Tentamensgenomgång och återlämning: Måndagen 9/6 kl12.00 i B413. Därefter kan skrivningarna hämtas på studentexpeditionen, plan 7 i B-huset.

Storlek: px
Starta visningen från sidan:

Download "Tentamensgenomgång och återlämning: Måndagen 9/6 kl12.00 i B413. Därefter kan skrivningarna hämtas på studentexpeditionen, plan 7 i B-huset."

Transkript

1 Statistiska institutionen Nicklas Pettersson Skriftlig tentamen i Finansiell Statistik Grundnivå 7.5hp, VT Skrivtid: Hjälpmedel: Godkänd miniräknare utan lagrade formler eller text, samt bifogade tabeller och formelblad. Tentamensgenomgång och återlämning: Måndagen 9/6 kl12.00 i B413. Därefter kan skrivningarna hämtas på studentexpeditionen, plan 7 i B-huset. Tentamen består av sex uppgifter som kan ge totalt 60 poäng. Använd endast institutionens papper för dina svar och lösningar. Betygskriterier: A: poäng B: poäng C: poäng D: poäng E: poäng F: 0-29 poäng LYCKA TILL! 1

2 Uppgift 1 (6 poäng) Använd högst ett A4 för att beskriva hur olika plottar kan användas för att upptäcka brott mot antaganden som används vid linjär regression (t.ex. normalitet, heteroskedasticitet, autokorrelation, linjäritet/specifikationsfel). Histogram/täthetsskattning/qq-plot - normalitet Skattade värden mot residualer - linjäritet/specifikationsfel x-variabler mot residualer/kvadrerade residualer - heteroscedasticitet Tid mot residualer - autokorrelation Residual mot laggad residual - autokorrelation (skattad autokorrelationsfunktionen) Se föreläsning... samt NCT. Uppgift 2 (8 poäng) Vi har erhållit nedanstående tidsserie med försäljningssiffror i miljoner. År Tertial a. Beskriv trenden på lämpligt sätt (3 poäng) Använd 3-punkts glidande medelvärde för att erhålla År Tertial **** 12+1/ / /3 12+1/3 13+2/ / **** b. Beräkna säsongseffekten på lämpligt sätt (3 poäng) Med säsongsindexmetoden tar vi först kvoten mellan observation och trend, dvs År Tertial **** **** Sedan beräknas medianen för varje tertial vilken justeras för genomsnittet (3.031/3) så att säsongsindex erhålls:.973/1.01= /1.01= /1.01=1.237 c. Säsongsrensa år 2012 på lämpligt sätt (2 poäng) 2

3 Dela observerade värden med säsongsindex för att säsongsrensa 11/.963= /.800= /1.237=12.93 Uppgift 3 (10 poäng) Denna fråga är uppdelad i fem delfrågor. I varje delfråga är ett (och endast ett) av alternativen rätt. Skriv tydligt i ditt svar vilket alternativ som är rätt. Rätt svar ger 2 poäng på delfrågan. Motivering behövs inte och ger inte pluspoäng. Om du angett fler än ett alternativ på en delfråga ger det 0 poäng på delfrågan. Delfråga 1 (2 poäng) Ett tillstånd (E) i en Markovkedja kallas absorberande om processen för alltid förblir i detta ( tillstånd ) när den en gång har kommit dit. Vilket av följande påståenden stämmer?.8.2 a. innehåller två absorberande tillstånd b. Om man börjar i tillstånd E 2 i kommer man aldrig att hamna i ett ab sorberande tillstånd. c. Om en Markovkedja innehåller absorberande tillstånd går den asymptotiska fördelningen inte att beräkna d. I Markovkedjan är det endast möjligt att nå ett absorberande tillstånd om man börjar i tillstånd E Rätt svar: b. Delfråga 2 (2 poäng) Vad gäller för följande två ARIMA-processer? Y t = φ 0 + φ 1 Y t 1 + φ 2 Y t 2 + φ 3 Y t 3 + ɛ t + θ 1 ɛ t 1 X t = Φ 0 + ε t + Θ 1 ε t 1 + Φ 1 X t 1 + Φ 2 X t 2 + Φ 3 X t 3 a. Y t är en ARIMA(p=3,d=1,q=1) b. Processerna kan inte vara exakt lika c. X t är en ARIMA(p=1,d=0,q=3) d. Oavsett parametervärdena kommer differentiering behövas för att erhålla stationäritet Rätt svar: e. Delfråga 3 (2 poäng) 3

4 Ett företag använder sig av en enkel exponentiell utjämningsmodell ŷ t,t+1 = αy t + (1 α)ŷ t 1,t för att prognosticera volatilitet. Man avser nu att byta utjämningskonstant från α =.8 till α =.7. Vilket av följande påståenden stämmer då? a. Prognosen kommer att reagera långsammare på den senast tillförda informationen än tidigare. b. Långsiktiga prognoser (flera än en tidsperiod framåt) kommer tendera att vara lägre än tidigare. c. Prognoserna kommer att uppvisa större variation än tidigare. d. Vikten som ges till de äldsta observationerna kommer att minska. Rätt svar: a. Delfråga 4 (2 poäng) Vad stämmer om linjär regression som skattas med minsta-kvadrat-metoden (eng. OLS)? a. Väntevärdet av residualerna är noll. b. Det är möjligt att skatta modellen med en förklarande X-variabel som är konstant. c. Det krävs fler parametrar än observationer för att kunna skatta en linjär regressionsmodell d. Om residualerna är heteroskedastiska kan vi ändå dra korrekta slutsatser om skattade parametrar utifrån test och konfidensintervall som baseras på t-fördelningen. Rätt svar: a. Delfråga 5 (2 poäng) Att en process är svagt stationär innebär att a. den alltid följer en normalfördelning. b. den kan vara en random walk. c. om processen är diskret så bestäms den av 2 t parametrar, där t är tiden i heltal. d. variansen beror endast av tiden. Rätt svar: e. Uppgift 4 (17 poäng) a. (4 poäng) Beskriv varför Laspeyres prisindex tenderar att överskatta prisinflation. Nedan finns exempeldata över kvantitet och pris för två varor som skulle kunna refereras till i beskrivningen. Biobesök Köpfilm År Pris Kvantitet Pris Kvantitet

5 se exempel i L10, p6. b. (3 poäng) I slutet av varje år beräknar en butikskedja sambandet mellan omsättningen (Y ) och en uppsättning av variabler med hjälp av linjär regression; X 1 genomsnittlig öppetid per butik X 2 förändring av konsumentprisindex X 3 genomsnittlig inkomstnivå inom kommunen X 4 antal konkurrenter inom närområdet Parameterskattningarna i modellen brukar vara relativt stabila över åren, bortsett från β 2 för förändring av konsumentprisindex som är mest variabel. I år blev det dock en stor överraskning, då skattningen för genomsnittlig öppettid per butik β 1 kraftigt reducerades, se tabellen nedan. Dock var den enligt p-värdet ungefär lika signifikant som tidigare år, och övriga parameterskattningar var relativt oförändrade. Försök att ge en rimlig förklaring till varför detta resultatet erhållits. År β p-värde Det verkar vara en faktor 60 som skiljer skattningen 2013 från de tidigare årens. En faktor 60 när något mäts i tid antyder att man har använt sig av olika tidsenhet, gissningsvis timmar tidigare och minuter Vi förväntar oss då just denna effekt, att parameterskattningen sjunker med en faktor 60 men att effekten är oförändrad då denna är oberoende av vilken skala som mäts på. c. (6 poäng) Din chef visar stolt upp resultatet från sin skattade regressionsmodell, vilken uppvisar en förklaringsgrad på R 2 adj =.59; y = x 1 + e där y är kapitalbehov och x är genomsnittligt antal (heltids)anställda. Du misstänker dock att sambandet inte är helt så enkelt och gräver lite i bakgrundsmaterialet där du hittar följande plottar; 5

6 Föreslå hur modellen skulle kunna förbättras genom att skriva upp ett nytt förslag på en linjär regressionmodell att skatta, förklara vilka variabler som ingår och varför de ingår. I figurerna finns det tre saker att lägga märke till. 1. Histogrammet antyder att fördelningen av kvoten är skev, och tittar vi i spridningsdiagrammet så ser vi varför, sambandet verkar vara exponentiellt snarare än linjärt. 2. Nystartade respektive äldre företag verkar ha olika stark exponentiell utveckling. 3. Startpunkten för nystartade respektive äldre företag verkar vara olika (dvs om vi extrapolerar till 0 antal genomsnittligt anställda). Av dessa skäl torde modellen log(y) = β 0 + β 1 x 1 + β 2 d 1 + β 3 x 1 d 1 + ε { 1 om nystartat passa bättre, där d 1 =. 0 om äldre d. (4 poäng) Följande linjära regressionmodell är skattad baserad på 5 års månadsdata. y t = β 0 + β 1 x 1,t + β 2 x 2,t + β 3 x 3,t + e I plotten ses den skattade autokorrelationsfunktion (ACF) för residualerna. 6

7 Du misstänker att residualerna är autokorrelerade. Testa därför hypotesen H 0 : φ = 0 mot H 1 : φ > 0 med ett lämpligt test på α =.05 signifikansnivå. Vi gör ett Durbin-Watson test utifrån givna hypoteser. Antag signifikansnivå α =.05 (enda som är given i tabellen). För K=3 variabler har vi i tabellen för 60 observationer d L = 1.48 och d U = Läser av skattat autokorrelation r 1.6 i figuren. Vi utnyttjar approximation d obs = 2 (1 r 1 ) =.8. Förkasta således nollhypotesen om ingen autokorrelation. Uppgift 5 (13 poäng) Två variabler X t och Y t kan båda antas vara genererade från samma typ av Wienerprocess N(δt, σ 2 t), där driften δ =.05, variansen σ 2 = 4, och tiden t mäts i dagar. a. (3 poäng) Vad är sannolikheten att X t ökat med minst 1 efter en dag? Vi har E[X 1 ] = δ t =.05 1 =.05, V [X 1 ] = 4 1 = 4. Då blir P (X 1 > 1) = P ( X > ) = P (Z >.475) = = 1 P (Z <.475) = om vi interpolerar i tabellen mellan.47 och.48 dvs ca 31.7 % sannolikhet. (1 P (Z <.47)) + (1 P (Z <.48)) 2 = =

8 b. (3 poäng) Vilken fördelning följer X t + X t? Vi har E[X t + X t ] = E[2X t ] = 2 E[X t ] =.10t, och V [2X t ] = 2 2 V [X t ] = 4 4 t = 16t. dvs N(2δt, 4σ 2 t) c. (3 poäng) Vilken fördelning följer X t + Y t om korrelationen ρ X,Y =.4? Vi har E[X t + Y t ] = E[2X t ] = 2 E[X t ] =.10t, V [X t + Y t ] = V [X t ] + V [Y t ] + 2Cov[X t, Y t ] = = V [X t ] + V [Y t ] + 2ρ V [X t ] V [Y t ] = ( ) t = 11.2t. dvs N(2 δ t, 11.2 t). d. (4 poäng) Vad är sannolikheten att X t + Y t ökat med minst 1 efter en halv dag, om korrelationen ρ X,Y =.4? Kalla W t = X t + Y t Notera att t =.5 Vi har då E[W.5 ] =.10.5 =.05, V [W.5 ] = = 5.6. Då blir P (W.5 > 1) = P 1 P (Z <.40) = =.3446 dvs ca 34 % sannolikhet. ( W > ) = = P (Z >.4014) Uppgift 6 (6 poäng) En undersökning studerar risken att ett aktiebolag lägger ner sin verksamhet i Sverige om en majoritet av aktierna i företaget ägs av utländska juridiska personer (utlandsägda företag), och jämför med risken att det läggs ner om en majoritet av aktierna i företaget ägs av svenska juridiska personer (svenskägda företag). Undersökningen, som omfattar 425 företag, redovisar följande tabell. Företaget är utlandsägt Företaget är svenskägt Företaget har lagts ner Företaget har ej lagts ner

9 a) Hur stor är risken att ett företag läggs ner helt oavsett om det är svenskägt eller utlandsägt? (1 poäng) 150/425 = 6/ dvs ca 35 %. b) I logistisk regression modelleras logaritmen av oddset för den intressanta händelsen som en linjär funktion. Hur stor är oddskvoten, dvs oddset att ett företag läggs ner om det är utlandsägt dividerat med oddset att ett företag läggs ner om det är svenskägt? (2 poäng) 25/25 125/250 = 2 dvs 2 gånger högre odds om det är utländskt än svenskt c) Följande logistiska regressionsmodell anpassas till data i tabellen: eβ 0+β 1 x π(x) = 1 + e β 0+β 1 x { 1 om företaget är svenskägt där x = 0 om företaget är utlandsägt. så att π(x) = P (Y = 1 X = x) är sannolikheten att ett slumpvis utvalt företag med värdet x läggs ner. Hur tolkas koefficienten β 1 i den logistiska modellen? (3 poäng) Förväntad förändring av logaritmerad oddskvot för händelse y (dvs nedläggning), vid förändring av en enhet x (dvs om vi byter till svenskt (x=1) från utlandsägt (x=0)). 9

GRUNDLÄGGANDE STATISTIK FÖR EKONOMER

GRUNDLÄGGANDE STATISTIK FÖR EKONOMER Statistiska institutionen Annika Tillander TENTAMEN GRUNDLÄGGANDE STATISTIK FÖR EKONOMER 2015-04-23 Skrivtid: 16.00-21.00 Hjälpmedel: Godkänd miniräknare utan lagrade formler eller text, samt bifogade

Läs mer

Stockholms Universitet Statistiska institutionen Termeh Shafie

Stockholms Universitet Statistiska institutionen Termeh Shafie Stockholms Universitet Statistiska institutionen Termeh Shafie TENTAMEN I GRUNDLÄGGANDE STATISTIK FÖR EKONOMER 2011-10-28 Skrivtid: 9.00-14.00 Hjälpmedel: Miniräknare utan lagrade formler eller text, bifogade

Läs mer

Föreläsning 12: Regression

Föreläsning 12: Regression Föreläsning 12: Regression Matematisk statistik David Bolin Chalmers University of Technology Maj 15, 2014 Binomialfördelningen Låt X Bin(n, p). Vi observerar x och vill ha information om p. p = x/n är

Läs mer

TENTAMEN I MATEMATISK STATISTIK

TENTAMEN I MATEMATISK STATISTIK UMEÅ UNIVERSITET Institutionen för matematisk statistik Statistik för Teknologer, 5 poäng MSTA33 Ingrid Svensson TENTAMEN 2004-01-13 TENTAMEN I MATEMATISK STATISTIK Statistik för Teknologer, 5 poäng Tillåtna

Läs mer

TENTAMEN I STATISTIKENS GRUNDER 2

TENTAMEN I STATISTIKENS GRUNDER 2 STOCKHOLMS UNIVERSITET Statistiska institutionen Michael Carlson HT2012 TENTAMEN I STATISTIKENS GRUNDER 2 2012-11-20 Skrivtid: kl 9.00-14.00 Godkända hjälpmedel: Miniräknare, språklexikon Bifogade hjälpmedel:

Läs mer

TT091A, TVJ22A, NVJA02 Pu, Ti. 50 poäng

TT091A, TVJ22A, NVJA02 Pu, Ti. 50 poäng Matematisk statistik Provmoment: Ladokkod: Tentamen ges för: TT091A, TVJ22A, NVJA02 Pu, Ti 7,5 högskolepoäng Namn: (Ifylles av student) Personnummer: (Ifylles av student) Tentamensdatum: 2012-05-29 Tid:

Läs mer

MSG830 Statistisk analys och experimentplanering

MSG830 Statistisk analys och experimentplanering MSG830 Statistisk analys och experimentplanering Tentamen 16 April 2015, 8:30-12:30 Examinator: Staan Nilsson, telefon 073 5599 736, kommer till tentamenslokalen 9:30 och 11:30 Tillåtna hjälpmedel: Valfri

Läs mer

Del A: Begrepp och grundläggande förståelse

Del A: Begrepp och grundläggande förståelse STOCKHOLMS UNIVERSITET FYSIKUM KH/CW/SS Tentamensskrivning i Experimentella metoder, 1p, för kandidatprogrammet i fysik, /5 01, 9-14 Införda beteckningar skall förklaras och uppställda ekvationer motiveras

Läs mer

LULEÅ TEKNISKA UNIVERSITET Ämneskod S0002M, MAM801, IEK600,IEK309 Institutionen för matematik Datum 2009-12-17 Skrivtid 0900 1400

LULEÅ TEKNISKA UNIVERSITET Ämneskod S0002M, MAM801, IEK600,IEK309 Institutionen för matematik Datum 2009-12-17 Skrivtid 0900 1400 LULEÅ TEKNISKA UNIVERSITET Ämneskod S0002M, MAM801, IEK600,IEK309 Institutionen för matematik Datum 2009-12-17 Skrivtid 0900 1400 Tentamen i: Statistik A1, 15 hp Antal uppgifter: 6 Krav för G: 13 Lärare:

Läs mer

TENTAMEN I SF1906 (f d 5B1506) MATEMATISK STATISTIK GRUNDKURS,

TENTAMEN I SF1906 (f d 5B1506) MATEMATISK STATISTIK GRUNDKURS, Avd. Matematisk statistik TENTAMEN I SF1906 (f d 5B1506) MATEMATISK STATISTIK GRUNDKURS, TORSDAGEN DEN 7 JUNI 2012 KL 14.00 19.00 Examinator:Gunnar Englund, 073 3213745 Tillåtna hjälpmedel: Formel- och

Läs mer

Laboration 5: Regressionsanalys. 1 Förberedelseuppgifter. 2 Enkel linjär regression DATORLABORATION 5 MATEMATISK STATISTIK FÖR I, FMS 012, HT-08

Laboration 5: Regressionsanalys. 1 Förberedelseuppgifter. 2 Enkel linjär regression DATORLABORATION 5 MATEMATISK STATISTIK FÖR I, FMS 012, HT-08 LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK Laboration 5: Regressionsanalys DATORLABORATION 5 MATEMATISK STATISTIK FÖR I, FMS 012, HT-08 Syftet med den här laborationen är att du skall

Läs mer

Stockholms Univ., Statistiska Inst. Finansiell Statistik, GN, 7,5 hp, VT2009 Inlämningsuppgift (1,5hp)

Stockholms Univ., Statistiska Inst. Finansiell Statistik, GN, 7,5 hp, VT2009 Inlämningsuppgift (1,5hp) Stockholms Univ., Statistiska Inst. Finansiell Statistik, GN, 7,5 hp, VT009 Inlämningsuppgift (1,5hp) Nicklas Pettersson 1 Anvisningar och hålltider Uppgiften löses i grupper om -3 personer och godkänt

Läs mer

D. Samtliga beräknade mått skall följas av en verbal slutsats för full poäng.

D. Samtliga beräknade mått skall följas av en verbal slutsats för full poäng. 1 Att tänka på (obligatorisk läsning) A. Redovisa Dina lösningar i en form som gör det lätt att följa Din tankegång. (Rättaren förutsätter att det dunkelt skrivna är dunkelt tänkt.). Motivera alla väsentliga

Läs mer

Tentamen i Statistik, STA A11/STA A14 (8 poäng) 25 augusti 2004, klockan 08.15-13.15

Tentamen i Statistik, STA A11/STA A14 (8 poäng) 25 augusti 2004, klockan 08.15-13.15 Karlstads universitet Institutionen för informationsteknologi Avdelningen för Statistik Tentamen i Statistik, STA A/STA A4 (8 poäng) 5 augusti 4, klokan 8.5-3.5 Tillåtna hjälpmedel: Bifogad formelsamling

Läs mer

Stockholms Universitet Statistiska Institutionen VT-2009. Kursbeskrivning. Statistisk Teori I, grundnivå, 15 högskolepoäng

Stockholms Universitet Statistiska Institutionen VT-2009. Kursbeskrivning. Statistisk Teori I, grundnivå, 15 högskolepoäng Stockholms Universitet Statistiska Institutionen VT-2009 Kursbeskrivning Statistisk Teori I, grundnivå, 15 högskolepoäng Allmänt Kursen består av två moment: Moment 1. Grundläggande statistisk teori, 12hp.

Läs mer

Tentamen för kursen. Linjära statistiska modeller. 20 mars 2015 9 14

Tentamen för kursen. Linjära statistiska modeller. 20 mars 2015 9 14 STOCKHOLMS UNIVERSITET MATEMATISK STATISTIK Tentamen för kursen Linjära statistiska modeller 20 mars 2015 9 14 Examinator: Anders Björkström, bjorks@math.su.se Återlämning: Fredag 27/3 kl 12.00, Hus 5,

Läs mer

Datorövning 5 Exponentiella modeller och elasticitetssamband

Datorövning 5 Exponentiella modeller och elasticitetssamband Datorövning 5 Exponentiella modeller och elasticitetssamband Datorövningen utförs i grupper om två personer. I denna datorövning skall ni använda Minitab för att 1. anpassa och tolka analysen av en exponentiell

Läs mer

Den svenska arbetslöshetsförsäkringen

Den svenska arbetslöshetsförsäkringen Statistiska Institutionen Handledare: Rolf Larsson Kandidatuppsats VT 2013 Den svenska arbetslöshetsförsäkringen En undersökning av skillnaden i genomsnittligt antal ersättningsdagar som kvinnor respektive

Läs mer

Aktivitetsuppgifter i kurs 602 Ekonomisk statistik, del 2, våren 2006

Aktivitetsuppgifter i kurs 602 Ekonomisk statistik, del 2, våren 2006 Handelshögskolan i Stockholm Anders Sjöqvist 2087@student.hhs.se Aktivitetsuppgifter i kurs 602 Ekonomisk statistik, del 2, våren 2006 Efter förra kursen hörde några av sig och ville gärna se mina aktivitetsuppgifter

Läs mer

Skattning av matchningseffektiviteten. arbetsmarknaden FÖRDJUPNING

Skattning av matchningseffektiviteten. arbetsmarknaden FÖRDJUPNING Lönebildningsrapporten 9 FÖRDJUPNING Skattning av matchningseffektiviteten på den svenska arbetsmarknaden I denna fördjupning analyseras hur matchningseffektiviteten på den svenska arbetsmarknaden har

Läs mer

Övningshäfte till kursen Regressionsanalys och tidsserieanalys

Övningshäfte till kursen Regressionsanalys och tidsserieanalys Övningshäfte till kursen Regressionsanalys och tidsserieanalys Linda Wänström October 31, 2010 1 Enkel linjär regressionsanalys (baserad på uppgift 2.3 i Andersson, Jorner, Ågren (2009)) Antag att följande

Läs mer

Nedan redovisas resultatet med hjälp av ett antal olika diagram (pkt 1-6):

Nedan redovisas resultatet med hjälp av ett antal olika diagram (pkt 1-6): EM-fotboll 2012 några grafer Sport är en verksamhet som genererar mängder av numerisk information som följs med stort intresse EM i fotboll är inget undantag och detta dokument visar några grafer med kommentarer

Läs mer

BIOSTATISTISK GRUNDKURS, MASB11 ÖVNING 7 (2015-04-29) OCH INFÖR ÖVNING 8 (2015-05-04)

BIOSTATISTISK GRUNDKURS, MASB11 ÖVNING 7 (2015-04-29) OCH INFÖR ÖVNING 8 (2015-05-04) LUNDS UNIVERSITET, MATEMATIKCENTRUM, MATEMATISK STATISTIK BIOSTATISTISK GRUNDKURS, MASB ÖVNING 7 (25-4-29) OCH INFÖR ÖVNING 8 (25-5-4) Aktuella avsnitt i boken: 6.6 6.8. Lektionens mål: Du ska kunna sätta

Läs mer

Kandidatuppsats Statistiska institutionen

Kandidatuppsats Statistiska institutionen Kandidatuppsats Statistiska institutionen Bachelor thesis, Department of Statistics Nr 2013:1 Prognosmodell för den relativa arbetslösheten i Sverige Forecast model for the relative unemployment rate in

Läs mer

SF1901: SANNOLIKHETSTEORI OCH HYPOTESPRÖVNING. STATISTIK. Tatjana Pavlenko. 13 maj 2015

SF1901: SANNOLIKHETSTEORI OCH HYPOTESPRÖVNING. STATISTIK. Tatjana Pavlenko. 13 maj 2015 SF1901: SANNOLIKHETSTEORI OCH STATISTIK FÖRELÄSNING 13 HYPOTESPRÖVNING. Tatjana Pavlenko 13 maj 2015 PLAN FÖR DAGENS FÖRELÄSNING Begrepp inom hypotesprövning (rep.) Tre metoder för att avgöra om H 0 ska

Läs mer

MS-A0509 Grundkurs i sannolikhetskalkyl och statistik Exempel, del II

MS-A0509 Grundkurs i sannolikhetskalkyl och statistik Exempel, del II MS-A0509 Grundkurs i sannolikhetskalkyl och statistik Exempel, del II G. Gripenberg Aalto-universitetet 13 februari 2015 G. Gripenberg (Aalto-universitetet) MS-A0509 Grundkurs i sannolikhetskalkyl och

Läs mer

Upprepade mätningar och tidsberoende analyser. Stefan Franzén Statistiker Registercentrum Västra Götaland

Upprepade mätningar och tidsberoende analyser. Stefan Franzén Statistiker Registercentrum Västra Götaland Upprepade mätningar och tidsberoende analyser Stefan Franzén Statistiker Registercentrum Västra Götaland Innehåll Stort område Simpsons paradox En mätning per individ Flera mätningar per individ Flera

Läs mer

ÖVNINGSUPPGIFTER KAPITEL 4

ÖVNINGSUPPGIFTER KAPITEL 4 ÖVNINGSUPPGIFTER KAPITEL 4 REGRESSIONSLINJEN: NIVÅ OCH LUTNING 1. En av regressionslinjerna nedan beskrivs av ekvationen y = 20 + 2x; en annan av ekvationen y = 80 x; en tredje av ekvationen y = 20 + 3x

Läs mer

34% 34% 13.5% 68% 13.5% 2.35% 95% 2.35% 0.15% 99.7% 0.15% -3 SD -2 SD -1 SD M +1 SD +2 SD +3 SD

34% 34% 13.5% 68% 13.5% 2.35% 95% 2.35% 0.15% 99.7% 0.15% -3 SD -2 SD -1 SD M +1 SD +2 SD +3 SD 6.4 Att dra slutsatser på basis av statistisk analys en kort inledning - Man har ett stickprov, men man vill med hjälp av det få veta något om hela populationen => för att kunna dra slutsatser som gäller

Läs mer

Statistiskt säkerställande av skillnader

Statistiskt säkerställande av skillnader Rapport Statistiskt säkerställande av skillnader Datum: Uppdragsgivare: 2012-10-16 Mindball Status: DokumentID: Slutlig Mindball 2012:2, rev 2 Sammanfattning Totalt 29 personer har tränat med koncentrationshjälpmedlet

Läs mer

a) Bestäm sannolikheten att en slumpmässigt vald komponent är defekt.

a) Bestäm sannolikheten att en slumpmässigt vald komponent är defekt. Tentamen i Matematisk statistik, S0001M, del 1, 007-10-30 1. En viss typ av komponenter tillverkas av en maskin A med sannolikheten 60 % och av en maskin B med sannolikheten 40 %. För de komponenter som

Läs mer

Del 2 Korrelation. Strukturakademin

Del 2 Korrelation. Strukturakademin Del 2 Korrelation Strukturakademin Innehåll 1. Implicita tillgångar 2. Vad är korrelation? 3. Hur fungerar sambanden? 4. Hur beräknas korrelation? 5. Diversifiering 6. Korrelation och Strukturerade Produkter

Läs mer

1 Förberedelseuppgifter

1 Förberedelseuppgifter LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK LABORATION 2 MATEMATISK STATISTIK FÖR B, K, N, BME OCH KEMISTER; FMS086 & MASB02 Syfte: Syftet med dagens laborationen är att du skall: bli

Läs mer

SF1901: SANNOLIKHETSTEORI OCH. PASSNING AV FÖRDELNING: χ 2 -METODER. STATISTIK. Tatjana Pavlenko. 12 oktober 2015

SF1901: SANNOLIKHETSTEORI OCH. PASSNING AV FÖRDELNING: χ 2 -METODER. STATISTIK. Tatjana Pavlenko. 12 oktober 2015 SF1901: SANNOLIKHETSTEORI OCH STATISTIK FÖRELÄSNING 14 PASSNING AV FÖRDELNING: χ 2 -METODER. Tatjana Pavlenko 12 oktober 2015 PLAN FÖR DAGENS FÖRELÄSNING Icke-parametsriska metoder. (Kap. 13.10) Det grundläggande

Läs mer

Lösningar till tentamen i Matematisk Statistik, 5p

Lösningar till tentamen i Matematisk Statistik, 5p Lösningar till tentamen i Matematisk Statistik, 5p LGR00 6 juni, 200 kl. 9.00 1.00 Kursansvarig: Eric Järpe Maxpoäng: 0 Betygsgränser: 12p: G, 21p: VG Hjälpmedel: Miniräknare samt tabell- och formelsamling

Läs mer

Matematisk statistik KTH. Formel- och tabellsamling i Matematisk statistik, grundkurs

Matematisk statistik KTH. Formel- och tabellsamling i Matematisk statistik, grundkurs Matematisk statistik KTH Formel- och tabellsamling i Matematisk statistik, grundkurs Varterminen 2005 . Kombinatorik ( ) n = k n! k!(n k)!. Tolkning: ( n k mängd med n element. 2. Stokastiska variabler

Läs mer

NÄR SKA MAN SÄLJA SIN BOSTAD?

NÄR SKA MAN SÄLJA SIN BOSTAD? NÄR SKA MAN SÄLJA SIN BOSTAD? En multipel regressionsanalys av bostadsrätter i Stockholm Oscar Jonsson Moa Englund Stockholm 2015 Matematik Institutionen Kungliga Tekniska Högskolan Sammanfattning Projektet

Läs mer

Laboration 3: Enkel linjär regression och korrelationsanalys

Laboration 3: Enkel linjär regression och korrelationsanalys STOCKHOLMS UNIVERSITET 13 februari 2009 Matematiska institutionen Avd. för matematisk statistik Gudrun Brattström Laboration 3: Enkel linjär regression och korrelationsanalys I sista datorövningen kommer

Läs mer

(a) Beräkna sannolikhetsfunktionen p X (x). (2p) (b) Beräkna väntevärdet för X. (1p) (c) Beräkna standardavvikelsen för X. (1p)

(a) Beräkna sannolikhetsfunktionen p X (x). (2p) (b) Beräkna väntevärdet för X. (1p) (c) Beräkna standardavvikelsen för X. (1p) Tentamenskrivning: TMS145 - Grundkurs i matematisk statistik och bioinformatik, 5p. Tid: Lördag den 14 april, 2007 kl 14.00-18.00 i V-huset. Examinator: Olle Nerman, tel 7723565. Jour: Alexandra Jauhiainen,

Läs mer

Hur påverkas priset på guld av olika makroekonomiska variabler och avkastningen på alternativa tillgångar?

Hur påverkas priset på guld av olika makroekonomiska variabler och avkastningen på alternativa tillgångar? Hur påverkas priset på guld av olika makroekonomiska variabler och avkastningen på alternativa tillgångar? Författare: Fredrik Matsgård Gustaf Danielsson Kandidatuppsats VT 2013 Handledare: Anne-Marie

Läs mer

Tentamen på kurs Nationalekonomi (1-20 poäng), delkurs 1, Mikroekonomisk teori med tillämpningar, 7 poäng, måndagen den 15 augusti 2005, kl 9-14.

Tentamen på kurs Nationalekonomi (1-20 poäng), delkurs 1, Mikroekonomisk teori med tillämpningar, 7 poäng, måndagen den 15 augusti 2005, kl 9-14. HÖGSKOLAN I HALMSTAD INSTITUTIONEN FÖR EKONOMI OCH TEKNIK Tentamen på kurs Nationalekonomi (1-20 poäng), delkurs 1, Mikroekonomisk teori med tillämpningar, 7 poäng, måndagen den 15 augusti 2005, kl 9-14.

Läs mer

TNIU66: Statistik och sannolikhetslära

TNIU66: Statistik och sannolikhetslära Institutionen för teknik och naturvetenskap Michael Hörnquist, 1 februari 2013 TNIU66: Statistik och sannolikhetslära Kursinformation 2013 Mål och innehåll Kursens mål och förväntade läranderesultat enligt

Läs mer

I. Grundläggande begrepp II. Deskriptiv statistik III. Statistisk inferens Parametriska Icke-parametriska

I. Grundläggande begrepp II. Deskriptiv statistik III. Statistisk inferens Parametriska Icke-parametriska Innehåll I. Grundläggande begrepp II. Deskriptiv statistik III. Statistisk inferens Hypotesprövnig Statistiska analyser Parametriska analyser Icke-parametriska analyser Univariata analyser Univariata analyser

Läs mer

Del A: Begrepp och grundläggande förståelse

Del A: Begrepp och grundläggande förståelse STOCKHOLMS UNIVERSITET FYSIKUM K.H./C.F./C.W. Tentamensskrivning i Experimentella metoder, 1p, för kandidatprogrammet i fysik, 18/6 013, 9-14. Införda beteckningar skall förklaras och uppställda ekvationer

Läs mer

MSG830 Statistisk analys och experimentplanering

MSG830 Statistisk analys och experimentplanering MSG830 Statistisk analys och experimentplanering Tentamen 20 Mars 2015, 8:30-12:30 Examinator: Staan Nilsson, telefon 073 5599 736, kommer till tentamenslokalen 9:30 och 11:30 Tillåtna hjälpmedel: Valfri

Läs mer

Läsanvisningar - Medicinsk statistik - Läkarprogrammet T10

Läsanvisningar - Medicinsk statistik - Läkarprogrammet T10 Läsanvisningar - Medicinsk statistik - Läkarprogrammet T10 Läsanvisningarna baseras på boken Björk J. Praktisk statistik för medicin och hälsa, Liber Förlag (2011), som är gemensam kursbok för statistikavsnitten

Läs mer

SF1901: Övningshäfte

SF1901: Övningshäfte SF1901: Övningshäfte 24 september 2013 Uppgifterna under rubriken Övning kommer att gås igenom under övningstillfällena. Uppgifterna under rubriken Hemtal är starkt rekommenderade och motsvarar nivån på

Läs mer

Richard Öhrvall, http://richardohrvall.com/ 1

Richard Öhrvall, http://richardohrvall.com/ 1 Läsa in data (1/4) Välj File>Open>Data Läsa in data (2/4) Leta reda på rätt fil, Markera den, välj Open http://richardohrvall.com/ 1 Läsa in data (3/4) Nu ska data vara inläst. Variable View Variabelvärden

Läs mer

Övningstentamen i matematisk statistik för kemi

Övningstentamen i matematisk statistik för kemi Övningstentamen i matematisk statistik för kemi Uppgift 1: Bill och Georg har gått till puben tillsammans. De beslutar sig för att spela dart (vilket betyder kasta pil mot en tavla). Sedan gammalt vet

Läs mer

LINKÖPINGS UNIVERSITET EXAM TAMS 79 / TEN 1

LINKÖPINGS UNIVERSITET EXAM TAMS 79 / TEN 1 LINKÖPINGS UNIVERSITET Matematiska institutionen EXAM TAMS 79 / TEN 1 augusti 14, klockan 8.00-12.00 Examinator: Jörg-Uwe Löbus Tel: 28-1474) Tillåtna hjälpmedel är en räknare, formelsamling i matematisk

Läs mer

Poolade data över tiden och över tvärsnittet. Oberoende poolade tvärsnittsdatamängder från olika tidpunkter.

Poolade data över tiden och över tvärsnittet. Oberoende poolade tvärsnittsdatamängder från olika tidpunkter. PANELDATA Poolade data över tiden och över tvärsnittet Alternativ 1: Oberoende poolade tvärsnittsdatamängder från olika tidpunkter. Oberoende stickprov dragna från stora populationer vid olika tidpunkter.

Läs mer

Valfri räknedosa, kursbok (Kutner m fl) utan anteckningar. Tentamen omfattar totalt 20p. Godkänt från 12p.

Valfri räknedosa, kursbok (Kutner m fl) utan anteckningar. Tentamen omfattar totalt 20p. Godkänt från 12p. Tentamen Linköpings Universitet, Institutionen för datavetenskap, Statistik Kurskod och namn: Datum och tid: Jourhavande lärare: Tillåtna hjälpmedel: Betygsgränser: 732G21 Sambandsmodeller 2009-01-14,

Läs mer

TNIU66: Statistik och sannolikhetslära

TNIU66: Statistik och sannolikhetslära Institutionen för teknik och naturvetenskap TNIU66: Statistik och sannolikhetslära Kursinformation 2015 Kursens mål och förväntade läranderesultat Kursens mål är att ge en introduktion till matematisk

Läs mer

Mer om slumpvariabler

Mer om slumpvariabler 1/20 Mer om slumpvariabler Måns Thulin Uppsala universitet thulin@math.uu.se Statistik för ingenjörer 4/2 2013 2/20 Dagens föreläsning Diskreta slumpvariabler Vilket kretskort ska man välja? Väntevärde

Läs mer

En introduktion till och första övning i @Risk5 for Excel

En introduktion till och första övning i @Risk5 for Excel LUNDS UNIVERSITET 1(6) STATISTISKA INSTITUTIONEN Per-Erik Isberg / Lars Wahlgren VT2012 En introduktion till och första övning i @Risk5 for Excel Vi har redan under kursen stiftat bekantskap med Minitab

Läs mer

Del I: Digitala verktyg är inte tillåtna. Endast svar krävs. Skriv dina svar direkt i provhäftet.

Del I: Digitala verktyg är inte tillåtna. Endast svar krävs. Skriv dina svar direkt i provhäftet. Del I: Digitala verktyg är inte tillåtna. Endast svar krävs. Skriv dina svar direkt i provhäftet. 1) a) Bestäm ekvationen för den räta linjen i figuren. (1/0/0) b) Rita i koordinatsystemet en rät linje

Läs mer

D. Samtliga beräknade mått skall följas av en verbal slutsats för full poäng.

D. Samtliga beräknade mått skall följas av en verbal slutsats för full poäng. Att tänka på (obligatorisk läsning) A. Redovisa Dina lösningar i en form som gör det lätt att följa Din tankegång. (Rättaren förutsätter att det dunkelt skrivna är dunkelt tänkt.). Motivera alla väsentliga

Läs mer

Dagens föreläsning. TSFS06 Diagnos och övervakning Föreläsning 6 - Tröskling och analys av teststorheter. Tröskelsättning och beslut i osäker miljö

Dagens föreläsning. TSFS06 Diagnos och övervakning Föreläsning 6 - Tröskling och analys av teststorheter. Tröskelsättning och beslut i osäker miljö Dagens föreläsning SFS6 Diagnos och övervakning Föreläsning 6 - röskling och analys av teststorheter Erik Frisk Institutionen för systemteknik Linköpings universitet frisk@isy.liu.se 25-4-2 röskelsättning

Läs mer

SF1901: Övningshäfte

SF1901: Övningshäfte SF1901: Övningshäfte 13 oktober 2013 Uppgifterna under rubriken Övning kommer att gås igenom under övningstillfällena. Uppgifterna under rubriken Hemtal är starkt rekommenderade och motsvarar nivån på

Läs mer

Tentamen i Statistik, STA A13 Deltentamen 2, 5p 4 mars 2006, kl. 09.00-13.00

Tentamen i Statistik, STA A13 Deltentamen 2, 5p 4 mars 2006, kl. 09.00-13.00 Karlstads universitet Avdelningen för statistik Tentamen i Statistik, STA A13 Deltentamen, 5p 4 mars 006, kl. 09.00-13.00 Tillåtna hjälpmedel: Bifogad formel- och tabellsamling (skall returneras) samt

Läs mer

Regressionsanalys av tillströmningen till svenska universitet och högskolor. Lisa Wimmerstedt i

Regressionsanalys av tillströmningen till svenska universitet och högskolor. Lisa Wimmerstedt i Regressionsanalys av tillströmningen till svenska universitet och högskolor -en studie av variationen i antalet inskrivna studenter Lisa Wimmerstedt i Syftet med Sveriges utbildningssystem är att göra

Läs mer

1 10 e 1 10 x dx = 0.08 1 e 1 10 T = 0.08. p = P(ξ < 3) = 1 e 1 10 3 0.259. P(η 2) = 1 P(η = 0) P(η = 1) = 1 (1 p) 7 7p(1 p) 6 0.

1 10 e 1 10 x dx = 0.08 1 e 1 10 T = 0.08. p = P(ξ < 3) = 1 e 1 10 3 0.259. P(η 2) = 1 P(η = 0) P(η = 1) = 1 (1 p) 7 7p(1 p) 6 0. Tentamen TMSB18 Matematisk statistik IL 091015 Tid: 08.00-13.00 Telefon: 036-10160 (Abrahamsson, Examinator: F Abrahamsson 1. Livslängden för en viss tvättmaskin är exponentialfördelad med en genomsnittlig

Läs mer

Utvärdering av Transportstyrelsens flygtrafiksmodeller

Utvärdering av Transportstyrelsens flygtrafiksmodeller Kandidatuppsats i Statistik Utvärdering av Transportstyrelsens flygtrafiksmodeller Arvid Odencrants & Dennis Dahl Abstract The Swedish Transport Agency has for a long time collected data on a monthly

Läs mer

Föreläsning 4. 732G19 Utredningskunskap I. Föreläsningsunderlagen bygger på underlag skapade av Kalle Wahlin

Föreläsning 4. 732G19 Utredningskunskap I. Föreläsningsunderlagen bygger på underlag skapade av Kalle Wahlin Föreläsning 4 732G19 Utredningskunskap I Föreläsningsunderlagen bygger på underlag skapade av Kalle Wahlin Dagens föreläsning Systematiskt urval Väntevärdesriktiga skattningar Jämförelse med OSU Stratifierat

Läs mer

The effect of a reduced mortgage interest deduction. Pardis Ghadrdan och Samuel Hultqvist

The effect of a reduced mortgage interest deduction. Pardis Ghadrdan och Samuel Hultqvist Kandidatuppsats Statistiska institutionen Bachelor thesis, Department of Statistics Nr 2014:17 Effekten av borttaget ränteavdrag The effect of a reduced mortgage interest deduction Pardis Ghadrdan och

Läs mer

Övningstentamen i matematisk statistik

Övningstentamen i matematisk statistik Övningstentamen i matematisk statistik Uppgift : Från ett register över manliga patienter med diabetes fick man följande statistik i procent: Lindrigt fall Allvarligt fall Patientens Någon förälder med

Läs mer

Säsongrensning i tidsserier.

Säsongrensning i tidsserier. Senast ändrad 200-03-23. Säsongrensning i tidsserier. Kompletterande text till kapitel.5 i Tamhane och Dunlop. Inledning. Syftet med säsongrensning är att dela upp en tidsserie i en trend u t, en säsongkomponent

Läs mer

Kandidatuppsats i Statistik

Kandidatuppsats i Statistik Kandidatuppsats i Statistik Prognostisering av försäkringsärenden Hur brytpunktsdetektion och effekter av historiska lag- och villkorsförändringar kan användas i utvecklingen av prognosarbete Sebastian

Läs mer

LABORATIONER. Det finns en introduktionsfilm till Minitab på http://www.screencast.com/t/izls2cuwl.

LABORATIONER. Det finns en introduktionsfilm till Minitab på http://www.screencast.com/t/izls2cuwl. UMEÅ UNIVERSITET Institutionen för Matematik och Matematisk Statistik Statistiska Metoder 5MS010, 7.5 hp Kadri Meister Rafael Björk LABORATIONER Detta dokument innehåller beskrivningar av de tre laborationerna

Läs mer

Stokastiska processer

Stokastiska processer Stokastiska processer Fredrik Olsson, fredrik.olsson@iml.lth.se Avdelningen för produktionsekonomi Lunds tekniska högskola, Lunds universitet Dessa förläsningsanteckningar kommer att behandla diskreta

Läs mer

Arvodesenkät. Resultat 2014. Egenföretagare. www.dik.se/lonestatistik

Arvodesenkät. Resultat 2014. Egenföretagare. www.dik.se/lonestatistik Resultat 2014 Egenföretagare Arvodesenkät www.dik.se/lonestatistik DIK:s arvodesstatistik för egenföretagare baseras på en årlig enkät som vänder sig till förbundets medlemmar som angett att de bedriver

Läs mer

Del 1 Volatilitet. Strukturakademin

Del 1 Volatilitet. Strukturakademin Del 1 Volatilitet Strukturakademin Innehåll 1. Implicita tillgångar 2. Vad är volatilitet? 3. Volatility trading 4. Historisk volatilitet 5. Hur beräknas volatiliteten? 6. Implicit volatilitet 7. Smile

Läs mer

Gamla tentauppgifter i kursen Statistik och sannolikhetslära (LMA120)

Gamla tentauppgifter i kursen Statistik och sannolikhetslära (LMA120) Gamla tentauppgifter i kursen Statistik och sannolikhetslära (LMA120) Lärandemål I uppgiftena nedan anger L1, L2 respektive L3 vilket lärandemål de olika uppgifterna testar: L1 Ta risker som i förväg är

Läs mer

Att beräkna t i l l v ä x t takter i Excel

Att beräkna t i l l v ä x t takter i Excel Att beräkna t i l l v ä x t takter i Excel Detta kapitel är en liten matematisk vägledning om att beräkna tillväxttakten i Excel. Här visas exempel på potenser och logaritmer och hur dessa funktioner beräknas

Läs mer

Mata in data i Excel och bearbeta i SPSS

Mata in data i Excel och bearbeta i SPSS Mata in data i Excel och bearbeta i SPSS I filen enkät.pdf finns svar från fyra män taget från en stor undersökning som gjordes i början av 70- talet. Ni skall mata in dessa uppgifter på att sätt som är

Läs mer

EN ÖKANDE BOLÅNEMARGINAL En redogörelse för penningpolitikens inverkan på bostadsmarknaden

EN ÖKANDE BOLÅNEMARGINAL En redogörelse för penningpolitikens inverkan på bostadsmarknaden HANDELSHÖGSKOLAN vid Göteborgs universitet Nationalekonomiska institutionen EN ÖKANDE BOLÅNEMARGINAL En redogörelse för penningpolitikens inverkan på bostadsmarknaden Kandidatuppsats Economics, Project

Läs mer

Tentamen består av 14 frågor, totalt 40 poäng. Det krävs minst 24 poäng för att få godkänt och minst 32 poäng för att få väl godkänt.

Tentamen består av 14 frågor, totalt 40 poäng. Det krävs minst 24 poäng för att få godkänt och minst 32 poäng för att få väl godkänt. KOD: Kurskod: PC1244 Kursnamn: Kognitiv psykologi och utvecklingspsykologi Provmoment: Metod Ansvarig lärare: Sandra Buratti Tentamensdatum: 2015-09-24 Tillåtna hjälpmedel: Miniräknare Tentamen består

Läs mer

Rapport ESV:s nya prognosmetod för bolagsskatten

Rapport ESV:s nya prognosmetod för bolagsskatten Rapport ESV:s nya prognosmetod för bolagsskatten ESV:s rapporter innehåller regeringsuppdrag, uppdrag från myndigheter och andra instanser eller egeninitierade utredningar. Publikationen kan laddas ner

Läs mer

Kontrollskrivning 1 i EG2050 Systemplanering, 6 februari 2014, 9:00-10:00, Q31, Q33, Q34, Q36

Kontrollskrivning 1 i EG2050 Systemplanering, 6 februari 2014, 9:00-10:00, Q31, Q33, Q34, Q36 Kontrollskrivning 1 i EG2050 Systemplanering, 6 februari 2014, 9:00-10:00, Q31, Q33, Q34, Q36 Instruktioner Studenter måste anlända till kontrollskrivningen inom 45 minuter efter skrivningens start. Ingen

Läs mer

MSG830 Statistisk analys och experimentplanering

MSG830 Statistisk analys och experimentplanering MSG830 Statistisk analys och experimentplanering Tentamen 20 Mars 2015, 8:30-12:30 Examinator: Staan Nilsson, telefon 073 5599 736, kommer till tentamenslokalen 9:30 och 11:30 Tillåtna hjälpmedel: Valfri

Läs mer

Faktorer som påverkar flyttningar samt samband mellan flyttningar och folkmängd

Faktorer som påverkar flyttningar samt samband mellan flyttningar och folkmängd Faktorer som påverkar flyttningar samt samband mellan flyttningar och folkmängd STADSKONTORET AUGUSTI 2013 Stadskontorets utredningsenhet Utredare Lars Lundström 2 Sid INNEHÅLLSFÖRTECKNING BAKGRUND 5 Metod

Läs mer

Laboration 1. i 5B1512, Grundkurs i matematisk statistik för ekonomer

Laboration 1. i 5B1512, Grundkurs i matematisk statistik för ekonomer Laboration 1 i 5B1512, Grundkurs i matematisk statistik för ekonomer Namn:........................................................ Elevnummer:.............. Laborationen syftar till ett ge information

Läs mer

Kompletteringsskrivning i EG2050/2C1118 Systemplanering, 14 april 2007, 18:00-20:00, seminarierummet

Kompletteringsskrivning i EG2050/2C1118 Systemplanering, 14 april 2007, 18:00-20:00, seminarierummet Kompletteringsskrivning i EG2050/2C1118 Systemplanering, 14 april 2007, 18:00-20:00, seminarierummet Instruktioner Endast de uppgifter som är markerade på det bifogade svarsbladet behöver lösas (på de

Läs mer

Algebra, exponentialekvationer och logaritmer

Algebra, exponentialekvationer och logaritmer Höstlov Uppgift nr 1 Ge en lösning till ekvationen 0 434,2-13x 3 Ange både exakt svar och avrundat till två decimalers noggrannhet. Uppgift nr 2 Huvudräkna lg20 + lg50 Uppgift nr 3 Ge en lösning till ekvationen

Läs mer

Prognostisering kontrollbesiktningar En rak väg eller en kurvig bana?

Prognostisering kontrollbesiktningar En rak väg eller en kurvig bana? Kandidatuppsats Statistiska Institutionen Bachelor thesis, Department of Statistics Prognostisering kontrollbesiktningar En rak väg eller en kurvig bana? Forecasting vehicle inspections A straight road

Läs mer

Tentamen på kurs Makroekonomi delkurs 2, 7,5 ECTS poäng, 1NA821

Tentamen på kurs Makroekonomi delkurs 2, 7,5 ECTS poäng, 1NA821 Försättsblad Tentamen (Används även till tentamenslådan.) Måste alltid lämnas in. OBS! Eventuella lösblad måste alltid fästas ihop med tentamen. Institution Ekonomihögskolan Skriftligt prov i delkurs Makro

Läs mer

Arbetsförmedlingens rutiner för kontroll av ersättningstagarnas arbetsutbud

Arbetsförmedlingens rutiner för kontroll av ersättningstagarnas arbetsutbud 2014:24 Arbetsförmedlingens rutiner för kontroll av ersättningstagarnas arbetsutbud Rapport initierad av IAF Rättssäkerhet och effektivitet i arbetslöshetsförsäkringen Dnr: 2012/657 Arbetsförmedlingen

Läs mer

Föreläsning 7 och 8: Regressionsanalys

Föreläsning 7 och 8: Regressionsanalys Föreläsning 7 och 8: Regressionsanalys Pär Nyman 12 september 2014 Det här är anteckningar till föreläsning 7 och 8. Båda föreläsningarna handlar om regressionsanalys, så jag slog ihop dem till ett gemensamt

Läs mer

Föreläsning 7 och 8: Regressionsanalys

Föreläsning 7 och 8: Regressionsanalys Föreläsning 7 och 8: Regressionsanalys Pär Nyman 3 februari 2014 Det här är anteckningar till föreläsning 7 och 8. Båda föreläsningarna handlar om regressionsanalys, så jag slog ihop dem till ett gemensamt

Läs mer

Tentamensinstruktioner. Vid skrivningens slut

Tentamensinstruktioner. Vid skrivningens slut Matematiska institutionen Optimeringslära TENTAMEN TAOP14/TEN1 OPTIMERINGSLÄRA GRUNDKURS för I och Ii Datum: 13:e januari 2011 Tid: 8.00 13.00 Hjälpmedel: Kurslitteratur av Lundgren m fl: Optimeringslära

Läs mer

Tentamen Företagsekonomi B Externredovisning & Räkenskapsanalys 7,5 hp. Datum: 2010-05-08 Skrivtid: 3 timmar

Tentamen Företagsekonomi B Externredovisning & Räkenskapsanalys 7,5 hp. Datum: 2010-05-08 Skrivtid: 3 timmar MITTUNIVERSITETET Institutionen för samhällsvetenskap Företagsekonomiska ämnesenheten i Sundsvall Ola Uhlin Tentamen Företagsekonomi B Externredovisning & Räkenskapsanalys 7,5 hp Datum: 2010-05-08 Skrivtid:

Läs mer

Laboration 4: Intervallskattning och hypotesprövning

Laboration 4: Intervallskattning och hypotesprövning Lunds tekniska högskola Matematikcentrum Matematisk statistik Laboration 4 Matematisk statistik AK för CDIFysiker, FMS012/MASB03, HT14 Laboration 4: Intervallskattning och hypotesprövning Syftet med den

Läs mer

Riskbedömning och abonnemangstandvård

Riskbedömning och abonnemangstandvård Anders Jonsson Riskbedömning och abonnemangstandvård Risk assessment and contract dental care Statistik C-uppsats Datum/Termin: Juni 008/VT 08 Handledare: Christian Tallberg Examinator: Abdullah Almasri

Läs mer

Prediktion av villapris

Prediktion av villapris Prediktion av villapris och dess faktorers inverkan Examensarbete inom farkostteknik, grundnivå, SA105X Institutionen för Matematik, inriktning Matematisk Statistik Kungliga Tekniska Högskolan Maj 2013

Läs mer

520 Symbolhanterande miniräknare - ett pedagogiskt hjälpmedel att räkna med

520 Symbolhanterande miniräknare - ett pedagogiskt hjälpmedel att räkna med 520 Symbolhanterande miniräknare - ett pedagogiskt hjälpmedel att räkna med Lennart Berglund är lärare i matematik, datakunskap och webdesign på Värmdö Gymnasium. I samma projekt om symbolhanterande räknare

Läs mer

Introduktion till Biostatistik. Hans Stenlund, 2011

Introduktion till Biostatistik. Hans Stenlund, 2011 Introduktion till Biostatistik Hans Stenlund, 2011 Modellbaserad analys Regression Logistisk regression Överlevnadsanalys Hitta misstag Hantera extremvärden Bortfall Hur samlas data in? Formell analys

Läs mer

Räntans effekt på hushållens sparande En studie av vad som påverkar de svenska hushållens sparande

Räntans effekt på hushållens sparande En studie av vad som påverkar de svenska hushållens sparande Räntans effekt på hushållens sparande En studie av vad som påverkar de svenska hushållens sparande Nationalekonomiska Institutionen Hampus Sporre Kandidatuppsats juni 2015 Handledare: Fredrik NG Andersson

Läs mer

Value at Risk på den nordiska elmarknaden

Value at Risk på den nordiska elmarknaden Value at Risk på den nordiska elmarknaden En simulerings- och jämförelsestudie Charlie Lindgren Elias Kayal Student VT 2013 Kandidatuppsats, 15 hp Statistik C, 30 hp Handledare: Anders Lundquist Abstract

Läs mer

Kollektivavtalens centraliseringsgrad och företagens ekonomiska utveckling

Kollektivavtalens centraliseringsgrad och företagens ekonomiska utveckling Statistiskt appendix till Lönebildning i verkligheten Kollektivavtalens centraliseringsgrad och företagens ekonomiska utveckling Appendix till kapitel 7 i boken Lönebildning i verkligheten Lotta Stern*

Läs mer

Lönsamheten hos företag i Sverige

Lönsamheten hos företag i Sverige Lönebildningsrapport 12 59 FÖRDJUPNING Lönsamheten hos företag i Sverige Arbetsproduktiviteten och prisutvecklingen avgör på lång sikt utrymmet för löneökningar. Om företagens totala arbetskostnader stiger

Läs mer