5B Portföljteori och riskvärdering

Save this PDF as:
 WORD  PNG  TXT  JPG

Storlek: px
Starta visningen från sidan:

Download "5B Portföljteori och riskvärdering"

Transkript

1 B7 - Portföljteori och riskvärdering Laboration Farid Bonawiede Alexandre Messo Beräkning av den effektiva fronten för en portfölj Uppgiften går ut på att beräkna de portföljer som ger den så kallade minvarianskurvan. Portföljen ska inledningsvis endast bestå av aktier, men vi ska även ta fram den effektiva fronten då vi inkluderar en riskfri tillgång i form av en statsskuldsväxel. Vi har i uppgiften möjlighet att välja ifrån 0 olika aktier. Datan för dessa aktier är given i form av slutkursen vid varje dag under drygt fem år tillbaka. Se figur för ett exempel på hur datan såg ut Kurs Dagar räknat ifrån startdagen Figur : Kursutvecklingen för Cesar Enterprises AB Vi börjar med att räkna fram den skattade förväntade dagsavkastningen på följande vis. Vi skapar en matris där varje kolonn representerar en aktie och raderna är denna akties dagsavkastning vid alla dagsslut. Detta blir en

2 n k matris, där n är antalet dagar () och k är antalet aktier (0). Medelvärdet av varje kolonn är den förväntade avkastningen r k för varje aktie. Se formeln nedan, r k = n n ri k, k =,..., 0 i= Genom att använda Matlabs inbyggda funktion cov så skapade vi en kovariansmatris. Diagonalelementen är varje akties skattade varians och de övriga matriselementen representerar kovariansen mellan aktie k och l. Dessa värden fås av följande formel σ kl = n n (ri k r k )(ri l r l ), k, l =,..., 0 i= Vi har nu tillräckligt med information för att kunna beräkna den effektiva fronten. Vi börjar med fallet då vi tillåter kortning. Med andra ord tillåter vi negativa vikter i portföljen. Följande minimeringsproblem skall då lösas, där ˆr är vår portföljs förväntade avkastning, minimera då 0 k,l= 0 k= 0 w k w l σ kl w k r k = ˆr w k = Detta minimeringsproblem löses lämpligen med Lagranges ekvationer, vilket ger oss i= l= σ kl w l λr k µ = 0 k =,..., 0 då k= w k r k = ˆr k= w k =

3 Dessa ekvationer löser vi för olika avkastningar och genererar således den sökta minvarianskurvan. Om vi istället inte tillåter kortning, får vi kravet att vikterna inte får vara negativa. Vi kan nu inte lösa problemet med vanlig ekvationslösning utan använder istället Matlabfunktionen quadprog. Vi ger helt enkelt vårt minimeringproblem som argument till funktionen med kravet att vikterna ska vara positiva. Vi löser även detta problem för olika avkastningar och genererar således den sökta minvarianskurvan. I figur ser man de två minvarianskurvorna som vi fått fram. Med kortning finns det alltid en portfölj som ger lägre standardavvikelse än utan kortning. Detta beror på att då vi tillåter kortning så är bivillkoren på portföljen inte lika strikta. Förväantade avkastningen µ 8 x Med korta aktier Utan korta aktier x 0 Figur : Min-varians kurvan med och utan kortning Vi lägger till vår riskfria tillgång och gör en skattning av dess ränta som medeländringen av varje dagsändring. Vi får att vår statsskuldsväxel har en dagsränta på r f =.00 0 %. Vi söker nu en linjärkombination mellan denna ränta och en portfölj ifrån den effektiva fronten av aktieportföljer. Denna linjärkombination kommer att representera den nya effektiva fronten. Vi hittar denna portfölj genom att lösa följande ekvationer 0 l= σ kl λw l = r k r f, k =,..., 0

4 där λ är en okänd konstant. Utför man substitutionen v l = λw l för alla l, erhålls följande l= σ kl v l = r k r f, k =,..., 0 Genom att lösa dessa linjära ekvationer för alla v l och sedan normalisera dessa så får vi ut våra sökta vikter. D.v.s, w l v l = 0 k= vk Med denna portfölj får vi en ny effektiv front, se figur. Förväantade avkastningen µ x Med korta aktier Utan korta aktier Med en riskfri tillgång x 0 Figur : Min-varians kurvan med och utan kortning samt då vi har en riskfri tillgång - Faktormodell I det fall vi nu har gått igenom har vi kunnat konstruera en rätt bra modell över hur de tio aktierna korrelerar till varandra. Dock är det i verkligheten rätt tidskrävande att beräkna fram denna kovariansmatris. Istället kan man använda sig av en faktor och sedan studera hur alla aktier korrelerar till denna faktor. Givetvis antar vi här att korrelationen aktier emellan är noll. Vi använder oss av en single-factor modell enligt följande ekvationer

5 r k = a k + b k f + e k r k = a k + b k f (σ k ) = (b k ) σ f + σ e k där f är faktorn, f dess väntevärde, e k är felet i faktormodellen (E[e k e l ] = E[e k ] = E[(f f)e k ] = 0)). Vi antar alltså att felen är okorellerade sinsemellan och med faktorn. Vidare är a k och b k par av konstanter för varje aktie. Efter att vi skattat variansen för varje enskild aktie, beräknar vi kovariansen mellan aktierna och faktorn, cov(r k, f) = n n (ri k r k )(f i f), k =,..., 0 i= Sedan beräknas konstanterna genom ovanstående ekvationer. Vår nya minvarianskurva ser ut enligt figur. Förväantade avkastningen µ 8 x Med korta aktier Utan korta aktier 0 x 0 Figur : Minvarianskurvan med och utan kortning för vår faktormodell Ur tabell ser vi att kovariansen mellan felen för aktierna är liten i förhållande till variansen på deras avkastningar. Den icke-systematiska risken är med andra ord liten. Därför drar vi slutsatsen att denna faktormodell är bra!

6 l = k = Tabell : Kovarianserna för felen cov(e k e l ) (0 ) - Egen tidsserie Vi ska i denna uppgift generera en egen tidsserie. Vi har valt att ersätta en av de tidsserier med en ny. Eftersom vi vill ha så nya värden som möjligt så väljer vi att slumpa vår nya tidsserie baserad på den aktie som har den högsta variansen. Jul & Naturkompaniet har högst varians och samtidigt det högsta väntevärdet. Vi slumpar ut urfall ur Jul & Naturkompaniets dagsavkastningar med lika sannolikhet för dagar. Vi gör detta ett flertal gånger och väljer ett fall då tidsserien är väldigt säregen. Om vi låter denna tidsserie ersätta Jul & Naturkompaniets tidsserie så får vi följande minvarians-kurva. 6

7 Förväantade avkastningen µ. x x 0 Figur : Min-varians kurvan med kortning för våra aktier med två olika tidsserier som ersätter Jul & Naturkompaniets tidsserie 7

Lektionsanteckningar 11-12: Normalfördelningen

Lektionsanteckningar 11-12: Normalfördelningen Lektionsanteckningar 11-12: Normalfördelningen När utfallsrummet för en slumpvariabel kan anta vilket värde som helst i ett givet intervall är variabeln kontinuerlig. Det är väsentligt att utfallsrummet

Läs mer

AID:... LÖSNINGSFÖRSLAG TENTA 2013-05-03. Aktiedelen, uppdaterad 2014-04-30

AID:... LÖSNINGSFÖRSLAG TENTA 2013-05-03. Aktiedelen, uppdaterad 2014-04-30 LÖSNINGSFÖRSLAG TENTA 013-05-03. Aktiedelen, udaterad 014-04-30 Ugift 1 (4x0.5 = oäng) Definiera kortfattat följande begre a) Beta värde b) Security Market Line c) Duration d) EAR Se lärobok, oweroints.

Läs mer

Härledning av Black-Littermans formel mha allmänna linjära modellen

Härledning av Black-Littermans formel mha allmänna linjära modellen Härledning av Black-Littermans formel mha allmänna linjära modellen Ett sätt att få fram Black-Littermans formel är att formulera problemet att hitta lämpliga justerade avkastningar som ett skattningsproblem

Läs mer

Stokastiska Processer och ARIMA. Patrik Zetterberg. 19 december 2012

Stokastiska Processer och ARIMA. Patrik Zetterberg. 19 december 2012 Föreläsning 7 Stokastiska Processer och ARIMA Patrik Zetterberg 19 december 2012 1 / 22 Stokastiska processer Stokastiska processer är ett samlingsnamn för Sannolikhetsmodeller för olika tidsförlopp. Stokastisk=slumpmässig

Läs mer

Finansiering. Föreläsning 6 Risk och avkastning BMA: Kap. 7. Jonas Råsbrant

Finansiering. Föreläsning 6 Risk och avkastning BMA: Kap. 7. Jonas Råsbrant Finansiering Föreläsning 6 Risk och avkastning BMA: Kap. 7 Jonas Råsbrant jonas.rasbrant@fek.uu.se Föreläsningens innehåll Historisk avkastning för finansiella tillgångar Beräkning av avkastning och risk

Läs mer

Analys av egen tidsserie

Analys av egen tidsserie Analys av egen tidsserie Tidsserieanalys Farid Bonawiede Samer Haddad Michael Litton Alexandre Messo 9 december 25 3 25 Antal solfläckar 2 15 1 5 5 1 15 2 25 3 Månad Inledning Vi har valt att betrakta

Läs mer

Finansmatematik II Kapitel 2 Stokastiska egenskaper hos aktiepriser

Finansmatematik II Kapitel 2 Stokastiska egenskaper hos aktiepriser STOCKHOLMS UNIVERSITET MATEMATISKA INSTITUTIONEN Avd. för Matematisk statistik Thomas Höglund Version Finansmatematik II Kapitel Stokastiska egenskaper hos aktiepriser Finansmatematik II För att kunna

Läs mer

STATISTISK ANALYS AV KOMPLEXA DATA

STATISTISK ANALYS AV KOMPLEXA DATA STATISTISK ANALYS AV KOMPLEXA DATA LONGITUDINELLA DATA Linda Wänström Linköpings universitet 12 December Linda Wänström (Linköpings universitet) LONGITUDINELLA DATA 12 December 1 / 12 Explorativ Faktoranalys

Läs mer

Stokastiska processer med diskret tid

Stokastiska processer med diskret tid Stokastiska processer med diskret tid Vi tänker oss en följd av stokastiska variabler X 1, X 2, X 3,.... Talen 1, 2, 3,... räknar upp tidpunkter som förflutit från startpunkten 1. De stokastiska variablerna

Läs mer

Finansmatematik II Kapitel 3 Risk och diversifiering

Finansmatematik II Kapitel 3 Risk och diversifiering STOCKHOLMS UNIVERSITET MATEMATISKA INSTITUTIONEN Avd. för Matematisk statistik Thomas Höglund Version 04 0 8 Finansmatematik II Kapitel 3 Risk och diversifiering 2 Finansmatematik II Risk och diversifiering

Läs mer

SF1901: SANNOLIKHETSTEORI OCH MER ON VÄNTEVÄRDE OCH VARIANS. KOVARIANS OCH KORRELATION. STORA TALENS LAG. STATISTIK.

SF1901: SANNOLIKHETSTEORI OCH MER ON VÄNTEVÄRDE OCH VARIANS. KOVARIANS OCH KORRELATION. STORA TALENS LAG. STATISTIK. SF1901: SANNOLIKHETSTEORI OCH STATISTIK FÖRELÄSNING 6 MER ON VÄNTEVÄRDE OCH VARIANS. KOVARIANS OCH KORRELATION. STORA TALENS LAG. Tatjana Pavlenko 12 september 2017 PLAN FÖR DAGENS FÖRELÄSNING Repetition

Läs mer

SF1911: Statistik för bioteknik

SF1911: Statistik för bioteknik SF1911: Statistik för bioteknik Föreläsning 6. TK 14.11.2016 TK Matematisk statistik 14.11.2016 1 / 38 Lärandemål Stokastiska modeller för kontinuerliga datatyper Fördelningsfunktion (cdf) Sannolikhetstäthetsfunktion

Läs mer

Tentamensgenomgång och återlämning: Måndagen 24/2 kl16.00 i B497. Därefter kan skrivningarna hämtas på studentexpeditionen, plan 7 i B-huset.

Tentamensgenomgång och återlämning: Måndagen 24/2 kl16.00 i B497. Därefter kan skrivningarna hämtas på studentexpeditionen, plan 7 i B-huset. Statistiska institutionen Nicklas Pettersson Skriftlig tentamen i Finansiell Statistik Grundnivå 7.5hp, HT2013 2014-02-07 Skrivtid: 13.00-18.00 Hjälpmedel: Godkänd miniräknare utan lagrade formler eller

Läs mer

Enkel och multipel linjär regression

Enkel och multipel linjär regression TNG006 F3 25-05-206 Enkel och multipel linjär regression 3.. Enkel linjär regression I det här avsnittet kommer vi att anpassa en rät linje till mätdata. Betrakta följande värden från ett försök x 4.0

Läs mer

Stokastiska vektorer

Stokastiska vektorer TNG006 F2 9-05-206 Stokastiska vektorer 2 Kovarians och korrelation Definition 2 Antag att de sv X och Y har väntevärde och standardavvikelse µ X och σ X resp µ Y och σ Y Då kallas för kovariansen mellan

Läs mer

P (t) = V 1 (t) V m (t) P (t + t) P (t) P (t) = v j (t)r j (t, t + t), v(t) Q t v(t),

P (t) = V 1 (t) V m (t) P (t + t) P (t) P (t) = v j (t)r j (t, t + t), v(t) Q t v(t), STOCKHOLMS UNIVERSITET MATEMATISKA INSTITUTIONEN Avd. för Matematisk statistik Thomas Höglund Version 02 22 RISK OCH DIVERSIFIERING Betrakta en portfölj bestående av m tillgångar som vi här ska kalla aktier.

Läs mer

Kovarians och kriging

Kovarians och kriging Kovarians och kriging Bengt Ringnér November 2, 2007 Inledning Detta är föreläsningsmanus på lantmätarprogrammet vid LTH. 2 Kovarianser Sedan tidigare har vi, för oberoende X och Y, att VX + Y ) = VX)

Läs mer

Föreläsning 6, Matematisk statistik Π + E

Föreläsning 6, Matematisk statistik Π + E Repetition Kovarians Stora talens lag Gauss Föreläsning 6, Matematisk statistik Π + E Sören Vang Andersen 2 december 2014 Sören Vang Andersen - sva@maths.lth.se FMS012 F6 1/20 Repetition Kovarians Stora

Läs mer

Påbyggnad/utveckling av lagen om ett pris Effektiv marknad: Priserna på en finansiell marknad avspeglar all relevant information

Påbyggnad/utveckling av lagen om ett pris Effektiv marknad: Priserna på en finansiell marknad avspeglar all relevant information Föreläsning 4 ffektiva marknader Påbyggnad/utveckling av lagen om ett pris ffektiv marknad: Priserna på en finansiell marknad avspeglar all relevant information Konsekvens: ndast ny information påverkar

Läs mer

Repetition och förberedelse. Sannolikhet och sta.s.k (1MS005)

Repetition och förberedelse. Sannolikhet och sta.s.k (1MS005) Repetition och förberedelse Sannolikhet och sta.s.k (1MS005) F8.1 Kvantiler (3) F8.1 Kvantiler (3) F8.2 Räkna regler för väntevärdet (3) F8.3 Olikheter (X) F8.4 Sannolikgenererande funktioner (X) F8.5

Läs mer

TMS136. Föreläsning 10

TMS136. Föreläsning 10 TMS136 Föreläsning 10 Intervallskattningar Vi har sett att vi givet ett stickprov kan göra punktskattningar för fördelnings-/populationsparametrar En punkskattning är som vi minns ett tal som är en (förhoppningsvis

Läs mer

Kapitel 4 Sannolikhetsfördelningar Sid Föreläsningsunderlagen är baserade på underlag skrivna av Karl Wahlin

Kapitel 4 Sannolikhetsfördelningar Sid Föreläsningsunderlagen är baserade på underlag skrivna av Karl Wahlin Kapitel 4 Sannolikhetsfördelningar Sid 79-14 Föreläsningsunderlagen är baserade på underlag skrivna av Karl Wahlin Slumpvariabel En variabel för vilken slumpen bestämmer utfallet. Slantsingling, tärningskast,

Läs mer

(A -A)(B -B) σ A σ B. på att tillgångarna ej uppvisar något samband i hur de varierar.

(A -A)(B -B) σ A σ B. på att tillgångarna ej uppvisar något samband i hur de varierar. Del 2 Korrelation Innehåll Implicita tillgångar... 3 Vad är korrelation?... 3 Hur fungerar sambanden?... 3 Hur beräknas korrelation?... 3 Diversifiering... 4 Korrelation och strukturerade produkter...

Läs mer

4 Diskret stokastisk variabel

4 Diskret stokastisk variabel 4 Diskret stokastisk variabel En stokastisk variabel är en variabel vars värde bestäms av utfallet av ett slumpmässigt försök. En stokastisk variabel betecknas ofta med X, Y eller Z (i läroboken används

Läs mer

Vi har en ursprungspopulation/-fördelning med medelvärde µ.

Vi har en ursprungspopulation/-fördelning med medelvärde µ. P-värde P=probability Sannolikhetsvärde som är resultat av en statistisk test. Anger sannolikheten för att göra den observation vi har gjort eller ett sämre / mer extremt utfall om H 0 är sann. Vi har

Läs mer

Finns det över huvud taget anledning att förvänta sig något speciellt? Finns det en generell fördelning som beskriver en mätning?

Finns det över huvud taget anledning att förvänta sig något speciellt? Finns det en generell fördelning som beskriver en mätning? När vi nu lärt oss olika sätt att karaktärisera en fördelning av mätvärden, kan vi börja fundera över vad vi förväntar oss t ex för fördelningen av mätdata när vi mätte längden av en parkeringsficka. Finns

Läs mer

Laboration 5: Regressionsanalys. 1 Förberedelseuppgifter. 2 Enkel linjär regression DATORLABORATION 5 MATEMATISK STATISTIK FÖR I, FMS 012, HT-08

Laboration 5: Regressionsanalys. 1 Förberedelseuppgifter. 2 Enkel linjär regression DATORLABORATION 5 MATEMATISK STATISTIK FÖR I, FMS 012, HT-08 LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK Laboration 5: Regressionsanalys DATORLABORATION 5 MATEMATISK STATISTIK FÖR I, FMS 012, HT-08 Syftet med den här laborationen är att du skall

Läs mer

Föreläsning 1. Repetition av sannolikhetsteori. Patrik Zetterberg. 6 december 2012

Föreläsning 1. Repetition av sannolikhetsteori. Patrik Zetterberg. 6 december 2012 Föreläsning 1 Repetition av sannolikhetsteori Patrik Zetterberg 6 december 2012 1 / 28 Viktiga statistiska begrepp För att kunna förstå mer avancerade koncept under kursens gång är det viktigt att vi förstår

Läs mer

9. Konfidensintervall vid normalfördelning

9. Konfidensintervall vid normalfördelning TNG006 F9 09-05-016 Konfidensintervall 9. Konfidensintervall vid normalfördelning Låt x 1, x,..., x n vara ett observerat stickprov av oberoende s.v. X 1, X,..., X n var och en med fördelning F. Antag

Läs mer

TMS136. Föreläsning 7

TMS136. Föreläsning 7 TMS136 Föreläsning 7 Stickprov När vi pysslar med statistik handlar det ofta om att baserat på stickprovsinformation göra utlåtanden om den population stickprovet är draget ifrån Situationen skulle kunna

Läs mer

Portföljsammanställning för Landstinget Västerbotten. avseende perioden

Portföljsammanställning för Landstinget Västerbotten. avseende perioden Portföljsammanställning för avseende perioden Informationen i denna rapport innehåller kurser och värden. Värderingar av instrument är förvaltares rapporterade värden och Investment Consulting Group AB

Läs mer

Del 2 Korrelation. Strukturakademin

Del 2 Korrelation. Strukturakademin Del 2 Korrelation Strukturakademin Innehåll 1. Implicita tillgångar 2. Vad är korrelation? 3. Hur fungerar sambanden? 4. Hur beräknas korrelation? 5. Diversifiering 6. Korrelation och Strukturerade Produkter

Läs mer

Laboration 2. i 5B1512, Grundkurs i matematisk statistik för ekonomer

Laboration 2. i 5B1512, Grundkurs i matematisk statistik för ekonomer Laboration 2 i 5B52, Grundkurs i matematisk statistik för ekonomer Namn: Elevnummer: Laborationen syftar till ett ge information och träning i Excels rutiner för statistisk slutledning, konfidensintervall,

Läs mer

Föreläsning 8: Konfidensintervall

Föreläsning 8: Konfidensintervall Föreläsning 8: Konfidensintervall Matematisk statistik Chalmers University of Technology Maj 4, 2015 Projektuppgift Projektet går ut på att studera frisättningen av dopamin hos nervceller och de två huvudsakliga

Läs mer

Kapitel 5 Multivariata sannolikhetsfördelningar

Kapitel 5 Multivariata sannolikhetsfördelningar Sannolikhetslära och inferens II Kapitel 5 Multivariata sannolikhetsfördelningar 1 Multivariata sannolikhetsfördelningar En slumpvariabel som, när slumpförsöket utförs, antar exakt ett värde sägs vara

Läs mer

TAMS65 - Seminarium 4 Regressionsanalys

TAMS65 - Seminarium 4 Regressionsanalys TAMS65 - Seminarium 4 Regressionsanalys Martin Singull Matematisk statistik Matematiska institutionen Problem 1 PS29 Vid ett test av bromsarna på en bil bromsades bilen upprepade gånger från en hastighet

Läs mer

En generell prediktiv kodare utnyttjar signalens utseende N steg tillbaka i tiden för kodningen, dvs vi kodar efter den betingade fördelningen

En generell prediktiv kodare utnyttjar signalens utseende N steg tillbaka i tiden för kodningen, dvs vi kodar efter den betingade fördelningen Prediktiv kodning Närliggande sampel i en signal är oftast starkt korrelerade med varandra, det kan därför vara en bra ide att försöka utnyttja denna korrelation (minnet) innan kvantiseringen för att få

Läs mer

Linjär prediktion. Prediktiv kodning. Linjär prediktion. Prediktiv kodare och avkodare

Linjär prediktion. Prediktiv kodning. Linjär prediktion. Prediktiv kodare och avkodare Prediktiv kodning Linjär prediktion Närliggande sampel i en signal är oftast starkt korrelerade med varandra, det kan därför vara en bra ide att försöka utnyttja denna korrelation (minnet) innan kvantiseringen

Läs mer

LMA521: Statistisk kvalitetsstyrning

LMA521: Statistisk kvalitetsstyrning Föreläsning 5 Föregående föreläsningar Acceptanskontroll: Konsten att kontrollera producerade enheter så att man kan garantera kvalitet samtidigt som kontrollen inte blir för kostsam att genomföra Dagens

Läs mer

MVE051/MSG Föreläsning 7

MVE051/MSG Föreläsning 7 MVE051/MSG810 2016 Föreläsning 7 Petter Mostad Chalmers November 23, 2016 Överblick Deskriptiv statistik Grafiska sammanfattningar. Numeriska sammanfattningar. Estimering (skattning) Teori Några exempel

Läs mer

STOCKHOLMS UNIVERSITET MATEMATISKA INSTITUTIONEN Avd. för Matematisk statistik Thomas Höglund FINANSMATEMATIK I. ÖVNINGAR TILL DAG 3.

STOCKHOLMS UNIVERSITET MATEMATISKA INSTITUTIONEN Avd. för Matematisk statistik Thomas Höglund FINANSMATEMATIK I. ÖVNINGAR TILL DAG 3. STOCKHOLMS UNIVERSITET MATEMATISKA INSTITUTIONEN Avd. för Matematisk statistik Thomas Höglund FINANSMATEMATIK I. ÖVNINGAR TILL DAG 2. Luenberger: 2:1-5, 9, 11, 12. Övning 1. Du lånar 200000 kr i en bank

Läs mer

FÖRELÄSNING 8:

FÖRELÄSNING 8: FÖRELÄSNING 8: 016-05-17 LÄRANDEMÅL Konfidensintervall för väntevärdet då variansen är okänd T-fördelningen Goodness of fit-test χ -fördelningen Hypotestest Signifikansgrad Samla in data Sammanställ data

Läs mer

Finansiell Statistik (GN, 7,5 hp, HT 2008) Föreläsning 2

Finansiell Statistik (GN, 7,5 hp, HT 2008) Föreläsning 2 Finansiell Statistik (GN, 7,5 hp, HT 008) Föreläsning Diskreta sannolikhetsfördelningar (LLL kap. 6) Department of Statistics (Gebrenegus Ghilagaber, PhD, Associate Professor) Financial Statistics (Basic-level

Läs mer

Finansmatematik II Kapitel 5 Samvariation med marknaden

Finansmatematik II Kapitel 5 Samvariation med marknaden 1 STOCKHOLMS UNIVERSITET MATEMATISKA INSTITUTIONEN Avd. för Matematisk statistik Thomas Höglund Version 04 1 03 Finansmatematik II Kapitel 5 Samvariation med marknaden Finansmatematik II 1 Marknaden Med

Läs mer

Kap 2. Sannolikhetsteorins grunder

Kap 2. Sannolikhetsteorins grunder Kap 2. Sannolikhetsteorins grunder Olika händelser och deras mängbetäckningar Sats 2.7 Dragning utan återläggning av k element ur n (utan hänsyn till ordning) kan ske på ( n ) olika sätt k För två händelser

Läs mer

TMS136. Föreläsning 13

TMS136. Föreläsning 13 TMS136 Föreläsning 13 Jämförelser mellan två populationer Hittills har vi gjort konfidensintervall och tester kring parametrar i EN population I praktiska sammanhang är man ofta intresserad av att jämföra

Läs mer

Föreläsning 4. Kapitel 5, sid Stickprovsteori

Föreläsning 4. Kapitel 5, sid Stickprovsteori Föreläsning 4 Kapitel 5, sid 127-152 Stickprovsteori 2 Agenda Stickprovsteori Väntevärdesriktiga skattningar Samplingfördelningar Stora talens lag, Centrala gränsvärdessatsen 3 Statistisk inferens Population:

Läs mer

Föreläsningsmanus i matematisk statistik för lantmätare, vecka 5 HT06

Föreläsningsmanus i matematisk statistik för lantmätare, vecka 5 HT06 Föreläsningsmanus i matematisk statistik för lantmätare, vecka 5 HT06 Bengt Ringnér September 20, 2006 Inledning Detta är preliminärt undervisningsmaterial. Synpunkter är välkomna. 2 Väntevärde standardavvikelse

Läs mer

f(x) = 2 x2, 1 < x < 2.

f(x) = 2 x2, 1 < x < 2. Avd. Matematisk statistik TENTAMEN I SF90,SF907,SF908,SF9 SANNOLIKHETSTEORI OCH STATISTIK TORSDAGEN DEN 7:E JUNI 0 KL 4.00 9.00. Examinator: Gunnar Englund, tel. 07 7 45 Tillåtna hjälpmedel: Formel- och

Läs mer

5B1574 - Portföljteori och riskvärdering

5B1574 - Portföljteori och riskvärdering 5B1574 - Portföljteori och riskvärdering Laboration 1 Farid Bonawiede - 831219-0195 Alexandre Messo - 831119-7472 1 - Spotränteberäkningar I denna uppgift ska vi beräkna spoträntan för olika löptider.

Läs mer

SF1901: SANNOLIKHETSTEORI OCH KONTINUERLIGA STOKASTISKA VARIABLER STATISTIK. Tatjana Pavlenko. 7 september 2016

SF1901: SANNOLIKHETSTEORI OCH KONTINUERLIGA STOKASTISKA VARIABLER STATISTIK. Tatjana Pavlenko. 7 september 2016 SF1901: SANNOLIKHETSTEORI OCH STATISTIK FÖRELÄSNING 4 KONTINUERLIGA STOKASTISKA VARIABLER Tatjana Pavlenko 7 september 2016 PLAN FÖR DAGENS FÖRELÄSNING Repetition av diskreta stokastiska variabler. Väntevärde

Läs mer

10. Konfidensintervall vid två oberoende stickprov

10. Konfidensintervall vid två oberoende stickprov TNG006 F0-05-06 Konfidensintervall för linjärkombinationer 0. Konfidensintervall vid två oberoende stikprov Antag att X, X,..., X m är ett stikprov på N(µ, σ ) oh att Y, Y,..., Y n är ett stikprov på N(µ,

Läs mer

SF1901: SANNOLIKHETSTEORI OCH STATISTIKTEORI KONSTEN ATT DRA INTERVALLSKATTNING. STATISTIK SLUTSATSER. Tatjana Pavlenko.

SF1901: SANNOLIKHETSTEORI OCH STATISTIKTEORI KONSTEN ATT DRA INTERVALLSKATTNING. STATISTIK SLUTSATSER. Tatjana Pavlenko. SF1901: SANNOLIKHETSTEORI OCH STATISTIK FÖRELÄSNING 10 STATISTIKTEORI KONSTEN ATT DRA SLUTSATSER. INTERVALLSKATTNING. Tatjana Pavlenko 25 april 2017 PLAN FÖR DAGENS FÖRELÄSNING Statistisk inferens oversikt

Läs mer

14. Minsta kvadratmetoden

14. Minsta kvadratmetoden 58 MINSTA KVADRATMETODEN. Minsta kvadratmetoden Eempel.. Det är inte så svårt att komma åt en trasig lampa på golvet för att byta den. Det är bara att gå fram till den. Hur är det om lampan hänger i taket?

Läs mer

Väntevärde och varians

Väntevärde och varians TNG6 F5 19-4-216 Väntevärde och varians Exempel 5.1. En grupp teknologer vid ITN slår sig ihop för att starta ett företag som utvecklar datorspel. Man vet att det är 8% chans för ett felfritt spel som

Läs mer

CAPM (capital asset pricing model)

CAPM (capital asset pricing model) CAPM (capital asset pricing model) CAPM En teoretisk modell för förväntad avkastning i jämvikt, d.v.s. när utbudet av varje tillgång är lika med efterfrågan på motsvarande tillgång. Detta betyder att CAPM

Läs mer

Matematikcentrum 1(4) Matematisk Statistik Lunds Universitet MASB11 HT10. Laboration. Regressionsanalys (Sambandsanalys)

Matematikcentrum 1(4) Matematisk Statistik Lunds Universitet MASB11 HT10. Laboration. Regressionsanalys (Sambandsanalys) Matematikcentrum 1(4) Matematisk Statistik Lunds Universitet MASB11 HT10 Laboration Regressionsanalys (Sambandsanalys) Grupp A: 2010-11-24, 13.15 15.00 Grupp B: 2010-11-24, 15.15 17.00 Grupp C: 2010-11-25,

Läs mer

Kap 6: Normalfördelningen. Normalfördelningen Normalfördelningen som approximation till binomialfördelningen

Kap 6: Normalfördelningen. Normalfördelningen Normalfördelningen som approximation till binomialfördelningen Kap 6: Normalfördelningen Normalfördelningen Normalfördelningen som approximation till binomialfördelningen σ μ 1 Sats 6 A Om vi ändrar läge och/eller skala på en normalfördelning så har vi fortfarande

Läs mer

Tentamen i matematisk statistik (92MA31, STN2) kl 08 12

Tentamen i matematisk statistik (92MA31, STN2) kl 08 12 LINKÖPINGS UNIVERSITET MAI Johan Thim Tentamen i matematisk statistik (92MA1, STN2) 21-1-16 kl 8 12 Hjälpmedel är: miniräknare med tömda minnen och formelbladet bifogat. Varje uppgift är värd 6 poäng.

Läs mer

PROGRAMFÖRKLARING I. Statistik för modellval och prediktion. Ett exempel: vågriktning och våghöjd

PROGRAMFÖRKLARING I. Statistik för modellval och prediktion. Ett exempel: vågriktning och våghöjd Statistik för modellval och prediktion att beskriva, förklara och förutsäga Georg Lindgren PROGRAMFÖRKLARING I Matematisk statistik, Lunds universitet stik för modellval och prediktion p.1/4 Statistik

Läs mer

Laboration 3: Stora talens lag, centrala gränsvärdessatsen och enkla punktskattningar

Laboration 3: Stora talens lag, centrala gränsvärdessatsen och enkla punktskattningar LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK LABORATION 3 MATEMATISK STATISTIK AK FÖR CDIFYSIKER, FMS012/MASB03, HT12 Laboration 3: Stora talens lag, centrala gränsvärdessatsen och enkla

Läs mer

Föreläsning 12: Regression

Föreläsning 12: Regression Föreläsning 12: Regression Matematisk statistik David Bolin Chalmers University of Technology Maj 15, 2014 Binomialfördelningen Låt X Bin(n, p). Vi observerar x och vill ha information om p. p = x/n är

Läs mer

SF1905 Sannolikhetsteori och statistik: Lab 2 ht 2011

SF1905 Sannolikhetsteori och statistik: Lab 2 ht 2011 Avd. Matematisk statistik Tobias Rydén 2011-09-30 SF1905 Sannolikhetsteori och statistik: Lab 2 ht 2011 Förberedelser. Innan du går till laborationen, läs igenom den här handledningen. Repetera också i

Läs mer

Detta formelblad får användas under både KS2T och KS2D, samt ordinarie tentamen. x = 1 n. x i. with(stats): describe[mean]([3,5]); 4.

Detta formelblad får användas under både KS2T och KS2D, samt ordinarie tentamen. x = 1 n. x i. with(stats): describe[mean]([3,5]); 4. Formelblad Detta formelblad får användas under både KST och KSD, samt ordinarie tentamen. Medelvärde x = 1 n x i with(stats): describe[mean]([3,5]); 4 Varians s = 1 (x i x) n 1 ( s = 1 x i n 1 1 n ) x

Läs mer

Betavärde En akties betavärde, β, relativt en marknad, M, definieras som

Betavärde En akties betavärde, β, relativt en marknad, M, definieras som STOCKHOLMS UNIVERSITET MATEMATISKA INSTITUTIONEN Avd. för Matematisk statistik Thomas Höglund Version 02 22 SAMVARIATION MED MARKNADEN Marknaden Med marknaden menar vi här ett index. Ett index är en portfölj

Läs mer

Urvalsmetoder: Sannolikhetsurval resp. icke-sannolikhetsurval, OSU (kap )

Urvalsmetoder: Sannolikhetsurval resp. icke-sannolikhetsurval, OSU (kap ) F3 Urvalsmetoder: Sannolikhetsurval resp. icke-sannolikhetsurval, OSU (kap 9.1-9.4) Urval Anta att vi ska göra en urvalsunderökning och samla in primärdata Totalundersökning ofta inte möjlig För dyrt Tar

Läs mer

Del A: Begrepp och grundläggande förståelse

Del A: Begrepp och grundläggande förståelse STOCKHOLMS UNIVERSITET FYSIKUM KH/CW/SS Tentamensskrivning i Experimentella metoder, 1p, för kandidatprogrammet i fysik, /5 01, 9-14 Införda beteckningar skall förklaras och uppställda ekvationer motiveras

Läs mer

AMatematiska institutionen avd matematisk statistik

AMatematiska institutionen avd matematisk statistik Kungl Tekniska Högskolan AMatematiska institutionen avd matematisk statistik TENTAMEN I 5B1503 STATISTIK MED FÖRSÖKSPLANERING FÖR B OCH K FREDAGEN DEN 11 JANUARI 2002 KL 14.00 19.00. Examinator: Gunnar

Läs mer

SF1901: Sannolikhetslära och statistik. Statistik: Intervallskattning (konfidensintervall)

SF1901: Sannolikhetslära och statistik. Statistik: Intervallskattning (konfidensintervall) SF1901: Sannolikhetslära och statistik Föreläsning 9. Statistik: Intervallskattning (konfidensintervall) Jan Grandell & Timo Koski 21.02.2012 Jan Grandell & Timo Koski () Matematisk statistik 21.02.2012

Läs mer

FACIT: Tentamen L9MA30, LGMA30

FACIT: Tentamen L9MA30, LGMA30 Göteborgs Universitetet GU Lärarprogrammet 20 FACIT: Tentamen L9MA0, LGMA0 Matematik för lärare, åk 7-9, Sannolikhetslära och statistik, Matematik för gymnasielärare, Sannolikhetslära och statistik 20-0-2

Läs mer

Prediktera. Statistik för modellval och prediktion. Trend? - Syrehalt beroende på kovariater. Sambands- och trendanalys

Prediktera. Statistik för modellval och prediktion. Trend? - Syrehalt beroende på kovariater. Sambands- och trendanalys Statistik för modellval och prediktion att beskriva, förklara och förutsäga Georg Lindgren Prediktera Matematisk statistik, Lunds universitet stik för modellval och prediktion p.1/28 Statistik för modellval

Läs mer

Experimentella metoder 2013, Räkneövning 3

Experimentella metoder 2013, Räkneövning 3 Experimentella metoder 2013, Räkneövning 3 Problem 1: Fem studenter mätte längden av ett rum, deras resultat blev 3,30 m, 2,90 m, 3,70 m, 3,50 m, och 3,10 m. Inga uppgifter om mätnoggrannheten är kända.

Läs mer

4.2.1 Binomialfördelning

4.2.1 Binomialfördelning Ex. Kasta en tärning. 1. Vad är sannolikheten att få en 6:a? 2. Vad är sannolikheten att inte få en 6:a? 3. Vad är sannolikheten att få en 5:a eller 6:a? 4. Om vi kastar två gånger, vad är då sannolikheten

Läs mer

Volatilitetens inverkan på korrelationen mellan aktier

Volatilitetens inverkan på korrelationen mellan aktier Volatilitetens inverkan på korrelationen mellan aktier Författare: Filip Björklund Fredrik Liljeblad Tobias Magnusson Handledare: Niclas Andrén Sammanfattning Titel: Författare: Handledare: Problem: Volatilitetens

Läs mer

Tentamen LMA 200 Matematisk statistik,

Tentamen LMA 200 Matematisk statistik, Tentamen LMA 00 Matematisk statistik, 0 Tentamen består av åtta uppgifter motsvarande totalt 50 poäng. Det krävs minst 0 poäng för betyg, minst 0 poäng för 4 och minst 40 för 5. Examinator: Ulla Blomqvist,

Läs mer

b) Beräkna väntevärde och varians för produkten X 1 X 2 X 10 där alla X i :na är oberoende och R(0,2). (5 p)

b) Beräkna väntevärde och varians för produkten X 1 X 2 X 10 där alla X i :na är oberoende och R(0,2). (5 p) Avd. Matematisk statistik TENTAMEN I SF190 (f d 5B2501 ) SANNOLIKHETSLÄRA OCH STATISTIK FÖR - ÅRIG MEDIA MÅNDAGEN DEN 1 AUGUSTI 2012 KL 08.00 1.00. Examinator: Gunnar Englund, tel. 07 21 7 45 Tillåtna

Läs mer

Sannolikheter och kombinatorik

Sannolikheter och kombinatorik Sannolikheter och kombinatorik En sannolikhet är ett tal mellan 0 och 1 som anger hur frekvent en händelse sker, där 0 betyder att det aldrig sker och 1 att det alltid sker. När vi talar om sannolikheter

Läs mer

Lösningar till tentan i 5B1760 Linjär och kvadratisk optimering, 17 december 2003.

Lösningar till tentan i 5B1760 Linjär och kvadratisk optimering, 17 december 2003. Lösningar till tentan i 5B7 Linjär och kvadratisk optimering, 7 december 3 Uppgift (a) 3 Vi använder Gauss-Jordans metod för att överföra A 3 5 till trappstegsform 3 7 Addition av ( ) gånger första raden

Läs mer

Tentamen i Tillämpad statistisk analys, GN, 7.5 hp. 23 maj 2013 kl. 9 14

Tentamen i Tillämpad statistisk analys, GN, 7.5 hp. 23 maj 2013 kl. 9 14 STOCKHOLMS UNIVERSITET MT4003 MATEMATISKA INSTITUTIONEN LÖSNINGAR Avd. Matematisk statistik 3 maj 013 Lösningar Tentamen i Tillämpad statistisk analys, GN, 7.5 hp 3 maj 013 kl. 9 14 Uppgift 1 a Eftersom

Läs mer

Så får du pengar att växa

Så får du pengar att växa Så får du pengar att växa Sammanfattning Genom att spara regelbundet, vara långsiktig och ta hänsyn till avgifter kan även ett blygsamt men regelbundet sparande med tiden växa till ett betydande belopp.

Läs mer

GMM och Estimationsfunktioner

GMM och Estimationsfunktioner Lunds Universitet med Lund Tekniska Högskola Finansiell Statistik Matematikcentrum, Matematisk Statistik VT 2006 GMM och Estimationsfunktioner I laborationen möter du två besläktade metoder för att estimera

Läs mer

Uppgift 1 (a) För två händelser, A och B, är följande sannolikheter kända

Uppgift 1 (a) För två händelser, A och B, är följande sannolikheter kända Avd. Matematisk statistik TENTAMEN I SF90, SANNOLIKHETSTEORI OCH STATISTIK, TISDAGEN DEN 9:E JUNI 205 KL 4.00 9.00. Kursledare: Tatjana Pavlenko, 08-790 84 66 Tillåtna hjälpmedel: Formel- och tabellsamling

Läs mer

SF1624 Algebra och geometri Lösningsförslag till tentamen Fredagen den 23 oktober, 2009 DEL A

SF1624 Algebra och geometri Lösningsförslag till tentamen Fredagen den 23 oktober, 2009 DEL A SF1624 Algebra och geometri Lösningsförslag till tentamen Fredagen den 23 oktober, 2009 DEL A (1) (a) Bestäm de övriga rötterna till ekvationen z 3 11z 2 + 43z 65 = 0 när det är känt att en av rötterna

Läs mer

, s a. , s b. personer från Alingsås och n b

, s a. , s b. personer från Alingsås och n b Skillnader i medelvärden, väntevärden, mellan två populationer I kapitel 8 testades hypoteser typ : µ=µ 0 där µ 0 var något visst intresserant värde Då användes testfunktionen där µ hämtas från, s är populationsstandardavvikelsen

Läs mer

Lösningsförslag till Tentamen. TSFS06 Diagnos och övervakning 14 augusti, 2007, kl

Lösningsförslag till Tentamen. TSFS06 Diagnos och övervakning 14 augusti, 2007, kl Lösningsförslag till Tentamen TSFS06 Diagnos och övervakning 14 augusti, 007, kl. 14.00-18.00 Tillåtna hjälpmedel: TeFyMa, Beta, Physics Handbook, Reglerteknik (Glad och Ljung), Formelsamling i statistik

Läs mer

Laboration 3: Enkla punktskattningar, styrkefunktion och bootstrap

Laboration 3: Enkla punktskattningar, styrkefunktion och bootstrap LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK DATORLABORATION 3, HT -06 MATEMATISK STATISTIK FÖR F, PI OCH NANO, FMS 012 MATEMATISK STATISTIK FÖR FYSIKER, MAS 233 Laboration 3: Enkla punktskattningar,

Läs mer

SF1901: Sannolikhetslära och statistik. Statistik: Intervallskattning (konfidensintervall) Jan Grandell & Timo Koski

SF1901: Sannolikhetslära och statistik. Statistik: Intervallskattning (konfidensintervall) Jan Grandell & Timo Koski SF1901: Sannolikhetslära och statistik Föreläsning 10. Statistik: Intervallskattning (konfidensintervall) Jan Grandell & Timo Koski 18.02.2016 Jan Grandell & Timo Koski Matematisk statistik 18.02.2016

Läs mer

7.5 Experiment with a single factor having more than two levels

7.5 Experiment with a single factor having more than two levels Exempel: Antag att vi vill jämföra dragstyrkan i en syntetisk fiber som blandats ut med bomull. Man vet att inblandningen påverkar dragstyrkan och att en inblandning mellan 10% och 40% är bra. För att

Läs mer

Syftet med den här laborationen är att du skall bli mer förtrogen med följande viktiga områden inom matematisk statistik

Syftet med den här laborationen är att du skall bli mer förtrogen med följande viktiga områden inom matematisk statistik LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK DATORLABORATION 4 MATEMATISK STATISTIK, AK FÖR I, FMS 01, HT-07 Laboration 4: Stora talens lag, Centrala gränsvärdessatsen, enkla punktskattningar

Läs mer

Urval. Slumpmässiga urval (sannolikhetsurval) Fördelar med slumpmässiga urval

Urval. Slumpmässiga urval (sannolikhetsurval) Fördelar med slumpmässiga urval Urval F3 Urvalsmetoder: Sannolikhetsurval resp. icke-sannolikhetsurval, OSU (kap 9.1-9.4) Ursprung: Linda Wänström Anta att vi ska göra en urvalsunderökning och samla in primärdata Totalundersökning ofta

Läs mer

Regressions- och Tidsserieanalys - F4

Regressions- och Tidsserieanalys - F4 Regressions- och Tidsserieanalys - F4 Modellbygge och residualanalys. Kap 5.1-5.4 (t.o.m. halva s 257), ej C-statistic s 23. Linda Wänström Linköpings universitet Wänström (Linköpings universitet) F4 1

Läs mer

F9 Konfidensintervall

F9 Konfidensintervall 1/16 F9 Konfidensintervall Måns Thulin Uppsala universitet thulin@math.uu.se Statistik för ingenjörer 18/2 2013 2/16 Kursinformation och repetition Första inlämningsuppgiften rättas nu i veckan. För att

Läs mer

Anvisningar till del 2 av den obligatoriska inlämningsuppgiften (HT 2007)

Anvisningar till del 2 av den obligatoriska inlämningsuppgiften (HT 2007) Statistiska Institutionen Gebrenegus Ghilagaber & Nicklas Pettersson 007-1-06 Anvisningar till del av den obligatoriska inlämningsuppgiften (HT 007) Den obligatoriska inlämningsuppgiften består av två

Läs mer

Hemuppgift 2, SF1861 Optimeringslära för T, VT-10

Hemuppgift 2, SF1861 Optimeringslära för T, VT-10 Hemuppgift 2, SF1861 Optimeringslära för T, VT-1 Kursansvarig: Per Enqvist, tel: 79 6298, penqvist@math.kth.se. Assistenter: Mikael Fallgren, werty@kth.se, Amol Sasane, sasane@math.kth.se. I denna uppgift

Läs mer

Föreläsning 5. Funktioner av slumpvariabler. Ett centralt resultat.

Föreläsning 5. Funktioner av slumpvariabler. Ett centralt resultat. Föreläsning 5. Funktioner av slumpvariabler. Ett centralt resultat. Jesper Rydén Matematiska institutionen, Uppsala universitet jesper.ryden@math.uu.se 1MS008, 1MS777 vt 2016 Ytterligare begrepp Viktiga

Läs mer

F5 STOKASTISKA VARIABLER (NCT , samt del av 5.4)

F5 STOKASTISKA VARIABLER (NCT , samt del av 5.4) Stat. teori gk, ht 006, JW F5 STOKASTISKA VARIABLER (NCT 5.1-5.3, samt del av 5.4) Ordlista till NCT Random variable Discrete Continuous Probability distribution Probability distribution function Cumulative

Läs mer

Ingenjörsmetodik IT & ME 2011 Föreläsning 11

Ingenjörsmetodik IT & ME 2011 Föreläsning 11 Ingenjörsmetodik IT & ME 011 Föreläsning 11 Sammansatt fel (Gauss regel) Felanalys och noggrannhetsanalys Mätvärden och mätfel Medelvärde, standardavvikelse och standardosäkerher (statistik) 1 Läsanvisningar

Läs mer

Inlämningsuppgift 1: Portföljvalsteori

Inlämningsuppgift 1: Portföljvalsteori STOCKHOLMS UNIVERSITET 20 november 2006 Matematiska institutionen Avd. för matematisk statistik Mikael Andersson Inlämningsuppgift 1: Portföljvalsteori Syftet med denna inlämningsuppgift är att ni skall

Läs mer

under en options löptid. Strukturakademin Strukturinvest Fondkommission

under en options löptid. Strukturakademin Strukturinvest Fondkommission Del 1 Volatilitet Innehåll Implicita tillgångar... 3 Vad är volatilitet?... 3 Volatility trading... 3 Historisk volatilitet... 3 Hur beräknas volatiliteten?... 4 Implicit volatilitet... 4 Smile... 4 Vega...

Läs mer

732G71 Statistik B. Föreläsning 4. Bertil Wegmann. November 11, IDA, Linköpings universitet

732G71 Statistik B. Föreläsning 4. Bertil Wegmann. November 11, IDA, Linköpings universitet 732G71 Statistik B Föreläsning 4 Bertil Wegmann IDA, Linköpings universitet November 11, 2016 Bertil Wegmann (IDA, LiU) 732G71, Statistik B November 11, 2016 1 / 34 Kap. 5.1, korrelationsmatris En korrelationsmatris

Läs mer