P (t) = V 1 (t) V m (t) P (t + t) P (t) P (t) = v j (t)r j (t, t + t), v(t) Q t v(t),

Save this PDF as:
 WORD  PNG  TXT  JPG

Storlek: px
Starta visningen från sidan:

Download "P (t) = V 1 (t) V m (t) P (t + t) P (t) P (t) = v j (t)r j (t, t + t), v(t) Q t v(t),"

Transkript

1 STOCKHOLMS UNIVERSITET MATEMATISKA INSTITUTIONEN Avd. för Matematisk statistik Thomas Höglund Version RISK OCH DIVERSIFIERING Betrakta en portfölj bestående av m tillgångar som vi här ska kalla aktier. Aktieprisena vid tiden t är S (t),..., S m (t). Låt V j (t) beteckna värdet av innehavet i aktie j vid tiden t, j =,..., m; V j (t) = a j S j (t), där a j är antalet av aktie j i portföljen. Portföljvärdet vid tiden t, P (t), ges av och aktie j har vikten P (t) = V (t) V m (t) v j (t) = V j (t)/p (t) i portföljen. Portföljens avkastning i tidsintervallet (t, t + t), R P (t, t + t), ges av där R P (t, t + t) = P (t + t) P (t) P (t) m = v j (t)r j (t, t + t), j= R j (t, t + t) = V j(t + t) V j (t) V j (t) är avkastningen av aktie j under tidsintervallet. Övning Visa detta. Portföljens avkastning har variansen = S j(t + t) S j (t) S j (t) m m Var(R P (t, t + t)) = v j (t)v k (t)cov(r j (t, t + t), R k (t, t + t)) = j= k= v(t) Q t v(t), där v(t) = (v (t),..., v m (t)). Vi har sett i Stokastiska egenskaper hos aktiepriser att Q t Q t med god approximation, där Q är kovariansmatrisen för aktiernas årstillväxt. Det har därför ingen betydelse vilken av dessa matriser som används. Vi ska här använda portföljens volatilitet

2 σ P (t) = v(t) Qv(t) som mått på portföljrisken. Matrisen Q antages vara icke singulär vilket är detsamma som att alla egenvärden är strikt positiva. Antag att vi funnit att vissa vikter är optimala i något avseende och att vi bildar en portfölj med dessa vikter. Vikterna ändras med tiden och när de avviker väsentligt från de optimala får man balansera om portföljen (minska de innehav som blivit för stora och öka de som blivit för små) så att vikterna återställs. Risken kan minskas genom diversifiering. Av aktierna i exempelportföljen FEM AKTIER har Skanska lägst volatilitet under Period -4, 0.27, medan Ericsson har högst, Jämfört med att enbart inneha den trygga aktien Skanska kan man minska risken något genom att lägga till den riskabla aktien Ericsson: Antag att vi lägger vikten v i Ericsson och vikten v i Skanska. För denna portfölj gäller σ 2 P = v ( v) v( v) eftersom korrelationen är Detta uttryck minimeras för v = 0.07 och den minimala volatiliteten är Övning 2 Genomför detaljerna i ovanstående resonemang. AstraZeneca har högre volatilitet, 0.32, än Skanska. Om AstraZeneca hade varit lika korrolerad med Ericsson som Skanska, så hade den portfölj bestående av Ericsson och AstraZeneca som hade minst varians haft volatiliteten Men nu är korrelationen lägre, 0.20, vilket reducerar portföljvolatiliteten till Hög volatilitet kan alltså kompenseras av låg samvariation. För att få en uppfattning om hur antalet aktier, m, påverkar risken är det instruktivt att titta på fallet då alla vikter är lika, /m, alla aktier har samma volatilitet, σ, och alla korrelationer är desamma, ρ. (Detta är möljigt för alla m om och endast om ρ 0.) I detta fall är σ P = σ ρ + ρ m. Övning 3 Visa detta. Portföljrisken avtar alltså mot σ ρ då m. Om ρ > 0, vilket är det normala, så finns det alltså en gräns för vad som går att uppnå genom diversifiering av en aktieportfölj. Om man vill reducera risken ytterligare genom diversifiering kan man komplettera portföljen med andra tillgångar 2

3 corr= corr= Figur : Portföljvolatilitet som funktion av antalet tillgångar såsom obligationer och fastigheter eller helt enkelt lägga (en del) av pengarna i kassan. I Figur är portföljvolatiliteten plottad som funktion av m i (det typiska) fallet ρ = 0.36 samt för ρ = 0. (Aktievolatiliteten är i figuren normerad till.) I det första fallet kan man genom diversifiering minska volatiliteten från σ till 0.6σ och redan vid m = 5 har man uppnått 3/4 av denna minskning, σ P = 0.7. Vi ska bestämma de vikter som minimerar portföljrisken. Detta leder ibland till portföljer med negativa vikter. Ett negativt innehav erhålls om man lånar en aktie och säljer den (för att senare köpa tillbaka). Detta är normal praxis i vissa hedgefonder och kallas för blankning. Minimivariansportföljen Vi ska här bestämma den portfölj som har minst volatilitet. D.v.s. bestämma det v som minimerar 2 v Qv = 2 v i σ i,j v j i j under bivillkoret i v i =. Lagranges multiplikatormedtod ger ekvationerna σ i,j v j = λ, i =,..., m, j j v j =. Övning 4 Beräkna minimivariansportföljens vikter och varians då 3

4 a) b) c) Ekvationssystemet kan även skrivas σ Q = 0 σ σ Q = Q = Qv = λ, v =, där = (,..., ). (Här och i fortsättningen skriver vi vektorer som radvektorer men i matrisräkningar fungerar de som kolumnvektorer.) Vi får v = λq. Insättning av detta i bivillkoret ger λ Q =. Minimivariansen blir v Qv = λ 2 Q = / Q. Observera att Q > 0 eftersom Q och därmed Q är strikt positivt definit. Matrisen λq kommer att förekomma så ofta att vi ger den en egen bokstav, P. Sammanfattning: Minimivariansportföljen har variansen och vikterna där σ 2 = / Q v = P, P = σ 2 Q. Exempel Okorrolerade avkastningar I detta fall är σ i,i = σi 2 och σ i,j = 0 för i j. Q är alltså diagonalmatrisen med diagonalelementen /σi 2, i =,..., m och vi har därför 4

5 σ 2 = H m, v i = σ2 σi 2, där H betecknar det harmoniska medelvärdet av σ 2,..., σ2 m, m H = σ 2 σm 2 Man ser här att variansen kan göras godtyckligt liten genom att diversifiera portföljen (välja m stort) på så sätt att H hålls begränsad. Det framgår också att minimivariansportföljen har positiva vikter i detta fall. För att beräkna minimivariansportföljen kan man göra så här: Skatta v med ˆv = ˆP, där ˆP = ˆσ 2 ˆQ och ˆσ 2 = / ˆQ. Skattningen baseras på historiska data om n observationer. Använd sedan dessa vikter för minimivariansportföljen under den följande perioden. För att denna portfölj ska likna minimivariansportföljen den följande perioden behöver n vara tillräckligt stort för att skattningen ska vara stabil. Vidare måste minimivariansportföljerna under de två perioderna vara snarlika. Exempel 2 FEM AKTIER. Hela tidsperioden delades in i fyra lika långa tidsperioder om n = 256 dagar var. Varje period är alltså c:a ett år och en vecka lång. Kovariansmatrisen skattades från de dagliga slutkurserna. Minimivariansporföljens vikter ges i Tabell. Tabell AZN LME HM SDIA SKA Period Period Period Period Period Period Period Här finns en viss stabilitet vilket blir tydligt om man rangordnar vikterna: 5

6 Tabell 2 AZN LME HM SDIA SKA Period Period Period Period Period Period Period I Tabell 3 ges minimivariansportföljernas volatiliteter och volatiliteterna, σ, hos de portföljer som har samma vikter som minimivariansportföljen den föregående perioden, vilket alltså är den volatilitet man får om man tillämpar ovanstående metod. För jämförelsens skull har även σ afgx, volatiliteten hos Affärsvärldens generalindex, samt σ lika, volatiliteten hos den portfölj som har lika vikter av de 5 aktierna, angivis. Tabell 3 σ σ σ lika σ afgx Period Period Period Period Period Det framgår av tabellen att man inte behöver ha många aktier i en portfölj för att få ned risken på samma nivå som generalindex. Om man lägger till AFGX till portföljen och beräknar minimivariansportföljens vikter med data från Period -4, så får AFGX vikten 0.46 och de övriga 0.22, -0.05, 0.0, respektive Volatiliteten blir 0.8. Om man vill ta ned risken i en omfattande portfölj, så ska man naturligt nog vikta ned de stora och volatila bolagen Ericsson och Skandia relativt index. Observera att över halva portföljvärdet ligger i de två aktierna Skanska och AstraZeneca. För att få en uppfattning om vilka slumpvariationer i skattningarna av vikterna man kan vänta sig ska vi använda följande resultat. I satsen refereras till en modell i version av Stokaskastiska egenskaper hos aktiepriser. För den som har skrivit ut en tidigare version kommer modellen här. 6

7 Modell A S j (t) = S j (0)e ν j t+x j (t) Processen X(t) = (X (t),..., X m (t)) har okorrolerade inkrement, väntevärde 0 och kovariansmatris av formen Var(X(t)) = Qt. Modell B Som Modell A samt att X(t) är normalfördelad. Sats Antag att aktiepriserna utvecklas enligt Modell B i Stokastiska egenskaper hos aktiepriser. Skattningen ˆv = ˆP av vikterna i minimivariansportföljen är, då n, asymptotiskt normalfördelad med väntevärde och kovariansmatris v = P n (P v v T )/σ 2. Vi utelämnar beviset. Satsen stämmer nämligen dåligt med verkligheten. Jag är övertygad om att vikterna är asymptotiskt normalfördelade med ovanstående väntevärde och att variansen är av storleksordningen /n. Det är det exakta uttrycket för variansen som är fel. Som mått på den genomsnittliga avvikelsen ska vi använda d teor = m E ˆv v 2. Om vi antar att skattningarna har den asymptotiska fördelningen i ovanstående sats, så d teor = nm trace(p v v T )/σ2. Här står trace för spåret av matrisen, d.v.s. summan av diagonalelementen. Vi ska skatta d teor med trace trace A ˆd teor =, nm A där A är antalet perioder, n periodlängden och trace t är spåret av skattningen av kovariansmatrisen under period t, t =,..., A. Den observerade medelavvikelsen mellan vikterna på varandra följande perioder är 7

8 A d obs = A m ˆv (t + ) ˆv (t) 2, t= där ˆv (t) är skattningen av vikterna under period t. Om skattningarna har den asymptotisa fördelningen i ovanstående sats så är Övning 5 Visa detta. E(d obs )2 = 2d 2 teor. För att få jämförbara storheter (som mäter avståndet mellan skattade och verkliga vikter) ska vi därför sätta d obs = d obs / 2. I nedanstående tabell ges dessa avstånd för ett antal olika periodlängder. Tabell 4 Periodlängd Antal perioder ˆdteor d obs d obs / ˆd teor Det framgår att teorin är på den pessimistiska sidan. Man skulle kunna tänka sig att vikterna är en färskvara eftersom verkligheten ändrar sig med tiden och att man därför bör använda sig av förhållandevis korta observationsperioder. Detta framgå alltså inte av ovanstående tabell utan tvärtom är avvikelserna monotont avtagande funktioner av observationsperiodens längd. Om man jämför avvikelserna med medelvikten /m = 20%, så kommer man till följande: Slutsats Använd, om möjligt, observationer från flera år. Ombalansering av portföljen Om aktierna utvecklas på olika sätt, så kommer vikterna att ändras. För att bibehålla vikterna behöver portföljen därför balanseras om ibland. Övning 6 a) Tre aktier kostar idag 4.98, respektive 2.0 SEK. Bilda en portfölj värd SEK och som har vikterna 0.20, 0.35 respektive

9 i de tre aktierna (avrundningsfelet läggs i kassan som antas ha räntan 0). Hur många ska du köpa av respektive aktie. b) Antag att portföljen lämnas orörd till en tidpunkt då aktieprisena är 3.40, respektive Vilka vikter har de olika aktierna i portföljen? Hur många ska du köpa eller sälja av de olika aktierna för att återställa de ursprungliga vikterna? Om portföljen balanseras om vid tidpunkterna t 0 < t <..., så blir portföljens värde vid t n där P (t n ) = P (t 0 )Π n k= ( + R P (t k, t k )), R P (t k, t k ) = P (t k) P (t k ) P (t k ) och där = m i= V i (t k ) V i (t k +) P (t k ) m = v i R i (t k, t k ) i= R i (t k, t k ) = S i(t k ) S i (t k ). S i (t k ) På grund av omviktningen kommer aktieinnehaven att ha diskontinuiteter vid omviktningstidpunkterna, därav höger- och vänstergränsvärdena ovan. Övning 7 Genomför detaljerna i ovanståend resonemang. Det finns emellertid skäl (bl.a. transaktionskostnader) att inte balansera om portföljen utan anledning och anledningen i detta fall är att portföljens volatilitet blir alltför stor. Ett alternativ till dagliga ombalanseringar är alltså att vänta till den första tidpunkt, t, för vilken där σ(t) σ ( + ɛ), σ(t) = v(t) Qv(t) och där ɛ är ett lämpligt valt positivt tal. I Figur 2 är kvoten σ(t)/σ plottad för exempelportföljen. Tidsperioden är Period 4 och vikterna är skattade med data från perioderna -3. Vikterna blev AZN LME HM SDIA SKA Som störst är kvoten.0. I detta fall har därför den portfölj som ombalanseras dagligen och den portfölj som aldrig ombalanseras snarlik volatilitet. 9

10 Figur 2: Portföljvolatilitet relativt minimivariansportföljens volatilitet Att skillnaden mellan de två portföljerna är liten i detta fall framgår också av Figur 3 där en plot av utvecklingen av de två portföljerna samt Affärsvärldens generalindex visas. Den dagligen omviktade är heldragen. Medelavvikelsen mellan de två portföljerna är 2%. Portföljutvecklingen som funktion av aktiernas utveckling Låt v,..., v m vara givna vikter. Betrakta en portfölj som från början har dessa vikter och som balanseras om vid tidpunkterna 0, t, 2 t, 3 t,... så att vikterna återställs. Vi ska i detta avsnitt härleda ett uttryck för portföljens värde som funktion av aktiernas värden under förutsättning att de senare utvecklas enligt Modell B och att t är litet. Låt n t = t och låt P n (t) beteckna portföljens värde vid tiden t. Då gäller enligt identiteten som visas i Övning 7 och där P n (t) = P (0) n m v j i= j= S j (i t) S j ((i ) t) S j (i t) S j ((i ) t) = eν j t+ i X j, 0

11 AFGX Figur 3: Utveckling av minimvariansportföljerna. i X j = X j (i t) X j ((i ) t) = tz j (i) och där Z(i) = (Z (i),..., Z m (i)), i =,..., n är oberoende stokastiska variabler som alla är normalfördelade med väntevärde 0 och kovariansmatris Q. Därför e ν j t+ i X j = + ν j t + tz j (i) + t 2 Z j(i) 2 + O( t 3 ) = där + (ν j + 2 σ j,j) t + tz j (i) + t 2 e j(i) + O( t 3 ), e j (i) = Z j (i) 2 σ j,j och e(i) = (e (i),..., e m (i)), i =,..., n är oberoende likafördelade stokastiska variabler med väntevärde 0 och E e(i) 2 <. Det följer att m S j (i t) v j S j= j ((i ) t) = +(v ν+ 2 v d) t+ tv Z(i)+ t 2 v e(i)+o( t 3 )

12 där ν = (ν,..., ν m ) och d = (σ,,..., σ m,m ). Därför även ln(p n (t)/p (0)) = n ((v ν + 2 v d) t+ tv Z(i)+ t 2 v e(i) 2 t(v Z(i))2 +O( t 3 )) = i= tv ν+v (X(t) X(0))+t t v d+ 2 2 Den stokastiska variabeln n v e(i) 2 t n (v Z(i)) 2 +O( t). i= i= har väntevärde 0 och varians t 2 n v e(i) i= ( t) 2 ne(v e()) 2 /4 = O( t) och går därför mot noll i sannolikhet då t 0. Variabeln har varians n 2 t (v Z(i)) 2 i= ( t) 2 nvar((v Z()) 2 )/4 = O( t) och konvergerar därför i sannolikhet mot sitt väntevärde t 2 v Qv. Vi har alltså visat första delen av följande sats. Sats 2 Om aktierna utvecklas enligt Modell B, så P n (t) P (t) i sannolikhet då t 0. Här är och P (t) = P (0)e tl ( S (t) S (0) )v... ( S m(t) S m (0) )vm L = m 2 ( v j σ j,j v Qv). j= Speciellt gäller att ln(p (t)/p (0)) är normalfördelad med väntevärde 2

13 Figur 4: Utveckling av kontinuerligt och dagligt ombalanserade portföljer (v r 2 v Qv)t och varians v Qvt, där r j = σ j,j 2 + ν j är de förväntade momentana avkastningarna. Fördelningspåståendet följer av att ln(p (t)/p (0)) = (v r v Qv)t + v X(t). 2 Observera att satsen gäller för godtyckliga vikter (och inte endast för minimivariansportföljen) och även då Q är singulär. Genom att ombalansera portföljen styr man alltså dess värde mot det geometriska medelvärdet av aktievärdena multiplicerat med e tl. Detta portföljvärde kan jämföras med den orörda portföljens värde S (t) P (0)(v S (0) v S m (t) m S m (0) ) som är det aritmetiska medelvärdet. Utvecklingen av minimivariansportföljen med daglig ombalansering är plottad tillsammans med den kontinuerligt ombalanserade portföljen (heldragen) i Figur 4. Medelavståndet mellan de två portföljerna är 0.5%. Figur 5 visar plottar av den orörda portföljen och den kontinuerligt ombalanserade. Medelavståndet mellan portföljerna är 2%. HM föll 30% under dag 02 och den orörda portföljen var dag 0 överviktad i HM (0.24 i.st.f. 0.7). Detta är en väsentlig förklaring till att den orörda portföljen presterade sämre än de andra. 3

14 .3.25 Kont.omb Figur 5: Utveckling av orörd och kontinuerligt omviktad portfölj Gemensam korrelation I detta fall är σ i,i = σ 2 i och σ i,j = σ i σ j ρ för i j. Detta är i vissa fall en någorlunda realistisk modell för vilken man kan få explicita och överblickbara uttryck för bl.a. minimivariansportföljens vikter och varians. Vi ska börja med fallet σ i = för i =,..., m och skriva Q 0 för kovariansmatrisen i detta fall. Låt I stå för identitetsmatrisen och J för den matris vars samtliga element är. Då gäller Q 0 = ( ρ)i + ρj och därför Q 0 = ( ρ) (I + ρ ρ J). Övning 8 a) Visa att x Q 0 x = m( ρ)v(x) + m( + (m )ρ) x 2, där v(x) = m mi= (x i x) 2. b) Visa att Q 0 (och därmed Q) är strikt positiv definit om och endast om m < ρ <. Övning 9 a) Visa att J 2 = mj. 4

15 b) Verifiera att Q 0 = ( ρ) (I κj) där κ = ρ + (m )ρ. Vi släpper nu restriktionen σ i = och betraktar allmänna standardavvikelser. Låt S beteckna diagonalmatrisen med elementen σ,..., σ m. Då gäller Övning 0 Visa att Q = SQ 0 S och därför Q = S Q 0 S. (Q x) i = σ i ( ρ) (x i κ σ i m j= x j σ j ). Det följer att minimivariansportföljen har vikterna v i = σ 2 σ i ( ρ) ( σ i κ m j= σ j ). Ett sätt att beräkna dessa vikter och volatiliteten ges i nästa övning. Övning Sätt w i = σ i ( σ i κ m j= σ j ). Visa att v i = w i / m j= w j och σ 2 = ( ρ)/ m j= w j. Vi ska nu använda denna modell till att skatta minimivariansportföljens vikter för FEM AKTIER med data från Period -4. Övning 2 Skatta den gemensamma korrelationen med medelvärdet av korrelationerna i Tabell 6 i kapitlet Stokastiska egenskaper hos aktiepriser och beräkna minimivariansportföljens vikter och volatilitet. Svar: ρ = Vikter: 0.30, 0.04, 0.0, 0.05, 0.5. Volatilitet: Skillnaden mellan dessa vikter och vikterna i understa raden i Tabell är 0.04, 0.0, 0.02, -0.05, Den senare portföljen har volatiliteten Medelavvikelsen mellan de två skattningerna av vikterna är d = Att döma av Tabell 4 kan man vänta sig att skattningsfelet är ungefär / (Faktorn /3 eftersom det teoretiska värdet är c:a 3 gånger för stort.) Det följer att vi inte kan avgöra vilken av de två skattningarna som ligger närmast minimivariansportföljen. Modellen med gemensam korrelation ger alltså mycket bra resultat i detta fall. 5

16 Om man förenklar modellen ytterligare och antar att ρ = 0, så får man vikterna (0.27, 0., 0.5, 0.2, 0.36) och d = Denna skattning går alltså att skilja från de andra två. De tre portföljerna har dock liknande karaktär vilket framgår om man rangordnar portföljernas vikter. Svar till övningarna 4 a) v i = /S, σ 2 σi 2 = /S, där S = + +. b) (/3, /3, /3), σ 2 σ 2 σ2 2 σ3 2 = 2/5. c) (3/7, 2/7, 2/7), σ 2 = 3/35. 6 a) 406, 208, 233. b) 0.4, 0.42, Köp 806, -35 respektive 40 aktier. 6

Finansmatematik II Kapitel 3 Risk och diversifiering

Finansmatematik II Kapitel 3 Risk och diversifiering STOCKHOLMS UNIVERSITET MATEMATISKA INSTITUTIONEN Avd. för Matematisk statistik Thomas Höglund Version 04 0 8 Finansmatematik II Kapitel 3 Risk och diversifiering 2 Finansmatematik II Risk och diversifiering

Läs mer

Betavärde En akties betavärde, β, relativt en marknad, M, definieras som

Betavärde En akties betavärde, β, relativt en marknad, M, definieras som STOCKHOLMS UNIVERSITET MATEMATISKA INSTITUTIONEN Avd. för Matematisk statistik Thomas Höglund Version 02 22 SAMVARIATION MED MARKNADEN Marknaden Med marknaden menar vi här ett index. Ett index är en portfölj

Läs mer

Finansmatematik II Kapitel 5 Samvariation med marknaden

Finansmatematik II Kapitel 5 Samvariation med marknaden 1 STOCKHOLMS UNIVERSITET MATEMATISKA INSTITUTIONEN Avd. för Matematisk statistik Thomas Höglund Version 04 1 03 Finansmatematik II Kapitel 5 Samvariation med marknaden Finansmatematik II 1 Marknaden Med

Läs mer

Finansmatematik II Kapitel 2 Stokastiska egenskaper hos aktiepriser

Finansmatematik II Kapitel 2 Stokastiska egenskaper hos aktiepriser STOCKHOLMS UNIVERSITET MATEMATISKA INSTITUTIONEN Avd. för Matematisk statistik Thomas Höglund Version Finansmatematik II Kapitel Stokastiska egenskaper hos aktiepriser Finansmatematik II För att kunna

Läs mer

STYRNING AV PORTFÖLJER MED FLERA TILLGÅNGAR

STYRNING AV PORTFÖLJER MED FLERA TILLGÅNGAR 1 STOCKHOLMS UNIVERSITET MATEMATISKA INSTITUTIONEN Avd. för Matematisk statistik Thomas Höglund FINANSMATEMATIK I. KOMPLEMENT DAG 13. STYRNING AV PORTFÖLJER MED FLERA TILLGÅNGAR Hittills har vi betraktat

Läs mer

Finansmatematik II Kapitel 4 Tillväxt och risk

Finansmatematik II Kapitel 4 Tillväxt och risk 1 STOCKHOLMS UNIVERSITET MATEMATISKA INSTITUTIONEN Avd för Matematisk statistik Thmas Höglund Versin 04 10 21 Finansmatematik II Kapitel 4 Tillväxt ch risk 2 Finansmatematik II Man går inte in på aktiemarknaden

Läs mer

120 110 S t : 100 100 90 80 Vi ska här betrakta ett antal portföljer som vid t = 0 är värda 100 SEK.

120 110 S t : 100 100 90 80 Vi ska här betrakta ett antal portföljer som vid t = 0 är värda 100 SEK. STOCKHOLMS UNIVERSITET MATEMATISKA INSTITUTIONEN Avd. för Matematisk statistik Thomas Höglund FINANSMATEMATIK I. KOMPLEMENT DAG 5. HANDELSSTRATEGIER Låt S t beteckna priset på en aktie vid tiden t. Vi

Läs mer

Stokastiska vektorer

Stokastiska vektorer TNG006 F2 9-05-206 Stokastiska vektorer 2 Kovarians och korrelation Definition 2 Antag att de sv X och Y har väntevärde och standardavvikelse µ X och σ X resp µ Y och σ Y Då kallas för kovariansen mellan

Läs mer

5B Portföljteori och riskvärdering

5B Portföljteori och riskvärdering B7 - Portföljteori och riskvärdering Laboration Farid Bonawiede - 89-09 Alexandre Messo - 89-77 - Beräkning av den effektiva fronten för en portfölj Uppgiften går ut på att beräkna de portföljer som ger

Läs mer

Finansiering. Föreläsning 6 Risk och avkastning BMA: Kap. 7. Jonas Råsbrant

Finansiering. Föreläsning 6 Risk och avkastning BMA: Kap. 7. Jonas Råsbrant Finansiering Föreläsning 6 Risk och avkastning BMA: Kap. 7 Jonas Råsbrant jonas.rasbrant@fek.uu.se Föreläsningens innehåll Historisk avkastning för finansiella tillgångar Beräkning av avkastning och risk

Läs mer

MVE051/MSG Föreläsning 7

MVE051/MSG Föreläsning 7 MVE051/MSG810 2016 Föreläsning 7 Petter Mostad Chalmers November 23, 2016 Överblick Deskriptiv statistik Grafiska sammanfattningar. Numeriska sammanfattningar. Estimering (skattning) Teori Några exempel

Läs mer

Härledning av Black-Littermans formel mha allmänna linjära modellen

Härledning av Black-Littermans formel mha allmänna linjära modellen Härledning av Black-Littermans formel mha allmänna linjära modellen Ett sätt att få fram Black-Littermans formel är att formulera problemet att hitta lämpliga justerade avkastningar som ett skattningsproblem

Läs mer

1 LP-problem på standardform och Simplexmetoden

1 LP-problem på standardform och Simplexmetoden Krister Svanberg, mars 202 LP-problem på standardform och Simplexmetoden I detta avsnitt utgår vi från LP-formuleringen (2.2) från föreläsning. Denna form är den bäst lämpade för en strömlinjeformad implementering

Läs mer

Enkel och multipel linjär regression

Enkel och multipel linjär regression TNG006 F3 25-05-206 Enkel och multipel linjär regression 3.. Enkel linjär regression I det här avsnittet kommer vi att anpassa en rät linje till mätdata. Betrakta följande värden från ett försök x 4.0

Läs mer

1. FLACK RÄNTA Med flack ränta ska vi här mena att räntan är densamma oavsett bindningstid

1. FLACK RÄNTA Med flack ränta ska vi här mena att räntan är densamma oavsett bindningstid STOCKHOLMS UNIVERSITET MATEMATISKA INSTITUTIONEN Avd. för Matematisk statistik Thomas Höglund Version 02 10 25. RÄNTA 1. FLACK RÄNTA Med flack ränta ska vi här mena att räntan är densamma oavsett bindningstid

Läs mer

Lektionsanteckningar 11-12: Normalfördelningen

Lektionsanteckningar 11-12: Normalfördelningen Lektionsanteckningar 11-12: Normalfördelningen När utfallsrummet för en slumpvariabel kan anta vilket värde som helst i ett givet intervall är variabeln kontinuerlig. Det är väsentligt att utfallsrummet

Läs mer

(A -A)(B -B) σ A σ B. på att tillgångarna ej uppvisar något samband i hur de varierar.

(A -A)(B -B) σ A σ B. på att tillgångarna ej uppvisar något samband i hur de varierar. Del 2 Korrelation Innehåll Implicita tillgångar... 3 Vad är korrelation?... 3 Hur fungerar sambanden?... 3 Hur beräknas korrelation?... 3 Diversifiering... 4 Korrelation och strukturerade produkter...

Läs mer

Kovarians och kriging

Kovarians och kriging Kovarians och kriging Bengt Ringnér November 2, 2007 Inledning Detta är föreläsningsmanus på lantmätarprogrammet vid LTH. 2 Kovarianser Sedan tidigare har vi, för oberoende X och Y, att VX + Y ) = VX)

Läs mer

Vektorgeometri för gymnasister

Vektorgeometri för gymnasister Vektorgeometri för gymnasister Per-Anders Svensson http://homepage.lnu.se/staff/psvmsi/vektorgeometri/gymnasiet.html Fakulteten för teknik Linnéuniversitetet Diagonalisering av linjära avbildningar III

Läs mer

Sannolikheten för att barnet skall få blodgrupp A0 A0 1/2 AA 1 AB 1/2 Övriga 0

Sannolikheten för att barnet skall få blodgrupp A0 A0 1/2 AA 1 AB 1/2 Övriga 0 Avd. Matematisk statistik TENTAMEN I SF191, SANNOLIKHETSTEORI OCH STATISTIK, ONSDAGEN DEN 1:A JUNI 216 KL 8. 13.. Kursledare: Thomas Önskog, 8-79 84 55 Tillåtna hjälpmedel: Formel- och tabellsamling i

Läs mer

STATISTISK ANALYS AV KOMPLEXA DATA

STATISTISK ANALYS AV KOMPLEXA DATA STATISTISK ANALYS AV KOMPLEXA DATA LONGITUDINELLA DATA Linda Wänström Linköpings universitet 12 December Linda Wänström (Linköpings universitet) LONGITUDINELLA DATA 12 December 1 / 12 Explorativ Faktoranalys

Läs mer

7.5 Experiment with a single factor having more than two levels

7.5 Experiment with a single factor having more than two levels Exempel: Antag att vi vill jämföra dragstyrkan i en syntetisk fiber som blandats ut med bomull. Man vet att inblandningen påverkar dragstyrkan och att en inblandning mellan 10% och 40% är bra. För att

Läs mer

Föreläsning 6, Matematisk statistik Π + E

Föreläsning 6, Matematisk statistik Π + E Repetition Kovarians Stora talens lag Gauss Föreläsning 6, Matematisk statistik Π + E Sören Vang Andersen 2 december 2014 Sören Vang Andersen - sva@maths.lth.se FMS012 F6 1/20 Repetition Kovarians Stora

Läs mer

Introduktion till statistik för statsvetare

Introduktion till statistik för statsvetare Stockholms universitet September 2011 Balanseringspunkt Låt oss betrakta mätserie 4 för vilken vi antar att mätdata är längder hos rekryter. En strukturell kunskap om dessa längder är av betydelse vid

Läs mer

Föreläsning 5. Funktioner av slumpvariabler. Ett centralt resultat.

Föreläsning 5. Funktioner av slumpvariabler. Ett centralt resultat. Föreläsning 5. Funktioner av slumpvariabler. Ett centralt resultat. Jesper Rydén Matematiska institutionen, Uppsala universitet jesper.ryden@math.uu.se 1MS008, 1MS777 vt 2016 Ytterligare begrepp Viktiga

Läs mer

Del 2 Korrelation. Strukturakademin

Del 2 Korrelation. Strukturakademin Del 2 Korrelation Strukturakademin Innehåll 1. Implicita tillgångar 2. Vad är korrelation? 3. Hur fungerar sambanden? 4. Hur beräknas korrelation? 5. Diversifiering 6. Korrelation och Strukturerade Produkter

Läs mer

Några vanliga fördelningar från ett GUM-perspektiv

Några vanliga fördelningar från ett GUM-perspektiv Några vanliga fördelningar från ett GUM-perspektiv I denna PM redovisas några av de vanligaste statistiska fördelningarna och deras hantering inom ramen för GUM: Guide to the Expression of Uncertainty

Läs mer

4 Diskret stokastisk variabel

4 Diskret stokastisk variabel 4 Diskret stokastisk variabel En stokastisk variabel är en variabel vars värde bestäms av utfallet av ett slumpmässigt försök. En stokastisk variabel betecknas ofta med X, Y eller Z (i läroboken används

Läs mer

SF1911: Statistik för bioteknik

SF1911: Statistik för bioteknik SF1911: Statistik för bioteknik Föreläsning 6. TK 14.11.2016 TK Matematisk statistik 14.11.2016 1 / 38 Lärandemål Stokastiska modeller för kontinuerliga datatyper Fördelningsfunktion (cdf) Sannolikhetstäthetsfunktion

Läs mer

Rådgivning i praktiken

Rådgivning i praktiken Arturo Arques 08-7636964 070-2999372 arturo.arques@seb.se Rådgivning i praktiken 1 Personliga relationer Finansiell ekonomi 2 3 4 Enskilt viktigaste frågan: Överensstämmer kundens riskbenägenhet med den

Läs mer

Stokastiska Processer och ARIMA. Patrik Zetterberg. 19 december 2012

Stokastiska Processer och ARIMA. Patrik Zetterberg. 19 december 2012 Föreläsning 7 Stokastiska Processer och ARIMA Patrik Zetterberg 19 december 2012 1 / 22 Stokastiska processer Stokastiska processer är ett samlingsnamn för Sannolikhetsmodeller för olika tidsförlopp. Stokastisk=slumpmässig

Läs mer

Föreläsningsmanus i matematisk statistik för lantmätare, vecka 5 HT06

Föreläsningsmanus i matematisk statistik för lantmätare, vecka 5 HT06 Föreläsningsmanus i matematisk statistik för lantmätare, vecka 5 HT06 Bengt Ringnér September 20, 2006 Inledning Detta är preliminärt undervisningsmaterial. Synpunkter är välkomna. 2 Väntevärde standardavvikelse

Läs mer

Kap 2. Sannolikhetsteorins grunder

Kap 2. Sannolikhetsteorins grunder Kap 2. Sannolikhetsteorins grunder Olika händelser och deras mängbetäckningar Sats 2.7 Dragning utan återläggning av k element ur n (utan hänsyn till ordning) kan ske på ( n ) olika sätt k För två händelser

Läs mer

Tillämpad statistik (A5), HT15 Föreläsning 6: Några övriga urvalsmetoder

Tillämpad statistik (A5), HT15 Föreläsning 6: Några övriga urvalsmetoder Tillämpad statistik (A5), HT15 Föreläsning 6: Några övriga smetoder Ronnie Pingel Statistiska institutionen Senast uppdaterad: 2015-11-11 Några övriga smetoder OSU-UÅ (med eller utan stratifiering) förutsätter

Läs mer

Matematisk statistik KTH. Formel- och tabellsamling i matematisk statistik

Matematisk statistik KTH. Formel- och tabellsamling i matematisk statistik Matematisk statistik KTH Formel- och tabellsamling i matematisk statistik Varterminen 2005 . Kombinatorik n = k n! k!n k!. Tolkning: n k mängd med n element. 2. Stokastiska variabler V X = EX 2 EX 2 =

Läs mer

Uppgift 1 (a) För två händelser, A och B, är följande sannolikheter kända

Uppgift 1 (a) För två händelser, A och B, är följande sannolikheter kända Avd. Matematisk statistik TENTAMEN I SF90, SANNOLIKHETSTEORI OCH STATISTIK, TISDAGEN DEN 9:E JUNI 205 KL 4.00 9.00. Kursledare: Tatjana Pavlenko, 08-790 84 66 Tillåtna hjälpmedel: Formel- och tabellsamling

Läs mer

Envägs variansanalys (ANOVA) för test av olika väntevärde i flera grupper

Envägs variansanalys (ANOVA) för test av olika väntevärde i flera grupper Envägs variansanalys (ANOVA) för test av olika väntevärde i flera grupper Tobias Abenius February 21, 2012 Envägs variansanalys (ANOVA) I envägs variansanalys utnyttjas att

Läs mer

b) antalet timmar Lukas måste arbeta för att sannolikheten att han ska hinna med alla 112 datorerna ska bli minst (3 p)

b) antalet timmar Lukas måste arbeta för att sannolikheten att han ska hinna med alla 112 datorerna ska bli minst (3 p) Avd. Matematisk statistik TENTAMEN I SF1901, SANNOLIKHETSTEORI OCH STATISTIK, MÅNDAGEN DEN 27:E OKTOBER 2014 KL 08.00 13.00. Kursledare: Tatjana Pavlenko, 08-790 84 66, Björn-Olof Skytt, 08-790 86 49.

Läs mer

Lösningar till tentamen i Grundläggande nansmatematik. 21 december 2006 kl. 914

Lösningar till tentamen i Grundläggande nansmatematik. 21 december 2006 kl. 914 STOCKHOLMS UNIVERSITET MS 3290 MATEMATISKA INSTITUTIONEN TENTAMEN Avd. Matematisk statistik 21 december 2006 Lösningar till tentamen i Grundläggande nansmatematik 21 december 2006 kl. 914 Uppgift 1 Priset

Läs mer

STOCKHOLMS UNIVERSITET MATEMATISKA INSTITUTIONEN Avd. för Matematisk statistik Thomas Höglund Version 06 04 04. Finansmatematik II Kapitel 1

STOCKHOLMS UNIVERSITET MATEMATISKA INSTITUTIONEN Avd. för Matematisk statistik Thomas Höglund Version 06 04 04. Finansmatematik II Kapitel 1 1 STOCKHOLMS UNIVERSITET MATEMATISKA INSTITUTIONEN Avd. för Matematisk statistik Thomas Höglund Version 06 04 04 Finansmatematik II Kapitel 1 Ränta 2 Finansmatematik II 1 Rak ränta Med rak ränta ska vi

Läs mer

F9 Konfidensintervall

F9 Konfidensintervall 1/16 F9 Konfidensintervall Måns Thulin Uppsala universitet thulin@math.uu.se Statistik för ingenjörer 18/2 2013 2/16 Kursinformation och repetition Första inlämningsuppgiften rättas nu i veckan. För att

Läs mer

Konvergens och Kontinuitet

Konvergens och Kontinuitet Kapitel 7 Konvergens och Kontinuitet Gränsvärdesbegreppet är väldigt centralt inom matematik. Som du förhoppningsvis kommer ihåg från matematisk analys så definieras tex derivatan av en funktion f : R

Läs mer

STOCKHOLMS UNIVERSITET VT 2011 Avd. Matematisk statistik GB DATORLABORATION 3: MULTIPEL REGRESSION.

STOCKHOLMS UNIVERSITET VT 2011 Avd. Matematisk statistik GB DATORLABORATION 3: MULTIPEL REGRESSION. MATEMATISKA INSTITUTIONEN Tillämpad statistisk analys, GN STOCKHOLMS UNIVERSITET VT 2011 Avd. Matematisk statistik GB 2011-04-13 DATORLABORATION 3: MULTIPEL REGRESSION. Under Instruktioner och data på

Läs mer

Hur måttsätta osäkerheter?

Hur måttsätta osäkerheter? Geotekniska osäkerheter och deras hantering Hur måttsätta osäkerheter? Lars Olsson Geostatistik AB 11-04-07 Hur måttsätta osäkerheter _LO 1 Sannolikheter Vi måste kunna sätta mått på osäkerheterna för

Läs mer

Kontinuerliga funktioner. Ytterligare en ekvivalent formulering av supremumaxiomet

Kontinuerliga funktioner. Ytterligare en ekvivalent formulering av supremumaxiomet Kontinuerliga funktioner. Ytterligare en ekvivalent formulering av supremumaxiomet är följande: SATS. (Intervallinkapslingssatsen) Låt I k = [a k, b k ], k = 1, 2,... vara en avtagande följd av slutna

Läs mer

SF1901: SANNOLIKHETSTEORI OCH KONTINUERLIGA STOKASTISKA VARIABLER STATISTIK. Tatjana Pavlenko. 7 september 2016

SF1901: SANNOLIKHETSTEORI OCH KONTINUERLIGA STOKASTISKA VARIABLER STATISTIK. Tatjana Pavlenko. 7 september 2016 SF1901: SANNOLIKHETSTEORI OCH STATISTIK FÖRELÄSNING 4 KONTINUERLIGA STOKASTISKA VARIABLER Tatjana Pavlenko 7 september 2016 PLAN FÖR DAGENS FÖRELÄSNING Repetition av diskreta stokastiska variabler. Väntevärde

Läs mer

AMatematiska institutionen avd matematisk statistik

AMatematiska institutionen avd matematisk statistik Kungl Tekniska Högskolan AMatematiska institutionen avd matematisk statistik TENTAMEN I 5B1503 STATISTIK MED FÖRSÖKSPLANERING FÖR B OCH K FREDAGEN DEN 11 JANUARI 2002 KL 14.00 19.00. Examinator: Gunnar

Läs mer

F9 SAMPLINGFÖRDELNINGAR (NCT

F9 SAMPLINGFÖRDELNINGAR (NCT Stat. teori gk, ht 006, JW F9 SAMPLINGFÖRDELNINGAR (NCT 7.1-7.4) Ordlista till NCT Sample Population Simple random sampling Sampling distribution Sample mean Standard error The central limit theorem Proportion

Läs mer

12. SINGULÄRA VÄRDEN. (u Av) u v

12. SINGULÄRA VÄRDEN. (u Av) u v . SINGULÄRA VÄRDEN Vårt huvudresultat sen tidigare är Sats.. Varje n n matris A kan jordaniseras, dvs det finns en inverterbar matris S sån att S AS J där J är en jordanmatris. Om u och v är två kolonnvektorer

Läs mer

Föreläsning 1. Repetition av sannolikhetsteori. Patrik Zetterberg. 6 december 2012

Föreläsning 1. Repetition av sannolikhetsteori. Patrik Zetterberg. 6 december 2012 Föreläsning 1 Repetition av sannolikhetsteori Patrik Zetterberg 6 december 2012 1 / 28 Viktiga statistiska begrepp För att kunna förstå mer avancerade koncept under kursens gång är det viktigt att vi förstår

Läs mer

1 Konvexa optimeringsproblem grundläggande egenskaper

1 Konvexa optimeringsproblem grundläggande egenskaper Krister Svanberg, april 2012 1 Konvexa optimeringsproblem grundläggande egenskaper Ett optimeringsproblem är i viss mening godartat om det tillåtna området är en konvex mängd och den målfunktion som ska

Läs mer

Stokastiska processer

Stokastiska processer Stokastiska processer Fredrik Olsson, fredrik.olsson@iml.lth.se Avdelningen för produktionsekonomi Lunds tekniska högskola, Lunds universitet Dessa förläsningsanteckningar kommer att behandla diskreta

Läs mer

x f (x) dx 1/8. Kan likhet gälla i sistnämnda relation. (Torgny Lindvall.) f är en kontinuerlig funktion på 1 x sådan att lim a

x f (x) dx 1/8. Kan likhet gälla i sistnämnda relation. (Torgny Lindvall.) f är en kontinuerlig funktion på 1 x sådan att lim a Elementa Årgång 50, 967 Årgång 50, 967 Första häftet 2603. Låt ξ, ξ 2,..., ξ n vara stokastiska variabler med väntevärden E[ξ i ], i =, 2,..., n. Visa att E[max(ξ, ξ 2,..., ξ n )] max(e[ξ ], E[ξ 2 ],...,

Läs mer

b) Beräkna väntevärde och varians för produkten X 1 X 2 X 10 där alla X i :na är oberoende och R(0,2). (5 p)

b) Beräkna väntevärde och varians för produkten X 1 X 2 X 10 där alla X i :na är oberoende och R(0,2). (5 p) Avd. Matematisk statistik TENTAMEN I SF190 (f d 5B2501 ) SANNOLIKHETSLÄRA OCH STATISTIK FÖR - ÅRIG MEDIA MÅNDAGEN DEN 1 AUGUSTI 2012 KL 08.00 1.00. Examinator: Gunnar Englund, tel. 07 21 7 45 Tillåtna

Läs mer

Föreläsning 7. Statistikens grunder.

Föreläsning 7. Statistikens grunder. Föreläsning 7. Statistikens grunder. Jesper Rydén Matematiska institutionen, Uppsala universitet jesper.ryden@math.uu.se 1MS008, 1MS777 vt 2016 Föreläsningens innehåll Översikt, dagens föreläsning: Inledande

Läs mer

STOCKHOLMS UNIVERSITET MATEMATISKA INSTITUTIONEN Avd. för Matematisk statistik Thomas Höglund FINANSMATEMATIK I. ÖVNINGAR TILL DAG 3.

STOCKHOLMS UNIVERSITET MATEMATISKA INSTITUTIONEN Avd. för Matematisk statistik Thomas Höglund FINANSMATEMATIK I. ÖVNINGAR TILL DAG 3. STOCKHOLMS UNIVERSITET MATEMATISKA INSTITUTIONEN Avd. för Matematisk statistik Thomas Höglund FINANSMATEMATIK I. ÖVNINGAR TILL DAG 2. Luenberger: 2:1-5, 9, 11, 12. Övning 1. Du lånar 200000 kr i en bank

Läs mer

CAPM (capital asset pricing model)

CAPM (capital asset pricing model) CAPM (capital asset pricing model) CAPM En teoretisk modell för förväntad avkastning i jämvikt, d.v.s. när utbudet av varje tillgång är lika med efterfrågan på motsvarande tillgång. Detta betyder att CAPM

Läs mer

GMM och Estimationsfunktioner

GMM och Estimationsfunktioner Lunds Universitet med Lund Tekniska Högskola Finansiell Statistik Matematikcentrum, Matematisk Statistik VT 2006 GMM och Estimationsfunktioner I laborationen möter du två besläktade metoder för att estimera

Läs mer

Subtraktion. Räkneregler

Subtraktion. Räkneregler Matriser En matris är en rektangulär tabell av tal, 1 3 17 4 3 2 14 4 0 6 100 2 Om matrisen har m rader och n kolumner så säger vi att matrisen har storlek m n Index Vi indexerar elementen i matrisen genom

Läs mer

Övning 1(a) Vad du ska kunna efter denna övning. Problem, nivå A. Redogöra för begreppen diskret och kontinuerlig stokastisk variabel.

Övning 1(a) Vad du ska kunna efter denna övning. Problem, nivå A. Redogöra för begreppen diskret och kontinuerlig stokastisk variabel. Övning 1(a) Vad du ska kunna efter denna övning Redogöra för begreppen diskret och kontinuerlig stokastisk variabel. Definiera fördelningsfunktionen för en stokastisk variabel. Definiera frekvensfunktionen

Läs mer

Föreläsning 12: Regression

Föreläsning 12: Regression Föreläsning 12: Regression Matematisk statistik David Bolin Chalmers University of Technology Maj 15, 2014 Binomialfördelningen Låt X Bin(n, p). Vi observerar x och vill ha information om p. p = x/n är

Läs mer

TMS136. Föreläsning 10

TMS136. Föreläsning 10 TMS136 Föreläsning 10 Intervallskattningar Vi har sett att vi givet ett stickprov kan göra punktskattningar för fördelnings-/populationsparametrar En punkskattning är som vi minns ett tal som är en (förhoppningsvis

Läs mer

Laboration 5: Regressionsanalys. 1 Förberedelseuppgifter. 2 Enkel linjär regression DATORLABORATION 5 MATEMATISK STATISTIK FÖR I, FMS 012, HT-08

Laboration 5: Regressionsanalys. 1 Förberedelseuppgifter. 2 Enkel linjär regression DATORLABORATION 5 MATEMATISK STATISTIK FÖR I, FMS 012, HT-08 LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK Laboration 5: Regressionsanalys DATORLABORATION 5 MATEMATISK STATISTIK FÖR I, FMS 012, HT-08 Syftet med den här laborationen är att du skall

Läs mer

TMS136. Föreläsning 7

TMS136. Föreläsning 7 TMS136 Föreläsning 7 Stickprov När vi pysslar med statistik handlar det ofta om att baserat på stickprovsinformation göra utlåtanden om den population stickprovet är draget ifrån Situationen skulle kunna

Läs mer

Basbyten och linjära avbildningar

Basbyten och linjära avbildningar Föreläsning 11, Linjär algebra IT VT2008 1 Basbyten och linjära avbildningar Innan vi fortsätter med egenvärden så ska vi titta på hur matrisen för en linjär avbildning beror på vilken bas vi använder.

Läs mer

SF1901: Sannolikhetslära och statistik. Väntevärde; Väntevärde för funktioner av s.v:er; Varians; Tjebysjovs olikhet. Jan Grandell & Timo Koski

SF1901: Sannolikhetslära och statistik. Väntevärde; Väntevärde för funktioner av s.v:er; Varians; Tjebysjovs olikhet. Jan Grandell & Timo Koski SF1901: Sannolikhetslära och statistik Föreläsning 5. Väntevärde; Väntevärde för funktioner av s.v:er; Varians; Tjebysjovs olikhet. Jan Grandell & Timo Koski 28.01.2015 Jan Grandell & Timo Koski () Matematisk

Läs mer

Problemdel 1: Uppgift 1

Problemdel 1: Uppgift 1 STOCKHOLMS UNIVERSITET MT 00 MATEMATISKA INSTITUTIONEN LÖSNINGAR Avd. Matematisk statistik, CH 8 februari 0 LÖSNINGAR 8 februari 0 Problemdel : Uppgift Rätt svar är: a) X och X är oberoende och Y och Y

Läs mer

Grafer och grannmatriser

Grafer och grannmatriser Föreläsning 2, Linjär algebra IT VT2008 Som avslutning på kursen ska vi knyta samman linjär algebra med grafteori och sannolikhetsteori från första kursen. Resultatet blir så kallade slumpvandringar på

Läs mer

PROGRAMFÖRKLARING I. Statistik för modellval och prediktion. Ett exempel: vågriktning och våghöjd

PROGRAMFÖRKLARING I. Statistik för modellval och prediktion. Ett exempel: vågriktning och våghöjd Statistik för modellval och prediktion att beskriva, förklara och förutsäga Georg Lindgren PROGRAMFÖRKLARING I Matematisk statistik, Lunds universitet stik för modellval och prediktion p.1/4 Statistik

Läs mer

1 Kvadratisk optimering under linjära likhetsbivillkor

1 Kvadratisk optimering under linjära likhetsbivillkor Krister Svanberg, april 0 Kvadratisk optimering under linjära likhetsbivillkor I detta kapitel behandlas följande kvadratiska optimeringsproblem under linjära likhetsbivillkor: xt Hx + c T x + c 0 då Ax

Läs mer

Experimentella metoder, FK3001. Datorövning: Finn ett samband

Experimentella metoder, FK3001. Datorövning: Finn ett samband Experimentella metoder, FK3001 Datorövning: Finn ett samband 1 Inledning Den här övningen går ut på att belysa hur man kan utnyttja dimensionsanalys tillsammans med mätningar för att bestämma fysikaliska

Läs mer

TMS136. Föreläsning 5

TMS136. Föreläsning 5 TMS136 Föreläsning 5 Två eller flera stokastiska variabler I många situationer är det av intresse att betrakta fler än en s.v. åt gången Speciellt gör man det i statistik där man nästan alltid jobbar med

Läs mer

Optimering med bivillkor

Optimering med bivillkor Optimering med bivillkor Vi ska nu titta på problemet att hitta max och min av en funktionen f(x, y), men inte över alla möjliga (x, y) utan bara för de par som uppfyller ett visst bivillkor g(x, y) =

Läs mer

SF1901: SANNOLIKHETSTEORI OCH STATISTIKTEORI KONSTEN ATT DRA INTERVALLSKATTNING. STATISTIK SLUTSATSER. Tatjana Pavlenko.

SF1901: SANNOLIKHETSTEORI OCH STATISTIKTEORI KONSTEN ATT DRA INTERVALLSKATTNING. STATISTIK SLUTSATSER. Tatjana Pavlenko. SF1901: SANNOLIKHETSTEORI OCH STATISTIK FÖRELÄSNING 10 STATISTIKTEORI KONSTEN ATT DRA SLUTSATSER. INTERVALLSKATTNING. Tatjana Pavlenko 25 april 2017 PLAN FÖR DAGENS FÖRELÄSNING Statistisk inferens oversikt

Läs mer

ANDREAS REJBRAND 2014-04-25 Matematik http://www.rejbrand.se. Numeriska serier. Andreas Rejbrand, april 2014 1/29

ANDREAS REJBRAND 2014-04-25 Matematik http://www.rejbrand.se. Numeriska serier. Andreas Rejbrand, april 2014 1/29 Numeriska serier Andreas Rejbrand, april 2014 1/29 1 Inledning Författarens erfarenhet säger att momentet med numeriska serier är ganska svårt för många studenter i inledande matematikkurser på högskolenivå.

Läs mer

1/31 REGRESSIONSANALYS. Statistiska institutionen, Stockholms universitet

1/31 REGRESSIONSANALYS. Statistiska institutionen, Stockholms universitet 1/31 REGRESSIONSANALYS F1 Linda Wänström Statistiska institutionen, Stockholms universitet 2/31 Kap 4: Introduktion till regressionsanalys. Introduktion Regressionsanalys är en statistisk teknik för att

Läs mer

Lösningar till tentan i 5B1760 Linjär och kvadratisk optimering, 17 december 2003.

Lösningar till tentan i 5B1760 Linjär och kvadratisk optimering, 17 december 2003. Lösningar till tentan i 5B7 Linjär och kvadratisk optimering, 7 december 3 Uppgift (a) 3 Vi använder Gauss-Jordans metod för att överföra A 3 5 till trappstegsform 3 7 Addition av ( ) gånger första raden

Läs mer

Inlämningsuppgift 1: Portföljvalsteori

Inlämningsuppgift 1: Portföljvalsteori STOCKHOLMS UNIVERSITET 20 november 2006 Matematiska institutionen Avd. för matematisk statistik Mikael Andersson Inlämningsuppgift 1: Portföljvalsteori Syftet med denna inlämningsuppgift är att ni skall

Läs mer

Stokastiska processer med diskret tid

Stokastiska processer med diskret tid Stokastiska processer med diskret tid Vi tänker oss en följd av stokastiska variabler X 1, X 2, X 3,.... Talen 1, 2, 3,... räknar upp tidpunkter som förflutit från startpunkten 1. De stokastiska variablerna

Läs mer

Kursombud sökes! Kursens syfte är att ge en introduktion till metoder för att förutsäga realtidsegenskaper hos betjäningssystem, i synnerhet för data- och telekommunikationssystem. Såväl enkla betjäningssystem,

Läs mer

Dagens program. Linjära ekvationssystem och matriser

Dagens program. Linjära ekvationssystem och matriser Dagens program Matriser Räkneoperationer och räknelagar Linjära ekvationssystem och matriser Matrisform av ekvationssystem Elementära radoperationer Trappstegsmatriser, rang och lösningsstruktur Matrisinvers,

Läs mer

9. Konfidensintervall vid normalfördelning

9. Konfidensintervall vid normalfördelning TNG006 F9 09-05-016 Konfidensintervall 9. Konfidensintervall vid normalfördelning Låt x 1, x,..., x n vara ett observerat stickprov av oberoende s.v. X 1, X,..., X n var och en med fördelning F. Antag

Läs mer

Kap 3: Diskreta fördelningar

Kap 3: Diskreta fördelningar Kap 3: Diskreta fördelningar Sannolikhetsfördelningar Slumpvariabler Fördelningsfunktion Diskreta fördelningar Likformiga fördelningen Binomialfördelningen Hypergeometriska fördelningen Poisson fördelningen

Läs mer

Påbyggnad/utveckling av lagen om ett pris Effektiv marknad: Priserna på en finansiell marknad avspeglar all relevant information

Påbyggnad/utveckling av lagen om ett pris Effektiv marknad: Priserna på en finansiell marknad avspeglar all relevant information Föreläsning 4 ffektiva marknader Påbyggnad/utveckling av lagen om ett pris ffektiv marknad: Priserna på en finansiell marknad avspeglar all relevant information Konsekvens: ndast ny information påverkar

Läs mer

Matematisk statistik, LMA 200, för DAI och EI den 25 aug 2011

Matematisk statistik, LMA 200, för DAI och EI den 25 aug 2011 Matematisk statistik, LMA, för DAI och EI den 5 aug Tentamen består av åtta uppgifter om totalt 5 poäng. Det krävs minst poäng för betyg, minst poäng för och minst för 5. Examinator: Ulla Blomqvist Hjälpmedel:

Läs mer

Matematisk statistik för B, K, N, BME och Kemister

Matematisk statistik för B, K, N, BME och Kemister Matematisk statistik för B, K, N, BME och Kemister Föreläsning 11 & 12 Johan Lindström 5 & 14 oktober 2015 Johan Lindström - johanl@maths.lth.se FMS086/MASB02 F11 1/27 Johan Lindström - johanl@maths.lth.se

Läs mer

8 Inferens om väntevärdet (och variansen) av en fördelning

8 Inferens om väntevärdet (och variansen) av en fördelning 8 Inferens om väntevärdet (och variansen) av en fördelning 8. Skattning av µ och Students T-fördelning Om σ är känd, kan man använda statistikan X µ σ/ n för att hitta konfidensintervall för µ. Om σ inte

Läs mer

Stokastiska processer och simulering I 24 augusti

Stokastiska processer och simulering I 24 augusti STOCKHOLMS UNIVERSITET LÖSNINGAR MATEMATISKA INSTITUTIONEN Stokastiska processer och simulering I Avd Matematisk statistik 24 augusti 2016 Lösningar Stokastiska processer och simulering I 24 augusti 2016

Läs mer

f(x) = 2 x2, 1 < x < 2.

f(x) = 2 x2, 1 < x < 2. Avd. Matematisk statistik TENTAMEN I SF90,SF907,SF908,SF9 SANNOLIKHETSTEORI OCH STATISTIK TORSDAGEN DEN 7:E JUNI 0 KL 4.00 9.00. Examinator: Gunnar Englund, tel. 07 7 45 Tillåtna hjälpmedel: Formel- och

Läs mer

(a) sannolikheten för att läkaren ställer rätt diagnos. (b) sannolikheten för att en person med diagnosen ej sjukdom S ändå har sjukdomen, dvs.

(a) sannolikheten för att läkaren ställer rätt diagnos. (b) sannolikheten för att en person med diagnosen ej sjukdom S ändå har sjukdomen, dvs. Avd. Matematisk statistik TENTAMEN I SF1901 SANNOLIKHETSTEORI OCH STATISTIK, TORSDAGEN DEN 31:E MAJ 2012 KL 08.00 13.00. Examinator: Tobias Rydén, tel 790 8469. Kursledare: Tatjana Pavlenko, tel 790 8466.

Läs mer

Kapitel 7 Samplingfördelningar och Centrala gränsvärdessatsen

Kapitel 7 Samplingfördelningar och Centrala gränsvärdessatsen Sannolikhetslära och inferens II Kapitel 7 Samplingfördelningar och Centrala gränsvärdessatsen 1 Statistikor och samplingfördelningar I Kapitel 6 studerades metoder för att bestämma sannolikhetsfördelningen

Läs mer

Formler och tabeller till kursen MSG830

Formler och tabeller till kursen MSG830 Formler och tabeller till kursen MSG830 Deskriptiva mått För ett datamängd x 1,, x n denieras medelvärde standardavvikelse standardfelet (SEM) Sannolikheter x = 1 n n i=1 = x 1 + + x n n s = 1 n (x i x)

Läs mer

modell Finansiell statistik, vt-05 Modeller F5 Diskreta variabler beskriva/analysera data Kursens mål verktyg strukturera omvärlden formellt

modell Finansiell statistik, vt-05 Modeller F5 Diskreta variabler beskriva/analysera data Kursens mål verktyg strukturera omvärlden formellt Johan Koskinen, Statistiska institutionen, Stockholms universitet Finansiell statistik, vt-5 F5 Diskreta variabler Kursens mål beskriva/analysera data formellt verktyg strukturera omvärlden innehåll osäkerhet

Läs mer

Exempel :: Spegling i godtycklig linje.

Exempel :: Spegling i godtycklig linje. INNEHÅLL Exempel :: Spegling i godtycklig linje. c Mikael Forsberg :: 6 augusti 05 Sammanfattning:: I detta dokument så är vårt uppdrag att beräkna matrisen för spegling i en godtycklig linje y = kx som

Läs mer

SF1901: SANNOLIKHETSTEORI OCH MER ON VÄNTEVÄRDE OCH VARIANS. KOVARIANS OCH KORRELATION. STORA TALENS LAG. STATISTIK.

SF1901: SANNOLIKHETSTEORI OCH MER ON VÄNTEVÄRDE OCH VARIANS. KOVARIANS OCH KORRELATION. STORA TALENS LAG. STATISTIK. SF1901: SANNOLIKHETSTEORI OCH STATISTIK FÖRELÄSNING 6 MER ON VÄNTEVÄRDE OCH VARIANS. KOVARIANS OCH KORRELATION. STORA TALENS LAG. Tatjana Pavlenko 12 september 2017 PLAN FÖR DAGENS FÖRELÄSNING Repetition

Läs mer

Stockholms Universitet Statistiska institutionen Termeh Shafie

Stockholms Universitet Statistiska institutionen Termeh Shafie Stockholms Universitet Statistiska institutionen Termeh Shafie TENTAMEN I GRUNDLÄGGANDE STATISTIK FÖR EKONOMER 2011-10-28 Skrivtid: 9.00-14.00 Hjälpmedel: Miniräknare utan lagrade formler eller text, bifogade

Läs mer

TAMS65 - Föreläsning 11 Regressionsanalys fortsättning Modellval

TAMS65 - Föreläsning 11 Regressionsanalys fortsättning Modellval TAMS65 - Föreläsning 11 Regressionsanalys fortsättning Modellval Martin Singull Matematisk statistik Matematiska institutionen Innehåll Repetition (t-test för H 0 : β i = 0) Residualanalys Modellval Framåtvalsprincipen

Läs mer

Finansiell Statistik (GN, 7,5 hp,, HT 2008) Föreläsning 3

Finansiell Statistik (GN, 7,5 hp,, HT 2008) Föreläsning 3 Finansiell Statistik (GN, 7,5 hp,, HT 2008) Föreläsning 3 Kontinuerliga sannolikhetsfördelningar (LLL Kap 7 & 9) Department of Statistics (Gebrenegus Ghilagaber, PhD, Associate Professor) Financial Statistics

Läs mer

Matematisk statistik i praktiken: asset-liability management i ett försäkringsbolag

Matematisk statistik i praktiken: asset-liability management i ett försäkringsbolag Matematisk statistik i praktiken: asset-liability management i ett försäkringsbolag Andreas N. Lagerås AFA Försäkring Kapitalförvaltning Investeringsanalys Docentföreläsning SU 2010-11-10 1(21) Asset liability

Läs mer

SVANTE JANSON OCH SVANTE LINUSSON

SVANTE JANSON OCH SVANTE LINUSSON NORMLPPROXIMTION FÖR SNNOLIKHETEN FÖR TT FELKTIGT HNTERDE RÖSTER PÅVERKR MNDTFÖRDELNINGEN SVNTE JNSON OCH SVNTE LINUSSON. Inledning ntag att det är nästan jämnt mellan två partier och B vid fördelningen

Läs mer