Finansmatematik II Kapitel 3 Risk och diversifiering

Storlek: px
Starta visningen från sidan:

Download "Finansmatematik II Kapitel 3 Risk och diversifiering"

Transkript

1 STOCKHOLMS UNIVERSITET MATEMATISKA INSTITUTIONEN Avd. för Matematisk statistik Thomas Höglund Version Finansmatematik II Kapitel 3 Risk och diversifiering

2 2 Finansmatematik II Risk och diversifiering Betrakta en portfölj bestående av m tillgångar som vi här ska kalla aktier. Aktieprisena vid tiden t är S (t),..., S m (t). Låt V j (t) beteckna värdet av innehavet i aktie j vid tiden t, j =,..., m; V j (t) = a j S j (t), där a j är antalet av aktie j i portföljen. Portföljvärdet vid tiden t, P (t), ges av och aktie j har vikten P (t) = V (t) V m (t) v j (t) = V j (t)/p (t) i portföljen. Portföljens avkastning i tidsintervallet (t, t + t), R P (t, t + t), ges av där R P (t, t + t) = P (t + t) P (t) P (t) = v j (t)r j (t, t + t), j= R j (t, t + t) = V j(t + t) V j (t) V j (t) är avkastningen av aktie j under tidsintervallet. Övning Visa detta. Portföljens avkastning har variansen = S j(t + t) S j (t) S j (t) Var(R P (t, t + t)) = j= k= v j (t)v k (t)cov(r j (t, t + t), R k (t, t + t)) = v(t) Q t v(t), där v(t) = (v (t),..., v m (t)). Vi har sett i Kapitel 2 att Q t Q t med god approximation, där Q är kovariansmatrisen för aktiernas årstillväxt. Det har därför ingen betydelse vilken av dessa matriser som används. Vi ska här använda portföljens volatilitet σ P (t) = v(t) Qv(t) som mått på portföljrisken. Matrisen Q antages vara icke singulär vilket är detsamma som att alla egenvärden är strikt positiva. Antag att vi funnit att vissa vikter är optimala i något avseende och att vi bildar en portfölj med dessa vikter. Vikterna ändras med tiden och när de avviker väsentligt från de optimala får man balansera om portföljen (minska de innehav som blivit för stora och öka de som blivit för små) så att vikterna återställs.

3 Risk och diversifiering 3 Risken kan minskas genom diversifiering. Av aktierna i exempelportföljen FEM AKTIER har Skanska lägst volatilitet under Period -4, 0.27, medan Ericsson har högst, (Se Tabell i Kap. 2.) Jämfört med att enbart inneha den trygga aktien Skanska kan man minska risken något genom att lägga till den riskabla aktien Ericsson: Antag att vi lägger vikten v i Ericsson och vikten v i Skanska. För denna portfölj gäller σ 2 P = v ( v) v( v) eftersom korrelationen är 0.30 enligt Tabell 6 i Kap. 2. Detta uttryck minimeras för v = 0.4 och den minimala volatiliteten är Övning 2 Genomför detaljerna i ovanstående resonemang. AstraZeneca har högre volatilitet, 0.32, än Skanska. För att göra poängen tydligare ska vi inte använda korrelationen 0.20 under Period -4 utan ρ = 0.0 vilket är den lägsta korrelationen mellan AZN och LME under de fyra delporioderna. Den portfölj som har vikten 0.68 i AZN och 0.32 i LME har även den volatiliteten Hög volatilitet kan alltså kompenseras av låg samvariation. För att få en uppfattning om hur antalet aktier, m, påverkar risken är det instruktivt att titta på fallet då alla vikter är lika, /m, alla aktier har samma volatilitet, σ, och alla korrelationer är desamma, ρ. (Detta är möljigt för alla m om och endast om ρ 0.) I detta fall är σ P = σ ρ + ρ m. Övning 3 Visa detta. Portföljrisken avtar alltså mot σ ρ då m. Om ρ > 0, vilket är det normala, så finns det alltså en gräns för vad som går att uppnå genom diversifiering av en aktieportfölj. Om man vill reducera risken ytterligare genom diversifiering kan man komplettera portföljen med andra tillgångar såsom obligationer och fastigheter eller helt enkelt lägga (en del) av pengarna i kassan. Ytterligare en diversifieringsmöjlighet är hedgefonder som kan vara okorrelerade eller negativt korrelerade med aktiemarknaden. I Figur är portföljvolatiliteten plottad som funktion av m i (det typiska) fallet ρ = 0.36 samt för ρ = 0. (Aktievolatiliteten är i figuren normerad till.) I det första fallet kan man genom diversifiering minska volatiliteten från σ till 0.6σ och redan vid m = 5 har man uppnått 3/4 av denna minskning, σ P = 0.7σ. 2 Minimivariansportföljen Vi ska bestämma de vikter som minimerar portföljrisken. Detta leder ibland till portföljer med negativa vikter. Ett negativt innehav erhålls om man lånar en aktie och säljer den (för att senare köpa tillbaka). Detta är normal praxis i vissa hedgefonder och kallas för blankning. Den portfölj som har minst volatilitet ges av de vikter v som minimerar

4 4 Finansmatematik II corr= corr= Figur : Portföljvolatilitet som funktion av antalet tillgångar 2 v Qv = 2 v i σ i,j v j under bivillkoret i v i =. Lagranges multiplikatormedtod ger ekvationerna σ i,j v j = λ, i =,..., m, j j i j v j =. Övning 4 Beräkna minimivariansportföljens vikter och varians då a) b) c) Q = σ σ σ Q = Q = Ekvationssystemet kan även skrivas

5 Risk och diversifiering 5 Qv = λ, v =, där = (,..., ). (Här och i fortsättningen skriver vi vektorer som radvektorer men i matrisräkningar fungerar de som kolumnvektorer.) Vi får v = λq. Insättning av detta i bivillkoret ger λ Q =. Minimivariansen blir v Qv = λ 2 Q = / Q. Observera att Q > 0 eftersom Q och därmed Q är strikt positivt definit. Matrisen λq kommer att förekomma så ofta att vi ger den en egen bokstav, P. Sammanfattning: Minimivariansportföljen har variansen och vikterna där σ 2 = / Q v = P, P = σ 2 Q. Exempel Okorrelerade avkastningar I detta fall är σ i,i = σi 2 och σ i,j = 0 för i j. Q är alltså diagonalmatrisen med diagonalelementen /σi 2, i =,..., m och vi har därför σ 2 = H m, v i = σ2 σi 2, där H betecknar det harmoniska medelvärdet av σ 2,..., σ 2 m, m H = σ 2 σm 2 Man ser här att variansen kan göras godtyckligt liten genom att diversifiera portföljen (välja m stort) på så sätt att H hålls begränsad. Det framgår också att minimivariansportföljen har positiva vikter i detta fall. Genom att lägga en del pengar i kassan eller en fond som är negativt korrelerad med aktiemarknaden kan man minska risken ytterligare. Övning 5 Ett kapital är placerat i en aktieportfölj som har volatiliteten För att minska risken överväger man två alternativ: Halva kapitalet flyttas från aktier till a) kassan (som har volatiliteten 0).

6 6 Finansmatematik II b) en viss hedgefond som har volatiliteten 0.6 och korrelationen med aktieportföljen. Vilket alternativ ger lägst volatilitet? Övning 6 En aktieportfölj och en hedgefond har korrelationen ρ < 0 och volatiliteterna σ respektive τ. Betrakta den portfölj som har vikten p i aktieportföljen, vikten w i hedgefonden och resten, p w, i kassan. Här är p ett givet positivt tal. Bestäm w så att portföljens volatilitet minimeras samt beräkna denna minimala volatilitet. Svar w = pκ, där κ = σ τ ρ. Volatiliteten är pσ ρ 2. Lägg märke till att portföljens volatilitet inte beror på hedgefondens volatilitet även om vikterna gör det. Lägg också märke till att kontantinnehavet är negativt om p > +κ. Övning 7 Betrakta samma situation som i ovanstående övning med p = 0.5 och σ = Beräkna vikterna och volatiliteten för minimivariansportföljen i följande två fall: a) τ = 0.6 och ρ = b) τ = 0.04 och ρ = I det senare fallet är kontantinnehavet negativt. Antag att du inte accepterar detta utan väljer vikten 0.5 för hedgefonden i b). c) Vilken volatilitet har dennas portfölj? I Figur 2 plottas volatiliteten av en portfölj som har vikten v i en aktieportfölj med volatiliteten 0.27 och vikten v i endera kassan eller i en av de två fonderna i Övning 7 a och b. Vikten v är på x-axeln. Det framgår att så länge som man har minst hälften av vikten i aktieportföljen och resten i en av dessa tillgångar, så uppnås störst minskning av volatiliteten genom att placera i den mest volatila tillgången. 3 Stabilitet hos skattningarna av vikterna För att beräkna minimivariansportföljen kan man göra så här: Skatta v med ˆv = ˆP, där ˆP = ˆσ 2 ˆQ och ˆσ 2 = / ˆQ. Skattningen baseras på historiska data om n observationer. Använd sedan dessa vikter för minimivariansportföljen under den följande perioden. För att denna portfölj ska likna minimivariansportföljen den följande perioden behöver n vara tillräckligt stort för att skattningen ska vara stabil. Vidare måste minimivariansportföljerna under de två perioderna vara snarlika. Exempel 2 FEM AKTIER. Hela tidsperioden delades in i fyra lika långa tidsperioder om n = 256 dagar var. Varje period är alltså c:a ett år och en vecka lång. Kovariansmatrisen skattades från de dagliga slutkurserna. Minimivariansportföljens vikter ges i Tabell.

7 Risk och diversifiering Figur 2: Volatilitet av den portfölj som består av aktier samt endera kassan eller en av de två fonderna i Övning 7 a och b. Tabell AZN LME HM SDIA SKA Period Period Period Period Period Period Period Här finns en viss stabilitet vilket blir tydligt om man rangordnar vikterna: Tabell 2 AZN LME HM SDIA SKA Period Period Period Period Period Period Period

8 8 Finansmatematik II I Tabell 3 ges minimivariansportföljernas volatiliteter och volatiliteterna, σ, hos de portföljer som har samma vikter som minimivariansportföljen den föregående perioden, vilket alltså är den volatilitet man får om man tillämpar ovanstående metod. För jämförelsens skull har även σ afgx, volatiliteten hos Affärsvärldens generalindex, samt σ lika, volatiliteten hos den portfölj som har lika vikter av de 5 aktierna, angivis. Tabell 3 σ σ σ lika σ afgx Period Period Period Period Period Det framgår av tabellen att man inte behöver ha många aktier i en portfölj för att få ned risken på samma nivå som generalindex. Om man lägger till AFGX till portföljen och beräknar minimivariansportföljens vikter med data från Period -4, så får AFGX vikten 0.46 och de övriga 0.22, -0.05, 0.0, respektive Volatiliteten blir 0.8. Om man vill ta ned risken i en omfattande portfölj, så ska man naturligt nog vikta ned de stora och volatila bolagen Ericsson och Skandia relativt index. Observera att över halva portföljvärdet ligger i de två aktierna Skanska och AstraZeneca. För att få en uppfattning om vilka slumpvariationer i skattningarna man kan vänta sig ska vi använda följande resultat. Sats Antag att aktiepriserna utvecklas enligt Modell B i Kapitel 2. Skattningen ˆv = ˆP av vikterna i minimivariansportföljen är, då n, asymptotiskt normalfördelad med väntevärde och kovariansmatris v = P n (P v v T )/σ 2. Vi utelämnar beviset. Satsen stämmer nämligen dåligt med verkligheten. Jag är övertygad om att vikterna är asymptotiskt normalfördelade med ovanstående väntevärde och att variansen är av storleksordningen /n. Det är det exakta uttrycket för variansen som är fel. Som mått på den genomsnittliga avvikelsen ska vi använda d teor = m E ˆv v 2. Om vi antar att skattningarna har den asymptotiska fördelningen i ovanstående sats, så

9 Risk och diversifiering 9 d teor = nm trace(p v v T )/σ. 2 Här står trace för spåret av matrisen, d.v.s. summan av diagonalelementen. Vi ska skatta d teor med trace trace A ˆd teor =, nm A där A är antalet perioder, n periodlängden och trace t är spåret av skattningen av kovariansmatrisen under period t, t =,..., A. Den observerade medelavvikelsen mellan vikterna på varandra följande perioder är d obs = A A t= m ˆv (t + ) ˆv (t) 2, där ˆv (t) är skattningen av vikterna under period t. Om skattningarna har den asymptotiska fördelningen i ovanstående sats så är Övning 8 Visa detta. E(d obs )2 = 2d 2 teor. För att få jämförbara storheter (som mäter avståndet mellan skattade och verkliga vikter) ska vi därför sätta d obs = d obs / 2. I nedanstående tabell ges dessa avstånd för ett antal olika periodlängder. Tabell 4 Periodlängd Antal perioder ˆdteor d obs d obs / ˆd teor Det framgår att teorin är på den pessimistiska sidan. Man skulle kunna tänka sig att vikterna är en färskvara eftersom verkligheten ändrar sig med tiden och att man därför bör använda sig av förhållandevis korta observationsperioder. Detta framgå alltså inte av ovanstående tabell utan tvärtom är avvikelserna monotont avtagande funktioner av observationsperiodens längd. Om man jämför avvikelserna med medelvikten /m = 20%, så kommer man till följande: Slutsats Använd, om möjligt, observationer från flera år.

10 0 Finansmatematik II 4 Ombalansering av portföljen Om aktierna utvecklas på olika sätt, så kommer vikterna att ändras. För att bibehålla vikterna behöver portföljen därför balanseras om ibland. Övning 9 a) Tre aktier kostar idag 4.98, respektive 2.0 SEK. Bilda en portfölj värd SEK och som har vikterna 0.20, 0.35 respektive 0.45 i de tre aktierna (avrundningsfelet läggs i kassan som antas ha räntan 0). Hur många ska du köpa av respektive aktie. b) Antag att portföljen lämnas orörd till en tidpunkt då aktieprisena är 3.40, respektive Vilka vikter har de olika aktierna i portföljen? Hur många ska du köpa eller sälja av de olika aktierna för att återställa de ursprungliga vikterna? Om portföljen balanseras om vid tidpunkterna t 0 < t <..., så blir portföljens värde vid t n där P (t n ) = P (t 0 )Π n k=( + RP (t k, t k ) ), R P (t k, t k ) = P (t k) P (t k ) P (t k ) och där = i= V i (t k ) V i (t k +) P (t k ) R i (t k, t k ) = S i(t k ) S i (t k ). S i (t k ) = v i R i (t k, t k ) På grund av omviktningen kommer aktieinnehaven att ha diskontinuiteter vid omviktningstidpunkterna, därav höger- och vänstergränsvärdena ovan. Övning 0 Genomför detaljerna i ovanstående resonemang. Det finns emellertid skäl (bl.a. transaktionskostnader) att inte balansera om portföljen utan anledning och anledningen i detta fall är att portföljens volatilitet blir alltför stor. Ett alternativ till dagliga ombalanseringar är alltså att vänta till den första tidpunkt, t, för vilken där σ(t) σ ( + ɛ), σ(t) = v(t) Qv(t) och där ɛ är ett lämpligt valt positivt tal. I Figur 3 är kvoten σ(t)/σ plottad för exempelportföljen. Tidsperioden är Period 4 och vikterna är skattade med data från perioderna -3. Vikterna blev AZN LME HM SDIA SKA i=

11 Risk och diversifiering Figur 3: Portföljvolatilitet relativt minimivariansportföljens volatilitet Som störst är kvoten.0. I detta fall har därför den portfölj som ombalanseras dagligen och den portfölj som aldrig ombalanseras snarlik volatilitet. Att skillnaden mellan de två portföljerna är liten i detta fall framgår också av Figur 4 där en plot av utvecklingen av de två portföljerna samt Affärsvärldens generalindex visas. Den dagligen omviktade är heldragen. Medelavvikelsen mellan de två portföljerna är 2%. 5 Portföljutvecklingen som funktion av aktiernas utveckling Låt v,..., v m vara givna vikter. Betrakta en portfölj som från början har dessa vikter och som balanseras om vid tidpunkterna 0, t, 2 t, 3 t,... så att vikterna återställs. Vi ska i detta avsnitt härleda ett uttryck för portföljens värde som funktion av aktiernas värden under förutsättning att de senare utvecklas enligt Modell B och att t är litet. Låt n t = t och låt P n (t) beteckna portföljens värde vid tiden t. Då gäller enligt identiteten som visas i Övning 0 och n P n (t) = P (0) i= j= v j S j (i t) S j ((i ) t) S j (i t) S j ((i ) t) = eνj t+ ixj,

12 2 Finansmatematik II AFGX Figur 4: Utveckling av minimvariansportföljerna. där i X j = X j (i t) X j ((i ) t) = tz j (i) och där Z(i) = (Z (i),..., Z m (i)), i =,..., n är oberoende stokastiska variabler som alla är normalfördelade med väntevärde 0 och kovariansmatris Q. Därför e νj t+ ixj = + ν j t + tz j (i) + t 2 Z j(i) 2 + O( t 3 ) = där + (ν j + 2 σ j,j) t + tz j (i) + t 2 e j(i) + O( t 3 ), e j (i) = Z j (i) 2 σ j,j och e(i) = (e (i),..., e m (i)), i =,..., n är oberoende likafördelade stokastiska variabler med väntevärde 0 och E e(i) 2 <. Det följer att j= v j S j (i t) S j ((i ) t) = +(v ν + 2 v d) t+ tv Z(i)+ t 2 v e(i)+o( t 3 ) där ν = (ν,..., ν m ) och d = (σ,,..., σ m,m ). Därför även ln(p n (t)/p (0)) =

13 Risk och diversifiering 3 n i= ( (v ν + 2 v d) t + tv Z(i) + t 2 v e(i) 2 t(v Z(i))2 + O( t 3 ) ) = tv ν +v (X(t) X(0))+t t v d+ 2 2 Den stokastiska variabeln n v e(i) n 2 t (v Z(i)) 2 +O( t). i= i= har väntevärde 0 och varians t 2 n v e(i) i= ( t) 2 ne(v e()) 2 /4 = O( t) och går därför mot noll i sannolikhet då t 0. Variabeln har varians n 2 t (v Z(i)) 2 i= ( t) 2 nvar((v Z()) 2 )/4 = O( t) och konvergerar därför i sannolikhet mot sitt väntevärde t 2 v Qv. Vi har alltså visat första delen av följande sats. Sats 2 Om aktierna utvecklas enligt Modell B, så P n (t) P (t) i sannolikhet då t 0. Här är och P (t) = P (0)e tl ( S (t) S (0) )v... ( S m(t) S m (0) )vm L = m 2 ( v j σ j,j v Qv). j= Speciellt gäller att ln(p (t)/p (0)) är normalfördelad med väntevärde (v r 2 v Qv)t och varians v Qvt, där r j = σj,j 2 + ν j är de förväntade momentana avkastningarna. Fördelningspåståendet följer av att ln(p (t)/p (0)) = (v r v Qv)t + v X(t). 2

14 4 Finansmatematik II Figur 5: Utveckling av kontinuerligt och dagligt ombalanserade portföljer Observera att satsen gäller för godtyckliga vikter (och inte endast för minimivariansportföljen) och även då Q är singulär. Genom att ombalansera portföljen styr man alltså dess värde mot det geometriska medelvärdet av aktievärdena multiplicerat med e tl. Detta portföljvärde kan jämföras med den orörda portföljens värde P (0) ( S (t) v S (0) v S m (t) ) m S m (0) som är det aritmetiska medelvärdet. Utvecklingen av minimivariansportföljen med daglig ombalansering är plottad tillsammans med den kontinuerligt ombalanserade portföljen (heldragen) i Figur 5. Medelavståndet mellan de två portföljerna är 0.5%. Figur 6 visar plottar av den orörda portföljen och den kontinuerligt ombalanserade. Medelavståndet mellan portföljerna är 2%. HM föll 30% under dag 02 och den orörda portföljen var dag 0 överviktad i HM (0.24 i.st.f. 0.7). Detta är en väsentlig förklaring till att den orörda portföljen presterade sämre än de andra. 6 Gemensam korrelation I detta fall är σ i,i = σ 2 i och σ i,j = σ i σ j ρ för i j. Detta är i vissa fall en någorlunda realistisk modell för vilken man kan få explicita och överblickbara uttryck för bl.a. minimivariansportföljens vikter och varians. Förutsatt att inte alla korrelationer är lika har denna modell ett systematiskt fel. Å andra sidan tycks slumpfelet bli mindre. Vi ska se att för vår exempelportfölj FEM AKTIER gå det inte att avgöra vilken av de två metoderna

15 Risk och diversifiering Kont.omb Figur 6: Utveckling av orörd och kontinuerligt omviktad portfölj (gemensam respektive allmänn korrelation) som ger bäst skattningar av minimivariansportföljens vikter. Detsamma gäller betaportföljens vikter i Kapitel 5. Vi ska börja med fallet σ i = för i =,..., m och skriva Q 0 för kovariansmatrisen i detta fall. Låt I stå för identitetsmatrisen och J för den matris vars samtliga element är. Då gäller Q 0 = ( ρ)i + ρj och därför Q 0 = ( ρ) (I + ρ ρ J). Övning a) Visa att x Q 0 x = m( ρ)v(x) + m( + (m )ρ) x 2, där v(x) = m m i= (x i x) 2. b) Visa att Q 0 (och därmed Q) är strikt positiv definit om och endast om m < ρ <. Vi ska i fortsättningen förutsätta att villkoret i b) är uppfyllt. Övning 2 a) Visa att J 2 = mj. b) Verifiera att

16 6 Finansmatematik II Q 0 = ( ρ) ρ (I κj) där κ = + (m )ρ. Vi släpper nu restriktionen σ i = och betraktar allmänna standardavvikelser. Låt S beteckna diagonalmatrisen med elementen σ,..., σ m. Då gäller Övning 3 Visa att Q = SQ 0 S och därför Q = S Q 0 S. (Q x) i = (x i κ σ i ( ρ) σ i j= x j σ j ). Det följer att minimivariansportföljen har vikterna v i = σ 2 ( κ σ i ( ρ) σ i j= σ j ). Ett sätt att beräkna dessa vikter och volatiliteten ges i nästa övning. Övning 4 Sätt w i = σ i ( σ i κ j= σ j ). Visa att v i = w i / m j= w j och σ 2 = ( ρ)/ m j= w j. Vi ska nu använda denna modell till att skatta minimivariansportföljens vikter för FEM AKTIER med data från Period -4. Övning 5 Skatta den gemensamma korrelationen med medelvärdet av korrelationerna i Tabell 6 i Kapitel 2 och beräkna minimivariansportföljens vikter och volatilitet. Svar: ρ = Vikter: 0.30, 0.04, 0.0, 0.05, 0.5. Volatilitet: Skillnaden mellan dessa vikter och vikterna i understa raden i Tabell är -0.04, -0.0, -0.02, 0.05, Den senare portföljen har volatiliteten Medelavvikelsen mellan de två skattningarna av vikterna är d ( 0.04) = = Att döma av Tabell 4 kan man vänta sig att skattningsfelet är ungefär / (Faktorn /3 eftersom det teoretiska värdet är c:a 3 gånger för stort.) Det följer att vi inte kan avgöra vilken av de två skattningarna som ligger närmast minimivariansportföljen. Modellen med gemensam korrelation ger alltså mycket bra resultat i detta fall. Om man förenklar modellen ytterligare och antar att ρ = 0, så får man vikterna (0.27, 0., 0.5, 0.2, 0.36) och d = Denna skattning går alltså att skilja från de andra två. De tre portföljerna har dock liknande karaktär vilket framgår om man rangordnar portföljernas vikter.

17 Risk och diversifiering 7 Svar till övningarna 4 a) v i = σ 2 i /S, σ 2 = /S, där S = σ 2 + σ σ 2 3. b) (/3, /3, /3), σ 2 = 2/5. c) (3/7, 2/7, 2/7), σ 2 = 3/35. 5 Alternativ b. (volatiliteterna blir 3.5% respektive.8%) 7 a) (0.50, 0.42, 0.08),.7% b) (0.50, 2.53, -2.03), 8.9% c) 2.% 9 a) 406, 208, 233. b) 0.4, 0.42, Köp 803, -35 respektive 39 aktier.

Finansmatematik II Kapitel 5 Samvariation med marknaden

Finansmatematik II Kapitel 5 Samvariation med marknaden 1 STOCKHOLMS UNIVERSITET MATEMATISKA INSTITUTIONEN Avd. för Matematisk statistik Thomas Höglund Version 04 1 03 Finansmatematik II Kapitel 5 Samvariation med marknaden Finansmatematik II 1 Marknaden Med

Läs mer

Finansmatematik II Kapitel 4 Tillväxt och risk

Finansmatematik II Kapitel 4 Tillväxt och risk 1 STOCKHOLMS UNIVERSITET MATEMATISKA INSTITUTIONEN Avd för Matematisk statistik Thmas Höglund Versin 04 10 21 Finansmatematik II Kapitel 4 Tillväxt ch risk 2 Finansmatematik II Man går inte in på aktiemarknaden

Läs mer

120 110 S t : 100 100 90 80 Vi ska här betrakta ett antal portföljer som vid t = 0 är värda 100 SEK.

120 110 S t : 100 100 90 80 Vi ska här betrakta ett antal portföljer som vid t = 0 är värda 100 SEK. STOCKHOLMS UNIVERSITET MATEMATISKA INSTITUTIONEN Avd. för Matematisk statistik Thomas Höglund FINANSMATEMATIK I. KOMPLEMENT DAG 5. HANDELSSTRATEGIER Låt S t beteckna priset på en aktie vid tiden t. Vi

Läs mer

1. FLACK RÄNTA Med flack ränta ska vi här mena att räntan är densamma oavsett bindningstid

1. FLACK RÄNTA Med flack ränta ska vi här mena att räntan är densamma oavsett bindningstid STOCKHOLMS UNIVERSITET MATEMATISKA INSTITUTIONEN Avd. för Matematisk statistik Thomas Höglund Version 02 10 25. RÄNTA 1. FLACK RÄNTA Med flack ränta ska vi här mena att räntan är densamma oavsett bindningstid

Läs mer

STOCKHOLMS UNIVERSITET MATEMATISKA INSTITUTIONEN Avd. för Matematisk statistik Thomas Höglund Version 06 04 04. Finansmatematik II Kapitel 1

STOCKHOLMS UNIVERSITET MATEMATISKA INSTITUTIONEN Avd. för Matematisk statistik Thomas Höglund Version 06 04 04. Finansmatematik II Kapitel 1 1 STOCKHOLMS UNIVERSITET MATEMATISKA INSTITUTIONEN Avd. för Matematisk statistik Thomas Höglund Version 06 04 04 Finansmatematik II Kapitel 1 Ränta 2 Finansmatematik II 1 Rak ränta Med rak ränta ska vi

Läs mer

STOCKHOLMS UNIVERSITET MATEMATISKA INSTITUTIONEN Avd. för Matematisk statistik Thomas Höglund FINANSMATEMATIK I. ÖVNINGAR TILL DAG 3.

STOCKHOLMS UNIVERSITET MATEMATISKA INSTITUTIONEN Avd. för Matematisk statistik Thomas Höglund FINANSMATEMATIK I. ÖVNINGAR TILL DAG 3. STOCKHOLMS UNIVERSITET MATEMATISKA INSTITUTIONEN Avd. för Matematisk statistik Thomas Höglund FINANSMATEMATIK I. ÖVNINGAR TILL DAG 2. Luenberger: 2:1-5, 9, 11, 12. Övning 1. Du lånar 200000 kr i en bank

Läs mer

Rådgivning i praktiken

Rådgivning i praktiken Arturo Arques 08-7636964 070-2999372 arturo.arques@seb.se Rådgivning i praktiken 1 Personliga relationer Finansiell ekonomi 2 3 4 Enskilt viktigaste frågan: Överensstämmer kundens riskbenägenhet med den

Läs mer

Strukturakademin 10 Portföljteori

Strukturakademin 10 Portföljteori Strukturakademin 10 Portföljteori 1. Modern Portföljteori 2. Diversifiering 3. Korrelation 4. Diversifierbar samt icke-diversifierbar risk 5. Allokering 6. Fungerar diversifiering alltid? 7. Rebalansering/Omallokering

Läs mer

Stockholms Universitet Statistiska institutionen Termeh Shafie

Stockholms Universitet Statistiska institutionen Termeh Shafie Stockholms Universitet Statistiska institutionen Termeh Shafie TENTAMEN I GRUNDLÄGGANDE STATISTIK FÖR EKONOMER 2011-10-28 Skrivtid: 9.00-14.00 Hjälpmedel: Miniräknare utan lagrade formler eller text, bifogade

Läs mer

Del 2 Korrelation. Strukturakademin

Del 2 Korrelation. Strukturakademin Del 2 Korrelation Strukturakademin Innehåll 1. Implicita tillgångar 2. Vad är korrelation? 3. Hur fungerar sambanden? 4. Hur beräknas korrelation? 5. Diversifiering 6. Korrelation och Strukturerade Produkter

Läs mer

Lösningar till tentamen i Grundläggande nansmatematik. 21 december 2006 kl. 914

Lösningar till tentamen i Grundläggande nansmatematik. 21 december 2006 kl. 914 STOCKHOLMS UNIVERSITET MS 3290 MATEMATISKA INSTITUTIONEN TENTAMEN Avd. Matematisk statistik 21 december 2006 Lösningar till tentamen i Grundläggande nansmatematik 21 december 2006 kl. 914 Uppgift 1 Priset

Läs mer

Stokastiska processer

Stokastiska processer Stokastiska processer Fredrik Olsson, fredrik.olsson@iml.lth.se Avdelningen för produktionsekonomi Lunds tekniska högskola, Lunds universitet Dessa förläsningsanteckningar kommer att behandla diskreta

Läs mer

Vi ska här utgå ifrån att vi har en aktie och ska med denna som grund konstruera tre olika optionsportföljer.

Vi ska här utgå ifrån att vi har en aktie och ska med denna som grund konstruera tre olika optionsportföljer. STOCKHOLMS UNIVERSITET MATEMATISKA INSTITUTIONEN Avd för Matematisk statistik TH FINANSMATEMATIK I, HT 01 KOMPLEMENT DAG 12 Version 01 12 10 TRE OPTIONSSTRATEGIER Vi ska här utgå ifrån att vi har en aktie

Läs mer

TENTAMEN I SF1906 (f d 5B1506) MATEMATISK STATISTIK GRUNDKURS,

TENTAMEN I SF1906 (f d 5B1506) MATEMATISK STATISTIK GRUNDKURS, Avd. Matematisk statistik TENTAMEN I SF1906 (f d 5B1506) MATEMATISK STATISTIK GRUNDKURS, TORSDAGEN DEN 7 JUNI 2012 KL 14.00 19.00 Examinator:Gunnar Englund, 073 3213745 Tillåtna hjälpmedel: Formel- och

Läs mer

Påbyggnad/utveckling av lagen om ett pris Effektiv marknad: Priserna på en finansiell marknad avspeglar all relevant information

Påbyggnad/utveckling av lagen om ett pris Effektiv marknad: Priserna på en finansiell marknad avspeglar all relevant information Föreläsning 4 ffektiva marknader Påbyggnad/utveckling av lagen om ett pris ffektiv marknad: Priserna på en finansiell marknad avspeglar all relevant information Konsekvens: ndast ny information påverkar

Läs mer

Laboration 5: Regressionsanalys. 1 Förberedelseuppgifter. 2 Enkel linjär regression DATORLABORATION 5 MATEMATISK STATISTIK FÖR I, FMS 012, HT-08

Laboration 5: Regressionsanalys. 1 Förberedelseuppgifter. 2 Enkel linjär regression DATORLABORATION 5 MATEMATISK STATISTIK FÖR I, FMS 012, HT-08 LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK Laboration 5: Regressionsanalys DATORLABORATION 5 MATEMATISK STATISTIK FÖR I, FMS 012, HT-08 Syftet med den här laborationen är att du skall

Läs mer

Föreläsning 12: Regression

Föreläsning 12: Regression Föreläsning 12: Regression Matematisk statistik David Bolin Chalmers University of Technology Maj 15, 2014 Binomialfördelningen Låt X Bin(n, p). Vi observerar x och vill ha information om p. p = x/n är

Läs mer

Placeringsalternativ kopplat till tre strategier på G10 ländernas valutor

Placeringsalternativ kopplat till tre strategier på G10 ländernas valutor www.handelsbanken.se/mega Strategiobligation SHB FX 1164 Placeringsalternativ kopplat till tre strategier på G10 ländernas valutor Strategierna har avkastat 14,5 procent per år sedan år 2000 Låg korrelation

Läs mer

Nedan redovisas resultatet med hjälp av ett antal olika diagram (pkt 1-6):

Nedan redovisas resultatet med hjälp av ett antal olika diagram (pkt 1-6): EM-fotboll 2012 några grafer Sport är en verksamhet som genererar mängder av numerisk information som följs med stort intresse EM i fotboll är inget undantag och detta dokument visar några grafer med kommentarer

Läs mer

PTK Rådgivningstjänst funktion och hur råden tas fram

PTK Rådgivningstjänst funktion och hur råden tas fram Datum 2010-04-08 PTK Rådgivningstjänst funktion och hur råden tas fram 1. Bakgrund PTK Rådgivningstjänst hjälper dig att säkerställa att du har ett pensionssparande och ett försäkringsskydd som motsvarar

Läs mer

Prissättning av optioner

Prissättning av optioner TDB,projektpresentation Niklas Burvall Hua Dong Mikael Laaksonen Peter Malmqvist Daniel Nibon Sammanfattning Optioner är en typ av finansiella derivat. Detta dokument behandlar prissättningen av dessa

Läs mer

1 Duala problem vid linjär optimering

1 Duala problem vid linjär optimering Krister Svanberg, april 2012 1 Duala problem vid linjär optimering Detta kapitel handlar om två centrala teoretiska resultat för LP, nämligen dualitetssatsen och komplementaritetssatsen. Först måste vi

Läs mer

Del 6 Valutor. Strukturakademin

Del 6 Valutor. Strukturakademin Del 6 Valutor Strukturakademin Innehåll 1. Strukturerade produkter och valutor 2. Hur påverkar valutor? 3. Metoder att hantera valutor 4. Quanto Valutaskyddad 5. Composite Icke valutaskyddad 6. Lokal Icke

Läs mer

Veckoblad 3. Kapitel 3 i Matematisk statistik, Blomqvist U.

Veckoblad 3. Kapitel 3 i Matematisk statistik, Blomqvist U. Veckoblad 3 Kapitel 3 i Matematisk statistik, Blomqvist U. ya begrepp: likformig fördelning, hypergeometerisk fördelning, Hyp(, n, p), binomialfördelningen, Bin(n, p), och Poissonfördelningen, Po(λ). Standardfördelningarna

Läs mer

Riktlinjer för kapitalförvaltning inom Prostatacancerförbundet

Riktlinjer för kapitalförvaltning inom Prostatacancerförbundet 2014-08-21 Riktlinjer för kapitalförvaltning inom Prostatacancerförbundet Prostatacancerförbundet har ansvar för att bevara och förränta förbundets medel på ett försiktigt och ansvarsfullt sätt. Centralt

Läs mer

TT091A, TVJ22A, NVJA02 Pu, Ti. 50 poäng

TT091A, TVJ22A, NVJA02 Pu, Ti. 50 poäng Matematisk statistik Provmoment: Ladokkod: Tentamen ges för: TT091A, TVJ22A, NVJA02 Pu, Ti 7,5 högskolepoäng Namn: (Ifylles av student) Personnummer: (Ifylles av student) Tentamensdatum: 2012-05-29 Tid:

Läs mer

D 2. Placeringsstrategi. För Neuroförbundet och till Neuroförbundet anknutna stiftelser. Maj 2011

D 2. Placeringsstrategi. För Neuroförbundet och till Neuroförbundet anknutna stiftelser. Maj 2011 Placeringsstrategi För Neuroförbundet och till Neuroförbundet anknutna stiftelser Maj 2011 Reviderat 2014 med anledning av namnbyte, enda ändringen 1 INNEHÅLLSFÖRTECKNING INTRODUKTION 3 Bakgrund och syfte

Läs mer

Del A: Begrepp och grundläggande förståelse

Del A: Begrepp och grundläggande förståelse STOCKHOLMS UNIVERSITET FYSIKUM KH/CW/SS Tentamensskrivning i Experimentella metoder, 1p, för kandidatprogrammet i fysik, /5 01, 9-14 Införda beteckningar skall förklaras och uppställda ekvationer motiveras

Läs mer

Kapitel 3 Diskreta slumpvariabler och deras sannolikhetsfördelningar

Kapitel 3 Diskreta slumpvariabler och deras sannolikhetsfördelningar Sannolikhetslära och inferens II Kapitel 3 Diskreta slumpvariabler och deras sannolikhetsfördelningar 1 Diskreta slumpvariabler En slumpvariabel tilldelar tal till samtliga utfall i ett slumpförsök. Vi

Läs mer

Modern kapitalförvaltning kundanpassning med flexibla lösningar

Modern kapitalförvaltning kundanpassning med flexibla lösningar Modern kapitalförvaltning kundanpassning med flexibla lösningar (Från Effektivt Kapital, Vinell m.fl. Norstedts förlag 2005) Ju rikare en finansmarknad är på oberoende tillgångar, desto större är möjligheterna

Läs mer

TENTAMEN I STATISTIKENS GRUNDER 2

TENTAMEN I STATISTIKENS GRUNDER 2 STOCKHOLMS UNIVERSITET Statistiska institutionen Michael Carlson HT2012 TENTAMEN I STATISTIKENS GRUNDER 2 2012-11-20 Skrivtid: kl 9.00-14.00 Godkända hjälpmedel: Miniräknare, språklexikon Bifogade hjälpmedel:

Läs mer

Del 1 Volatilitet. Strukturakademin

Del 1 Volatilitet. Strukturakademin Del 1 Volatilitet Strukturakademin Innehåll 1. Implicita tillgångar 2. Vad är volatilitet? 3. Volatility trading 4. Historisk volatilitet 5. Hur beräknas volatiliteten? 6. Implicit volatilitet 7. Smile

Läs mer

Institutionen för Matematik TENTAMEN I LINJÄR ALGEBRA OCH NUMERISK ANALYS F1, TMA671 2009-01-16. DAG: Fredag 16 januari 2009 TID: 14.00-18.

Institutionen för Matematik TENTAMEN I LINJÄR ALGEBRA OCH NUMERISK ANALYS F1, TMA671 2009-01-16. DAG: Fredag 16 januari 2009 TID: 14.00-18. Institutionen för Matematik Göteborg TENTAMEN I LINJÄR ALGEBRA OCH NUMERISK ANALYS F, TMA67 9--6 DAG: Fredag 6 januari 9 TID: 4. - 8. SAL: V Ansvarig: Ivar Gustafsson, tel: 77 94 Förfrågningar: Ivar Gustafsson

Läs mer

AID:... LÖSNINGSFÖRSLAG TENTA 2013-05-03. Aktiedelen, uppdaterad 2014-04-30

AID:... LÖSNINGSFÖRSLAG TENTA 2013-05-03. Aktiedelen, uppdaterad 2014-04-30 LÖSNINGSFÖRSLAG TENTA 013-05-03. Aktiedelen, udaterad 014-04-30 Ugift 1 (4x0.5 = oäng) Definiera kortfattat följande begre a) Beta värde b) Security Market Line c) Duration d) EAR Se lärobok, oweroints.

Läs mer

Multiplicera 7med A λ 1 I från vänster: c 1 (Av 1 λ 1 v 1 )+c 2 (Av 2 λ 1 v 2 )+c 3 (Av 3 λ 1 v 3 ) = 0

Multiplicera 7med A λ 1 I från vänster: c 1 (Av 1 λ 1 v 1 )+c 2 (Av 2 λ 1 v 2 )+c 3 (Av 3 λ 1 v 3 ) = 0 Diagonalisering Anm. Begreppet diagonaliserbarhet är relevant endast för linjära avbildningar mellan rum av samma dimension, d.v.s. sådana som representeras av kvadratiska matriser. När vi i fortsättningen

Läs mer

Portföljstudie av bostadshyresfastigheter

Portföljstudie av bostadshyresfastigheter Portföljstudie av bostadshyresfastigheter En utvärdering av möjligheten att använda bostadshyresfastigheter som ett sätt att diversifiera en investeringsportfölj baserad på historisk avkastning för olika

Läs mer

SF1624 Algebra och geometri Lösningsförslag till modelltentamen DEL A

SF1624 Algebra och geometri Lösningsförslag till modelltentamen DEL A SF624 Algebra och geometri Lösningsförslag till modelltentamen DEL A () (a) Använd Gauss-Jordans metod för att bestämma lösningsmängden till ekvationssystemet 2x + 4x 2 + 2x 3 + 2x 4 = 2, 3x + 6x 2 x 3

Läs mer

Att beräkna t i l l v ä x t takter i Excel

Att beräkna t i l l v ä x t takter i Excel Att beräkna t i l l v ä x t takter i Excel Detta kapitel är en liten matematisk vägledning om att beräkna tillväxttakten i Excel. Här visas exempel på potenser och logaritmer och hur dessa funktioner beräknas

Läs mer

SF1901: Övningshäfte

SF1901: Övningshäfte SF1901: Övningshäfte 24 september 2013 Uppgifterna under rubriken Övning kommer att gås igenom under övningstillfällena. Uppgifterna under rubriken Hemtal är starkt rekommenderade och motsvarar nivån på

Läs mer

1 10 e 1 10 x dx = 0.08 1 e 1 10 T = 0.08. p = P(ξ < 3) = 1 e 1 10 3 0.259. P(η 2) = 1 P(η = 0) P(η = 1) = 1 (1 p) 7 7p(1 p) 6 0.

1 10 e 1 10 x dx = 0.08 1 e 1 10 T = 0.08. p = P(ξ < 3) = 1 e 1 10 3 0.259. P(η 2) = 1 P(η = 0) P(η = 1) = 1 (1 p) 7 7p(1 p) 6 0. Tentamen TMSB18 Matematisk statistik IL 091015 Tid: 08.00-13.00 Telefon: 036-10160 (Abrahamsson, Examinator: F Abrahamsson 1. Livslängden för en viss tvättmaskin är exponentialfördelad med en genomsnittlig

Läs mer

XACT Bull och XACT Bear. Så fungerar XACTs börshandlade fonder med hävstång

XACT Bull och XACT Bear. Så fungerar XACTs börshandlade fonder med hävstång XACT Bull och XACT Bear Så fungerar XACTs börshandlade fonder med hävstång 1 Så fungerar fonder med hävstång Den här broschyren är avsedd att ge en beskrivning av XACTs börshandlade fonder ( Exchange Traded

Läs mer

Riskbegreppet kopplat till långsiktigt sparande

Riskbegreppet kopplat till långsiktigt sparande Riskbegreppet kopplat till långsiktigt sparande Vad är risk? På de finansiella marknaderna är en vedertagen och accepterad definition av risk att den definieras som variation i placeringens avkastning.

Läs mer

AID:... Uppgift 1 (2 poäng) Definiera kortfattat följande begrepp. a) IRR b) APR c) Going concern d) APV. Lösningsförslag: Se Lärobok och/alt Google.

AID:... Uppgift 1 (2 poäng) Definiera kortfattat följande begrepp. a) IRR b) APR c) Going concern d) APV. Lösningsförslag: Se Lärobok och/alt Google. Notera att det är lösningsförslag. Inga utförliga lösningar till triviala definitioner och inga utvecklade svar på essä-typ frågor. Och, att kursen undervisas lite olika år från år. År 2013 mera från Kap

Läs mer

XACT Bull XACT Bear MARKNADSFÖRINGSMATERIAL

XACT Bull XACT Bear MARKNADSFÖRINGSMATERIAL XACT XACT Bear MARKNADSFÖRINGSMATERIAL Innehållsförteckning Fonder med hävstång...3 Fondernas placeringsstrategi...4 Hävstång...4 Daglig ombalansering...4 Fonderna skapar sin hävstång i terminsmarknaden...5

Läs mer

AID:... För definitioner se läroboken. För att få poäng krävs mer än att man bara skriver ut namnet på förkortningen.

AID:... För definitioner se läroboken. För att få poäng krävs mer än att man bara skriver ut namnet på förkortningen. Lösningsförslag aktiedelen Tenta augusti 11, 2014 Uppgift 1 (4 poäng) 2014-08-25 Definiera kortfattat följande begrepp a) CAPM b) WACC c) IRR d) Fria kassaflöden För definitioner se läroboken. För att

Läs mer

BIOSTATISTISK GRUNDKURS, MASB11 ÖVNING 7 (2015-04-29) OCH INFÖR ÖVNING 8 (2015-05-04)

BIOSTATISTISK GRUNDKURS, MASB11 ÖVNING 7 (2015-04-29) OCH INFÖR ÖVNING 8 (2015-05-04) LUNDS UNIVERSITET, MATEMATIKCENTRUM, MATEMATISK STATISTIK BIOSTATISTISK GRUNDKURS, MASB ÖVNING 7 (25-4-29) OCH INFÖR ÖVNING 8 (25-5-4) Aktuella avsnitt i boken: 6.6 6.8. Lektionens mål: Du ska kunna sätta

Läs mer

HUR KAN JAG ANVÄNDA ETF:ER SOM ETT KOMPLEMENT TILL MIN VANLIGA AKTIEPORTFÖLJ?

HUR KAN JAG ANVÄNDA ETF:ER SOM ETT KOMPLEMENT TILL MIN VANLIGA AKTIEPORTFÖLJ? HUR KAN JAG ANVÄNDA ETF:ER SOM ETT KOMPLEMENT TILL MIN VANLIGA AKTIEPORTFÖLJ? OM ETFSVERIGE.SE Lanserades i april 2009 ETFSverige.se är Sveriges första innehållssajt som enbart fokuserar på Exchange Traded

Läs mer

Linjära ekvationssystem. Avsnitt 1. Vi ska lära oss en metod som på ett systematiskt sätt löser alla linjära ekvationssystem. Linjära ekvationssystem

Linjära ekvationssystem. Avsnitt 1. Vi ska lära oss en metod som på ett systematiskt sätt löser alla linjära ekvationssystem. Linjära ekvationssystem Avsnitt Linjära ekvationssystem Elementära radoperationer Gausseliminering Exempel Räkneschema Exempel med exakt en lösning Exempel med parameterlösning Exempel utan lösning Slutschema Avläsa lösningen

Läs mer

LINKÖPINGS UNIVERSITET EXAM TAMS 79 / TEN 1

LINKÖPINGS UNIVERSITET EXAM TAMS 79 / TEN 1 LINKÖPINGS UNIVERSITET Matematiska institutionen EXAM TAMS 79 / TEN 1 augusti 14, klockan 8.00-12.00 Examinator: Jörg-Uwe Löbus Tel: 28-1474) Tillåtna hjälpmedel är en räknare, formelsamling i matematisk

Läs mer

FlexLiv Överskottslikviditet

FlexLiv Överskottslikviditet FlexLiv Överskottslikviditet 2 5 Förvaltning av överskottslikviditet Regelverket för fåmansföretag i Sverige begränsar nyttan av kapitaluttag genom lön och utdelning. Många företagare väljer därför att

Läs mer

17.10 Hydrodynamik: vattenflöden

17.10 Hydrodynamik: vattenflöden 824 17. MATEMATISK MODELLERING: DIFFERENTIALEKVATIONER 20 15 10 5 0-5 10 20 40 50 60 70 80-10 Innetemperaturen för a =1, 2och3. Om vi har yttertemperatur Y och startinnetemperatur I kan vi med samma kalkyl

Läs mer

Tentamensgenomgång och återlämning: Måndagen 9/6 kl12.00 i B413. Därefter kan skrivningarna hämtas på studentexpeditionen, plan 7 i B-huset.

Tentamensgenomgång och återlämning: Måndagen 9/6 kl12.00 i B413. Därefter kan skrivningarna hämtas på studentexpeditionen, plan 7 i B-huset. Statistiska institutionen Nicklas Pettersson Skriftlig tentamen i Finansiell Statistik Grundnivå 7.5hp, VT2014 2014-05-26 Skrivtid: 9.00-14.00 Hjälpmedel: Godkänd miniräknare utan lagrade formler eller

Läs mer

Riskanalys och riskhantering i växtodlingsföretag

Riskanalys och riskhantering i växtodlingsföretag Riskanalys och riskhantering i växtodlingsföretag Alnarp 2014-11-19 1 Finansiär Vilka vi är som genomfört projektet Carl Johan Nilsson, HIR Malmöhus Patrick Petersson, HIR Malmöhus Håkan Rosenqvist 2 Varför

Läs mer

Del 18 Autocalls fördjupning

Del 18 Autocalls fördjupning Del 18 Autocalls fördjupning Innehåll Autocalls... 3 Autocallens beståndsdelar... 3 Priset på en autocall... 4 Känslighet för olika parameterar... 5 Avkastning och risk... 5 del 8 handlade om autocalls.

Läs mer

NASDAQ OMX ETF-EVENT 8 MARS

NASDAQ OMX ETF-EVENT 8 MARS NASDAQ OMX ETF-EVENT 8 MARS OM ETFSVERIGE.SE Lanserades i april 2009 ETFSverige.se är Sveriges första innehållssajt som enbart fokuserar på Exchange Traded Funds ( ETF/ETF:er ) eller på svenska börshandlade

Läs mer

Upprepade mätningar och tidsberoende analyser. Stefan Franzén Statistiker Registercentrum Västra Götaland

Upprepade mätningar och tidsberoende analyser. Stefan Franzén Statistiker Registercentrum Västra Götaland Upprepade mätningar och tidsberoende analyser Stefan Franzén Statistiker Registercentrum Västra Götaland Innehåll Stort område Simpsons paradox En mätning per individ Flera mätningar per individ Flera

Läs mer

Approximation av funktioner

Approximation av funktioner Vetenskapliga beräkningar III 8 Kapitel Approximation av funktioner Vi skall nu övergå till att beskriva, hur man i praktiken numeriskt beräknar funktioner I allmänhet kan inte ens elementära funktioner

Läs mer

Ditt sparande är din framtid

Ditt sparande är din framtid Ditt sparande är din framtid 1 Välkommen till Skandias investeringsguide Det kanske viktigaste beslut du har att fatta gäller ditt långsiktiga sparande. Både på kort och lång sikt. Därför är det värt att

Läs mer

Stokastisk geometri. Lennart Råde. Chalmers Tekniska Högskola och Göteborgs Universitet

Stokastisk geometri. Lennart Råde. Chalmers Tekniska Högskola och Göteborgs Universitet Stokastisk geometri Lennart Råde Chalmers Tekniska Högskola och Göteborgs Universitet Inledning. I geometrin studerar man geometriska objekt och deras inbördes relationer. Exempel på geometriska objekt

Läs mer

a) Bestäm sannolikheten att en slumpmässigt vald komponent är defekt.

a) Bestäm sannolikheten att en slumpmässigt vald komponent är defekt. Tentamen i Matematisk statistik, S0001M, del 1, 007-10-30 1. En viss typ av komponenter tillverkas av en maskin A med sannolikheten 60 % och av en maskin B med sannolikheten 40 %. För de komponenter som

Läs mer

GRUNDLÄGGANDE STATISTIK FÖR EKONOMER

GRUNDLÄGGANDE STATISTIK FÖR EKONOMER Statistiska institutionen Annika Tillander TENTAMEN GRUNDLÄGGANDE STATISTIK FÖR EKONOMER 2015-04-23 Skrivtid: 16.00-21.00 Hjälpmedel: Godkänd miniräknare utan lagrade formler eller text, samt bifogade

Läs mer

Kortaste Ledningsdragningen mellan Tre Städer

Kortaste Ledningsdragningen mellan Tre Städer Kortaste Ledningsdragningen mellan Tre Städer Tre städer A, B och C, belägna som figuren till höger visar, ska förbindas med fiberoptiska kablar. En så kort ledningsdragning som möjligt vill uppnås för

Läs mer

Riskpremien på den svenska aktiemarknaden. Studie mars 2009

Riskpremien på den svenska aktiemarknaden. Studie mars 2009 Riskpremien på den svenska aktiemarknaden Studie mars 2009 Innehåll Introduktion 1 Sammanfattning av årets studie 1 Marknadsriskpremien på den svenska aktiemarknaden 3 Undersökningsmetodik 3 Marknadsriskpremien

Läs mer

Delårsrapport 1 januari - 30 september 1998

Delårsrapport 1 januari - 30 september 1998 Delårsrapport 1 januari - 30 september 1998 Börsportföljens värde ökade med två procent per den 30 oktober medan generalindex var oförändrat. Substansvärdet per aktie och KVB 1 den 30 oktober uppgick till

Läs mer

Riskpremien på den svenska aktiemarknaden

Riskpremien på den svenska aktiemarknaden Riskpremien på den svenska aktiemarknaden Mars 2015 Rapporten presenterar marknadsriskpremien och andra kritiska komponenter som krävs för att uppskatta avkastningskravet på den svenska aktiemarknaden.

Läs mer

www.pwc.se/riskpremiestudien Riskpremien på den svenska aktiemarknaden

www.pwc.se/riskpremiestudien Riskpremien på den svenska aktiemarknaden www.pwc.se/riskpremiestudien Riskpremien på den svenska aktiemarknaden Studie mars 2012 Riskpremien på den svenska aktiemarknaden Innehåll Introduktion... 3 Sammanfattning av årets studie... 4 Undersökningsmetodik...

Läs mer

Matematisk statistik KTH. Formel- och tabellsamling i Matematisk statistik, grundkurs

Matematisk statistik KTH. Formel- och tabellsamling i Matematisk statistik, grundkurs Matematisk statistik KTH Formel- och tabellsamling i Matematisk statistik, grundkurs Varterminen 2005 . Kombinatorik ( ) n = k n! k!(n k)!. Tolkning: ( n k mängd med n element. 2. Stokastiska variabler

Läs mer

TMV166/186 Linjär Algebra M/TD 2011/2012 Läsvecka 1. Omfattning. Innehåll 2012-01-20. Lay, kapitel 1.1-1.9, Linjära ekvationer i linjär algebra

TMV166/186 Linjär Algebra M/TD 2011/2012 Läsvecka 1. Omfattning. Innehåll 2012-01-20. Lay, kapitel 1.1-1.9, Linjära ekvationer i linjär algebra TMV166/186 Linjär Algebra M/TD 2011/2012 Läsvecka 1 Omfattning Lay, kapitel 1.1-1.9, Linjära ekvationer i linjär algebra Innehåll Olika aspekter av linjära ekvationssystem 1. skärning mellan geometriska

Läs mer

2015-02-12. Dnr Kst 2015/74 Verksamhetsberättelse 2014 för kommunens finansförvaltning inklusive kapitalförvaltningen

2015-02-12. Dnr Kst 2015/74 Verksamhetsberättelse 2014 för kommunens finansförvaltning inklusive kapitalförvaltningen TJÄNSTESKRIVELSE 1 (6) 2015-02-12 Kommunstyrelsen Dnr Kst 2015/74 Verksamhetsberättelse 2014 för kommunens finansförvaltning inklusive kapitalförvaltningen Förslag till beslut Kommunstyrelseförvaltningens

Läs mer

Linjär algebra med tillämpningar, lab 1

Linjär algebra med tillämpningar, lab 1 Linjär algebra med tillämpningar, lab 1 Innehåll Per Jönsson Fakulteten för Teknik och Samhälle, 2013 Uppgifterna i denna laboration täcker kapitel 1-3 i läroboken. Läs igenom motsvarande kapitel. Sitt

Läs mer

Datorlaboration :: 1 Problembeskrivning ::

Datorlaboration :: 1 Problembeskrivning :: Datorlaboration :: Ett hyrbilsföretags problem Laborationen går ut på att lösa Labbuppgift 1 till 5. Laborationen redovisas individuellt genom att skicka laborationens Mathematicafil till Mikael Forsberg

Läs mer

F11 Två stickprov. Måns Thulin. Uppsala universitet thulin@math.uu.se. Statistik för ingenjörer 26/2 2013 1/11

F11 Två stickprov. Måns Thulin. Uppsala universitet thulin@math.uu.se. Statistik för ingenjörer 26/2 2013 1/11 1/11 F11 Två stickprov Måns Thulin Uppsala universitet thulin@math.uu.se Statistik för ingenjörer 26/2 2013 2/11 Dagens föreläsning Konfidensintervall när man har ihopparade stickprov Att väga samman skattningar

Läs mer

Placeringspolicy - Riktlinjer för kapitalförvaltning

Placeringspolicy - Riktlinjer för kapitalförvaltning 2015-05-20 Placeringspolicy - Riktlinjer för kapitalförvaltning Prostatacancerförbundet har ansvar för att bevara och förränta förbundets medel på ett försiktigt och ansvarsfullt sätt. Centralt för att

Läs mer

Börshandlade fonder - ETF

Börshandlade fonder - ETF Börshandlade fonder - Agenda Förenar fondens & aktiens fördelar. Olika typer av :er Rak indexföljare och Indexföljare med hävstång. Fysisk, syntetisk eller terminsbaserad replikering. Vad skiljer en från

Läs mer

Fonden regleras i enlighet med den norska lagen om värdepappersfonder av den 25 november 2011 (lov om verdipapirfond, vpfl ).

Fonden regleras i enlighet med den norska lagen om värdepappersfonder av den 25 november 2011 (lov om verdipapirfond, vpfl ). Fondbestämmelser för värdepappersfonden SKAGEN Global 1 Värdepappersfondens och förvaltningsbolagets namn Värdepappersfonden SKAGEN Global förvaltas av förvaltningsbolaget SKAGEN AS (SKAGEN). Fonden är

Läs mer

Miniprojektuppgift i TSRT04: Mobiltelefontäckning

Miniprojektuppgift i TSRT04: Mobiltelefontäckning Miniprojektuppgift i TSRT04: Mobiltelefontäckning 19 augusti 2015 1 Uppgift Enligt undersökningen Svenskarna och internet 2013 (Stiftelsen för Internetinfrastruktur) har 99 % av alla svenskar i åldern

Läs mer

STOCKHOLMS UNIVERSITET MATEMATISKA INSTITUTIONEN Avd. Matematisk statistik, GA 08 januari 2015. Lösningar

STOCKHOLMS UNIVERSITET MATEMATISKA INSTITUTIONEN Avd. Matematisk statistik, GA 08 januari 2015. Lösningar STOCKHOLMS UNIVERSITET MT712 MATEMATISKA INSTITUTIONEN LÖSNINGAR Avd. Matematisk statistik, GA 8 januari 215 Lösningar Tentamen i Livförsäkringsmatematik I, 8 januari 215 Uppgift 1 a) Först konstaterar

Läs mer

c S X Värdet av investeringen visas av den prickade linjen.

c S X Värdet av investeringen visas av den prickade linjen. VFTN01 Fastighetsvärderingssystem vt 2011 Svar till Övning 2011-01-21 1. Förklara hur en köpoptions (C) värde förhåller sig till den underliggande tillgångens (S) värde. a. Grafiskt: Visa sambandet, märk

Läs mer

Algebra & Ekvationer. Svar: Sammanfattning Matematik 2

Algebra & Ekvationer. Svar: Sammanfattning Matematik 2 Algebra & Ekvationer Algebra & Ekvationer Parenteser En parentes När man multiplicerar en term med en parentes måste man multiplicera båda talen i parentesen. Förenkla uttrycket 42 9. 42 9 4 2 4 9 8 36

Läs mer

Linjär Algebra, Föreläsning 8

Linjär Algebra, Föreläsning 8 Linjär Algebra, Föreläsning 8 Tomas Sjödin Linköpings Universitet Linjärkombinationer (repetition) Låt v 1, v 2,..., v n vara vektorer i ett vektorrum V. Givet skalärer λ 1, λ 2,..., λ n R så kallas λ

Läs mer

Den egenfinansierade utlåningen till de kommunala bolagen uppgick till 621,2 mkr vid årsskiftet med följande uppdelning:

Den egenfinansierade utlåningen till de kommunala bolagen uppgick till 621,2 mkr vid årsskiftet med följande uppdelning: Oskarshamns kommun Datum Tjänsteställe/handläggare 2006-01-30 ledningskontoret Ekonomiavdelningen styrelsen FINANSIELL RAPPORT 2005-12-31 Sammanfattning ens finansiella tillgångar var bokförda till ett

Läs mer

Historisk utveckling. Geografisk fördelning

Historisk utveckling. Geografisk fördelning Oak Capital erbjuder för närvarande en trendanpassad investering med exponering mot tre mycket välrenomerade fonder och finns både som kapitalskydd och hävstångscertifikat. Placeringen bygger som bekant

Läs mer

Placeringspolicy Stiftelsen Demensfonden

Placeringspolicy Stiftelsen Demensfonden 1 Placeringspolicy Stiftelsen Demensfonden 1. Syfte med placeringspolicyn I vilka tillgångar och med vilka limiter kapitalet får placeras Hur förvaltningen och dess resultat ska rapporteras Hur ansvaret

Läs mer

Livbolagens prestation

Livbolagens prestation fm Försäkringsmatematik Livbolagens prestation Återbäringsräntornas utveckling 1986-2012 Meryem Savas 2012-02-10 Innehållsförteckning Indelning... 2 Avkastningsskatt... 2 Pensionsförsäkring... 3 Besparingsperiod:

Läs mer

Del A: Begrepp och grundläggande förståelse

Del A: Begrepp och grundläggande förståelse STOCKHOLMS UNIVERSITET FYSIKUM K.H./C.F./C.W. Tentamensskrivning i Experimentella metoder, 1p, för kandidatprogrammet i fysik, 18/6 013, 9-14. Införda beteckningar skall förklaras och uppställda ekvationer

Läs mer

Fö relä sning 1, Kö system 2015

Fö relä sning 1, Kö system 2015 Fö relä sning 1, Kö system 2015 Här följer en kort sammanfattning av det viktigaste i Föreläsning 1. Kolla kursens hemsida minst en gång per vecka. Övningar kommer att läggas ut där, skriv ut dem och ha

Läs mer

Del 13 Andrahandsmarknaden

Del 13 Andrahandsmarknaden Del 13 Andrahandsmarknaden Strukturakademin Strukturakademin Srukturinvest Fondkommission 1 Innehåll 1. Produktens värde på slutdagen 2. Produktens värde under löptiden 3. Köp- och säljspread 4. Obligationspriset

Läs mer

Linjär algebra på några minuter

Linjär algebra på några minuter Linjär algebra på några minuter Linjära ekvationssystem Ekvationssystem: { Löses på matrisform: ( ) ( ) I det här fallet finns en entydig lösning, vilket betyder att determinanten av koefficientmatrisen

Läs mer

MATEMATIK FÖR KURS B (NV/AB-boken och B-boken version 1)

MATEMATIK FÖR KURS B (NV/AB-boken och B-boken version 1) NATUR OCH KULTURS PROV VÅRTERMINEN 1997 MATEMATIK FÖR KURS B (NV/AB-boken och B-boken version 1) Provets omfattning: t o m kapitel 5.6 i Matematik 2000 NV kurs AB. Provets omfattning: t o m kapitel 3.5

Läs mer

SF1635, Signaler och system I

SF1635, Signaler och system I SF65, Signaler och system I Tentamen tisdagen 4--4, kl 8 Hjälpmedel: BETA Mathematics Handbook. Formelsamling i Signalbehandling rosa), Formelsamling för Kursen SF65 ljusgrön). Obs : Obs : Obs : Obs 4:

Läs mer

LÖSNINGSFÖRSLAG Tentamen Finansiering I (FÖ3006) 22/2 2013

LÖSNINGSFÖRSLAG Tentamen Finansiering I (FÖ3006) 22/2 2013 LÖSNINGSFÖRSLAG Tentamen Finansiering I (FÖ006) 22/2 20 Hjälpmedel: Räknare samt formler på sidan. Betyg: G = p, VG = 9 p Maxpoäng 25 p OBS: Glöm ej att redovisa dina delberäkningar som har lett till ditt

Läs mer

Del 4 Emittenten. Strukturakademin

Del 4 Emittenten. Strukturakademin Del 4 Emittenten Strukturakademin Innehåll 1. Implicita risker och tillgångar 2. Emittenten 3. Obligationer 4. Prissättning på obligationer 5. Effekt på villkoren 6. Marknadsrisk och Kreditrisk 7. Implicit

Läs mer

Slutliga Villkor avseende lån 5048

Slutliga Villkor avseende lån 5048 Slutliga Villkor avseende lån 5048 Lån 5048 emitteras under Svenska Handelsbanken AB:s (publ) MTN-program. Fullständig information om Handelsbanken och erbjudandet kan endast fås genom Grundprospektet

Läs mer

Tentamensinstruktioner. Vid skrivningens slut

Tentamensinstruktioner. Vid skrivningens slut Matematiska institutionen Optimeringslära TENTAMEN TAOP14/TEN1 OPTIMERINGSLÄRA GRUNDKURS för I och Ii Datum: 13:e januari 2011 Tid: 8.00 13.00 Hjälpmedel: Kurslitteratur av Lundgren m fl: Optimeringslära

Läs mer

y z 3 = 0 z 5 16 1 i )

y z 3 = 0 z 5 16 1 i ) ATM-Matematik Mikael Forsberg 734-433 Sören Hector 7-46686 Rolf Källström 7-6939 Ingenjörer, Lantmätare och Distansstuderande, mfl. Linjär Algebra ma4a 4 3 Skrivtid: 9:-4:. Inga hjälpmedel. Lösningarna

Läs mer

FlexLiv Den nya pensionsprodukten

FlexLiv Den nya pensionsprodukten FlexLiv Den nya pensionsprodukten CATELLA FLEXLIV Den nya pensionsprodukten FlexLiv den nya pensionsprodukten ger dig de bästa egenskaperna från både traditionellt livsparande och aktiv fondförsäkring.

Läs mer

Trend. Granit Trend 50 / Granit Trend 100

Trend. Granit Trend 50 / Granit Trend 100 Trend Granit Trend 50 / Granit Trend 100 Fonderna investerar i olika aktieoch obligationsfonder enligt en förvaltningsmodell som syftar till att fånga upp positiva trender i marknaden och undvika nedgångar.

Läs mer

Finansmarknadernas utveckling och den finansiella stabiliteten om hedgefonder

Finansmarknadernas utveckling och den finansiella stabiliteten om hedgefonder Finansmarknadernas utveckling och den finansiella stabiliteten om hedgefonder KENT JANÉR VD för Nektar Asset Management, en marknadsneutral hedge fond som arbetar med stort inslag av makroekonomiska bedömningar.

Läs mer

LULEÅ TEKNISKA UNIVERSITET Ämneskod S0002M, MAM801, IEK600,IEK309 Institutionen för matematik Datum 2009-12-17 Skrivtid 0900 1400

LULEÅ TEKNISKA UNIVERSITET Ämneskod S0002M, MAM801, IEK600,IEK309 Institutionen för matematik Datum 2009-12-17 Skrivtid 0900 1400 LULEÅ TEKNISKA UNIVERSITET Ämneskod S0002M, MAM801, IEK600,IEK309 Institutionen för matematik Datum 2009-12-17 Skrivtid 0900 1400 Tentamen i: Statistik A1, 15 hp Antal uppgifter: 6 Krav för G: 13 Lärare:

Läs mer

Fondallokering 2014-02-17

Fondallokering 2014-02-17 Fondallokering 2014-02-17 1 Stellum Låg... 2 1.1 Förvaltningsmål och riskprofil... 2 1.2 Värdering och jämförelseindex... 2 1.3 Aktuell fondallokering... 2 1.4 Portföljens prestanda jämfört med jämförelseindex...

Läs mer