Tentamensgenomgång och återlämning: Måndagen 24/2 kl16.00 i B497. Därefter kan skrivningarna hämtas på studentexpeditionen, plan 7 i B-huset.

Storlek: px
Starta visningen från sidan:

Download "Tentamensgenomgång och återlämning: Måndagen 24/2 kl16.00 i B497. Därefter kan skrivningarna hämtas på studentexpeditionen, plan 7 i B-huset."

Transkript

1 Statistiska institutionen Nicklas Pettersson Skriftlig tentamen i Finansiell Statistik Grundnivå 7.5hp, HT Skrivtid: Hjälpmedel: Godkänd miniräknare utan lagrade formler eller text, samt bifogade tabeller och formelblad. Tentamensgenomgång och återlämning: Måndagen 24/2 kl16.00 i B497. Därefter kan skrivningarna hämtas på studentexpeditionen, plan 7 i B-huset. Tentamen består av sex uppgifter som kan ge totalt 60 poäng. Använd endast institutionens papper för dina svar och lösningar. Betygskriterier: A: poäng B: poäng C: poäng D: poäng E: poäng F: 0-29 poäng Lösningsförslag till denna tentamen läggs upp på kursens mondosida den 12/2. LYCKA TILL! 1

2 Uppgift 1 (8 poäng) Använd högst ett A4 för att beskriva tillvägagångssättet för att dekomponera en tidsserie med kvartalsdata för försäljning i en konjunkturberoende bransch. Se NCT föreläsning 5 (inklusive kalkylblad) Uppgift 2 (14 poäng) En placering övervägs i en tillgång A (till en kostnad av 120 kr per andel) för vilken vi erhållit uppgifterna (per andel) baserat på de senaste fyra åren (om vardera ca 250 handelsdagar) i tabell 2.1. I alla deluppgifter antas att historisk utveckling gäller också för er aktuella placeringshorisont (ett år). Tabell 2.1 Statistiska moment för tillgång A Moment Medelvärde Varians Skewness Kurtosis Tillgång A a. (2 poäng) Testa om fördelningen för A verkar vara normalfördelad. Utför ett Jarque-Bera test. Antag signifikansnivå 5%. Ur tabellen (7a) erhålls då med υ = 2 frihetsgrader kritiskt värde Förkasta således H0: Normalfördelning, dvs skevhet=0 och kurtosis=3 till förmån för H1: ej normalfördelning om observerat värde [ på teststatistikan ] [ är större än kritiskt ] tabellvärde. Då observerat ˆτ värde är JB = n 2 + (ˆκ 3)2.12 = (2.78 3)2 = < kan vi således ej förkasta H0, dvs vi finner inte stöd att fördelningen ej är normalfördelad. b. (2 poäng) Oavsett resultatet i a., antag att fördelningen för värdet av tillgång A är normalfördelad. Vad är sannolikheten att tillgången ökat i värde med 5% när den realiseras? Eftersom vi antas ha en normalfördelad variabel kan vi räkna på sannolikheten att kursen har ökat med 5% eller mer som sannolikheten P (X > = 126) P ( X > ) P (Z > 2.16) = = dvs ca 1.5%. c. (2 poäng) Antag att ytterligare ett tillgångsslag B övervägs (till en kostnad av 60 kr per andel) för vilket vi erhållit uppgifter (per andel) i tabell 2.2. Antag att korrelationen mellan de två tillgångsslagen A och B är -0,30. Vad är variansen för värdet av en portfölj som kostar kr, som värdemässigt är viktad lika mellan A och B? Variansen för en portfölj (P) som innehåller A för (dvs a=250 andelar) och B för (dvs b=500 andelar) kan skrivas som V (P ) = V (aa + bb) = a 2 V (A) + b 2 V (B) + 2abCov(A, B) = a 2 V (A) + b 2 V (B) + 2abρ A,B SD(A)SD(B) =

3 Tabell 2.2 Statistiska moment för tillgång B Moment Medelvärde Varians Skewness Kurtosis Tillgång B = d. (4 poäng) Hur skall portföljen i c. viktas om för att dess varians skall minimeras? Här underlättas beräkningen av om vi antar att en andel av tillgång A kan delas i två delar A med variansen V(A )=V(.5A)=.25V(A)= För att minimera variansen i en optimal portfölj (Q) sätter vi sedan vikterna för A och B till w A + w B = 1 och den totala varians V (Q) = V (w A A + w B B) = wa 2 V (A ) + wb 2 V (B) + 2w A w BCov(A, B), där Cov(A, B) = ρ A,BSD(A )SD(B) = / = 1.00 Om vi deriverar uttrycket med avseende på w A erhålls V (Q)/ w A = 2w A V (A ) 2(1 w A )V (B) + 2(1 w A )Cov(A, B). Detta sätts lika med noll och sedan löses w A ut V (B) Cov(A som w A =,B) = 5.16 ( 1.00) = Således skall vi ha en portfölj om 66% A och 34% B, dvs 60000/60*.66=660 andelar A (= 330 andelar A) och V (A )+V (B) 2Cov(A,B) ( 1.00) 60000/60*.34=340 andelar B. Vi får då variansen V (Q) = = e. (4 poäng) Diskutera vad som talar för eller emot att värdet av portföljen med tillgång A är stationär. Enligt uppgiften gäller historisk utveckling också för aktuella placeringshorisont. Detta antyder att väntevärdet och variansen skulle kunna vara långsiktigt stabila. Kovariansen är svårare att uttala sig om. Vi vet dock att fördelningen baserat på historiska fyra år är normalfördelad och att den antas vara det ett år framåt. Visst stöd finns därför för att den både skulle kunna vara både svagt och strikt stationär. (Noterbart är att detta i s f får anses vara en dålig investering då vi inte förväntas erhålla någon kompensation för den risk vi tar.) Uppgift 3 (10 poäng) Denna fråga är uppdelad i fem delfrågor. I varje delfråga är ett (och endast ett) av alternativen rätt. Skriv tydligt i ditt svar vilket alternativ som är rätt. Rätt svar ger 2 poäng på delfrågan. Motivering behövs inte och ger inte pluspoäng. Om du angett fler än ett alternativ på en delfråga ger det 0 poäng på delfrågan. Delfråga 1 (2 poäng) Antag att vi studerar ett aktiepris (X t ) under ett års tid. Under denna period sker en dag en splitt av aktien. Splitten innebär att varje ägare av en aktie erhåller två nya aktier, utan att det totala börsvärdet märkbart förändras. Vi missar dock att ta hänsyn till detta i våra beräkningar av daglig avkastning, X t = log(x t ) log(x t 1 ). Vilken konsekvens får detta misstag för vår avkastningsserie? a. Vi får troligtvis en outlier i data vid dagen för splitten, och den summerade avkastningen 250 t=1 X t motsvarar den faktiska årsavkastningen. 3

4 b. Den summerade avkastningen 250 t=1 X t för året blir för låg, eftersom alla dagliga avkastningarna efter splitten kommer att vara för låga. c. Den summerade avkastningen 250 t=1 X t för året blir lägre än den faktiska årsavkastningen och vi får troligtvis en outlier dagen för splitten. d. Den summerade avkastningen 250 t=1 X t för året blir högre än den faktiska årsavkastningen eftersom alla dagliga avkastningarna efter splitten kommer att vara för höga. Rätt svar: c. Delfråga 2 (2 poäng) Vad är syftet med Dickey-Fuller testet? a. Att testa om en autoregressiv modell innehåller en enhetsrot eller ej. b. Att testa om residualerna från en autoregressiv modell är autokorrelerade eller ej. c. Att testa om autokorrelationen i en tidsserie är skiljd från noll eller ej. d. Att testa om en tidsserie följer en slumpvandring. Rätt svar: a. Delfråga 3 (2 poäng) ( ).8.2 En matris har följande utseende Q =. Vad gäller för denna?.4.6 a. Om vi betraktar Q som en markovkedja där rad 1 och 2 motsvarar två olika tillstånd (E 1 och E 2 ) och vi antas börja i tillstånd E 1, då är realiseringen E 2 E 2 troligare än realiseringen E 1 E 1 E 1 E 1 E 1. b. Om vi betraktar Q som en markovkedja där rad 1 och 2 motsvarar två olika tillstånd (E 1 och E 2 ) och vi antas börja i tillstånd E 2, då är realiseringen E 2 E 2 troligare än realiseringen E 1 E 1 E 1 E 1 E 1. c. Q kan vara en kovariansmatris. d. Q kan vara en korrelationsmatris. Rätt svar: b. Delfråga 4 (2 poäng) Vad kännetecknas AR(1) processen Y t = φy t 1 + e t, av då φ = 1? a. Serien är stationär. b. Serien innehåller en positiv drift. c. Serien innehåller en enhetsrot. d. Variansen är inte beroende av tiden. Rätt svar: c. Delfråga 5 (2 poäng) Om residualerna från en linjär regressionsmodell har väntevärdet noll, då gäller alltid att a. Förklaringsgraden R 2 kan inte ökas. 4

5 b. Antalet observationer är färre än antalet skattade parametrar. c. Residualerna är okorrelerade. d. Parametrarna i regressionsmodellen kan inte vara skattade med minstakvadratmetoden. Rätt svar: e. Uppgift 4 (8 poäng) Ett byggföretag oroas över den framtida orderingången. Baserat på 20 historiska observationer anpassar därför ledningen följande linjära regressionsmodell med syfte att försöka skatta framtida orderingång (Y ) med hjälp av två branschindikatorer (X 1 och X 2 ) Y t = α 0 + α 1 X 1,t 1 + α 2 X 2,t 1 + e t (1) Stickprovskorrelationen för residualerna skattas till r = 0.25, och man misstänker att dessa kan vara autokorrelerade. a. (4 poäng) Utför ett hypotestest om residualerna är autokorrelerade. Var noga med att redovisa alla delar som ingår i testet. Hypoteser H0: φ = 0. H1: φ > 0 Signifikansnivå: 5% (tabell finns bara för denna) Teststatistika: DW 2(1 r) Kritiskt värde/testvärde för n=20 observationer och K=2 variabler: d L = 1.10 och d U = 1.54 Beslutsregel: Förkasta H0 om DW < d L, slutsats ej möjlig om d L < DW < d U, och förkasta ej om d U < DW. Observerat värde på teststatistika är DW=2(1-.25) = 1.5 Slutsats: Eftersom d L < DW < d U kan vi ej dra någon slutsats. b. (4 poäng) Oavsett resultatet av testet i a. så antag att residualerna är autokorrelerade. Hur påverkas företagets möjlighet att dra slutsatser utifrån regressionsmodellen om framtida orderingång av detta? Om residualerna är autokorrelerade så innebär det att residualvariansen underskattas dvs den skall egentligen vara större än den skattade variansen, vilket får till följd att t.ex. prediktionsintervall skulle ha varit bredare, t-statistikor mindre och signifikanstesten således svagare. Sammantaget kommer utsagor om framtida orderingång att bli för säkra. Uppgift 5 (8 poäng) En nyöppnad bilförsäljare misstänker att antalet sålda bilar på kort sikt kan beskrivas med hjälp av en linjär regressionsmodell utan intercept, med tiden sedan öppnandet som förklarande variabel. Tillgängliga data ges i tabellen nedan. 5

6 antal veckor sedan öppnande antal sålda bilar a. (3 poäng) Skatta den föreslagna modellen, plotta residualerna och kommentera eventuella problem med den. (Notera att det inte är meningsfullt att beräkna förklaringsgraden för en modell utan intercept.) Vi skall skatta modellen y i = βx i + e i. Enligt formelsamlingen skattas β = n i=1 x iy i n i=1 x2 i ( )/( ) = 904/385 = Vi får residualerna e i = y i βx i till Plottar vi dessa så ser vi att de relativt linjärt går från höga till låga värden och visar ett starkt samband över tiden. b. (3 poäng) Skatta samma modell men inklusive intercept, plotta residualerna och kommentera eventuella problem med den. Vi skattar nu istället modellen y i = β 0 + β 1 x i + e i. Enligt formelsamlingen skattas β 1 = sx,y = = 1.424, och β s 2 x = y β 1 x = = 6.5 Vi får residualerna e i = y i β 0 β 1 x i till Residualerna kretser nu kring noll, men dock tenderar en positiv residual att följas av en negativ och vice versa, dvs förmodligen är de negativt korrelerade över tiden. c. (2 poäng) Försäljningen blev 23 respektive 24 bilar vecka 11 och 12. Jämför prognosfelen för modellerna i a. och b. vecka (x) y Beräkna MSFE och MAFE mha följande y βx y β 0 + β 1 x MSFE blir således ( )/2 = och ( )/2 = , och MAFE( )/2 = 4 och ( )/2 =.65, dvs båda måtten är betydligt lägre för modellen med ett intercept. = Uppgift 6 (12 poäng) a. (2 poäng) Antag att vi beräknat en serie med 5-årigt glidande medelvärden baserat på årsdata från år Antag att vi önskar en prediktion av år 2014 baserat på denna serie. Vilket är det minsta tidsavståndet mellan prediktionen och observationen av medelvärdesserien? Ett 5-årigt glidande medelvärde beräknas för tidpunkterna En prediktion av 2014 ligger således minst =3 år framåt. 6

7 b. (2 poäng) Antag att variansen för tidsserien Y t skiftar mellan absolutbeloppmässigt höga värden i vissa tidsperioder och absolutbeloppmässigt låga värden i andra perioder. Vilket stationäritetsvillkor för Y t riskerar att inte vara uppfyllt? Villkoret som riskerar att ej uppfyllas är att variansen för Y t skall vara oberoende av tiden t. c. (2 poäng) Vilken typ av modell tar hänsyn till att stationäritetsvillkoret som nämns i b. inte är uppfyllt genom att modellera den betingade variansen för Y t? För modellering av denna tidsserie kan (G)ARCH-modeller användas. d. (3 poäng) Beskriv kort skillnaden mellan de prognoser som kan göras med hjälp av enkel och dubbel exponentiell utjämning. För enkel exponentiell utjämning gäller att alla prognoser från tidpunkt t och h stycken steg framåt är det senast utjämnade värdet, dvs en konstant. Vid dubbel exponentiell utjämning adderas även h stycken av den senaste trendkomponenten. e. (3 poäng) Visa att en variansen för en process med startvärde Y 0 som utsätts för en slumpmässig störning e t varje dag t beror av tiden. Antag att variansen för e t = σ 2 samt att Y 0 är en konstant. Då har vi V (Y 0 ) = 0, V (Y 1 ) = V (Y 0 + e 1 ) = σ 2, V (Y 1 ) = V (Y 0 + e 1 + e 2 ) = 2σ 2,..., V (Y t ) = V (Y 0 + e e t ) = tσ 2, dvs variansen beror av tiden t. 7

Tentamensgenomgång och återlämning: Måndagen 9/6 kl12.00 i B413. Därefter kan skrivningarna hämtas på studentexpeditionen, plan 7 i B-huset.

Tentamensgenomgång och återlämning: Måndagen 9/6 kl12.00 i B413. Därefter kan skrivningarna hämtas på studentexpeditionen, plan 7 i B-huset. Statistiska institutionen Nicklas Pettersson Skriftlig tentamen i Finansiell Statistik Grundnivå 7.5hp, VT2014 2014-05-26 Skrivtid: 9.00-14.00 Hjälpmedel: Godkänd miniräknare utan lagrade formler eller

Läs mer

GRUNDLÄGGANDE STATISTIK FÖR EKONOMER

GRUNDLÄGGANDE STATISTIK FÖR EKONOMER Statistiska institutionen Annika Tillander TENTAMEN GRUNDLÄGGANDE STATISTIK FÖR EKONOMER 2015-04-23 Skrivtid: 16.00-21.00 Hjälpmedel: Godkänd miniräknare utan lagrade formler eller text, samt bifogade

Läs mer

OMTENTAMEN I GRUNDLÄGGANDE STATISTIK FÖR EKONOMER

OMTENTAMEN I GRUNDLÄGGANDE STATISTIK FÖR EKONOMER STOCKHOLMS UNIVERSITET Statistiska institutionen Termeh Shafie OMTENTAMEN I GRUNDLÄGGANDE STATISTIK FÖR EKONOMER 2012-04-16 Skrivtid: 15.00-20.00 Hjälpmedel: Miniräknare utan lagrade formler eller text,

Läs mer

STOCKHOLMS UNIVERSITET HT 2011 Statistiska institutionen Bertil Wegmann

STOCKHOLMS UNIVERSITET HT 2011 Statistiska institutionen Bertil Wegmann STOCKHOLMS UNIVERSITET HT 2011 Statistiska institutionen Bertil Wegmann KURSBESKRIVNING FÖR FINANSIELL STATISTIK, 7.5 HÖGSKOLEPOÄNG. KURSEN BESTÅR AV TVÅ MOMENT: Teori, skriftlig tentamen, 6 högskolepoäng

Läs mer

Stockholms Universitet Statistiska institutionen Termeh Shafie

Stockholms Universitet Statistiska institutionen Termeh Shafie Stockholms Universitet Statistiska institutionen Termeh Shafie TENTAMEN I GRUNDLÄGGANDE STATISTIK FÖR EKONOMER 2011-10-28 Skrivtid: 9.00-14.00 Hjälpmedel: Miniräknare utan lagrade formler eller text, bifogade

Läs mer

Föreläsning 1. Repetition av sannolikhetsteori. Patrik Zetterberg. 6 december 2012

Föreläsning 1. Repetition av sannolikhetsteori. Patrik Zetterberg. 6 december 2012 Föreläsning 1 Repetition av sannolikhetsteori Patrik Zetterberg 6 december 2012 1 / 28 Viktiga statistiska begrepp För att kunna förstå mer avancerade koncept under kursens gång är det viktigt att vi förstår

Läs mer

Tentamen Tillämpad statistik A5 (15hp)

Tentamen Tillämpad statistik A5 (15hp) Uppsala universitet Statistiska institutionen A5 2014-08-26 Tentamen Tillämpad statistik A5 (15hp) 2014-08-26 UPPLYSNINGAR A. Tillåtna hjälpmedel: Miniräknare Formelsamlingar: A4/A8 Tabell- och formelsamling

Läs mer

Föreläsning 12: Regression

Föreläsning 12: Regression Föreläsning 12: Regression Matematisk statistik David Bolin Chalmers University of Technology Maj 15, 2014 Binomialfördelningen Låt X Bin(n, p). Vi observerar x och vill ha information om p. p = x/n är

Läs mer

Tentamen i Statistik, STA A10 och STA A13 (9 poäng) Måndag 14 maj 2007, Kl

Tentamen i Statistik, STA A10 och STA A13 (9 poäng) Måndag 14 maj 2007, Kl Karlstads universitet Avdelningen för nationalekonomi och statistik Tentamen i Statistik, STA A10 och STA A13 (9 poäng) Måndag 14 maj 2007, Kl 08.15-13.15 Tillåtna hjälpmedel: Bifogad formelsamling, approximationsschema

Läs mer

Preliminära lösningar för Tentamen Tillämpad statistik A5 (15hp) Statistiska institutionen, Uppsala universitet

Preliminära lösningar för Tentamen Tillämpad statistik A5 (15hp) Statistiska institutionen, Uppsala universitet Preliminära lösningar för Tentamen Tillämpad statistik A5 (15hp) 2016-01-13 Statistiska institutionen, Uppsala universitet Uppgift 1 (20 poäng) A) (4p) Om kommunens befolkning i den lokala arbetsmarknaden

Läs mer

Tentamen i statistik (delkurs C) på kursen MAR103: Marina Undersökningar - redskap och metoder.

Tentamen i statistik (delkurs C) på kursen MAR103: Marina Undersökningar - redskap och metoder. Tentamen 2014-12-05 i statistik (delkurs C) på kursen MAR103: Marina Undersökningar - redskap och metoder. Tillåtna hjälpmedel: Miniräknare och utdelad formelsamling med tabeller. C1. (6 poäng) Ange för

Läs mer

TENTAMEN I MATEMATISK STATISTIK

TENTAMEN I MATEMATISK STATISTIK UMEÅ UNIVERSITET Institutionen för matematisk statistik Statistik för Teknologer, 5 poäng MSTA33 Ingrid Svensson TENTAMEN 2004-01-13 TENTAMEN I MATEMATISK STATISTIK Statistik för Teknologer, 5 poäng Tillåtna

Läs mer

Tentamen Tillämpad statistik A5 (15hp)

Tentamen Tillämpad statistik A5 (15hp) Tentamen Tillämpad statistik A5 (15hp) 2016-01-13 Statistiska institutionen, Uppsala universitet Upplysningar 1. Tillåtna hjälpmedel: Miniräknare, A4/A8 Tabell- och formelsamling (alternativ Statistik

Läs mer

TENTAMEN GRUNDLÄGGANDE STATISTIK FÖR EKONOMER

TENTAMEN GRUNDLÄGGANDE STATISTIK FÖR EKONOMER Statistiska institutionen Frank Miller Dan Hedlin Skrivtid: 09.00-14.00 TENTAMEN GRUNDLÄGGANDE STATISTIK FÖR EKONOMER 2014-03-21 Hjälpmedel: Miniräknare utan lagrade formler eller text, bifogade tabeller

Läs mer

TENTAMEN I STATISTIKENS GRUNDER 2

TENTAMEN I STATISTIKENS GRUNDER 2 STOCKHOLMS UNIVERSITET Statistiska institutionen Michael Carlson HT2012 TENTAMEN I STATISTIKENS GRUNDER 2 2012-11-20 Skrivtid: kl 9.00-14.00 Godkända hjälpmedel: Miniräknare, språklexikon Bifogade hjälpmedel:

Läs mer

MVE051/MSG Föreläsning 14

MVE051/MSG Föreläsning 14 MVE051/MSG810 2016 Föreläsning 14 Petter Mostad Chalmers December 14, 2016 Beroende och oberoende variabler Hittills i kursen har vi tittat på modeller där alla observationer representeras av stokastiska

Läs mer

Rättningstiden är i normalfall 15 arbetsdagar, till detta tillkommer upp till 5 arbetsdagar för administration, annars är det detta datum som gäller:

Rättningstiden är i normalfall 15 arbetsdagar, till detta tillkommer upp till 5 arbetsdagar för administration, annars är det detta datum som gäller: Matematisk Statistik Provmoment: Ladokkod: Tentamen ges för: Tentamen TT091A TGMAS15h 7,5 högskolepoäng TentamensKod: Tentamensdatum: 30 Maj Tid: 9-13 Hjälpmedel: Miniräknare (nollställd) samt allmänspråklig

Läs mer

Tentamen i Statistik, STA A10 och STA A13 (9 poäng) 26 april 2004, klockan 08.15-13.15

Tentamen i Statistik, STA A10 och STA A13 (9 poäng) 26 april 2004, klockan 08.15-13.15 Karlstads universitet Institutionen för informationsteknologi Avdelningen för Statistik Tentamen i Statistik, STA A10 och STA A13 (9 poäng) 6 april 004, klockan 08.15-13.15 Tillåtna hjälpmedel: Bifogad

Läs mer

Föreläsning 2. Kap 3,7-3,8 4,1-4,6 5,2 5,3

Föreläsning 2. Kap 3,7-3,8 4,1-4,6 5,2 5,3 Föreläsning Kap 3,7-3,8 4,1-4,6 5, 5,3 1 Kap 3,7 och 3,8 Hur bra är modellen som vi har anpassat? Vi bedömer modellen med hjälp av ett antal kriterier: visuell bedömning, om möjligt F-test, signifikanstest

Läs mer

Uppgift 3 Vid en simuleringsstudie drar man 1200 oberoende slumptal,x i. Varje X i är likformigt fördelat mellan 0 och 1. Dessa tal adderas.

Uppgift 3 Vid en simuleringsstudie drar man 1200 oberoende slumptal,x i. Varje X i är likformigt fördelat mellan 0 och 1. Dessa tal adderas. Avd. Matematisk statistik TENTAMEN I SF1902 SANNOLIKHETSTEORI OCH STATISTIK, MÅNDAGEN DEN 17:E AUGUSTI 2015 KL 8.00 13.00. Kursledare och examinator : Björn-Olof Skytt, tel 790 8649. Tillåtna hjälpmedel:

Läs mer

Tentamen i Statistik, STA A10 och STA A13 (9 poäng) Fredag 8 december 2006, Kl

Tentamen i Statistik, STA A10 och STA A13 (9 poäng) Fredag 8 december 2006, Kl Tentamen i Statistik, STA A10 och STA A13 (9 poäng) Fredag 8 december 2006, Kl 08.15-13.15 Tillåtna hjälpmedel: Bifogad formelsamling, approximationsschema och tabellsamling (dessa skall returneras). Egen

Läs mer

TT091A, TVJ22A, NVJA02 Pu, Ti. 50 poäng

TT091A, TVJ22A, NVJA02 Pu, Ti. 50 poäng Matematisk statistik Provmoment: Ladokkod: Tentamen ges för: TT091A, TVJ22A, NVJA02 Pu, Ti 7,5 högskolepoäng Namn: (Ifylles av student) Personnummer: (Ifylles av student) Tentamensdatum: 2012-05-29 Tid:

Läs mer

Regressionsanalys av lägenhetspriser i Spånga

Regressionsanalys av lägenhetspriser i Spånga Regressionsanalys av lägenhetspriser i Spånga Mahamed Saeid Ali Kandidatuppsats i matematisk statistik Bachelor Thesis in Mathematical Statistics Kandidatuppsats 2016:11 Matematisk statistik Juni 2016

Läs mer

0 om x < 0, F X (x) = x. 3 om 0 x 1, 1 om x > 1.

0 om x < 0, F X (x) = x. 3 om 0 x 1, 1 om x > 1. Avd. Matematisk statistik TENTAMEN I SF9, SF95 SANNOLIKHETSTEORI OCH STATISTIK, MÅNDAGEN DEN 2:E JANUARI 25 KL 4. 9.. Kursledare: Gunnar Englund, 73 32 37 45 Tillåtna hjälpmedel: Formel- och tabellsamling

Läs mer

LÖSNINGSFÖRSLAG TILL TENTAMEN I MATEMATISK STATISTIK 2007-08-29

LÖSNINGSFÖRSLAG TILL TENTAMEN I MATEMATISK STATISTIK 2007-08-29 UMEÅ UNIVERSITET Institutionen för matematik och matematisk statistik Statistik för Teknologer, 5 poäng (TNK, ET, BTG) Peter Anton, Per Arnqvist Anton Grafström TENTAMEN 7-8-9 LÖSNINGSFÖRSLAG TILL TENTAMEN

Läs mer

Tentamen för kursen. Linjära statistiska modeller. 16 augusti 2007 9 14

Tentamen för kursen. Linjära statistiska modeller. 16 augusti 2007 9 14 STOCKHOLMS UNIVERSITET MATEMATISK STATISTIK Tentamen för kursen Linjära statistiska modeller 16 augusti 2007 9 14 Examinator: Anders Björkström, tel. 16 45 54, bjorks@math.su.se Återlämning: Rum 312, hus

Läs mer

Analys av lägenhetspriser i Hammarby Sjöstad med multipel linjär regression

Analys av lägenhetspriser i Hammarby Sjöstad med multipel linjär regression Analys av lägenhetspriser i Hammarby Sjöstad med multipel linjär regression Christian Aguirre Kandidatuppsats i matematisk statistik Bachelor Thesis in Mathematical Statistics Kandidatuppsats 2015:17 Matematisk

Läs mer

Finansiering. Föreläsning 6 Risk och avkastning BMA: Kap. 7. Jonas Råsbrant

Finansiering. Föreläsning 6 Risk och avkastning BMA: Kap. 7. Jonas Råsbrant Finansiering Föreläsning 6 Risk och avkastning BMA: Kap. 7 Jonas Råsbrant jonas.rasbrant@fek.uu.se Föreläsningens innehåll Historisk avkastning för finansiella tillgångar Beräkning av avkastning och risk

Läs mer

Tentamen i Statistik, STG A01 och STG A06 (13,5 hp) Torsdag 5 juni 2008, Kl

Tentamen i Statistik, STG A01 och STG A06 (13,5 hp) Torsdag 5 juni 2008, Kl Karlstads Universitet Avdelningen för Nationalekonomi och Statistik Tentamen i Statistik, STG A0 och STG A06 (3,5 hp) Torsdag 5 juni 008, Kl 4.00-9.00 Tillåtna hjälpmedel: Bifogad formelsamling, approximationsschema

Läs mer

Person Antal månader som utrustningen ägts. Antal timmar utrustningen användes föregående vecka.

Person Antal månader som utrustningen ägts. Antal timmar utrustningen användes föregående vecka. y Uppgift 1 (18p) I syfte för att se om antalet månader som man ägt en viss träningsutrustning påverkar träningsintensiteten har tio personer som har köpt träningsutrustningen fått ange hur många månader

Läs mer

STOCKHOLMS UNIVERSITET HT 2007 Statistiska institutionen Johan Andersson

STOCKHOLMS UNIVERSITET HT 2007 Statistiska institutionen Johan Andersson 1 STOCKHOLMS UNIVERSITET HT 2007 Statistiska institutionen Johan Andersson Skriftlig tentamen på momentet Statistisk dataanalys III (SDA III, statistiska metoder) 3 högskolepoäng, ingående i kursen Undersökningsmetodik

Läs mer

Matematisk statistik 9 hp, HT-16 Föreläsning 15: Multipel linjär regression

Matematisk statistik 9 hp, HT-16 Föreläsning 15: Multipel linjär regression Matematisk statistik 9 hp, HT-16 Föreläsning 15: Multipel linjär regression Anna Lindgren 28+29 november, 2016 Anna Lindgren anna@maths.lth.se FMS012/MASB03 F15: multipel regression 1/22 Linjär regression

Läs mer

Tentamen i Matematisk statistik Kurskod S0001M

Tentamen i Matematisk statistik Kurskod S0001M Tentamen i Matematisk statistik Kurskod S0001M Poäng totalt för del 1: 25 (10 uppgifter) Tentamensdatum 2015-10-23 Poäng totalt för del 2: 30 (3 uppgifter) Skrivtid 09.00 14.00 Lärare: Jesper Martinsson,

Läs mer

8 Inferens om väntevärdet (och variansen) av en fördelning

8 Inferens om väntevärdet (och variansen) av en fördelning 8 Inferens om väntevärdet (och variansen) av en fördelning 8. Skattning av µ och Students T-fördelning Om σ är känd, kan man använda statistikan X µ σ/ n för att hitta konfidensintervall för µ. Om σ inte

Läs mer

TT091A, TVJ22A, NVJA02 Pu, Ti. 50 poäng

TT091A, TVJ22A, NVJA02 Pu, Ti. 50 poäng Matematisk statistik Provmoment: Ladokkod: Tentamen ges för: TT091A, TVJ22A, NVJA02 Pu, Ti 7,5 högskolepoäng Namn: (Ifylles av student) Personnummer: (Ifylles av student) Tentamensdatum: 2012-08-31 Tid:

Läs mer

732G71 Statistik B. Föreläsning 4. Bertil Wegmann. November 11, IDA, Linköpings universitet

732G71 Statistik B. Föreläsning 4. Bertil Wegmann. November 11, IDA, Linköpings universitet 732G71 Statistik B Föreläsning 4 Bertil Wegmann IDA, Linköpings universitet November 11, 2016 Bertil Wegmann (IDA, LiU) 732G71, Statistik B November 11, 2016 1 / 34 Kap. 5.1, korrelationsmatris En korrelationsmatris

Läs mer

Tentamen i Statistik, STA A10 och STA A13 (9 poäng) 4 juni 2004, kl 14.00-19.00

Tentamen i Statistik, STA A10 och STA A13 (9 poäng) 4 juni 2004, kl 14.00-19.00 Tentamen i Statistik, STA A10 och STA A13 (9 poäng) 4 juni 004, kl 14.00-19.00 Tillåtna hjälpmedel: Bifogad formelsamling, approimationsschema och tabellsamling (dessa skall returneras). Egen miniräknare.

Läs mer

Tentamen i Statistik STG A01 (12 hp) Fredag 16 januari 2009, Kl 14.00-19.00

Tentamen i Statistik STG A01 (12 hp) Fredag 16 januari 2009, Kl 14.00-19.00 Tentamen i Statistik STG A01 (12 hp) Fredag 16 januari 2009, Kl 14.00-19.00 Tillåtna hjälpmedel: Bifogad formelsamling, tabellsamling (dessa skall returneras). Miniräknare. Ansvarig lärare: Jari Appelgren,

Läs mer

Räkneövning 4. Om uppgifterna. 1 Uppgift 1. Statistiska institutionen Uppsala universitet. 14 december 2016

Räkneövning 4. Om uppgifterna. 1 Uppgift 1. Statistiska institutionen Uppsala universitet. 14 december 2016 Räkneövning 4 Statistiska institutionen Uppsala universitet 14 december 2016 Om uppgifterna Uppgift 2 kan med fördel göras med Minitab. I de fall en gur för tidsserien efterfrågas kan du antingen göra

Läs mer

Finansmatematik II Kapitel 2 Stokastiska egenskaper hos aktiepriser

Finansmatematik II Kapitel 2 Stokastiska egenskaper hos aktiepriser STOCKHOLMS UNIVERSITET MATEMATISKA INSTITUTIONEN Avd. för Matematisk statistik Thomas Höglund Version Finansmatematik II Kapitel Stokastiska egenskaper hos aktiepriser Finansmatematik II För att kunna

Läs mer

Statistik B Regressions- och tidsserieanalys Föreläsning 1

Statistik B Regressions- och tidsserieanalys Föreläsning 1 Statistik B Regressions- och tidsserieanalys Föreläsning Kurskod: 732G7, 8 hp Lärare och examinator: Ann-Charlotte (Lotta) Hallberg Lärare och lektionsledare: Isak Hietala Labassistenter Kap 3,-3,6. Läs

Läs mer

Stockholms Univ., Statistiska Inst. Finansiell Statistik, GN, 7,5 hp, VT2009 Inlämningsuppgift (1,5hp)

Stockholms Univ., Statistiska Inst. Finansiell Statistik, GN, 7,5 hp, VT2009 Inlämningsuppgift (1,5hp) Stockholms Univ., Statistiska Inst. Finansiell Statistik, GN, 7,5 hp, VT009 Inlämningsuppgift (1,5hp) Nicklas Pettersson 1 Anvisningar och hålltider Uppgiften löses i grupper om -3 personer och godkänt

Läs mer

Regressions- och Tidsserieanalys - F4

Regressions- och Tidsserieanalys - F4 Regressions- och Tidsserieanalys - F4 Modellbygge och residualanalys. Kap 5.1-5.4 (t.o.m. halva s 257), ej C-statistic s 23. Linda Wänström Linköpings universitet Wänström (Linköpings universitet) F4 1

Läs mer

Tillämpad statistik (A5), HT15 Föreläsning 24: Tidsserieanalys III

Tillämpad statistik (A5), HT15 Föreläsning 24: Tidsserieanalys III Tillämpad statistik (A5), HT15 Föreläsning 24: Tidsserieanalys III Sebastian Andersson Statistiska institutionen Senast uppdaterad: 16 december 2015 är en prognosmetod vi kan använda för serier med en

Läs mer

Anvisningar till del 2 av den obligatoriska inlämningsuppgiften (HT 2007)

Anvisningar till del 2 av den obligatoriska inlämningsuppgiften (HT 2007) Statistiska Institutionen Gebrenegus Ghilagaber & Nicklas Pettersson 007-1-06 Anvisningar till del av den obligatoriska inlämningsuppgiften (HT 007) Den obligatoriska inlämningsuppgiften består av två

Läs mer

AMatematiska institutionen avd matematisk statistik

AMatematiska institutionen avd matematisk statistik Kungl Tekniska Högskolan AMatematiska institutionen avd matematisk statistik TENTAMEN I 5B1503 STATISTIK MED FÖRSÖKSPLANERING FÖR B OCH K FREDAGEN DEN 11 JANUARI 2002 KL 14.00 19.00. Examinator: Gunnar

Läs mer

Regressions- och Tidsserieanalys - F7

Regressions- och Tidsserieanalys - F7 Regressions- och Tidsserieanalys - F7 Tidsserieregression, kap 6.1-6.4 Linda Wänström Linköpings universitet November 25 Wänström (Linköpings universitet) F7 November 25 1 / 28 Tidsserieregressionsanalys

Läs mer

Uppgift 3: Den stokastiska variabeln ξ har frekvensfunktionen 0 10 f(x) =

Uppgift 3: Den stokastiska variabeln ξ har frekvensfunktionen 0 10 f(x) = Tentamen i Matematisk statistik för DAI och EI den 3 mars. Tid: kl 4. - 8. Hjälpmedel: Chalmersgodkänd ( typgodkänd ) räknedosa, Tabell- och formelsamling, Håkan Blomqvist, Matematisk statistik, Ulla Dahlbom,

Läs mer

Föreläsning G60 Statistiska metoder

Föreläsning G60 Statistiska metoder Föreläsning 9 Statistiska metoder 1 Dagens föreläsning o Regression Regressionsmodell Signifikant lutning? Prognoser Konfidensintervall Prediktionsintervall Tolka Minitab-utskrifter o Sammanfattning Exempel

Läs mer

STOCKHOLMS UNIVERSITET HT 2007 Statistiska institutionen Johan Andersson

STOCKHOLMS UNIVERSITET HT 2007 Statistiska institutionen Johan Andersson 1 STOCKHOLMS UNIVERSITET HT 2007 Statistiska institutionen Johan Andersson Skriftlig omtentamen på momentet Statistisk dataanalys III (SDA III, statistiska metoder) 3 högskolepoäng, ingående i kursen Undersökningsmetodik

Läs mer

Tentamen i TMA321 Matematisk Statistik, Chalmers Tekniska Högskola.

Tentamen i TMA321 Matematisk Statistik, Chalmers Tekniska Högskola. Tentamen i TMA321 Matematisk Statistik, Chalmers Tekniska Högskola. Tid: Måndagen den 2015-06-01, 8.30-12.30. Examinator och Jour: Olle Nerman, tel. 7723565, rum 3056, MV, Chalmers. Hjälpmedel: Valfri

Läs mer

MSG830 Statistisk analys och experimentplanering

MSG830 Statistisk analys och experimentplanering MSG830 Statistisk analys och experimentplanering Tentamen 16 April 2015, 8:30-12:30 Examinator: Staan Nilsson, telefon 073 5599 736, kommer till tentamenslokalen 9:30 och 11:30 Tillåtna hjälpmedel: Valfri

Läs mer

Statistisk analys av komplexa data

Statistisk analys av komplexa data Statistisk analys av komplexa data Trunkerade data och Tobitregression Bertil Wegmann Avdelning statistik, IDA, Linköpings universitet November 10, 2015 Bertil Wegmann (statistik, LiU) Trunkerade data

Läs mer

TMS136: Dataanalys och statistik Tentamen

TMS136: Dataanalys och statistik Tentamen TMS136: Dataanalys och statistik Tentamen 013-08-7 Examinator och jour: Mattias Sunden, tel. 0730 79 9 79 Hjälpmedel: Chalmersgodkänd räknare och formelsamling (formelsamling delas ut med tentan). Betygsgränser:

Läs mer

Matematikcentrum 1(4) Matematisk Statistik Lunds Universitet MASB11 HT10. Laboration. Regressionsanalys (Sambandsanalys)

Matematikcentrum 1(4) Matematisk Statistik Lunds Universitet MASB11 HT10. Laboration. Regressionsanalys (Sambandsanalys) Matematikcentrum 1(4) Matematisk Statistik Lunds Universitet MASB11 HT10 Laboration Regressionsanalys (Sambandsanalys) Grupp A: 2010-11-24, 13.15 15.00 Grupp B: 2010-11-24, 15.15 17.00 Grupp C: 2010-11-25,

Läs mer

TENTAMEN I MATEMATISK STATISTIK Statistik för lärare 7,5 hp

TENTAMEN I MATEMATISK STATISTIK Statistik för lärare 7,5 hp UMEÅ UNIVERSITET Tentamen 2016-08-24 Sid 1 TENTAMEN I MATEMATISK STATISTIK Statistik för lärare 7,5 hp Skrivtid: 16-22 Tillåtna hjälpmedel: Miniräknare. Formelblad och tabeller bifogas till tentamen. Studenterna

Läs mer

TMS136. Föreläsning 13

TMS136. Föreläsning 13 TMS136 Föreläsning 13 Jämförelser mellan två populationer Hittills har vi gjort konfidensintervall och tester kring parametrar i EN population I praktiska sammanhang är man ofta intresserad av att jämföra

Läs mer

Lektionsanteckningar 11-12: Normalfördelningen

Lektionsanteckningar 11-12: Normalfördelningen Lektionsanteckningar 11-12: Normalfördelningen När utfallsrummet för en slumpvariabel kan anta vilket värde som helst i ett givet intervall är variabeln kontinuerlig. Det är väsentligt att utfallsrummet

Läs mer

Stockholms Univ., Statistiska Inst. Finansiell Statistik, GN, 7,5 hp, HT2008 Inlämningsuppgift (1,5hp)

Stockholms Univ., Statistiska Inst. Finansiell Statistik, GN, 7,5 hp, HT2008 Inlämningsuppgift (1,5hp) Stockholms Univ., Statistiska Inst. Finansiell Statistik, GN, 7,5 hp, HT2008 Inlämningsuppgift (1,5hp) Nicklas Pettersson 1 Anvisningar och hålltider Uppgiften löses i grupper om 2-3 personer och godkänt

Läs mer

Samplingfördelningar 1

Samplingfördelningar 1 Samplingfördelningar 1 Parametrar och statistikor En parameter är en konstant som karakteriserar en population eller en modell. Exempel: Populationsmedelvärdet Parametern p i binomialfördelningen 2 Vi

Läs mer

Tentamen i Matematisk statistik Kurskod S0001M

Tentamen i Matematisk statistik Kurskod S0001M Tentamen i Matematisk statistik Kurskod S0001M Poäng totalt för del 1: 25 (10 uppgifter) Tentamensdatum 2014-06-05 Poäng totalt för del 2: 30 (3 uppgifter) Skrivtid 09.00 14.00 Lärare: Adam Jonsson, Jesper

Läs mer

Tentamen Finansiering (2FE253) Lördagen den 21 mars 2015, kl. 09:00-13:00

Tentamen Finansiering (2FE253) Lördagen den 21 mars 2015, kl. 09:00-13:00 Tentamen Finansiering (2FE253) Lördagen den 21 mars 2015, kl. 09:00-13:00 Skrivtid: 4 timmar (kl. 09:00 13:00) Hjälpmedel: Kalkylator och kursens formelblad. OBS! Endast formler som står med på formelbladet

Läs mer

Examinationsuppgift 2014

Examinationsuppgift 2014 Matematik och matematisk statistik 5MS031 Statistik för farmaceuter Per Arnqvist Examinationsuppgift 2014-10-09 Sid 1 (5) Examinationsuppgift 2014 Hemtenta Statistik för farmaceuter 3 hp LYCKA TILL! Sid

Läs mer

Tentamen Tillämpad statistik A5 (15hp)

Tentamen Tillämpad statistik A5 (15hp) Uppsala universitet Statistiska institutionen A5 2013-01-14 Tentamen Tillämpad statistik A5 (15hp) 2013-01-14 UPPLYSNINGAR A. Tillåtna hjälpmedel: Miniräknare Formelsamlingar: A4/A8 Tabell- och formelsamling

Läs mer

Laboration 5: Regressionsanalys. 1 Förberedelseuppgifter. 2 Enkel linjär regression DATORLABORATION 5 MATEMATISK STATISTIK FÖR I, FMS 012, HT-08

Laboration 5: Regressionsanalys. 1 Förberedelseuppgifter. 2 Enkel linjär regression DATORLABORATION 5 MATEMATISK STATISTIK FÖR I, FMS 012, HT-08 LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK Laboration 5: Regressionsanalys DATORLABORATION 5 MATEMATISK STATISTIK FÖR I, FMS 012, HT-08 Syftet med den här laborationen är att du skall

Läs mer

5B Portföljteori och riskvärdering

5B Portföljteori och riskvärdering B7 - Portföljteori och riskvärdering Laboration Farid Bonawiede - 89-09 Alexandre Messo - 89-77 - Beräkning av den effektiva fronten för en portfölj Uppgiften går ut på att beräkna de portföljer som ger

Läs mer

Medicinsk statistik II

Medicinsk statistik II Medicinsk statistik II Läkarprogrammet termin 5 VT 2013 Susanna Lövdahl, Msc, doktorand Klinisk koagulationsforskning, Lunds universitet E-post: susanna.lovdahl@med.lu.se Dagens föreläsning Fördjupning

Läs mer

LTH: Fastighetsekonomi 23-24 sep 2008. Enkel och multipel linjär regressionsanalys HYPOTESPRÖVNING

LTH: Fastighetsekonomi 23-24 sep 2008. Enkel och multipel linjär regressionsanalys HYPOTESPRÖVNING LTH: Fastighetsekonomi 23-24 sep 2008 Enkel och multipel linjär regressionsanalys HYPOTESPRÖVNING Hypotesprövning (statistisk inferensteori) Statistisk hypotesprövning innebär att man med hjälp av slumpmässiga

Läs mer

TENTAMEN. HiG sal 51:525A B eller annan ort. Lärare: Tommy Waller ( tel: eller )

TENTAMEN. HiG sal 51:525A B eller annan ort. Lärare: Tommy Waller ( tel: eller ) TENTMEN Kurs: Plats: Dataanalys och statistik 2 distans 7,5 hp HiG sal 5:525 B eller annan ort Datum: 2 6 9 Tid: 9: 4: Lärare: Tommy Waller ( tel: 26-64 89 65 eller 74 3 86 3 ) Hjälpmedel: Miniräknare

Läs mer

Formler och tabeller till kursen MSG830

Formler och tabeller till kursen MSG830 Formler och tabeller till kursen MSG830 Deskriptiva mått För ett datamängd x 1,, x n denieras medelvärde standardavvikelse standardfelet (SEM) Sannolikheter x = 1 n n i=1 = x 1 + + x n n s = 1 n (x i x)

Läs mer

STATISTISK ANALYS AV KOMPLEXA DATA

STATISTISK ANALYS AV KOMPLEXA DATA STATISTISK ANALYS AV KOMPLEXA DATA LONGITUDINELLA DATA Linda Wänström Linköpings universitet 12 December Linda Wänström (Linköpings universitet) LONGITUDINELLA DATA 12 December 1 / 12 Explorativ Faktoranalys

Läs mer

Tentamen i Statistik, STA A10 och STA A13 (9 poäng) 16 januari 2004, kl

Tentamen i Statistik, STA A10 och STA A13 (9 poäng) 16 januari 2004, kl Karlstads universitet Institutionen för informationsteknologi Avdelningen för Statistik Tentamen i Statistik, STA A0 och STA A3 (9 poäng) 6 januari 004, kl. 4.00-9.00 Tillåtna hjälpmedel: Bifogade formel-

Läs mer

FÖRELÄSNING 8:

FÖRELÄSNING 8: FÖRELÄSNING 8: 016-05-17 LÄRANDEMÅL Konfidensintervall för väntevärdet då variansen är okänd T-fördelningen Goodness of fit-test χ -fördelningen Hypotestest Signifikansgrad Samla in data Sammanställ data

Läs mer

Tentamen i Statistik, STA A13 Deltentamen 2, 5p 21 januari 2006, kl

Tentamen i Statistik, STA A13 Deltentamen 2, 5p 21 januari 2006, kl Karlstads universitet Institutionen för informationsteknologi Avdelningen för statistik Tentamen i Statistik, STA A13 Deltentamen, 5p 1 januari 006, kl. 09.00-13.00 Tillåtna hjälpmedel: Bifogad formel-

Läs mer

, s a. , s b. personer från Alingsås och n b

, s a. , s b. personer från Alingsås och n b Skillnader i medelvärden, väntevärden, mellan två populationer I kapitel 8 testades hypoteser typ : µ=µ 0 där µ 0 var något visst intresserant värde Då användes testfunktionen där µ hämtas från, s är populationsstandardavvikelsen

Läs mer

Del 2 Korrelation. Strukturakademin

Del 2 Korrelation. Strukturakademin Del 2 Korrelation Strukturakademin Innehåll 1. Implicita tillgångar 2. Vad är korrelation? 3. Hur fungerar sambanden? 4. Hur beräknas korrelation? 5. Diversifiering 6. Korrelation och Strukturerade Produkter

Läs mer

En scatterplot gjordes, och linjär regression utfördes därefter med följande hypoteser:

En scatterplot gjordes, och linjär regression utfördes därefter med följande hypoteser: 1 Uppgiftsbeskrivning Syftet med denna laboration var att utifrån uppmätt data avgöra: (i) Om något samband finnes mellan kroppstemperatur och hjärtfrekvens. (ii) Om någon signifikant skillnad i sockerhalt

Läs mer

Läs noggrant informationen nedan innan du börjar skriva tentamen

Läs noggrant informationen nedan innan du börjar skriva tentamen Tentamen i Statistik 1: Undersökningsmetodik Ämneskod S0006M Totala antalet uppgifter: Totala antalet poäng Lärare: 5 25 Mykola Shykula, Inge Söderkvist, Ove Edlund, Niklas Grip Tentamensdatum 2014-03-26

Läs mer

TENTAMEN I MATEMATISK STATISTIK

TENTAMEN I MATEMATISK STATISTIK UMEÅ UNIVERSITET Institutionen för matematisk statistik Regressions- och variansanalys, 5 poäng MSTA35 Leif Nilsson TENTAMEN 2003-01-10 TENTAMEN I MATEMATISK STATISTIK Regressions- och variansanalys, 5

Läs mer

KURSBESKRIVNING FÖR FINANSIELL STATISTIK, 7.5 HÖGSKOLEPOÄNG.

KURSBESKRIVNING FÖR FINANSIELL STATISTIK, 7.5 HÖGSKOLEPOÄNG. HT2014 Annika Tillander, Statistiska Institutionen KURSBESKRIVNING FÖR FINANSIELL STATISTIK, 7.5 HÖGSKOLEPOÄNG. KURSEN BESTÅR AV TVÅ MOMENT: Kursen ingår i kandidatprogrammet i företagsekonomi med inriktning

Läs mer

Räkneövning 5. Sebastian Andersson Statistiska institutionen Uppsala universitet 7 januari För Uppgift 2 kan man med fördel ta hjälp av Minitab.

Räkneövning 5. Sebastian Andersson Statistiska institutionen Uppsala universitet 7 januari För Uppgift 2 kan man med fördel ta hjälp av Minitab. Räkneövning 5 Sebastian Andersson Statistiska institutionen Uppsala universitet 7 januari 016 1 Om uppgifterna För Uppgift kan man med fördel ta hjälp av Minitab. I de fall en figur för tidsserien efterfrågas

Läs mer

Korrelation kausalitet. ˆ Y =bx +a KAPITEL 6: LINEAR REGRESSION: PREDICTION

Korrelation kausalitet. ˆ Y =bx +a KAPITEL 6: LINEAR REGRESSION: PREDICTION KAPITEL 6: LINEAR REGRESSION: PREDICTION Prediktion att estimera "poäng" på en variabel (Y), kriteriet, på basis av kunskap om "poäng" på en annan variabel (X), prediktorn. Prediktion heter med ett annat

Läs mer

Tentamen i Matematisk statistik Kurskod S0001M

Tentamen i Matematisk statistik Kurskod S0001M Tentamen i Matematisk statistik Kurskod S0001M Poäng totalt för del 1: 25 (11 uppgifter) Tentamensdatum 2016-08-23 Poäng totalt för del 2: 30 (3 uppgifter) Skrivtid 9.00 14.00 Lärare: Adam Jonsson Jourhavande

Läs mer

STOCKHOLMS UNIVERSITET FYSIKUM

STOCKHOLMS UNIVERSITET FYSIKUM STOCKHOLMS UNIVERSITET FYSIKUM Tentamensskrivning i Fysikexperiment, 7,5 hp, för FK2002 Onsdagen den 15 december 2010 kl. 9-14. Skrivningen består av två delar A och B. Del A innehåller enkla frågor och

Läs mer

STOCKHOLMS UNIVERSITET VT 2011 Avd. Matematisk statistik GB DATORLABORATION 3: MULTIPEL REGRESSION.

STOCKHOLMS UNIVERSITET VT 2011 Avd. Matematisk statistik GB DATORLABORATION 3: MULTIPEL REGRESSION. MATEMATISKA INSTITUTIONEN Tillämpad statistisk analys, GN STOCKHOLMS UNIVERSITET VT 2011 Avd. Matematisk statistik GB 2011-04-13 DATORLABORATION 3: MULTIPEL REGRESSION. Under Instruktioner och data på

Läs mer

Tentamen i Matematisk statistik Kurskod S0001M

Tentamen i Matematisk statistik Kurskod S0001M Tentamen i Matematisk statistik Kurskod S0001M Poäng totalt för del 1: 25 (10 uppgifter) Tentamensdatum 2016-01-15 Poäng totalt för del 2: 30 (3 uppgifter) Skrivtid 15.00 20.00 Lärare: A Jonsson, J Martinsson,

Läs mer

Tillämpad statistik (A5), HT15 Föreläsning 22: Tidsserieanalys I

Tillämpad statistik (A5), HT15 Föreläsning 22: Tidsserieanalys I Tillämpad statistik (A5), HT15 Föreläsning 22: Tidsserieanalys I Sebastian Andersson Statistiska institutionen Senast uppdaterad: 15 december 2015 Data kan generellt sett delas in i tre kategorier: 1 Tvärsnittsdata:

Läs mer

Resultatet anslås senast 10 juni på institutionens anslagstavla samt på kurshemsidan.

Resultatet anslås senast 10 juni på institutionens anslagstavla samt på kurshemsidan. Matematisk statistik Tentamen: 28 5 27 kl 8 13 FMS 32 Matematisk statistik AK för V och L, 7.5 hp Till Del A skall endast svar lämnas. Samtliga svar skall skrivas på ett och samma papper. Övriga uppgifter

Läs mer

Statistiska institutionen. Bachelor thesis, Department of Statistics. Reporäntegenomslaget skattat med felkorrigeringsmodeller

Statistiska institutionen. Bachelor thesis, Department of Statistics. Reporäntegenomslaget skattat med felkorrigeringsmodeller Kandidatuppsats Statistiska institutionen Bachelor thesis, Department of Statistics Nr 2013:13 Reporäntegenomslaget skattat med felkorrigeringsmodeller - Har genomslaget förändrats efter finanskrisen?

Läs mer

Facit till Extra övningsuppgifter

Facit till Extra övningsuppgifter LINKÖPINGS UNIVERSITET Institutionen för datavetenskap Statistik, ANd 732G71 STATISTIK B, 8hp Civilekonomprogrammet, t3, Ht 09 Extra övningsuppgifter Facit till Extra övningsuppgifter 1. Modellen är en

Läs mer

STOCKHOLMS UNIVERSITET VT 2008 Statistiska institutionen Linda Wänström

STOCKHOLMS UNIVERSITET VT 2008 Statistiska institutionen Linda Wänström 1 STOCKHOLMS UNIVERSITET VT 2008 Statistiska institutionen Linda Wänström Skriftlig tentamen på momentet Statistisk dataanalys III (SDA III) 3 högskolepoäng, ingående i kursen Undersökningsmetodik och

Läs mer

Logistisk regression och Indexteori. Patrik Zetterberg. 7 januari 2013

Logistisk regression och Indexteori. Patrik Zetterberg. 7 januari 2013 Föreläsning 9 Logistisk regression och Indexteori Patrik Zetterberg 7 januari 2013 1 / 33 Logistisk regression I logistisk regression har vi en binär (kategorisk) responsvariabel Y i som vanligen kodas

Läs mer

Envägs variansanalys (ANOVA) för test av olika väntevärde i flera grupper

Envägs variansanalys (ANOVA) för test av olika väntevärde i flera grupper Envägs variansanalys (ANOVA) för test av olika väntevärde i flera grupper Tobias Abenius February 21, 2012 Envägs variansanalys (ANOVA) I envägs variansanalys utnyttjas att

Läs mer

FÖRELÄSNINGSMATERIAL. diff SE. SE x x. Grundläggande statistik 2: KORRELATION OCH HYPOTESTESTNING. Påbyggnadskurs T1. Odontologisk profylaktik

FÖRELÄSNINGSMATERIAL. diff SE. SE x x. Grundläggande statistik 2: KORRELATION OCH HYPOTESTESTNING. Påbyggnadskurs T1. Odontologisk profylaktik Grundläggande statistik Påbyggnadskurs T1 Odontologisk profylaktik FÖRELÄSNINGSMATERIAL : KORRELATION OCH HYPOTESTESTNING t diff SE x 1 diff SE x x 1 x. Analytisk statistik Regression & Korrelation Oberoende

Läs mer

Föreläsning 8. Kapitel 9 och 10 sid Samband mellan kvalitativa och kvantitativa variabler

Föreläsning 8. Kapitel 9 och 10 sid Samband mellan kvalitativa och kvantitativa variabler Föreläsning 8 Kapitel 9 och 10 sid 230-284 Samband mellan kvalitativa och kvantitativa variabler 2 Agenda Samband mellan kvalitativa variabler Chitvåtest för analys av frekvenstabell och korstabell Samband

Läs mer

Prognostisering av växelkursindexet KIX En jämförande studie. Forecasting the exchange rate index KIX A comparative study

Prognostisering av växelkursindexet KIX En jämförande studie. Forecasting the exchange rate index KIX A comparative study Kandidatuppsats Statistiska institutionen Bachelor thesis, Department of Statistics Nr 2013:14 Prognostisering av växelkursindexet KIX En jämförande studie Forecasting the exchange rate index KIX A comparative

Läs mer

Matematiska Institutionen Silvelyn Zwanzig 13 mar, 2006

Matematiska Institutionen Silvelyn Zwanzig 13 mar, 2006 UPPSALA UNIVERSITET Sannolikhetslära och Statistik Matematiska Institutionen F Silvelyn Zwanzig 3 mar, 006 Tillåtna hjälpmedel: Miniräknare, Formel- och Tabellsamling med egna handskrivna tillägg Skrivtid:5-0.

Läs mer

1/31 REGRESSIONSANALYS. Statistiska institutionen, Stockholms universitet

1/31 REGRESSIONSANALYS. Statistiska institutionen, Stockholms universitet 1/31 REGRESSIONSANALYS F1 Linda Wänström Statistiska institutionen, Stockholms universitet 2/31 Kap 4: Introduktion till regressionsanalys. Introduktion Regressionsanalys är en statistisk teknik för att

Läs mer

Konfidensintervall, Hypotestest

Konfidensintervall, Hypotestest Föreläsning 8 (Kap. 8, 9): Konfidensintervall, Hypotestest Marina Axelson-Fisk 11 maj, 2016 Konfidensintervall För i (, ). Hypotestest Idag: Signifikansnivå och p-värde Test av i (, ) när är känd Test

Läs mer

Läs noggrant informationen nedan innan du börjar skriva tentamen

Läs noggrant informationen nedan innan du börjar skriva tentamen Tentamen i Statistik 1: Undersökningsmetodik Ämneskod S0006M Totala antalet uppgifter: Totala antalet poäng Lärare: Mykola Shykula 5 25 Tentamensdatum 2014-05-15 Skrivtid 09.00-14.00 Jourhavande lärare:

Läs mer