Finansmatematik II Kapitel 3 Risk och diversifiering

Storlek: px
Starta visningen från sidan:

Download "Finansmatematik II Kapitel 3 Risk och diversifiering"

Transkript

1 STOCKHOLMS UNIVERSITET MATEMATISKA INSTITUTIONEN Avd. för Matematisk statistik Thomas Höglund Version Finansmatematik II Kapitel 3 Risk och diversifiering

2 2 Finansmatematik II Risk och diversifiering Betrakta en portfölj bestående av m tillgångar som vi här ska kalla aktier. Aktieprisena vid tiden t är S (t),..., S m (t). Låt V j (t) beteckna värdet av innehavet i aktie j vid tiden t, j =,..., m; V j (t) = a j S j (t), där a j är antalet av aktie j i portföljen. Portföljvärdet vid tiden t, P (t), ges av och aktie j har vikten P (t) = V (t) V m (t) v j (t) = V j (t)/p (t) i portföljen. Portföljens avkastning i tidsintervallet (t, t + t), R P (t, t + t), ges av där R P (t, t + t) = P (t + t) P (t) P (t) = v j (t)r j (t, t + t), j= R j (t, t + t) = V j(t + t) V j (t) V j (t) är avkastningen av aktie j under tidsintervallet. Övning Visa detta. Portföljens avkastning har variansen = S j(t + t) S j (t) S j (t) Var(R P (t, t + t)) = j= k= v j (t)v k (t)cov(r j (t, t + t), R k (t, t + t)) = v(t) Q t v(t), där v(t) = (v (t),..., v m (t)). Vi har sett i Kapitel 2 att Q t Q t med god approximation, där Q är kovariansmatrisen för aktiernas årstillväxt. Det har därför ingen betydelse vilken av dessa matriser som används. Vi ska här använda portföljens volatilitet σ P (t) = v(t) Qv(t) som mått på portföljrisken. Matrisen Q antages vara icke singulär vilket är detsamma som att alla egenvärden är strikt positiva. Antag att vi funnit att vissa vikter är optimala i något avseende och att vi bildar en portfölj med dessa vikter. Vikterna ändras med tiden och när de avviker väsentligt från de optimala får man balansera om portföljen (minska de innehav som blivit för stora och öka de som blivit för små) så att vikterna återställs.

3 Risk och diversifiering 3 Risken kan minskas genom diversifiering. Av aktierna i exempelportföljen FEM AKTIER har Skanska lägst volatilitet under Period -4, 0.27, medan Ericsson har högst, (Se Tabell i Kap. 2.) Jämfört med att enbart inneha den trygga aktien Skanska kan man minska risken något genom att lägga till den riskabla aktien Ericsson: Antag att vi lägger vikten v i Ericsson och vikten v i Skanska. För denna portfölj gäller σ 2 P = v ( v) v( v) eftersom korrelationen är 0.30 enligt Tabell 6 i Kap. 2. Detta uttryck minimeras för v = 0.4 och den minimala volatiliteten är Övning 2 Genomför detaljerna i ovanstående resonemang. AstraZeneca har högre volatilitet, 0.32, än Skanska. För att göra poängen tydligare ska vi inte använda korrelationen 0.20 under Period -4 utan ρ = 0.0 vilket är den lägsta korrelationen mellan AZN och LME under de fyra delporioderna. Den portfölj som har vikten 0.68 i AZN och 0.32 i LME har även den volatiliteten Hög volatilitet kan alltså kompenseras av låg samvariation. För att få en uppfattning om hur antalet aktier, m, påverkar risken är det instruktivt att titta på fallet då alla vikter är lika, /m, alla aktier har samma volatilitet, σ, och alla korrelationer är desamma, ρ. (Detta är möljigt för alla m om och endast om ρ 0.) I detta fall är σ P = σ ρ + ρ m. Övning 3 Visa detta. Portföljrisken avtar alltså mot σ ρ då m. Om ρ > 0, vilket är det normala, så finns det alltså en gräns för vad som går att uppnå genom diversifiering av en aktieportfölj. Om man vill reducera risken ytterligare genom diversifiering kan man komplettera portföljen med andra tillgångar såsom obligationer och fastigheter eller helt enkelt lägga (en del) av pengarna i kassan. Ytterligare en diversifieringsmöjlighet är hedgefonder som kan vara okorrelerade eller negativt korrelerade med aktiemarknaden. I Figur är portföljvolatiliteten plottad som funktion av m i (det typiska) fallet ρ = 0.36 samt för ρ = 0. (Aktievolatiliteten är i figuren normerad till.) I det första fallet kan man genom diversifiering minska volatiliteten från σ till 0.6σ och redan vid m = 5 har man uppnått 3/4 av denna minskning, σ P = 0.7σ. 2 Minimivariansportföljen Vi ska bestämma de vikter som minimerar portföljrisken. Detta leder ibland till portföljer med negativa vikter. Ett negativt innehav erhålls om man lånar en aktie och säljer den (för att senare köpa tillbaka). Detta är normal praxis i vissa hedgefonder och kallas för blankning. Den portfölj som har minst volatilitet ges av de vikter v som minimerar

4 4 Finansmatematik II corr= corr= Figur : Portföljvolatilitet som funktion av antalet tillgångar 2 v Qv = 2 v i σ i,j v j under bivillkoret i v i =. Lagranges multiplikatormedtod ger ekvationerna σ i,j v j = λ, i =,..., m, j j i j v j =. Övning 4 Beräkna minimivariansportföljens vikter och varians då a) b) c) Q = σ σ σ Q = Q = Ekvationssystemet kan även skrivas

5 Risk och diversifiering 5 Qv = λ, v =, där = (,..., ). (Här och i fortsättningen skriver vi vektorer som radvektorer men i matrisräkningar fungerar de som kolumnvektorer.) Vi får v = λq. Insättning av detta i bivillkoret ger λ Q =. Minimivariansen blir v Qv = λ 2 Q = / Q. Observera att Q > 0 eftersom Q och därmed Q är strikt positivt definit. Matrisen λq kommer att förekomma så ofta att vi ger den en egen bokstav, P. Sammanfattning: Minimivariansportföljen har variansen och vikterna där σ 2 = / Q v = P, P = σ 2 Q. Exempel Okorrelerade avkastningar I detta fall är σ i,i = σi 2 och σ i,j = 0 för i j. Q är alltså diagonalmatrisen med diagonalelementen /σi 2, i =,..., m och vi har därför σ 2 = H m, v i = σ2 σi 2, där H betecknar det harmoniska medelvärdet av σ 2,..., σ 2 m, m H = σ 2 σm 2 Man ser här att variansen kan göras godtyckligt liten genom att diversifiera portföljen (välja m stort) på så sätt att H hålls begränsad. Det framgår också att minimivariansportföljen har positiva vikter i detta fall. Genom att lägga en del pengar i kassan eller en fond som är negativt korrelerad med aktiemarknaden kan man minska risken ytterligare. Övning 5 Ett kapital är placerat i en aktieportfölj som har volatiliteten För att minska risken överväger man två alternativ: Halva kapitalet flyttas från aktier till a) kassan (som har volatiliteten 0).

6 6 Finansmatematik II b) en viss hedgefond som har volatiliteten 0.6 och korrelationen med aktieportföljen. Vilket alternativ ger lägst volatilitet? Övning 6 En aktieportfölj och en hedgefond har korrelationen ρ < 0 och volatiliteterna σ respektive τ. Betrakta den portfölj som har vikten p i aktieportföljen, vikten w i hedgefonden och resten, p w, i kassan. Här är p ett givet positivt tal. Bestäm w så att portföljens volatilitet minimeras samt beräkna denna minimala volatilitet. Svar w = pκ, där κ = σ τ ρ. Volatiliteten är pσ ρ 2. Lägg märke till att portföljens volatilitet inte beror på hedgefondens volatilitet även om vikterna gör det. Lägg också märke till att kontantinnehavet är negativt om p > +κ. Övning 7 Betrakta samma situation som i ovanstående övning med p = 0.5 och σ = Beräkna vikterna och volatiliteten för minimivariansportföljen i följande två fall: a) τ = 0.6 och ρ = b) τ = 0.04 och ρ = I det senare fallet är kontantinnehavet negativt. Antag att du inte accepterar detta utan väljer vikten 0.5 för hedgefonden i b). c) Vilken volatilitet har dennas portfölj? I Figur 2 plottas volatiliteten av en portfölj som har vikten v i en aktieportfölj med volatiliteten 0.27 och vikten v i endera kassan eller i en av de två fonderna i Övning 7 a och b. Vikten v är på x-axeln. Det framgår att så länge som man har minst hälften av vikten i aktieportföljen och resten i en av dessa tillgångar, så uppnås störst minskning av volatiliteten genom att placera i den mest volatila tillgången. 3 Stabilitet hos skattningarna av vikterna För att beräkna minimivariansportföljen kan man göra så här: Skatta v med ˆv = ˆP, där ˆP = ˆσ 2 ˆQ och ˆσ 2 = / ˆQ. Skattningen baseras på historiska data om n observationer. Använd sedan dessa vikter för minimivariansportföljen under den följande perioden. För att denna portfölj ska likna minimivariansportföljen den följande perioden behöver n vara tillräckligt stort för att skattningen ska vara stabil. Vidare måste minimivariansportföljerna under de två perioderna vara snarlika. Exempel 2 FEM AKTIER. Hela tidsperioden delades in i fyra lika långa tidsperioder om n = 256 dagar var. Varje period är alltså c:a ett år och en vecka lång. Kovariansmatrisen skattades från de dagliga slutkurserna. Minimivariansportföljens vikter ges i Tabell.

7 Risk och diversifiering Figur 2: Volatilitet av den portfölj som består av aktier samt endera kassan eller en av de två fonderna i Övning 7 a och b. Tabell AZN LME HM SDIA SKA Period Period Period Period Period Period Period Här finns en viss stabilitet vilket blir tydligt om man rangordnar vikterna: Tabell 2 AZN LME HM SDIA SKA Period Period Period Period Period Period Period

8 8 Finansmatematik II I Tabell 3 ges minimivariansportföljernas volatiliteter och volatiliteterna, σ, hos de portföljer som har samma vikter som minimivariansportföljen den föregående perioden, vilket alltså är den volatilitet man får om man tillämpar ovanstående metod. För jämförelsens skull har även σ afgx, volatiliteten hos Affärsvärldens generalindex, samt σ lika, volatiliteten hos den portfölj som har lika vikter av de 5 aktierna, angivis. Tabell 3 σ σ σ lika σ afgx Period Period Period Period Period Det framgår av tabellen att man inte behöver ha många aktier i en portfölj för att få ned risken på samma nivå som generalindex. Om man lägger till AFGX till portföljen och beräknar minimivariansportföljens vikter med data från Period -4, så får AFGX vikten 0.46 och de övriga 0.22, -0.05, 0.0, respektive Volatiliteten blir 0.8. Om man vill ta ned risken i en omfattande portfölj, så ska man naturligt nog vikta ned de stora och volatila bolagen Ericsson och Skandia relativt index. Observera att över halva portföljvärdet ligger i de två aktierna Skanska och AstraZeneca. För att få en uppfattning om vilka slumpvariationer i skattningarna man kan vänta sig ska vi använda följande resultat. Sats Antag att aktiepriserna utvecklas enligt Modell B i Kapitel 2. Skattningen ˆv = ˆP av vikterna i minimivariansportföljen är, då n, asymptotiskt normalfördelad med väntevärde och kovariansmatris v = P n (P v v T )/σ 2. Vi utelämnar beviset. Satsen stämmer nämligen dåligt med verkligheten. Jag är övertygad om att vikterna är asymptotiskt normalfördelade med ovanstående väntevärde och att variansen är av storleksordningen /n. Det är det exakta uttrycket för variansen som är fel. Som mått på den genomsnittliga avvikelsen ska vi använda d teor = m E ˆv v 2. Om vi antar att skattningarna har den asymptotiska fördelningen i ovanstående sats, så

9 Risk och diversifiering 9 d teor = nm trace(p v v T )/σ. 2 Här står trace för spåret av matrisen, d.v.s. summan av diagonalelementen. Vi ska skatta d teor med trace trace A ˆd teor =, nm A där A är antalet perioder, n periodlängden och trace t är spåret av skattningen av kovariansmatrisen under period t, t =,..., A. Den observerade medelavvikelsen mellan vikterna på varandra följande perioder är d obs = A A t= m ˆv (t + ) ˆv (t) 2, där ˆv (t) är skattningen av vikterna under period t. Om skattningarna har den asymptotiska fördelningen i ovanstående sats så är Övning 8 Visa detta. E(d obs )2 = 2d 2 teor. För att få jämförbara storheter (som mäter avståndet mellan skattade och verkliga vikter) ska vi därför sätta d obs = d obs / 2. I nedanstående tabell ges dessa avstånd för ett antal olika periodlängder. Tabell 4 Periodlängd Antal perioder ˆdteor d obs d obs / ˆd teor Det framgår att teorin är på den pessimistiska sidan. Man skulle kunna tänka sig att vikterna är en färskvara eftersom verkligheten ändrar sig med tiden och att man därför bör använda sig av förhållandevis korta observationsperioder. Detta framgå alltså inte av ovanstående tabell utan tvärtom är avvikelserna monotont avtagande funktioner av observationsperiodens längd. Om man jämför avvikelserna med medelvikten /m = 20%, så kommer man till följande: Slutsats Använd, om möjligt, observationer från flera år.

10 0 Finansmatematik II 4 Ombalansering av portföljen Om aktierna utvecklas på olika sätt, så kommer vikterna att ändras. För att bibehålla vikterna behöver portföljen därför balanseras om ibland. Övning 9 a) Tre aktier kostar idag 4.98, respektive 2.0 SEK. Bilda en portfölj värd SEK och som har vikterna 0.20, 0.35 respektive 0.45 i de tre aktierna (avrundningsfelet läggs i kassan som antas ha räntan 0). Hur många ska du köpa av respektive aktie. b) Antag att portföljen lämnas orörd till en tidpunkt då aktieprisena är 3.40, respektive Vilka vikter har de olika aktierna i portföljen? Hur många ska du köpa eller sälja av de olika aktierna för att återställa de ursprungliga vikterna? Om portföljen balanseras om vid tidpunkterna t 0 < t <..., så blir portföljens värde vid t n där P (t n ) = P (t 0 )Π n k=( + RP (t k, t k ) ), R P (t k, t k ) = P (t k) P (t k ) P (t k ) och där = i= V i (t k ) V i (t k +) P (t k ) R i (t k, t k ) = S i(t k ) S i (t k ). S i (t k ) = v i R i (t k, t k ) På grund av omviktningen kommer aktieinnehaven att ha diskontinuiteter vid omviktningstidpunkterna, därav höger- och vänstergränsvärdena ovan. Övning 0 Genomför detaljerna i ovanstående resonemang. Det finns emellertid skäl (bl.a. transaktionskostnader) att inte balansera om portföljen utan anledning och anledningen i detta fall är att portföljens volatilitet blir alltför stor. Ett alternativ till dagliga ombalanseringar är alltså att vänta till den första tidpunkt, t, för vilken där σ(t) σ ( + ɛ), σ(t) = v(t) Qv(t) och där ɛ är ett lämpligt valt positivt tal. I Figur 3 är kvoten σ(t)/σ plottad för exempelportföljen. Tidsperioden är Period 4 och vikterna är skattade med data från perioderna -3. Vikterna blev AZN LME HM SDIA SKA i=

11 Risk och diversifiering Figur 3: Portföljvolatilitet relativt minimivariansportföljens volatilitet Som störst är kvoten.0. I detta fall har därför den portfölj som ombalanseras dagligen och den portfölj som aldrig ombalanseras snarlik volatilitet. Att skillnaden mellan de två portföljerna är liten i detta fall framgår också av Figur 4 där en plot av utvecklingen av de två portföljerna samt Affärsvärldens generalindex visas. Den dagligen omviktade är heldragen. Medelavvikelsen mellan de två portföljerna är 2%. 5 Portföljutvecklingen som funktion av aktiernas utveckling Låt v,..., v m vara givna vikter. Betrakta en portfölj som från början har dessa vikter och som balanseras om vid tidpunkterna 0, t, 2 t, 3 t,... så att vikterna återställs. Vi ska i detta avsnitt härleda ett uttryck för portföljens värde som funktion av aktiernas värden under förutsättning att de senare utvecklas enligt Modell B och att t är litet. Låt n t = t och låt P n (t) beteckna portföljens värde vid tiden t. Då gäller enligt identiteten som visas i Övning 0 och n P n (t) = P (0) i= j= v j S j (i t) S j ((i ) t) S j (i t) S j ((i ) t) = eνj t+ ixj,

12 2 Finansmatematik II AFGX Figur 4: Utveckling av minimvariansportföljerna. där i X j = X j (i t) X j ((i ) t) = tz j (i) och där Z(i) = (Z (i),..., Z m (i)), i =,..., n är oberoende stokastiska variabler som alla är normalfördelade med väntevärde 0 och kovariansmatris Q. Därför e νj t+ ixj = + ν j t + tz j (i) + t 2 Z j(i) 2 + O( t 3 ) = där + (ν j + 2 σ j,j) t + tz j (i) + t 2 e j(i) + O( t 3 ), e j (i) = Z j (i) 2 σ j,j och e(i) = (e (i),..., e m (i)), i =,..., n är oberoende likafördelade stokastiska variabler med väntevärde 0 och E e(i) 2 <. Det följer att j= v j S j (i t) S j ((i ) t) = +(v ν + 2 v d) t+ tv Z(i)+ t 2 v e(i)+o( t 3 ) där ν = (ν,..., ν m ) och d = (σ,,..., σ m,m ). Därför även ln(p n (t)/p (0)) =

13 Risk och diversifiering 3 n i= ( (v ν + 2 v d) t + tv Z(i) + t 2 v e(i) 2 t(v Z(i))2 + O( t 3 ) ) = tv ν +v (X(t) X(0))+t t v d+ 2 2 Den stokastiska variabeln n v e(i) n 2 t (v Z(i)) 2 +O( t). i= i= har väntevärde 0 och varians t 2 n v e(i) i= ( t) 2 ne(v e()) 2 /4 = O( t) och går därför mot noll i sannolikhet då t 0. Variabeln har varians n 2 t (v Z(i)) 2 i= ( t) 2 nvar((v Z()) 2 )/4 = O( t) och konvergerar därför i sannolikhet mot sitt väntevärde t 2 v Qv. Vi har alltså visat första delen av följande sats. Sats 2 Om aktierna utvecklas enligt Modell B, så P n (t) P (t) i sannolikhet då t 0. Här är och P (t) = P (0)e tl ( S (t) S (0) )v... ( S m(t) S m (0) )vm L = m 2 ( v j σ j,j v Qv). j= Speciellt gäller att ln(p (t)/p (0)) är normalfördelad med väntevärde (v r 2 v Qv)t och varians v Qvt, där r j = σj,j 2 + ν j är de förväntade momentana avkastningarna. Fördelningspåståendet följer av att ln(p (t)/p (0)) = (v r v Qv)t + v X(t). 2

14 4 Finansmatematik II Figur 5: Utveckling av kontinuerligt och dagligt ombalanserade portföljer Observera att satsen gäller för godtyckliga vikter (och inte endast för minimivariansportföljen) och även då Q är singulär. Genom att ombalansera portföljen styr man alltså dess värde mot det geometriska medelvärdet av aktievärdena multiplicerat med e tl. Detta portföljvärde kan jämföras med den orörda portföljens värde P (0) ( S (t) v S (0) v S m (t) ) m S m (0) som är det aritmetiska medelvärdet. Utvecklingen av minimivariansportföljen med daglig ombalansering är plottad tillsammans med den kontinuerligt ombalanserade portföljen (heldragen) i Figur 5. Medelavståndet mellan de två portföljerna är 0.5%. Figur 6 visar plottar av den orörda portföljen och den kontinuerligt ombalanserade. Medelavståndet mellan portföljerna är 2%. HM föll 30% under dag 02 och den orörda portföljen var dag 0 överviktad i HM (0.24 i.st.f. 0.7). Detta är en väsentlig förklaring till att den orörda portföljen presterade sämre än de andra. 6 Gemensam korrelation I detta fall är σ i,i = σ 2 i och σ i,j = σ i σ j ρ för i j. Detta är i vissa fall en någorlunda realistisk modell för vilken man kan få explicita och överblickbara uttryck för bl.a. minimivariansportföljens vikter och varians. Förutsatt att inte alla korrelationer är lika har denna modell ett systematiskt fel. Å andra sidan tycks slumpfelet bli mindre. Vi ska se att för vår exempelportfölj FEM AKTIER gå det inte att avgöra vilken av de två metoderna

15 Risk och diversifiering Kont.omb Figur 6: Utveckling av orörd och kontinuerligt omviktad portfölj (gemensam respektive allmänn korrelation) som ger bäst skattningar av minimivariansportföljens vikter. Detsamma gäller betaportföljens vikter i Kapitel 5. Vi ska börja med fallet σ i = för i =,..., m och skriva Q 0 för kovariansmatrisen i detta fall. Låt I stå för identitetsmatrisen och J för den matris vars samtliga element är. Då gäller Q 0 = ( ρ)i + ρj och därför Q 0 = ( ρ) (I + ρ ρ J). Övning a) Visa att x Q 0 x = m( ρ)v(x) + m( + (m )ρ) x 2, där v(x) = m m i= (x i x) 2. b) Visa att Q 0 (och därmed Q) är strikt positiv definit om och endast om m < ρ <. Vi ska i fortsättningen förutsätta att villkoret i b) är uppfyllt. Övning 2 a) Visa att J 2 = mj. b) Verifiera att

16 6 Finansmatematik II Q 0 = ( ρ) ρ (I κj) där κ = + (m )ρ. Vi släpper nu restriktionen σ i = och betraktar allmänna standardavvikelser. Låt S beteckna diagonalmatrisen med elementen σ,..., σ m. Då gäller Övning 3 Visa att Q = SQ 0 S och därför Q = S Q 0 S. (Q x) i = (x i κ σ i ( ρ) σ i j= x j σ j ). Det följer att minimivariansportföljen har vikterna v i = σ 2 ( κ σ i ( ρ) σ i j= σ j ). Ett sätt att beräkna dessa vikter och volatiliteten ges i nästa övning. Övning 4 Sätt w i = σ i ( σ i κ j= σ j ). Visa att v i = w i / m j= w j och σ 2 = ( ρ)/ m j= w j. Vi ska nu använda denna modell till att skatta minimivariansportföljens vikter för FEM AKTIER med data från Period -4. Övning 5 Skatta den gemensamma korrelationen med medelvärdet av korrelationerna i Tabell 6 i Kapitel 2 och beräkna minimivariansportföljens vikter och volatilitet. Svar: ρ = Vikter: 0.30, 0.04, 0.0, 0.05, 0.5. Volatilitet: Skillnaden mellan dessa vikter och vikterna i understa raden i Tabell är -0.04, -0.0, -0.02, 0.05, Den senare portföljen har volatiliteten Medelavvikelsen mellan de två skattningarna av vikterna är d ( 0.04) = = Att döma av Tabell 4 kan man vänta sig att skattningsfelet är ungefär / (Faktorn /3 eftersom det teoretiska värdet är c:a 3 gånger för stort.) Det följer att vi inte kan avgöra vilken av de två skattningarna som ligger närmast minimivariansportföljen. Modellen med gemensam korrelation ger alltså mycket bra resultat i detta fall. Om man förenklar modellen ytterligare och antar att ρ = 0, så får man vikterna (0.27, 0., 0.5, 0.2, 0.36) och d = Denna skattning går alltså att skilja från de andra två. De tre portföljerna har dock liknande karaktär vilket framgår om man rangordnar portföljernas vikter.

17 Risk och diversifiering 7 Svar till övningarna 4 a) v i = σ 2 i /S, σ 2 = /S, där S = σ 2 + σ σ 2 3. b) (/3, /3, /3), σ 2 = 2/5. c) (3/7, 2/7, 2/7), σ 2 = 3/35. 5 Alternativ b. (volatiliteterna blir 3.5% respektive.8%) 7 a) (0.50, 0.42, 0.08),.7% b) (0.50, 2.53, -2.03), 8.9% c) 2.% 9 a) 406, 208, 233. b) 0.4, 0.42, Köp 803, -35 respektive 39 aktier.

P (t) = V 1 (t) V m (t) P (t + t) P (t) P (t) = v j (t)r j (t, t + t), v(t) Q t v(t),

P (t) = V 1 (t) V m (t) P (t + t) P (t) P (t) = v j (t)r j (t, t + t), v(t) Q t v(t), STOCKHOLMS UNIVERSITET MATEMATISKA INSTITUTIONEN Avd. för Matematisk statistik Thomas Höglund Version 02 22 RISK OCH DIVERSIFIERING Betrakta en portfölj bestående av m tillgångar som vi här ska kalla aktier.

Läs mer

Finansmatematik II Kapitel 5 Samvariation med marknaden

Finansmatematik II Kapitel 5 Samvariation med marknaden 1 STOCKHOLMS UNIVERSITET MATEMATISKA INSTITUTIONEN Avd. för Matematisk statistik Thomas Höglund Version 04 1 03 Finansmatematik II Kapitel 5 Samvariation med marknaden Finansmatematik II 1 Marknaden Med

Läs mer

Finansmatematik II Kapitel 2 Stokastiska egenskaper hos aktiepriser

Finansmatematik II Kapitel 2 Stokastiska egenskaper hos aktiepriser STOCKHOLMS UNIVERSITET MATEMATISKA INSTITUTIONEN Avd. för Matematisk statistik Thomas Höglund Version Finansmatematik II Kapitel Stokastiska egenskaper hos aktiepriser Finansmatematik II För att kunna

Läs mer

Betavärde En akties betavärde, β, relativt en marknad, M, definieras som

Betavärde En akties betavärde, β, relativt en marknad, M, definieras som STOCKHOLMS UNIVERSITET MATEMATISKA INSTITUTIONEN Avd. för Matematisk statistik Thomas Höglund Version 02 22 SAMVARIATION MED MARKNADEN Marknaden Med marknaden menar vi här ett index. Ett index är en portfölj

Läs mer

Finansmatematik II Kapitel 4 Tillväxt och risk

Finansmatematik II Kapitel 4 Tillväxt och risk 1 STOCKHOLMS UNIVERSITET MATEMATISKA INSTITUTIONEN Avd för Matematisk statistik Thmas Höglund Versin 04 10 21 Finansmatematik II Kapitel 4 Tillväxt ch risk 2 Finansmatematik II Man går inte in på aktiemarknaden

Läs mer

STYRNING AV PORTFÖLJER MED FLERA TILLGÅNGAR

STYRNING AV PORTFÖLJER MED FLERA TILLGÅNGAR 1 STOCKHOLMS UNIVERSITET MATEMATISKA INSTITUTIONEN Avd. för Matematisk statistik Thomas Höglund FINANSMATEMATIK I. KOMPLEMENT DAG 13. STYRNING AV PORTFÖLJER MED FLERA TILLGÅNGAR Hittills har vi betraktat

Läs mer

120 110 S t : 100 100 90 80 Vi ska här betrakta ett antal portföljer som vid t = 0 är värda 100 SEK.

120 110 S t : 100 100 90 80 Vi ska här betrakta ett antal portföljer som vid t = 0 är värda 100 SEK. STOCKHOLMS UNIVERSITET MATEMATISKA INSTITUTIONEN Avd. för Matematisk statistik Thomas Höglund FINANSMATEMATIK I. KOMPLEMENT DAG 5. HANDELSSTRATEGIER Låt S t beteckna priset på en aktie vid tiden t. Vi

Läs mer

1. FLACK RÄNTA Med flack ränta ska vi här mena att räntan är densamma oavsett bindningstid

1. FLACK RÄNTA Med flack ränta ska vi här mena att räntan är densamma oavsett bindningstid STOCKHOLMS UNIVERSITET MATEMATISKA INSTITUTIONEN Avd. för Matematisk statistik Thomas Höglund Version 02 10 25. RÄNTA 1. FLACK RÄNTA Med flack ränta ska vi här mena att räntan är densamma oavsett bindningstid

Läs mer

Finansiering. Föreläsning 6 Risk och avkastning BMA: Kap. 7. Jonas Råsbrant

Finansiering. Föreläsning 6 Risk och avkastning BMA: Kap. 7. Jonas Råsbrant Finansiering Föreläsning 6 Risk och avkastning BMA: Kap. 7 Jonas Råsbrant jonas.rasbrant@fek.uu.se Föreläsningens innehåll Historisk avkastning för finansiella tillgångar Beräkning av avkastning och risk

Läs mer

Stokastiska vektorer

Stokastiska vektorer TNG006 F2 9-05-206 Stokastiska vektorer 2 Kovarians och korrelation Definition 2 Antag att de sv X och Y har väntevärde och standardavvikelse µ X och σ X resp µ Y och σ Y Då kallas för kovariansen mellan

Läs mer

5B Portföljteori och riskvärdering

5B Portföljteori och riskvärdering B7 - Portföljteori och riskvärdering Laboration Farid Bonawiede - 89-09 Alexandre Messo - 89-77 - Beräkning av den effektiva fronten för en portfölj Uppgiften går ut på att beräkna de portföljer som ger

Läs mer

STOCKHOLMS UNIVERSITET MATEMATISKA INSTITUTIONEN Avd. för Matematisk statistik Thomas Höglund FINANSMATEMATIK I. ÖVNINGAR TILL DAG 3.

STOCKHOLMS UNIVERSITET MATEMATISKA INSTITUTIONEN Avd. för Matematisk statistik Thomas Höglund FINANSMATEMATIK I. ÖVNINGAR TILL DAG 3. STOCKHOLMS UNIVERSITET MATEMATISKA INSTITUTIONEN Avd. för Matematisk statistik Thomas Höglund FINANSMATEMATIK I. ÖVNINGAR TILL DAG 2. Luenberger: 2:1-5, 9, 11, 12. Övning 1. Du lånar 200000 kr i en bank

Läs mer

Härledning av Black-Littermans formel mha allmänna linjära modellen

Härledning av Black-Littermans formel mha allmänna linjära modellen Härledning av Black-Littermans formel mha allmänna linjära modellen Ett sätt att få fram Black-Littermans formel är att formulera problemet att hitta lämpliga justerade avkastningar som ett skattningsproblem

Läs mer

STOCKHOLMS UNIVERSITET MATEMATISKA INSTITUTIONEN Avd. för Matematisk statistik Thomas Höglund Version 06 04 04. Finansmatematik II Kapitel 1

STOCKHOLMS UNIVERSITET MATEMATISKA INSTITUTIONEN Avd. för Matematisk statistik Thomas Höglund Version 06 04 04. Finansmatematik II Kapitel 1 1 STOCKHOLMS UNIVERSITET MATEMATISKA INSTITUTIONEN Avd. för Matematisk statistik Thomas Höglund Version 06 04 04 Finansmatematik II Kapitel 1 Ränta 2 Finansmatematik II 1 Rak ränta Med rak ränta ska vi

Läs mer

Lektionsanteckningar 11-12: Normalfördelningen

Lektionsanteckningar 11-12: Normalfördelningen Lektionsanteckningar 11-12: Normalfördelningen När utfallsrummet för en slumpvariabel kan anta vilket värde som helst i ett givet intervall är variabeln kontinuerlig. Det är väsentligt att utfallsrummet

Läs mer

Vektorgeometri för gymnasister

Vektorgeometri för gymnasister Vektorgeometri för gymnasister Per-Anders Svensson http://homepage.lnu.se/staff/psvmsi/vektorgeometri/gymnasiet.html Fakulteten för teknik Linnéuniversitetet Diagonalisering av linjära avbildningar III

Läs mer

CAPM (capital asset pricing model)

CAPM (capital asset pricing model) CAPM (capital asset pricing model) CAPM En teoretisk modell för förväntad avkastning i jämvikt, d.v.s. när utbudet av varje tillgång är lika med efterfrågan på motsvarande tillgång. Detta betyder att CAPM

Läs mer

Tillämpad statistik (A5), HT15 Föreläsning 6: Några övriga urvalsmetoder

Tillämpad statistik (A5), HT15 Föreläsning 6: Några övriga urvalsmetoder Tillämpad statistik (A5), HT15 Föreläsning 6: Några övriga smetoder Ronnie Pingel Statistiska institutionen Senast uppdaterad: 2015-11-11 Några övriga smetoder OSU-UÅ (med eller utan stratifiering) förutsätter

Läs mer

1 Kvadratisk optimering under linjära likhetsbivillkor

1 Kvadratisk optimering under linjära likhetsbivillkor Krister Svanberg, april 0 Kvadratisk optimering under linjära likhetsbivillkor I detta kapitel behandlas följande kvadratiska optimeringsproblem under linjära likhetsbivillkor: xt Hx + c T x + c 0 då Ax

Läs mer

Några vanliga fördelningar från ett GUM-perspektiv

Några vanliga fördelningar från ett GUM-perspektiv Några vanliga fördelningar från ett GUM-perspektiv I denna PM redovisas några av de vanligaste statistiska fördelningarna och deras hantering inom ramen för GUM: Guide to the Expression of Uncertainty

Läs mer

Sannolikheten för att barnet skall få blodgrupp A0 A0 1/2 AA 1 AB 1/2 Övriga 0

Sannolikheten för att barnet skall få blodgrupp A0 A0 1/2 AA 1 AB 1/2 Övriga 0 Avd. Matematisk statistik TENTAMEN I SF191, SANNOLIKHETSTEORI OCH STATISTIK, ONSDAGEN DEN 1:A JUNI 216 KL 8. 13.. Kursledare: Thomas Önskog, 8-79 84 55 Tillåtna hjälpmedel: Formel- och tabellsamling i

Läs mer

Del 2 Korrelation. Strukturakademin

Del 2 Korrelation. Strukturakademin Del 2 Korrelation Strukturakademin Innehåll 1. Implicita tillgångar 2. Vad är korrelation? 3. Hur fungerar sambanden? 4. Hur beräknas korrelation? 5. Diversifiering 6. Korrelation och Strukturerade Produkter

Läs mer

Rådgivning i praktiken

Rådgivning i praktiken Arturo Arques 08-7636964 070-2999372 arturo.arques@seb.se Rådgivning i praktiken 1 Personliga relationer Finansiell ekonomi 2 3 4 Enskilt viktigaste frågan: Överensstämmer kundens riskbenägenhet med den

Läs mer

Grafer och grannmatriser

Grafer och grannmatriser Föreläsning 2, Linjär algebra IT VT2008 Som avslutning på kursen ska vi knyta samman linjär algebra med grafteori och sannolikhetsteori från första kursen. Resultatet blir så kallade slumpvandringar på

Läs mer

Påbyggnad/utveckling av lagen om ett pris Effektiv marknad: Priserna på en finansiell marknad avspeglar all relevant information

Påbyggnad/utveckling av lagen om ett pris Effektiv marknad: Priserna på en finansiell marknad avspeglar all relevant information Föreläsning 4 ffektiva marknader Påbyggnad/utveckling av lagen om ett pris ffektiv marknad: Priserna på en finansiell marknad avspeglar all relevant information Konsekvens: ndast ny information påverkar

Läs mer

Stokastiska processer

Stokastiska processer Stokastiska processer Fredrik Olsson, fredrik.olsson@iml.lth.se Avdelningen för produktionsekonomi Lunds tekniska högskola, Lunds universitet Dessa förläsningsanteckningar kommer att behandla diskreta

Läs mer

Laboration 5: Regressionsanalys. 1 Förberedelseuppgifter. 2 Enkel linjär regression DATORLABORATION 5 MATEMATISK STATISTIK FÖR I, FMS 012, HT-08

Laboration 5: Regressionsanalys. 1 Förberedelseuppgifter. 2 Enkel linjär regression DATORLABORATION 5 MATEMATISK STATISTIK FÖR I, FMS 012, HT-08 LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK Laboration 5: Regressionsanalys DATORLABORATION 5 MATEMATISK STATISTIK FÖR I, FMS 012, HT-08 Syftet med den här laborationen är att du skall

Läs mer

Matematisk statistik i praktiken: asset-liability management i ett försäkringsbolag

Matematisk statistik i praktiken: asset-liability management i ett försäkringsbolag Matematisk statistik i praktiken: asset-liability management i ett försäkringsbolag Andreas N. Lagerås AFA Försäkring Kapitalförvaltning Investeringsanalys Docentföreläsning SU 2010-11-10 1(21) Asset liability

Läs mer

Lösningar till tentamen i Grundläggande nansmatematik. 21 december 2006 kl. 914

Lösningar till tentamen i Grundläggande nansmatematik. 21 december 2006 kl. 914 STOCKHOLMS UNIVERSITET MS 3290 MATEMATISKA INSTITUTIONEN TENTAMEN Avd. Matematisk statistik 21 december 2006 Lösningar till tentamen i Grundläggande nansmatematik 21 december 2006 kl. 914 Uppgift 1 Priset

Läs mer

Matematisk statistik för B, K, N, BME och Kemister

Matematisk statistik för B, K, N, BME och Kemister Matematisk statistik för B, K, N, BME och Kemister Föreläsning 11 & 12 Johan Lindström 5 & 14 oktober 2015 Johan Lindström - johanl@maths.lth.se FMS086/MASB02 F11 1/27 Johan Lindström - johanl@maths.lth.se

Läs mer

Vi ska här utgå ifrån att vi har en aktie och ska med denna som grund konstruera tre olika optionsportföljer.

Vi ska här utgå ifrån att vi har en aktie och ska med denna som grund konstruera tre olika optionsportföljer. STOCKHOLMS UNIVERSITET MATEMATISKA INSTITUTIONEN Avd för Matematisk statistik TH FINANSMATEMATIK I, HT 01 KOMPLEMENT DAG 12 Version 01 12 10 TRE OPTIONSSTRATEGIER Vi ska här utgå ifrån att vi har en aktie

Läs mer

Hur måttsätta osäkerheter?

Hur måttsätta osäkerheter? Geotekniska osäkerheter och deras hantering Hur måttsätta osäkerheter? Lars Olsson Geostatistik AB 11-04-07 Hur måttsätta osäkerheter _LO 1 Sannolikheter Vi måste kunna sätta mått på osäkerheterna för

Läs mer

Tentamensgenomgång och återlämning: Måndagen 24/2 kl16.00 i B497. Därefter kan skrivningarna hämtas på studentexpeditionen, plan 7 i B-huset.

Tentamensgenomgång och återlämning: Måndagen 24/2 kl16.00 i B497. Därefter kan skrivningarna hämtas på studentexpeditionen, plan 7 i B-huset. Statistiska institutionen Nicklas Pettersson Skriftlig tentamen i Finansiell Statistik Grundnivå 7.5hp, HT2013 2014-02-07 Skrivtid: 13.00-18.00 Hjälpmedel: Godkänd miniräknare utan lagrade formler eller

Läs mer

Stockholms Universitet Statistiska institutionen Termeh Shafie

Stockholms Universitet Statistiska institutionen Termeh Shafie Stockholms Universitet Statistiska institutionen Termeh Shafie TENTAMEN I GRUNDLÄGGANDE STATISTIK FÖR EKONOMER 2011-10-28 Skrivtid: 9.00-14.00 Hjälpmedel: Miniräknare utan lagrade formler eller text, bifogade

Läs mer

1 Duala problem vid linjär optimering

1 Duala problem vid linjär optimering Krister Svanberg, april 2012 1 Duala problem vid linjär optimering Detta kapitel handlar om två centrala teoretiska resultat för LP, nämligen dualitetssatsen och komplementaritetssatsen. Först måste vi

Läs mer

7.5 Experiment with a single factor having more than two levels

7.5 Experiment with a single factor having more than two levels Exempel: Antag att vi vill jämföra dragstyrkan i en syntetisk fiber som blandats ut med bomull. Man vet att inblandningen påverkar dragstyrkan och att en inblandning mellan 10% och 40% är bra. För att

Läs mer

TENTAMEN I SF1906 (f d 5B1506) MATEMATISK STATISTIK GRUNDKURS,

TENTAMEN I SF1906 (f d 5B1506) MATEMATISK STATISTIK GRUNDKURS, Avd. Matematisk statistik TENTAMEN I SF1906 (f d 5B1506) MATEMATISK STATISTIK GRUNDKURS, TORSDAGEN DEN 7 JUNI 2012 KL 14.00 19.00 Examinator:Gunnar Englund, 073 3213745 Tillåtna hjälpmedel: Formel- och

Läs mer

Optimering med bivillkor

Optimering med bivillkor Optimering med bivillkor Vi ska nu titta på problemet att hitta max och min av en funktionen f(x, y), men inte över alla möjliga (x, y) utan bara för de par som uppfyller ett visst bivillkor g(x, y) =

Läs mer

Regressionsmodellering inom sjukförsäkring

Regressionsmodellering inom sjukförsäkring Matematisk Statistik, KTH / SHB Capital Markets Aktuarieföreningen 4 februari 2014 Problembeskrivning Vi utgår från Försäkringsförbundets sjuklighetsundersökning och betraktar en portfölj av sjukförsäkringskontrakt.

Läs mer

(A -A)(B -B) σ A σ B. på att tillgångarna ej uppvisar något samband i hur de varierar.

(A -A)(B -B) σ A σ B. på att tillgångarna ej uppvisar något samband i hur de varierar. Del 2 Korrelation Innehåll Implicita tillgångar... 3 Vad är korrelation?... 3 Hur fungerar sambanden?... 3 Hur beräknas korrelation?... 3 Diversifiering... 4 Korrelation och strukturerade produkter...

Läs mer

b) antalet timmar Lukas måste arbeta för att sannolikheten att han ska hinna med alla 112 datorerna ska bli minst (3 p)

b) antalet timmar Lukas måste arbeta för att sannolikheten att han ska hinna med alla 112 datorerna ska bli minst (3 p) Avd. Matematisk statistik TENTAMEN I SF1901, SANNOLIKHETSTEORI OCH STATISTIK, MÅNDAGEN DEN 27:E OKTOBER 2014 KL 08.00 13.00. Kursledare: Tatjana Pavlenko, 08-790 84 66, Björn-Olof Skytt, 08-790 86 49.

Läs mer

Föreläsning 12: Regression

Föreläsning 12: Regression Föreläsning 12: Regression Matematisk statistik David Bolin Chalmers University of Technology Maj 15, 2014 Binomialfördelningen Låt X Bin(n, p). Vi observerar x och vill ha information om p. p = x/n är

Läs mer

Föreläsning 5. Funktioner av slumpvariabler. Ett centralt resultat.

Föreläsning 5. Funktioner av slumpvariabler. Ett centralt resultat. Föreläsning 5. Funktioner av slumpvariabler. Ett centralt resultat. Jesper Rydén Matematiska institutionen, Uppsala universitet jesper.ryden@math.uu.se 1MS008, 1MS777 vt 2016 Ytterligare begrepp Viktiga

Läs mer

b) Beräkna väntevärde och varians för produkten X 1 X 2 X 10 där alla X i :na är oberoende och R(0,2). (5 p)

b) Beräkna väntevärde och varians för produkten X 1 X 2 X 10 där alla X i :na är oberoende och R(0,2). (5 p) Avd. Matematisk statistik TENTAMEN I SF190 (f d 5B2501 ) SANNOLIKHETSLÄRA OCH STATISTIK FÖR - ÅRIG MEDIA MÅNDAGEN DEN 1 AUGUSTI 2012 KL 08.00 1.00. Examinator: Gunnar Englund, tel. 07 21 7 45 Tillåtna

Läs mer

Strukturakademin 10 Portföljteori

Strukturakademin 10 Portföljteori Strukturakademin 10 Portföljteori 1. Modern Portföljteori 2. Diversifiering 3. Korrelation 4. Diversifierbar samt icke-diversifierbar risk 5. Allokering 6. Fungerar diversifiering alltid? 7. Rebalansering/Omallokering

Läs mer

ANDREAS REJBRAND 2014-04-25 Matematik http://www.rejbrand.se. Numeriska serier. Andreas Rejbrand, april 2014 1/29

ANDREAS REJBRAND 2014-04-25 Matematik http://www.rejbrand.se. Numeriska serier. Andreas Rejbrand, april 2014 1/29 Numeriska serier Andreas Rejbrand, april 2014 1/29 1 Inledning Författarens erfarenhet säger att momentet med numeriska serier är ganska svårt för många studenter i inledande matematikkurser på högskolenivå.

Läs mer

Kursombud sökes! Kursens syfte är att ge en introduktion till metoder för att förutsäga realtidsegenskaper hos betjäningssystem, i synnerhet för data- och telekommunikationssystem. Såväl enkla betjäningssystem,

Läs mer

Föreläsning 6, Matematisk statistik Π + E

Föreläsning 6, Matematisk statistik Π + E Repetition Kovarians Stora talens lag Gauss Föreläsning 6, Matematisk statistik Π + E Sören Vang Andersen 2 december 2014 Sören Vang Andersen - sva@maths.lth.se FMS012 F6 1/20 Repetition Kovarians Stora

Läs mer

Subtraktion. Räkneregler

Subtraktion. Räkneregler Matriser En matris är en rektangulär tabell av tal, 1 3 17 4 3 2 14 4 0 6 100 2 Om matrisen har m rader och n kolumner så säger vi att matrisen har storlek m n Index Vi indexerar elementen i matrisen genom

Läs mer

f(x) = 2 x2, 1 < x < 2.

f(x) = 2 x2, 1 < x < 2. Avd. Matematisk statistik TENTAMEN I SF90,SF907,SF908,SF9 SANNOLIKHETSTEORI OCH STATISTIK TORSDAGEN DEN 7:E JUNI 0 KL 4.00 9.00. Examinator: Gunnar Englund, tel. 07 7 45 Tillåtna hjälpmedel: Formel- och

Läs mer

8 Inferens om väntevärdet (och variansen) av en fördelning

8 Inferens om väntevärdet (och variansen) av en fördelning 8 Inferens om väntevärdet (och variansen) av en fördelning 8. Skattning av µ och Students T-fördelning Om σ är känd, kan man använda statistikan X µ σ/ n för att hitta konfidensintervall för µ. Om σ inte

Läs mer

Så får du pengar att växa

Så får du pengar att växa Så får du pengar att växa Sammanfattning Genom att spara regelbundet, vara långsiktig och ta hänsyn till avgifter kan även ett blygsamt men regelbundet sparande med tiden växa till ett betydande belopp.

Läs mer

Laboration 3: Stora talens lag, centrala gränsvärdessatsen och enkla punktskattningar

Laboration 3: Stora talens lag, centrala gränsvärdessatsen och enkla punktskattningar LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK LABORATION 3 MATEMATISK STATISTIK AK FÖR CDIFYSIKER, FMS012/MASB03, HT12 Laboration 3: Stora talens lag, centrala gränsvärdessatsen och enkla

Läs mer

Två innebörder av begreppet statistik. Grundläggande tankegångar i statistik. Vad är ett stickprov? Stickprov och urval

Två innebörder av begreppet statistik. Grundläggande tankegångar i statistik. Vad är ett stickprov? Stickprov och urval Två innebörder av begreppet statistik Grundläggande tankegångar i statistik Matematik och statistik för biologer, 10 hp Informationshantering. Insamling, ordningsskapande, presentation och grundläggande

Läs mer

BIOSTATISTISK GRUNDKURS, MASB11 ÖVNING 6 (2015-04-22) OCH INFÖR ÖVNING 7 (2015-04-29)

BIOSTATISTISK GRUNDKURS, MASB11 ÖVNING 6 (2015-04-22) OCH INFÖR ÖVNING 7 (2015-04-29) LUNDS UNIVERSITET, MATEMATIKCENTRUM, MATEMATISK STATISTIK BIOSTATISTISK GRUNDKURS, MASB11 ÖVNING 6 (2015-04-22) OCH INFÖR ÖVNING 7 (2015-04-29) Aktuella avsnitt i boken: Kap 61 65 Lektionens mål: Du ska

Läs mer

Del 6 Valutor. Strukturakademin

Del 6 Valutor. Strukturakademin Del 6 Valutor Strukturakademin Innehåll 1. Strukturerade produkter och valutor 2. Hur påverkar valutor? 3. Metoder att hantera valutor 4. Quanto Valutaskyddad 5. Composite Icke valutaskyddad 6. Lokal Icke

Läs mer

GMM och Estimationsfunktioner

GMM och Estimationsfunktioner Lunds Universitet med Lund Tekniska Högskola Finansiell Statistik Matematikcentrum, Matematisk Statistik VT 2006 GMM och Estimationsfunktioner I laborationen möter du två besläktade metoder för att estimera

Läs mer

1 De fyra fundamentala underrummen till en matris

1 De fyra fundamentala underrummen till en matris Krister Svanberg, mars 2012 1 De fyra fundamentala underrummen till en matris 1.1 Definition av underrum En given delmängd M av IR n säges vara ett underrum i IR n om följande gäller: För varje v 1 M,

Läs mer

1 Grundläggande kalkyler med vektorer och matriser

1 Grundläggande kalkyler med vektorer och matriser Krister Svanberg, mars 2015 1 Grundläggande kalkyler med vektorer och matriser Trots att läsaren säkert redan behärskar grundläggande vektor- och matriskalkyler, ges här i Kapitel 1 en repetition om just

Läs mer

SVANTE JANSON OCH SVANTE LINUSSON

SVANTE JANSON OCH SVANTE LINUSSON NORMLPPROXIMTION FÖR SNNOLIKHETEN FÖR TT FELKTIGT HNTERDE RÖSTER PÅVERKR MNDTFÖRDELNINGEN SVNTE JNSON OCH SVNTE LINUSSON. Inledning ntag att det är nästan jämnt mellan två partier och B vid fördelningen

Läs mer

TT091A, TVJ22A, NVJA02 Pu, Ti. 50 poäng

TT091A, TVJ22A, NVJA02 Pu, Ti. 50 poäng Matematisk statistik Provmoment: Ladokkod: Tentamen ges för: TT091A, TVJ22A, NVJA02 Pu, Ti 7,5 högskolepoäng Namn: (Ifylles av student) Personnummer: (Ifylles av student) Tentamensdatum: 2012-05-29 Tid:

Läs mer

Övning 1(a) Vad du ska kunna efter denna övning. Problem, nivå A. Redogöra för begreppen diskret och kontinuerlig stokastisk variabel.

Övning 1(a) Vad du ska kunna efter denna övning. Problem, nivå A. Redogöra för begreppen diskret och kontinuerlig stokastisk variabel. Övning 1(a) Vad du ska kunna efter denna övning Redogöra för begreppen diskret och kontinuerlig stokastisk variabel. Definiera fördelningsfunktionen för en stokastisk variabel. Definiera frekvensfunktionen

Läs mer

Tentamen i Matematisk statistik Kurskod S0001M

Tentamen i Matematisk statistik Kurskod S0001M Tentamen i Matematisk statistik Kurskod S0001M Poäng totalt för del 1: 25 (10 uppgifter) Tentamensdatum 2013-01-18 Poäng totalt för del 2: 30 (3 uppgifter) Skrivtid 09.00 14.00 Lärare: Adam Jonsson, Ove

Läs mer

Nedan redovisas resultatet med hjälp av ett antal olika diagram (pkt 1-6):

Nedan redovisas resultatet med hjälp av ett antal olika diagram (pkt 1-6): EM-fotboll 2012 några grafer Sport är en verksamhet som genererar mängder av numerisk information som följs med stort intresse EM i fotboll är inget undantag och detta dokument visar några grafer med kommentarer

Läs mer

Experimentella metoder, FK3001. Datorövning: Finn ett samband

Experimentella metoder, FK3001. Datorövning: Finn ett samband Experimentella metoder, FK3001 Datorövning: Finn ett samband 1 Inledning Den här övningen går ut på att belysa hur man kan utnyttja dimensionsanalys tillsammans med mätningar för att bestämma fysikaliska

Läs mer

Tentamen i Tillämpad statistisk analys, GN, 7.5 hp. 23 maj 2013 kl. 9 14

Tentamen i Tillämpad statistisk analys, GN, 7.5 hp. 23 maj 2013 kl. 9 14 STOCKHOLMS UNIVERSITET MT4003 MATEMATISKA INSTITUTIONEN LÖSNINGAR Avd. Matematisk statistik 3 maj 013 Lösningar Tentamen i Tillämpad statistisk analys, GN, 7.5 hp 3 maj 013 kl. 9 14 Uppgift 1 a Eftersom

Läs mer

STOCKHOLMS UNIVERSITET VT 2011 Avd. Matematisk statistik GB DATORLABORATION 3: MULTIPEL REGRESSION.

STOCKHOLMS UNIVERSITET VT 2011 Avd. Matematisk statistik GB DATORLABORATION 3: MULTIPEL REGRESSION. MATEMATISKA INSTITUTIONEN Tillämpad statistisk analys, GN STOCKHOLMS UNIVERSITET VT 2011 Avd. Matematisk statistik GB 2011-04-13 DATORLABORATION 3: MULTIPEL REGRESSION. Under Instruktioner och data på

Läs mer

0 om x < 0, F X (x) = x. 3 om 0 x 1, 1 om x > 1.

0 om x < 0, F X (x) = x. 3 om 0 x 1, 1 om x > 1. Avd. Matematisk statistik TENTAMEN I SF9, SF95 SANNOLIKHETSTEORI OCH STATISTIK, MÅNDAGEN DEN 2:E JANUARI 25 KL 4. 9.. Kursledare: Gunnar Englund, 73 32 37 45 Tillåtna hjälpmedel: Formel- och tabellsamling

Läs mer

1/31 REGRESSIONSANALYS. Statistiska institutionen, Stockholms universitet

1/31 REGRESSIONSANALYS. Statistiska institutionen, Stockholms universitet 1/31 REGRESSIONSANALYS F1 Linda Wänström Statistiska institutionen, Stockholms universitet 2/31 Kap 4: Introduktion till regressionsanalys. Introduktion Regressionsanalys är en statistisk teknik för att

Läs mer

Tentamen i Sannolikhetslära och statistik Kurskod S0008M

Tentamen i Sannolikhetslära och statistik Kurskod S0008M Tentamen i Sannolikhetslära och statistik Kurskod S0008M Poäng totalt för del 1: 25 (12 uppgifter) Tentamensdatum 2012-12-19 Poäng totalt för del 2: 30 (3 uppgifter) Skrivtid 09.00 14.00 Lärare: Adam Jonsson

Läs mer

Inlämningsuppgift 1: Portföljvalsteori

Inlämningsuppgift 1: Portföljvalsteori STOCKHOLMS UNIVERSITET 20 november 2006 Matematiska institutionen Avd. för matematisk statistik Mikael Andersson Inlämningsuppgift 1: Portföljvalsteori Syftet med denna inlämningsuppgift är att ni skall

Läs mer

Föreläsning 7. Statistikens grunder.

Föreläsning 7. Statistikens grunder. Föreläsning 7. Statistikens grunder. Jesper Rydén Matematiska institutionen, Uppsala universitet jesper.ryden@math.uu.se 1MS008, 1MS777 vt 2016 Föreläsningens innehåll Översikt, dagens föreläsning: Inledande

Läs mer

SF1905 Sannolikhetsteori och statistik: Lab 2 ht 2011

SF1905 Sannolikhetsteori och statistik: Lab 2 ht 2011 Avd. Matematisk statistik Tobias Rydén 2011-09-30 SF1905 Sannolikhetsteori och statistik: Lab 2 ht 2011 Förberedelser. Innan du går till laborationen, läs igenom den här handledningen. Repetera också i

Läs mer

MATEMATIK GU. LLMA60 MATEMATIK FÖR LÄRARE, GYMNASIET Analys, ht 2014. Block 5, översikt

MATEMATIK GU. LLMA60 MATEMATIK FÖR LÄRARE, GYMNASIET Analys, ht 2014. Block 5, översikt MATEMATIK GU H4 LLMA6 MATEMATIK FÖR LÄRARE, GYMNASIET Analys, ht 24 I block 5 ingår följande avsnitt i Stewart: Kapitel 2, utom avsnitt 2.4 och 2.6; kapitel 4. Block 5, översikt Första delen av block 5

Läs mer

Statistik B Regressions- och tidsserieanalys Föreläsning 1

Statistik B Regressions- och tidsserieanalys Föreläsning 1 Statistik B Regressions- och tidsserieanalys Föreläsning Kurskod: 732G7, 8 hp Lärare och examinator: Ann-Charlotte (Lotta) Hallberg Lärare och lektionsledare: Isak Hietala Labassistenter Kap 3,-3,6. Läs

Läs mer

XACT Bull och XACT Bear. Så fungerar XACTs börshandlade fonder med hävstång

XACT Bull och XACT Bear. Så fungerar XACTs börshandlade fonder med hävstång XACT Bull och XACT Bear Så fungerar XACTs börshandlade fonder med hävstång 1 Så fungerar fonder med hävstång Den här broschyren är avsedd att ge en beskrivning av XACTs börshandlade fonder ( Exchange Traded

Läs mer

= e 2x. Integrering ger ye 2x = e 2x /2 + C, vilket kan skrivas y = 1/2 + Ce 2x. Här är C en godtycklig konstant.

= e 2x. Integrering ger ye 2x = e 2x /2 + C, vilket kan skrivas y = 1/2 + Ce 2x. Här är C en godtycklig konstant. Lösningsförslag till Tentamen, SF1633, Differentialekvationer I den 19 december 216 kl 8: - 13: För godkänt (betyg E krävs tre godkända moduler från del I Varje moduluppgift består av tre frågor För att

Läs mer

Placeringsalternativ kopplat till tre strategier på G10 ländernas valutor

Placeringsalternativ kopplat till tre strategier på G10 ländernas valutor www.handelsbanken.se/mega Strategiobligation SHB FX 1164 Placeringsalternativ kopplat till tre strategier på G10 ländernas valutor Strategierna har avkastat 14,5 procent per år sedan år 2000 Låg korrelation

Läs mer

STATISTISK ANALYS AV KOMPLEXA DATA

STATISTISK ANALYS AV KOMPLEXA DATA STATISTISK ANALYS AV KOMPLEXA DATA LONGITUDINELLA DATA Linda Wänström Linköpings universitet 12 December Linda Wänström (Linköpings universitet) LONGITUDINELLA DATA 12 December 1 / 12 Explorativ Faktoranalys

Läs mer

TAMS65 - Föreläsning 11 Regressionsanalys fortsättning Modellval

TAMS65 - Föreläsning 11 Regressionsanalys fortsättning Modellval TAMS65 - Föreläsning 11 Regressionsanalys fortsättning Modellval Martin Singull Matematisk statistik Matematiska institutionen Innehåll Repetition (t-test för H 0 : β i = 0) Residualanalys Modellval Framåtvalsprincipen

Läs mer

Laboration 2: 1 Syfte. 2 Väntevärde och varians hos en s.v. X med fördelningen F X (x) MATEMATISK STATISTIK, AK FÖR BYGG, FMS 601, HT-08

Laboration 2: 1 Syfte. 2 Väntevärde och varians hos en s.v. X med fördelningen F X (x) MATEMATISK STATISTIK, AK FÖR BYGG, FMS 601, HT-08 LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK MATEMATISK STATISTIK, AK FÖR BYGG, FMS 601, HT-08 Laboration 2: Om väntevärden och fördelningar 1 Syfte I denna laboration skall vi försöka

Läs mer

F9 SAMPLINGFÖRDELNINGAR (NCT

F9 SAMPLINGFÖRDELNINGAR (NCT Stat. teori gk, ht 006, JW F9 SAMPLINGFÖRDELNINGAR (NCT 7.1-7.4) Ordlista till NCT Sample Population Simple random sampling Sampling distribution Sample mean Standard error The central limit theorem Proportion

Läs mer

Tentamen för kursen. Linjära statistiska modeller. 16 augusti 2007 9 14

Tentamen för kursen. Linjära statistiska modeller. 16 augusti 2007 9 14 STOCKHOLMS UNIVERSITET MATEMATISK STATISTIK Tentamen för kursen Linjära statistiska modeller 16 augusti 2007 9 14 Examinator: Anders Björkström, tel. 16 45 54, bjorks@math.su.se Återlämning: Rum 312, hus

Läs mer

Veckoblad 3. Kapitel 3 i Matematisk statistik, Blomqvist U.

Veckoblad 3. Kapitel 3 i Matematisk statistik, Blomqvist U. Veckoblad 3 Kapitel 3 i Matematisk statistik, Blomqvist U. ya begrepp: likformig fördelning, hypergeometerisk fördelning, Hyp(, n, p), binomialfördelningen, Bin(n, p), och Poissonfördelningen, Po(λ). Standardfördelningarna

Läs mer

P(ξ > 1) = 1 P( 1) = 1 (P(ξ = 0)+P(ξ = 1)) = 1 0.34. ξ = 2ξ 1 3ξ 2

P(ξ > 1) = 1 P( 1) = 1 (P(ξ = 0)+P(ξ = 1)) = 1 0.34. ξ = 2ξ 1 3ξ 2 Lösningsförslag TMSB18 Matematisk statistik IL 101015 Tid: 12.00-17.00 Telefon: 101620, Examinator: F Abrahamsson 1. Varje dag levereras en last med 100 maskindetaljer till ett företag. Man tar då ett

Läs mer

Exempel :: Spegling i godtycklig linje.

Exempel :: Spegling i godtycklig linje. INNEHÅLL Exempel :: Spegling i godtycklig linje. c Mikael Forsberg :: 6 augusti 05 Sammanfattning:: I detta dokument så är vårt uppdrag att beräkna matrisen för spegling i en godtycklig linje y = kx som

Läs mer

, s a. , s b. personer från Alingsås och n b

, s a. , s b. personer från Alingsås och n b Skillnader i medelvärden, väntevärden, mellan två populationer I kapitel 8 testades hypoteser typ : µ=µ 0 där µ 0 var något visst intresserant värde Då användes testfunktionen där µ hämtas från, s är populationsstandardavvikelsen

Läs mer

P Q = ( 2, 1, 1), P R = (0, 1, 0) och QR = (2, 2, 1). arean = 1 2 P Q P R

P Q = ( 2, 1, 1), P R = (0, 1, 0) och QR = (2, 2, 1). arean = 1 2 P Q P R 1 Matematiska Institutionen KTH Lösningar till några övningar på geometri och vektorer inför lappskrivning nummer 2 på kursen Linjär algebra II, SF1604, vt11. 1. En triangel har hörn i punkterna (1, 2,

Läs mer

ÖVNINGSUPPGIFTER KAPITEL 2

ÖVNINGSUPPGIFTER KAPITEL 2 ÖVNINGSUPPGIFTER KAPITEL 2 DATAMATRISEN 1. Datamatrisen nedan visar ett utdrag av ett datamaterial för USA:s 50 stater. Stat Befolkningsmängd Inkomst Marijuana Procent män (miljoner) per person lagligt?

Läs mer

Kvalificeringstävling den 30 september 2008

Kvalificeringstävling den 30 september 2008 SKOLORNAS MATEMATIKTÄVLING Svenska Matematikersamfundet Kvalificeringstävling den 30 september 2008 Förslag till lösningar Problem 1 Tre rader med tal är skrivna på ett papper Varje rad innehåller tre

Läs mer

1 Förberedelser. 2 Teoretisk härledning av värmeförlust LABORATION 4: VÄRMEKRAFTVERK MATEMATISK STATISTIK AK, MAS 101:A, VT-01

1 Förberedelser. 2 Teoretisk härledning av värmeförlust LABORATION 4: VÄRMEKRAFTVERK MATEMATISK STATISTIK AK, MAS 101:A, VT-01 LUNDS UNIVERSITET MATEMATIKCENTRUM MATEMATISK STATISTIK LABORATION 4: VÄRMEKRAFTVERK MATEMATISK STATISTIK AK, MAS 101:A, VT-01 1 Förberedelser I denna laboration modelleras värmeförlusten i ett kraftverk

Läs mer

Direktavkastning = Analytiker Leo Johansson Lara 20/11-16 Axel Leth

Direktavkastning = Analytiker Leo Johansson Lara 20/11-16 Axel Leth Denna analys behandlar direktavkastning och består av 3 delar. Den första delen är en förklaring till varför direktavkastning är intressant just nu samt en förklaring till vad direktavkastning är. Den

Läs mer

Stokastiska processer och simulering I 24 augusti

Stokastiska processer och simulering I 24 augusti STOCKHOLMS UNIVERSITET LÖSNINGAR MATEMATISKA INSTITUTIONEN Stokastiska processer och simulering I Avd Matematisk statistik 24 augusti 2016 Lösningar Stokastiska processer och simulering I 24 augusti 2016

Läs mer

DEL I. Matematiska Institutionen KTH

DEL I. Matematiska Institutionen KTH 1 Matematiska Institutionen KTH Lösning till tentamensskrivning i Diskret Matematik för CINTE, CL2 och Media 1, SF1610 och 5B1118, tisdagen den 21 oktober 2008, kl 08.00-13.00. Examinator: Olof Heden.

Läs mer

Kapitel 3 Diskreta slumpvariabler och deras sannolikhetsfördelningar

Kapitel 3 Diskreta slumpvariabler och deras sannolikhetsfördelningar Sannolikhetslära och inferens II Kapitel 3 Diskreta slumpvariabler och deras sannolikhetsfördelningar 1 Diskreta slumpvariabler En slumpvariabel tilldelar tal till samtliga utfall i ett slumpförsök. Vi

Läs mer

Övningshäfte 2: Komplexa tal

Övningshäfte 2: Komplexa tal LMA100 VT007 ARITMETIK OCH ALGEBRA DEL Övningshäfte : Komplexa tal Övningens syfte är att bekanta sig med komplexa tal. De komplexa talen, som är en utvidgning av de reella talen, kom till på 1400 talet

Läs mer

SF1624 Algebra och geometri Lösningsförslag till tentamen DEL A

SF1624 Algebra och geometri Lösningsförslag till tentamen DEL A SF64 Algebra och geometri Lösningsförslag till tentamen 0-0-0 DEL A De tre totalmatriserna 0 3 3 4 0 3 0 0 0 0, 0 3 0 4 4 0 3 0 3 0 0 0 0 och 0 3 0 4 0 3 3 0 0 0 0 0 svarar mot linjära ekvationssystem

Läs mer

Riktlinjer för kapitalförvaltning inom Prostatacancerförbundet

Riktlinjer för kapitalförvaltning inom Prostatacancerförbundet 2014-08-21 Riktlinjer för kapitalförvaltning inom Prostatacancerförbundet Prostatacancerförbundet har ansvar för att bevara och förränta förbundets medel på ett försiktigt och ansvarsfullt sätt. Centralt

Läs mer

LÖSNINGSFÖRSLAG TILL TENTAMEN I MATEMATISK STATISTIK 2007-08-29

LÖSNINGSFÖRSLAG TILL TENTAMEN I MATEMATISK STATISTIK 2007-08-29 UMEÅ UNIVERSITET Institutionen för matematik och matematisk statistik Statistik för Teknologer, 5 poäng (TNK, ET, BTG) Peter Anton, Per Arnqvist Anton Grafström TENTAMEN 7-8-9 LÖSNINGSFÖRSLAG TILL TENTAMEN

Läs mer