOCKHOLMS UNIVERSITET MATEMATISKA INSTITUTIONEN Avd. för Matematisk statistik Thomas Höglund Version 04 0 8 Finansmatematik II Kapitel 3 Risk och diversifiering 2 Finansmatematik II Risk och diversifiering

Läs mer

-4,6% Startdatum Jämförelseindex. Rådgivare 56,3%

-4,6% Startdatum Jämförelseindex. Rådgivare 56,3% US Balanserad 2 1 1 allmän global konjunkturosäkerhet. Den makroekonomiska statistiken har åter varit en aning svagare för samtliga större regioner och pekat mot en global avmattning. Marknadens focus

Läs mer

Obligationsbaserade futures, forwards och optioner

Obligationsbaserade futures, forwards och optioner Obligationsbaserade futures, forwards och optioner Här kan du läsa om obligationsbaserade futures, forwards och optioner, och hur de används. Du finner även exempel på investeringsstrategier Vad är obligationsbaserade

Läs mer

Modern kapitalförvaltning kundanpassning med flexibla lösningar

Modern kapitalförvaltning kundanpassning med flexibla lösningar Modern kapitalförvaltning kundanpassning med flexibla lösningar (Från Effektivt Kapital, Vinell m.fl. Norstedts förlag 2005) Ju rikare en finansmarknad är på oberoende tillgångar, desto större är möjligheterna

Läs mer

Föreläsning 11. Slumpvandring och Brownsk Rörelse. Patrik Zetterberg. 11 januari 2013

Föreläsning 11. Slumpvandring och Brownsk Rörelse. Patrik Zetterberg. 11 januari 2013 Föreläsning 11 Slumpvandring och Brownsk Rörelse Patrik Zetterberg 11 januari 2013 1 / 1 Stokastiska Processer Vi har tidigare sett exempel på olika stokastiska processer: ARIMA - Kontinuerlig process

Läs mer

payout = max [0,X 0(ST-K)]

payout = max [0,X 0(ST-K)] Del 6 Valutor Innehåll Strukturerade produkter och valutor... 3 Hur påverkar valutor?... 3 Metoder att hantera valutor... 3 Quanto valutaskyddad... 3 icke valutaskyddad... 4 icke valutaskyddad... 4 Hur

Läs mer

Vad handlar Boken Kapitel och föreläsningar om? En synopsis av kursen

Vad handlar Boken Kapitel och föreläsningar om? En synopsis av kursen 2015-04-25/Bo Sjö Översikt Finansiell Ekonomi 723G29 Vad handlar Boken Kapitel och föreläsningar om? En synopsis av kursen Kap 1 Introduktion (Översiktligt) Det asymmetriska informations problemet, som

Läs mer

Betavärde En akties betavärde, β, relativt en marknad, M, definieras som

Betavärde En akties betavärde, β, relativt en marknad, M, definieras som STOCKHOLMS UNIVERSITET MATEMATISKA INSTITUTIONEN Avd. för Matematisk statistik Thomas Höglund Version 02 22 SAMVARIATION MED MARKNADEN Marknaden Med marknaden menar vi här ett index. Ett index är en portfölj

Läs mer

Icke-parametrisk värdering av optioner. Erik Karlsson och Jesper von Zweigbergk.

Icke-parametrisk värdering av optioner. Erik Karlsson och Jesper von Zweigbergk. Sammanfattning Titel: Icke-parametrisk värdering av optioner. Författare: Erik Karlsson och Jesper von Zweigbergk. Handledare: Birger Nilsson. Syfte: Syftet är att utvärdera den ickeparametriska optionsprissättningsmodellen

Läs mer

TENTAMEN. Finansiell Planering 7,5 poäng

TENTAMEN. Finansiell Planering 7,5 poäng 0 HÖGSKOLAN I BORÅS Sektionen Företagsekonomi och Textil Management TENTAMEN Finansiell Planering 7,5 poäng 28 maj 2015 kl 14.00-19.00 Hjälpmedel: Miniräknare Max poäng: 40 Väl godkänt: 30 Godkänt: 20

Läs mer

Maxcertifikat. Istället. för aktier. En produkt från Handelsbanken Capital Markets

Maxcertifikat. Istället. för aktier. En produkt från Handelsbanken Capital Markets Maxcertifikat Istället för aktier En produkt från Handelsbanken Capital Markets Handelsbankens maxcertifikat Maxcertifikat ger dig möjlighet till god avkastning, till lägre risk än aktier. Handelsbankens

Läs mer

Tentamen Finansiering (2FE253) Onsdagen den 17 februari 2016, kl. 08:00-12:00

Tentamen Finansiering (2FE253) Onsdagen den 17 februari 2016, kl. 08:00-12:00 Tentamen Finansiering (2FE253) Onsdagen den 17 februari 2016, kl. 08:00-12:00 Skrivtid: 4 timmar (kl. 08:00 12:00) Hjälpmedel: Kalkylator och kursens formelblad. OBS! Endast formler som står med på formelbladet

Läs mer

Tentamen Finansiering (2FE253) Onsdagen den 28 september 2016

Tentamen Finansiering (2FE253) Onsdagen den 28 september 2016 Tentamen Finansiering (2FE253) Onsdagen den 28 september 2016 Skrivtid: 4 timmar (kl. 14:00 18:00) Hjälpmedel: Kalkylator och kursens formelblad. OBS! Endast formler som står med på formelbladet får programmeras

Läs mer

TENTA: 2012-05-04 723G29/28 Uppdaterar 20140914

TENTA: 2012-05-04 723G29/28 Uppdaterar 20140914 TENTA: 2012-05-04 723G29/28 Uppdaterar 20140914 Notera att det är lösningsförslag. Inga utförliga lösningar till triviala definitioner och inga utvecklade svar på essä-typ frågor. Och, att kursen undervisas

Läs mer

AID:... För definitioner se läroboken. För att få poäng krävs mer än att man bara skriver ut namnet på förkortningen.

AID:... För definitioner se läroboken. För att få poäng krävs mer än att man bara skriver ut namnet på förkortningen. Lösningsförslag aktiedelen Tenta augusti 11, 2014 Uppgift 1 (4 poäng) 2014-08-25 Definiera kortfattat följande begrepp a) CAPM b) WACC c) IRR d) Fria kassaflöden För definitioner se läroboken. För att

Läs mer

Practice Set #3 and Solutions

Practice Set #3 and Solutions Bo Sjö 2012-04-19 Practice Set #3 and Solutions What to do with this practice set? Practice sets are handed out to help students master the material of the course and prepare for the final exam. These

Läs mer

Del 11 Indexbevis. Strukturakademin. Strukturakademin. Strukturinvest Fondkommission

Del 11 Indexbevis. Strukturakademin. Strukturakademin. Strukturinvest Fondkommission Del 11 Indexbevis 1 Innehåll 1. Grundpositionerna 1.1 Köpt köpoption 1.2 Såld köpoption 1.3 Köpt säljoption 1.4 Såld säljoption 2. Konstruktion av indexbevis 3. Avkastningsanalys 4. Knock-in optioner 5.

Läs mer

Finansiell Ekonomi i Praktiken

Finansiell Ekonomi i Praktiken Finansiell Ekonomi i Praktiken Seminarium den 16 februari 2005 Program 14.00-14.15 Inledning 14.15-15.00 Att fastställa en kunds riskbenägenhet 15.15-16.00 Olika placeringars risk 16.15-17.00 Rådgivning

Läs mer

LÖSNINGSFÖRSLAG Tentamen Finansiering I (FÖ3006) 22/2 2013

LÖSNINGSFÖRSLAG Tentamen Finansiering I (FÖ3006) 22/2 2013 LÖSNINGSFÖRSLAG Tentamen Finansiering I (FÖ006) 22/2 20 Hjälpmedel: Räknare samt formler på sidan. Betyg: G = p, VG = 9 p Maxpoäng 25 p OBS: Glöm ej att redovisa dina delberäkningar som har lett till ditt

Läs mer

Finansiell Statistik (GN, 7,5 hp,, HT 2008) Föreläsning 3

Finansiell Statistik (GN, 7,5 hp,, HT 2008) Föreläsning 3 Finansiell Statistik (GN, 7,5 hp,, HT 2008) Föreläsning 3 Kontinuerliga sannolikhetsfördelningar (LLL Kap 7 & 9) Department of Statistics (Gebrenegus Ghilagaber, PhD, Associate Professor) Financial Statistics

Läs mer

Basfakta för investerare

Basfakta för investerare Basfakta för investerare Detta faktablad riktar sig till investerare och innehåller basfakta om denna Fond. Detta är inte reklammaterial. Det är information som krävs enligt lag för att hjälpa dig att

Läs mer

Marknadsföringsmaterial oktober 2014. Nyhet! Valutabevis. Låt dina pengar upptäcka världen

Marknadsföringsmaterial oktober 2014. Nyhet! Valutabevis. Låt dina pengar upptäcka världen Marknadsföringsmaterial oktober 2014 Nyhet! Valutabevis Låt dina pengar upptäcka världen I dag är marknadsräntorna låga och det är svårt att hitta placeringar som ger en hög ränta, med regelbundna ränteutbetalningar.

Läs mer

TENTAMEN. Finansiell Planering 7,5 poäng

TENTAMEN. Finansiell Planering 7,5 poäng HÖGSKOLAN I BORÅS Institutionen Handelsoch IT-högskolan (HIT) TENTAMEN Finansiell Planering 7,5 poäng 2014-10-29 kl 09.00-14.00 Hjälpmedel: Miniräknare Max poäng: 40 Väl godkänt: 30 Godkänt: 20 OBS! För

Läs mer

Valuation of biotechnology firms with real options

Valuation of biotechnology firms with real options Magisteruppsats i Internationella Ekonomprogrammet LIU-EKI/IEP-D--06/012 SE Värdering av bioteknikföretag med reala optioner Valuation of biotechnology firms with real options Författare: David Andersson

Läs mer

Juli/Augusti 2003. Valutawarranter. sverige

Juli/Augusti 2003. Valutawarranter. sverige Juli/Augusti 2003 Valutawarranter sverige in troduktion Valutamarknaden är en av de mest likvida finansiella marknaderna, där många miljarder omsätts i världens olika valutor varje dag. Marknaden drivs

Läs mer