Regressionsmodellering inom sjukförsäkring

Storlek: px
Starta visningen från sidan:

Download "Regressionsmodellering inom sjukförsäkring"

Transkript

1 Matematisk Statistik, KTH / SHB Capital Markets Aktuarieföreningen 4 februari 2014

2 Problembeskrivning Vi utgår från Försäkringsförbundets sjuklighetsundersökning och betraktar en portfölj av sjukförsäkringskontrakt. Portföljens risk och lönsamhet beskrivs huvudsakligen av den underliggande populationens insjuknande- och avvecklingsfrekvens. Vi lever i en värld där förutsättningarna för individ och bolag ständigt förändras. Viktigt att använda aktuella skattningar när man beräknar Premier Reserver Solvenskapital Vad är en aktuell skattning? Enkelt att skatta insjuknande årsvis... men avveckling är mer komplicerat.

3 Insjuknande, lösningsstrategi För att fånga förändringar i tiden men ändå behålla tillräcklig stabilitet använder vi oss av följande strategi. Dela upp data i ålderskohorter på 1 år, för varje kalenderår. Beräkna antalet individer under risk att insjukna och antalet incidenser för varje kohort. Ställ upp en parametrisk modell för logistisk insjuknandesannolikhet som funktion av ålder. Detta garanterar att sannolikheterna ligger mellan 0 och 1. Skatta parametrarna med maximum likelihood för varje kalenderår.

4 Modell för insjuknande Låt E x,t beteckna antalet friska individer i beståndet med ålder x vid början av period t Låt D x,t beteckna antalet individer med ålder x som insjuknade i tidsintervallet [t, t + 1) Antag att D x,t är binomialfördelat givet E x,t : D x,t Bin(E x,t,p x,t ) där p x,t är sannolikheten att en x-åring som är frisk i början av period t insjuknar under perioden.

5 Modell för insjuknande Vi inser snabbt att modellen har för många frihetsgrader för att man ska kunna göra effektiva skattningar. Vi reducerar dimensionaliteten genom att modellera de logistiska sannolikheterna som ( px,t ) logitp x,t := log = 1 p x,t n νtφ i i (x), i=1 där φ i (x) är användardefinierade, åldersberoende basfunktioner, och ν i t stokastiska riskfaktorer Byt notation av p x,t till p νt (x), som ges av p νt (x) = 1 1+exp( n i=1 νi tφ i (x)) Genom att modellera de logistiska sannolikheterna kan vi garantera att p νt (x) (0,1).

6 Modell för insjuknande Givet historiska värden på D x,t och E x,t, och en uppsättning basfunktioner {φ i }, kan log-likelihood- funktionen för årliga värden på ν t skrivas som l(ν t ) = x X n [D x,t νtφ i i (x) E x,t log ( 1+exp { n νtφ i i (x) })] +c t. i=1 i=1 Om basfunktionerna är linjärt oberoende blir l(ν t ) strikt konvex. Minimering över R n med numeriska metoder ger unika skattningar av ν t. Hur bestämmer man basfunktionerna? Kan väljas av användaren. Alternativt kan en optimal bas beräknas utifrån det givna datat.

7 Modell för insjuknande Önskade egenskaper hos p νt (x), exempelvis styckvis linjäritet m.a.p. x, fås genom lämpliga val av basfunktioner φ i (x) Karakteristika för en specifik population kan tas i beaktande Lämpliga val av basfunktioner ger riskfaktorerna konkreta tolkningar, vilket underlättar vid tillämpning Vektorn ν t med riskfaktorer modelleras som en stokastisk process baserat på historiska data och/eller expertkännedom. Tack vare den enkla modellen, och det faktum att (minus) likelihoodfunktionen är konvex, kan detta göras numeriskt med hög precision och utan att vara krävande beräkningsmässigt.

8 Modell för insjuknande Betrakta modellen logit p νt (x) = ν 1 tφ 1 (x)+ν 2 tφ 2 (x), där basfunktionerna är linjära då x [25,64]: φ 1 (x) = 64 x 39, φ 2 (x) = x 25 39

9 Modell för insjuknande Figure: T.v: två basfunktioner. Mitten: basfunktionerna skalas med riskfaktorvärden 0.4 resp T.h: summan av de skalade basfunktionerna

10 Modell för insjuknande Den logistiska insjuknandesannolikheten för en 25-åring ges av P.s.s. för en 64-åring, logitp νt (25) = ν 1 tφ 1 (25)+ν 2 tφ 2 (25) = ν 1 t. logitp νt (64) = ν 2 t. Insjuknandesannolikheterna för alla andra åldrar bestäms (logistiskt) som en linjärkombination av dessa. Insjuknandet för hela populationen bestäms således av endast två riskfaktorer. Genom att studera hur dessa riskfaktorer ändrar sig över tid kan man få en känsla för hur populationens beteende varierar.

11 Resultat, insjuknande Figure: Vänster: insjuknandefrekvens per 5-årsgrupper, kvinnor. Höger: Modellen.

12 Avveckling Avveckling är lite mer komplicerat att modellera Beror av fler variabler Man brukar anta att sannolikheten att avvecklas beror på sjukdomens duration Detta kallas semi-markov-egenskapen. Ålder, kön och andra faktorer kan/bör också tas i beaktande. Vi utvidgar insjuknandemodellen till semi-markov-fallet och sätter upp en modell för avveckling!

13 Avveckling, tillbakablick På avvecklingssidan har SUS använt sig av en metodik där man studerar tidsperioden som om den vore statisk, delar upp data i åtta ålderskohorter, skattar icke-parametrisk avvecklingskurva för varje kohort, väljer en parametrisk funktion och anpassar till data. För att kunna skatta åtta bra avvecklingskurvor behöver man mycket data, och man har då valt att titta på ett långt tidsintervall. Detta gör att man tappar tidsdynamiken.

14 Lösningsstrategi För att fånga förändringar över tiden delar vi upp data i ålders- och durationskohorter på 1 år resp 1 månad, för varje kalenderår, beräknar antalet individer under risk att avvecklas och antalet avvecklingar för varje kohort, ställer upp en parametrisk modell för logistisk avvecklingssannolikhet som funktion av duration och ålder, samt skattar parametrarna med maximum likelihood för varje kalenderår. Den stora fördelen med denna metod är att det krävs mindre data för att skatta en bra avvecklingsyta. Detta medför att man kan skapa avvecklingskurvor för varje enskilt kalenderår!

15 Modell för avveckling Låt E x,d,t beteckna antalet individer med insjuknandeålder x och sjukdomsduration [d, d + d) under tidsperioden [t,t +1). Låt R x,d,t beteckna antalet individer bland E x,d,t som avvecklas inom [d,d + d) and [t,t +1). Mål: modellera avveckling över tid, t = 0,1,2,... för ett givet antal åldrar Antag att R x,d,t är binomialfördelat givet informationen vid t (i enklaste fallet är detta E x,d,t ): R x,d,t Bin(E x,d,t,p x,d,t ) där p x,d,t är sannolikheten att en individ med insjuknandeålder [x,x +1) och sjukdomsduration [d,d + d) avvecklas under perioden [t,t +1).

16 Modell för avveckling Vi inser snabbt att modellen har för många frihetsgrader för att man ska kunna göra effektiva skattningar. Vi reducerar dimensionaliteten genom att modellera de logistiska sannolikheterna som logitp νt (x,d) = n φ i (x) i=1 k j=1 ν ij t ψ j (d), där φ i och ψ j ålders- respektive durationsberoende basfunktioner, och ν ij t är stokastiska riskfaktorer. Genom att modellera de logistiska sannolikheterna kan vi garantera att p νt (x,d) (0,1).

17 Modell för avveckling Log-likelihood-funktionen kan skrivas l(ν t ) = x X d D n [R x,d,t φ i (x) i=1 k j=1 ν ij t ψ j (d) E x,d,t log ( 1+exp { n φ i (x) i=1 k j=1 ν ij t ψ j (d) })] +c t. Funktionen (med omvänt tecken) är strikt konvex om {φ i } linj. ober. {ψ j } linj. ober. Minimering över R n med numeriska metoder ger unika skattningar av ν t

18 Modell för avveckling Låt den stokastiska variabeln D x beteckna en x-årings sjukdomsduration. För ett fixt ν t ges sannolikheten att sjukdomen varar längre än d år som S x (d) = P νt (D x > d) = d/ d 1 n=0 Detta är alltså avvecklingskurvorna! Med dessa avvecklingskurvor kan man visualisera outputen från modellen, och validera modellen. (1 p νt (x,n d)).

19 Modell för avveckling Figure: Avvecklingsytan för kvinnor, 2006.

20 Modell för avveckling Vi betraktar modellen logit p νt (x,d) = φ 1 (x) 3 j=1 ν 1j t ψ j (d)+φ 2 (x) 3 j=1 ν 2j t ψ j (d) där φ och ψ ges av: φ 1 (x) = 64 x, 39 φ 2 (x) = x 25, 39 ψ 1 (d) = 1, ψ 2 (d) = d, ψ 3 (d) = d.

21 Modell för avveckling Tolkningen är inte lika rättfram som för insjuknandemodellen, men grovt kan man säga att avvecklingsfunktionen för en 25-åring (64-åring) bestäms av parameteruppsättningen ν 1,1,ν 1,2,ν 1,3 (ν 2,1,ν 2,2,ν 2,3 ) avvecklingsfunktionen för alla andra åldrar bestäms (logistiskt) av en linjärkombination av dessa. Hela avvecklingsytan bestäms av 6 parametrar. Precis som på insjuknandesidan kan man få en känsla för hur populationens beteende varierar över tid genom att studera hur parametrarna ändras.

22 Modellvalidering För att validera skattningarna jämförs modellens avvecklingskurvor med vanliga Kaplan-Meier-kurvor för åtta kohorter. Jämförelsen försvåras dock något av att vår modell skapar en avvecklingsyta per kalenderår, medan KM-kurvorna är baserade på data från ett treårs-fönster kring önskat årtal, detta för att erhålla någorlunda jämna skattningar. Man kan likna detta vid någon sorts glidande medelvärde. En rimlig modell ligger i närheten av KM-kurvorna, men i en föränderlig värld kommer skattningarna inte att sammanfalla.

23 Modellvalidering Figure: Avvecklingsfunktioner för kvinnor med ålder 45-49, åren

24 Simulering och prognosticering Nedan visas modellparametrarna ν t för åren Genom att anpassa en tidsseriemodell för ν t till historiska data kan avvecklingskurvor för kommande år prognosticeras. Vi tolkar ν som en process som beskriver omvärlden. ν t 1,1 ν t 1,2 ν t 1, ν t 2,1 ν t 2,2 ν t 2, Figure: Modellparametrarna ν t för åren

25 Metod för prognosticering Följande metod kan användas för prediktion av avveckling. Anpassa en tidsseriemodell för ν t till historiska data för t = t 0,t 1,...,t n. Generera predikterade värden på ν t för t = t n+1,t n+2,... Beräkna predikterade avvecklingssannolikheter p νt (x,d) för t = t n+1,t n+2,... Beräkna premier och reserver utifrån de predikterade avvecklingssannolikheterna.

26 Metod för simulering Följande metod kan användas för simulering av avveckling. Anpassa en tidsseriemodell för ν t till historiska data för t = t 0,t 1,...,t n. Generera simulerade värden på ν t för t = t n+1,t n+2,... Beräkna simulerade avvecklingssannolikheter p νt (x,d) för t = t n+1,t n+2,... Med dessa kan man Beräkna premier, reserver utifrån de simulerade avvecklingssannolikheterna. Simulera hur populationens individer insjuknar och avvecklas. Lämpligt/möjligt antagande: Individerna oberoende av varandra betingat på omvärldsprocessen. Upprepa för ett stort antal simuleringar.

27 Intern modell för Solvens II I standardmodellen för Solvens II tar man differensen mellan best estimate av skuldens värde skuldens värde under ett stress-scenario där insjuknande och avveckling ökar respektive minskar. Detta kan tolkas som differensen mellan en kvantil av skuldens värde om ett år, och best estimate. En intern modell bör baseras på Value-at-Risk, på nivån 99,5%.

28 Intern modell för Solvens II Simuleringsalgoritmen ovan kan användas för detta ändamål: Simulera skuldens framtida värde genom att simulera insjuknande- och avvecklingssannolikheterna, och populationens individer. Att simulera varje individ kan vara tungt beräkningsmässigt Man kan lösa detta genom att göra en typ av Stora Talens Lag-approximation Detta bygger på att man diversifierat bort all individrisk, och att endast den systematiska risken består. Man kan simulera den systematiska risken enbart genom att simulera insjuknande- och avvecklingssannolikheterna.

29 Simuleringsresultat Figure: Histogram över skuldens framtida värde.

30 Simuleringsresultat Figure: Blå: VaR-skattning som funktion av antalet simulerade individer. Röd: LLN-approximation (grafen skalad så att LLN-approx = 1)

31 Tack!

MVE051/MSG Föreläsning 7

MVE051/MSG Föreläsning 7 MVE051/MSG810 2016 Föreläsning 7 Petter Mostad Chalmers November 23, 2016 Överblick Deskriptiv statistik Grafiska sammanfattningar. Numeriska sammanfattningar. Estimering (skattning) Teori Några exempel

Läs mer

Poissonregression. E(y x1, x2,.xn) = exp( 0 + 1x1 +.+ kxk)

Poissonregression. E(y x1, x2,.xn) = exp( 0 + 1x1 +.+ kxk) Poissonregression En lämplig utgångspunkt om vi har en beroende variabel som är en count variable, en variabel som antar icke-negativa heltalsvärden med ganska liten variation E(y x1, x2,.xn) = exp( 0

Läs mer

SF1901: SANNOLIKHETSTEORI OCH STATISTIKTEORI KONSTEN ATT DRA INTERVALLSKATTNING. STATISTIK SLUTSATSER. Tatjana Pavlenko.

SF1901: SANNOLIKHETSTEORI OCH STATISTIKTEORI KONSTEN ATT DRA INTERVALLSKATTNING. STATISTIK SLUTSATSER. Tatjana Pavlenko. SF1901: SANNOLIKHETSTEORI OCH STATISTIK FÖRELÄSNING 10 STATISTIKTEORI KONSTEN ATT DRA SLUTSATSER. INTERVALLSKATTNING. Tatjana Pavlenko 25 april 2017 PLAN FÖR DAGENS FÖRELÄSNING Statistisk inferens oversikt

Läs mer

Tillvägaghångssätt för skattning av körkortsmodell

Tillvägaghångssätt för skattning av körkortsmodell Siamak Baradaran sia@kth.se Tillvägaghångssätt för skattning av körkortsmodell 1 Syfte med modellen Syftet med denna forskning har varit att utveckla en beskrivande modell som kan hjälpa oss att förstå

Läs mer

Lektionsanteckningar 11-12: Normalfördelningen

Lektionsanteckningar 11-12: Normalfördelningen Lektionsanteckningar 11-12: Normalfördelningen När utfallsrummet för en slumpvariabel kan anta vilket värde som helst i ett givet intervall är variabeln kontinuerlig. Det är väsentligt att utfallsrummet

Läs mer

Laboration 5: Regressionsanalys. 1 Förberedelseuppgifter. 2 Enkel linjär regression DATORLABORATION 5 MATEMATISK STATISTIK FÖR I, FMS 012, HT-08

Laboration 5: Regressionsanalys. 1 Förberedelseuppgifter. 2 Enkel linjär regression DATORLABORATION 5 MATEMATISK STATISTIK FÖR I, FMS 012, HT-08 LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK Laboration 5: Regressionsanalys DATORLABORATION 5 MATEMATISK STATISTIK FÖR I, FMS 012, HT-08 Syftet med den här laborationen är att du skall

Läs mer

För logitmodellen ges G (=F) av den logistiska funktionen: (= exp(z)/(1+ exp(z))

För logitmodellen ges G (=F) av den logistiska funktionen: (= exp(z)/(1+ exp(z)) Logitmodellen För logitmodellen ges G (=F) av den logistiska funktionen: F(z) = e z /(1 + e z ) (= exp(z)/(1+ exp(z)) Funktionen motsvarar den kumulativa fördelningsfunktionen för en standardiserad logistiskt

Läs mer

k x om 0 x 1, f X (x) = 0 annars. Om Du inte klarar (i)-delen, så får konstanten k ingå i svaret. (5 p)

k x om 0 x 1, f X (x) = 0 annars. Om Du inte klarar (i)-delen, så får konstanten k ingå i svaret. (5 p) Avd. Matematisk statistik TENTAMEN I SF1901 SANNOLIKHETSLÄRA OCH STATISTIK MÅNDAGEN DEN 17 AUGUSTI 2009 KL 08.00 13.00. Examinator: Gunnar Englund, tel. 790 74 16. Tillåtna hjälpmedel: Formel- och tabellsamling

Läs mer

Föreläsning 12: Regression

Föreläsning 12: Regression Föreläsning 12: Regression Matematisk statistik David Bolin Chalmers University of Technology Maj 15, 2014 Binomialfördelningen Låt X Bin(n, p). Vi observerar x och vill ha information om p. p = x/n är

Läs mer

Härledning av Black-Littermans formel mha allmänna linjära modellen

Härledning av Black-Littermans formel mha allmänna linjära modellen Härledning av Black-Littermans formel mha allmänna linjära modellen Ett sätt att få fram Black-Littermans formel är att formulera problemet att hitta lämpliga justerade avkastningar som ett skattningsproblem

Läs mer

b) Beräkna sannolikheten att en mottagen nolla har sänts som en nolla. (7 p)

b) Beräkna sannolikheten att en mottagen nolla har sänts som en nolla. (7 p) Avd. Matematisk statistik TENTAMEN I SF90 OCH SF905 SANNOLIKHETSTEORI OCH STATISTIK, FREDAGEN DEN 4:E MARS 204 KL 4.00 9.00. Kursledare: För D och Media: Gunnar Englund, 073 32 37 45 Kursledare: För F:

Läs mer

Datorövning 4 Poissonregression

Datorövning 4 Poissonregression Lunds tekniska högskola Matematikcentrum Matematisk statistik STATISTISKA METODER FÖR SÄKERHETSANALYS FMS065 Datorövning 4 Poissonregression När man hanterar två eller fler variabler är man ofta intresserad

Läs mer

Prediktera. Statistik för modellval och prediktion. Trend? - Syrehalt beroende på kovariater. Sambands- och trendanalys

Prediktera. Statistik för modellval och prediktion. Trend? - Syrehalt beroende på kovariater. Sambands- och trendanalys Statistik för modellval och prediktion att beskriva, förklara och förutsäga Georg Lindgren Prediktera Matematisk statistik, Lunds universitet stik för modellval och prediktion p.1/28 Statistik för modellval

Läs mer

Enkel linjär regression: skattning, diagnostik, prediktion. Multipel regression: modellval, indikatorvariabler

Enkel linjär regression: skattning, diagnostik, prediktion. Multipel regression: modellval, indikatorvariabler UPPSALA UNIVESITET Matematiska institutionen Jesper ydén Matematisk statistik 1MS026 vt 2014 DATOÖVNING MED : EGESSION I den här datorövningen studeras följande moment: Enkel linjär regression: skattning,

Läs mer

TENTAMEN I SF1906 (f d 5B1506) MATEMATISK STATISTIK GRUNDKURS,

TENTAMEN I SF1906 (f d 5B1506) MATEMATISK STATISTIK GRUNDKURS, Avd. Matematisk statistik TENTAMEN I SF1906 (f d 5B1506) MATEMATISK STATISTIK GRUNDKURS, TORSDAGEN DEN 7 JUNI 2012 KL 14.00 19.00 Examinator:Gunnar Englund, 073 3213745 Tillåtna hjälpmedel: Formel- och

Läs mer

(b) Bestäm sannolikheten att minst tre tåg är försenade under högst tre dagar en given vecka.

(b) Bestäm sannolikheten att minst tre tåg är försenade under högst tre dagar en given vecka. Avd. Matematisk statistik TENTAMEN I SF1901, SF1905 SANNOLIKHETSTEORI OCH STATISTIK, MÅNDAGEN DEN 11 JANUARI 2016 KL 14.00 19.00. Kursledare för CINEK2: Thomas Önskog, tel: 08 790 84 55 Kursledare för

Läs mer

Vid formulering av den linjära regressionsmodellen utgår man ifrån att; Sambandet mellan Y-variabel och X-variabel är linjärt m a p parametrar

Vid formulering av den linjära regressionsmodellen utgår man ifrån att; Sambandet mellan Y-variabel och X-variabel är linjärt m a p parametrar ICKE-LINJÄRA MODELLER Vid formulering av den linjära regressionsmodellen utgår man ifrån att; Y i = 1 + 2 X 2i + u i Sambandet mellan Y-variabel och X-variabel är linjärt m a p parametrar cov(x i,u i )

Läs mer

f(x) = 2 x2, 1 < x < 2.

f(x) = 2 x2, 1 < x < 2. Avd. Matematisk statistik TENTAMEN I SF90,SF907,SF908,SF9 SANNOLIKHETSTEORI OCH STATISTIK TORSDAGEN DEN 7:E JUNI 0 KL 4.00 9.00. Examinator: Gunnar Englund, tel. 07 7 45 Tillåtna hjälpmedel: Formel- och

Läs mer

Approximerande Splines. B-splines. Minsta kvadrat anpassning. Design av kurvor och ytor.

Approximerande Splines. B-splines. Minsta kvadrat anpassning. Design av kurvor och ytor. TANA09 Föreläsning 8 Approximerande Splines B-splines. Minsta kvadrat anpassning. Design av kurvor och ytor. Exempel Parametriska Kurvor. Ritprogram. Beziér kurvor. Design av kurvor och ytor. Tillämpning

Läs mer

Föreläsning 6 (kap 6.1, 6.3, ): Punktskattningar

Föreläsning 6 (kap 6.1, 6.3, ): Punktskattningar Föreläsning 6 (kap 6.1, 6.3, 7.1-7.3): Punktskattningar Marina Axelson-Fisk 4 maj, 2016 Stickprov (sample) Idag: Stickprovsmedelvärde och varians Statistika (statistic) Punktskattning (point estimation)

Läs mer

Logistisk regression och Indexteori. Patrik Zetterberg. 7 januari 2013

Logistisk regression och Indexteori. Patrik Zetterberg. 7 januari 2013 Föreläsning 9 Logistisk regression och Indexteori Patrik Zetterberg 7 januari 2013 1 / 33 Logistisk regression I logistisk regression har vi en binär (kategorisk) responsvariabel Y i som vanligen kodas

Läs mer

PROGRAMFÖRKLARING III

PROGRAMFÖRKLARING III Statistik för modellval och prediktion att beskriva, förklara och förutsäga Georg Lindgren PROGRAMFÖRKLARING III Matematisk statistik, Lunds universitet stik för modellval och prediktion p./22 Statistik

Läs mer

Datorövning 4 Poissonregression

Datorövning 4 Poissonregression Lunds tekniska högskola Matematikcentrum Matematisk statistik STATISTISKA METODER FÖR SÄKERHETSANALYS FMS065, HT-16 Datorövning 4 Poissonregression När man hanterar två eller fler variabler är man ofta

Läs mer

Faderns blodgrupp Sannolikheten att barnet skall få blodgrupp A0 A0 1/2 AA 1 AB 1/2 Övriga 0

Faderns blodgrupp Sannolikheten att barnet skall få blodgrupp A0 A0 1/2 AA 1 AB 1/2 Övriga 0 Avd. Matematisk statistik TENTAMEN I 5B1504 MATEMATISK STATISTIK GRUNDKURS FÖR E3 LÖRDAGEN DEN 30 AUGUSTI 2003 KL 08.00 13.00. Examinator: Gunnar Englund, tel. 790 7416. Tillåtna hjälpmedel : Formel- och

Läs mer

TSRT62 Modellbygge & Simulering

TSRT62 Modellbygge & Simulering TSRT62 Modellbygge & Simulering Föreläsning 4 Christian Lyzell Avdelningen för Reglerteknik Institutionen för Systemteknik Linköpings Universitet C. Lyzell (LiTH) TSRT62 Modellbygge & Simulering 2013 1

Läs mer

För logitmodellen ges G (=F) av den logistiska funktionen: (= exp(z)/(1+ exp(z))

För logitmodellen ges G (=F) av den logistiska funktionen: (= exp(z)/(1+ exp(z)) Logitmodellen För logitmodellen ges G (=F) av den logistiska funktionen: F(z) = e z /(1 + e z ) (= exp(z)/(1+ exp(z)) Funktionen motsvarar den kumulativa fördelningsfunktionen för en standardiserad logistiskt

Läs mer

Föreläsning 7. Statistikens grunder.

Föreläsning 7. Statistikens grunder. Föreläsning 7. Statistikens grunder. Jesper Rydén Matematiska institutionen, Uppsala universitet jesper.ryden@math.uu.se 1MS008, 1MS777 vt 2016 Föreläsningens innehåll Översikt, dagens föreläsning: Inledande

Läs mer

Statistiska metoder för säkerhetsanalys

Statistiska metoder för säkerhetsanalys F10: Intensiteter och Poissonmodeller Frågeställningar Konstant V.v.=Var Cyklister Poissonmodeller för frekvensdata Vi gör oberoende observationer av de (absoluta) frekvenserna n 1, n 2,..., n k från den

Läs mer

Kapitel 18: LINJÄRA SANNOLIKHETSMODELLER, LOGIT OCH PROBIT

Kapitel 18: LINJÄRA SANNOLIKHETSMODELLER, LOGIT OCH PROBIT Kapitel 18: LINJÄRA SANNOLIKHETSMODELLER, LOGIT OCH PROBIT Regressionsanalys handlar om att estimera hur medelvärdet för en variabel (y) varierar med en eller flera oberoende variabler (x). Exempel: Hur

Läs mer

(a) sannolikheten för att läkaren ställer rätt diagnos. (b) sannolikheten för att en person med diagnosen ej sjukdom S ändå har sjukdomen, dvs.

(a) sannolikheten för att läkaren ställer rätt diagnos. (b) sannolikheten för att en person med diagnosen ej sjukdom S ändå har sjukdomen, dvs. Avd. Matematisk statistik TENTAMEN I SF1901 SANNOLIKHETSTEORI OCH STATISTIK, TORSDAGEN DEN 31:E MAJ 2012 KL 08.00 13.00. Examinator: Tobias Rydén, tel 790 8469. Kursledare: Tatjana Pavlenko, tel 790 8466.

Läs mer

Innehåll: 3.4 Parametriskt eller ej 3.5 Life Table 3.6 Kaplan Meier 4. Cox Regression 4.1 Hazard Function 4.2 Estimering (PL)

Innehåll: 3.4 Parametriskt eller ej 3.5 Life Table 3.6 Kaplan Meier 4. Cox Regression 4.1 Hazard Function 4.2 Estimering (PL) Innehåll: 1. Risk & Odds 1.1 Risk Ratio 1.2 Odds Ratio 2. Logistisk Regression 2.1 Ln Odds 2.2 SPSS Output 2.3 Estimering (ML) 2.4 Multipel 3. Survival Analys 3.1 vs. Logistisk 3.2 Censurerade data 3.3

Läs mer

Föreläsning 8: Konfidensintervall

Föreläsning 8: Konfidensintervall Föreläsning 8: Konfidensintervall Matematisk statistik Chalmers University of Technology Maj 4, 2015 Projektuppgift Projektet går ut på att studera frisättningen av dopamin hos nervceller och de två huvudsakliga

Läs mer

SUS SjuklighetsUnderSökning inom svensk försäkring

SUS SjuklighetsUnderSökning inom svensk försäkring Presentation av SUS SUS SjuklighetsUnderSökning inom svensk försäkring Presenteras av Gunnar Andersson, FTN/Folksam (bakgrund och teori) Erik Alm, FTN/Hannover Re (resultat) I samarbete med 2011-03-29

Läs mer

1 Duala problem vid linjär optimering

1 Duala problem vid linjär optimering Krister Svanberg, april 2012 1 Duala problem vid linjär optimering Detta kapitel handlar om två centrala teoretiska resultat för LP, nämligen dualitetssatsen och komplementaritetssatsen. Först måste vi

Läs mer

Tenta i Statistisk analys, 15 december 2004

Tenta i Statistisk analys, 15 december 2004 STOCKHOLMS UNIVERSITET MATEMATISKA INSTITUTIONEN LÖSNINGAR Avd. Matematisk statistik, ML 15 december 004 Lösningar Tenta i Statistisk analys, 15 december 004 Uppgift 1 Vi har två stickprov med n = 5 st.

Läs mer

Rättningstiden är i normalfall 15 arbetsdagar, till detta tillkommer upp till 5 arbetsdagar för administration, annars är det detta datum som gäller:

Rättningstiden är i normalfall 15 arbetsdagar, till detta tillkommer upp till 5 arbetsdagar för administration, annars är det detta datum som gäller: Matematisk Statistik Provmoment: Ladokkod: Tentamen ges för: Tentamen TT091A TGMAS15h 7,5 högskolepoäng TentamensKod: Tentamensdatum: 30 Maj Tid: 9-13 Hjälpmedel: Miniräknare (nollställd) samt allmänspråklig

Läs mer

1 LP-problem på standardform och Simplexmetoden

1 LP-problem på standardform och Simplexmetoden Krister Svanberg, mars 202 LP-problem på standardform och Simplexmetoden I detta avsnitt utgår vi från LP-formuleringen (2.2) från föreläsning. Denna form är den bäst lämpade för en strömlinjeformad implementering

Läs mer

Kap 3: Diskreta fördelningar

Kap 3: Diskreta fördelningar Kap 3: Diskreta fördelningar Sannolikhetsfördelningar Slumpvariabler Fördelningsfunktion Diskreta fördelningar Likformiga fördelningen Binomialfördelningen Hypergeometriska fördelningen Poisson fördelningen

Läs mer

Matematisk statistik KTH. Formel- och tabellsamling i matematisk statistik

Matematisk statistik KTH. Formel- och tabellsamling i matematisk statistik Matematisk statistik KTH Formel- och tabellsamling i matematisk statistik Varterminen 2005 . Kombinatorik n = k n! k!n k!. Tolkning: n k mängd med n element. 2. Stokastiska variabler V X = EX 2 EX 2 =

Läs mer

Finansmatematik II Kapitel 2 Stokastiska egenskaper hos aktiepriser

Finansmatematik II Kapitel 2 Stokastiska egenskaper hos aktiepriser STOCKHOLMS UNIVERSITET MATEMATISKA INSTITUTIONEN Avd. för Matematisk statistik Thomas Höglund Version Finansmatematik II Kapitel Stokastiska egenskaper hos aktiepriser Finansmatematik II För att kunna

Läs mer

Laboration 3: Enkla punktskattningar, styrkefunktion och bootstrap

Laboration 3: Enkla punktskattningar, styrkefunktion och bootstrap LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK DATORLABORATION 3, HT -06 MATEMATISK STATISTIK FÖR F, PI OCH NANO, FMS 012 MATEMATISK STATISTIK FÖR FYSIKER, MAS 233 Laboration 3: Enkla punktskattningar,

Läs mer

Samverkande Expertnät

Samverkande Expertnät 1 Samverkande Expertnät 2 3 1 2 3 Parallella nätverk Sammanvägning av svaren Två olika fördelar Utjämna egenheter hos nätverken Låt nätverken specialisera sig Egenskaper hos ett enkelt nätverk Överträning

Läs mer

Föreläsning 1. Repetition av sannolikhetsteori. Patrik Zetterberg. 6 december 2012

Föreläsning 1. Repetition av sannolikhetsteori. Patrik Zetterberg. 6 december 2012 Föreläsning 1 Repetition av sannolikhetsteori Patrik Zetterberg 6 december 2012 1 / 28 Viktiga statistiska begrepp För att kunna förstå mer avancerade koncept under kursens gång är det viktigt att vi förstår

Läs mer

Jesper Rydén. Matematiska institutionen, Uppsala universitet Tillämpad statistik 1MS026 vt 2014

Jesper Rydén. Matematiska institutionen, Uppsala universitet Tillämpad statistik 1MS026 vt 2014 Föreläsning 1. Jesper Rydén Matematiska institutionen, Uppsala universitet jesper@math.uu.se Tillämpad statistik 1MS026 vt 2014 Varför tillämpad statistik? Användningsområden i medicin, naturvetenskap

Läs mer

Sannolikheten för att barnet skall få blodgrupp A0 A0 1/2 AA 1 AB 1/2 Övriga 0

Sannolikheten för att barnet skall få blodgrupp A0 A0 1/2 AA 1 AB 1/2 Övriga 0 Avd. Matematisk statistik TENTAMEN I SF191, SANNOLIKHETSTEORI OCH STATISTIK, ONSDAGEN DEN 1:A JUNI 216 KL 8. 13.. Kursledare: Thomas Önskog, 8-79 84 55 Tillåtna hjälpmedel: Formel- och tabellsamling i

Läs mer

LUNDS UNIVERSITET 1(6) STATISTISKA INSTITUTIONEN Per-Erik Isberg

LUNDS UNIVERSITET 1(6) STATISTISKA INSTITUTIONEN Per-Erik Isberg LUNDS UNIVERSITET 1(6) STATISTISKA INSTITUTIONEN Per-Erik Isberg Simulering i MINITAB Det finns goda möjligheter att utföra olika typer av simuleringar i Minitab. Gemensamt för dessa är att man börjar

Läs mer

MVE051/MSG Föreläsning 14

MVE051/MSG Föreläsning 14 MVE051/MSG810 2016 Föreläsning 14 Petter Mostad Chalmers December 14, 2016 Beroende och oberoende variabler Hittills i kursen har vi tittat på modeller där alla observationer representeras av stokastiska

Läs mer

F6 STOKASTISKA VARIABLER (NCT ) Används som modell i situation av följande slag: Slh för A är densamma varje gång, P(A) = P.

F6 STOKASTISKA VARIABLER (NCT ) Används som modell i situation av följande slag: Slh för A är densamma varje gång, P(A) = P. Stat. teori gk, ht 2006, JW F6 STOKASTISKA VARIABLER (NCT 5.4-5.6) Binomialfördelningen Används som modell i situation av följande slag: Ett slumpförsök upprepas n gånger (oberoende upprepningar). Varje

Läs mer

Räntemodeller och marknadsvärdering av skulder

Räntemodeller och marknadsvärdering av skulder Räntemodeller och marknadsvärdering av skulder Fredrik Armerin Matematisk statistik, KTH Aktuarieföreningen 17-18 november 2004 Dag 2 NOLLKUPONGSKURVOR 1 Nollkupongsobligationer En nollkupongsobligation

Läs mer

Stokastiska Processer och ARIMA. Patrik Zetterberg. 19 december 2012

Stokastiska Processer och ARIMA. Patrik Zetterberg. 19 december 2012 Föreläsning 7 Stokastiska Processer och ARIMA Patrik Zetterberg 19 december 2012 1 / 22 Stokastiska processer Stokastiska processer är ett samlingsnamn för Sannolikhetsmodeller för olika tidsförlopp. Stokastisk=slumpmässig

Läs mer

ARIMA del 2. Patrik Zetterberg. 19 december 2012

ARIMA del 2. Patrik Zetterberg. 19 december 2012 Föreläsning 8 ARIMA del 2 Patrik Zetterberg 19 december 2012 1 / 28 Undersöker funktionerna ρ k och ρ kk Hittills har vi bara sett hur autokorrelationen och partiella autokorrelationen ser ut matematiskt

Läs mer

SUS - historia och resultat. Erik Alm Hannover Life Re Sweden

SUS - historia och resultat. Erik Alm Hannover Life Re Sweden Erik Alm Hannover Life Re Sweden SFF 29 mars 2011 Disclaimer The information provided in this presentation does in no way whatsoever constitute legal, accounting, tax or other professional advice. While

Läs mer

Boken är tänkt att ersätta tidigare kurslitteratur som används i kursen Livförsäkringsmatematik I som ges vid Stockholms universitet.

Boken är tänkt att ersätta tidigare kurslitteratur som används i kursen Livförsäkringsmatematik I som ges vid Stockholms universitet. Livförsäkringsmatematik andra upplagan Inledning Litteraturen för inledande kurser inom livförsäkring på svenska högskolor och universitet har, på grund av den omfattande utvecklingen i livförsäkringsbranschen

Läs mer

Stokastiska processer med diskret tid

Stokastiska processer med diskret tid Stokastiska processer med diskret tid Vi tänker oss en följd av stokastiska variabler X 1, X 2, X 3,.... Talen 1, 2, 3,... räknar upp tidpunkter som förflutit från startpunkten 1. De stokastiska variablerna

Läs mer

STOCKHOLMS UNIVERSITET MATEMATISKA INSTITUTIONEN Avd. Matematisk statistik, GA 08 januari 2015. Lösningar

STOCKHOLMS UNIVERSITET MATEMATISKA INSTITUTIONEN Avd. Matematisk statistik, GA 08 januari 2015. Lösningar STOCKHOLMS UNIVERSITET MT712 MATEMATISKA INSTITUTIONEN LÖSNINGAR Avd. Matematisk statistik, GA 8 januari 215 Lösningar Tentamen i Livförsäkringsmatematik I, 8 januari 215 Uppgift 1 a) Först konstaterar

Läs mer

8 Inferens om väntevärdet (och variansen) av en fördelning

8 Inferens om väntevärdet (och variansen) av en fördelning 8 Inferens om väntevärdet (och variansen) av en fördelning 8. Skattning av µ och Students T-fördelning Om σ är känd, kan man använda statistikan X µ σ/ n för att hitta konfidensintervall för µ. Om σ inte

Läs mer

Nedan redovisas resultatet med hjälp av ett antal olika diagram (pkt 1-6):

Nedan redovisas resultatet med hjälp av ett antal olika diagram (pkt 1-6): EM-fotboll 2012 några grafer Sport är en verksamhet som genererar mängder av numerisk information som följs med stort intresse EM i fotboll är inget undantag och detta dokument visar några grafer med kommentarer

Läs mer

Linjär Algebra, Föreläsning 8

Linjär Algebra, Föreläsning 8 Linjär Algebra, Föreläsning 8 Tomas Sjödin Linköpings Universitet Linjärkombinationer (repetition) Låt v 1, v 2,..., v n vara vektorer i ett vektorrum V. Givet skalärer λ 1, λ 2,..., λ n R så kallas λ

Läs mer

Matematisk statistik för B, K, N, BME och Kemister

Matematisk statistik för B, K, N, BME och Kemister Matematisk statistik för B, K, N, BME och Kemister Föreläsning 11 & 12 Johan Lindström 5 & 14 oktober 2015 Johan Lindström - johanl@maths.lth.se FMS086/MASB02 F11 1/27 Johan Lindström - johanl@maths.lth.se

Läs mer

Upprepade mätningar och tidsberoende analyser. Stefan Franzén Statistiker Registercentrum Västra Götaland

Upprepade mätningar och tidsberoende analyser. Stefan Franzén Statistiker Registercentrum Västra Götaland Upprepade mätningar och tidsberoende analyser Stefan Franzén Statistiker Registercentrum Västra Götaland Innehåll Stort område Simpsons paradox En mätning per individ Flera mätningar per individ Flera

Läs mer

Finansiell Statistik (GN, 7,5 hp,, HT 2008) Föreläsning 3

Finansiell Statistik (GN, 7,5 hp,, HT 2008) Föreläsning 3 Finansiell Statistik (GN, 7,5 hp,, HT 2008) Föreläsning 3 Kontinuerliga sannolikhetsfördelningar (LLL Kap 7 & 9) Department of Statistics (Gebrenegus Ghilagaber, PhD, Associate Professor) Financial Statistics

Läs mer

Modeller för fler än två valmöjligheter. Förekommer både som logit- och som probitmodeller.

Modeller för fler än två valmöjligheter. Förekommer både som logit- och som probitmodeller. Multinominella modeller Modeller för fler än två valmöjligheter. Förekommer både som logit- och som probitmodeller. Möjligt att, genom olika modellformuleringar, beakta att vissa regressorer varierar mellan

Läs mer

Enkel och multipel linjär regression

Enkel och multipel linjär regression TNG006 F3 25-05-206 Enkel och multipel linjär regression 3.. Enkel linjär regression I det här avsnittet kommer vi att anpassa en rät linje till mätdata. Betrakta följande värden från ett försök x 4.0

Läs mer

SF1901: Sannolikhetslära och statistik

SF1901: Sannolikhetslära och statistik SF1901: Sannolikhetslära och statistik Föreläsning 4. Funktioner av s.v:er, Flera stokastiska variabler. Marginell sannolikhetsfunktion och -täthetsfunktion. Oberoende sv:er, Maximum och minimum av oberoende

Läs mer

Kursombud sökes! Kursens syfte är att ge en introduktion till metoder för att förutsäga realtidsegenskaper hos betjäningssystem, i synnerhet för data- och telekommunikationssystem. Såväl enkla betjäningssystem,

Läs mer

Bayesianska numeriska metoder I

Bayesianska numeriska metoder I Baesianska numeriska metoder I T. Olofsson Marginalisering En återkommende teknik inom Baesiansk inferens är det som kallas för marginalisering. I grund och botten rör det sig om tillämpning av ett specialfall

Läs mer

SF1905 Sannolikhetsteori och statistik: Lab 2 ht 2011

SF1905 Sannolikhetsteori och statistik: Lab 2 ht 2011 Avd. Matematisk statistik Tobias Rydén 2011-09-30 SF1905 Sannolikhetsteori och statistik: Lab 2 ht 2011 Förberedelser. Innan du går till laborationen, läs igenom den här handledningen. Repetera också i

Läs mer

Statistik 1 för biologer, logopeder och psykologer

Statistik 1 för biologer, logopeder och psykologer Innehåll 1 Hypotesprövning Innehåll Hypotesprövning 1 Hypotesprövning Inledande exempel Hypotesprövning Exempel. Vi är intresserade av en variabel X om vilken vi kan anta att den är (approximativt) normalfördelad

Läs mer

3 Maximum Likelihoodestimering

3 Maximum Likelihoodestimering Lund Universitet med Lund Tekniska Högskola Finansiell Statistik Matematikcentrum, Matematisk Statistik VT 2006 Parameterestimation och linjär tidsserieanalys Denna laborationen ger en introduktion till

Läs mer

Att beräkna t i l l v ä x t takter i Excel

Att beräkna t i l l v ä x t takter i Excel Att beräkna t i l l v ä x t takter i Excel Detta kapitel är en liten matematisk vägledning om att beräkna tillväxttakten i Excel. Här visas exempel på potenser och logaritmer och hur dessa funktioner beräknas

Läs mer

GMM och Estimationsfunktioner

GMM och Estimationsfunktioner Lunds Universitet med Lund Tekniska Högskola Finansiell Statistik Matematikcentrum, Matematisk Statistik VT 2006 GMM och Estimationsfunktioner I laborationen möter du två besläktade metoder för att estimera

Läs mer

Statistikens grunder (an, 7,5 hsp) Tatjana Nahtman Statistiska institutionen, SU

Statistikens grunder (an, 7,5 hsp) Tatjana Nahtman Statistiska institutionen, SU Statistikens grunder (an, 7,5 hsp) Tatjana Nahtman Statistiska institutionen, SU KURSENS INNEHÅLL Statistiken ger en empirisk grund för ekonomin. I denna kurs betonas statistikens idémässiga bakgrund och

Läs mer

1 Förberedelser. 2 Teoretisk härledning av värmeförlust LABORATION 4: VÄRMEKRAFTVERK MATEMATISK STATISTIK AK, MAS 101:A, VT-01

1 Förberedelser. 2 Teoretisk härledning av värmeförlust LABORATION 4: VÄRMEKRAFTVERK MATEMATISK STATISTIK AK, MAS 101:A, VT-01 LUNDS UNIVERSITET MATEMATIKCENTRUM MATEMATISK STATISTIK LABORATION 4: VÄRMEKRAFTVERK MATEMATISK STATISTIK AK, MAS 101:A, VT-01 1 Förberedelser I denna laboration modelleras värmeförlusten i ett kraftverk

Läs mer

b) Teknologen Osquarulda känner inte till ML-metoden, men kom på intuitiva grunder fram till att p borde skattas med p = x 1 + 2x 2

b) Teknologen Osquarulda känner inte till ML-metoden, men kom på intuitiva grunder fram till att p borde skattas med p = x 1 + 2x 2 Avd. Matematisk statistik TENTAMEN I B14 MATEMATISK STATISTIK GRUNDKURS FÖR E gamlingar TISDAGEN DEN 14 DECEMBER 4 KL 8. 13. Examinator: Gunnar Englund, 79 7416 Tillåtna hjälpmedel: Formel- och tabellsamling

Läs mer

STOCKHOLMS UNIVERSITET VT 2011 Avd. Matematisk statistik GB DATORLABORATION 3: MULTIPEL REGRESSION.

STOCKHOLMS UNIVERSITET VT 2011 Avd. Matematisk statistik GB DATORLABORATION 3: MULTIPEL REGRESSION. MATEMATISKA INSTITUTIONEN Tillämpad statistisk analys, GN STOCKHOLMS UNIVERSITET VT 2011 Avd. Matematisk statistik GB 2011-04-13 DATORLABORATION 3: MULTIPEL REGRESSION. Under Instruktioner och data på

Läs mer

Analytisk statistik. Mattias Nilsson Benfatto, PhD.

Analytisk statistik. Mattias Nilsson Benfatto, PhD. Analytisk statistik Mattias Nilsson Benfatto, PhD Mattias.nilsson@ki.se Beskrivande statistik kort repetition Centralmått Spridningsmått Normalfördelning Konfidensintervall Korrelation Analytisk statistik

Läs mer

Syftet med den här laborationen är att du skall bli mer förtrogen med följande viktiga områden inom matematisk statistik

Syftet med den här laborationen är att du skall bli mer förtrogen med följande viktiga områden inom matematisk statistik LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK DATORLABORATION 4 MATEMATISK STATISTIK, AK FÖR I, FMS 01, HT-07 Laboration 4: Stora talens lag, Centrala gränsvärdessatsen, enkla punktskattningar

Läs mer

Matematisk statistik allmän kurs, MASA01:B, HT-14 Laborationer

Matematisk statistik allmän kurs, MASA01:B, HT-14 Laborationer Lunds universitet Matematikcentrum Matematisk statistik Matematisk statistik allmän kurs, MASA01:B, HT-14 Laborationer Information om laborationerna I andra halvan av MASA01 kursen ingår två laborationer.

Läs mer

Tentamen i Tillämpad statistisk analys, GN, 7.5 hp. 23 maj 2013 kl. 9 14

Tentamen i Tillämpad statistisk analys, GN, 7.5 hp. 23 maj 2013 kl. 9 14 STOCKHOLMS UNIVERSITET MT4003 MATEMATISKA INSTITUTIONEN LÖSNINGAR Avd. Matematisk statistik 3 maj 013 Lösningar Tentamen i Tillämpad statistisk analys, GN, 7.5 hp 3 maj 013 kl. 9 14 Uppgift 1 a Eftersom

Läs mer

b) Beräkna väntevärde och varians för produkten X 1 X 2 X 10 där alla X i :na är oberoende och R(0,2). (5 p)

b) Beräkna väntevärde och varians för produkten X 1 X 2 X 10 där alla X i :na är oberoende och R(0,2). (5 p) Avd. Matematisk statistik TENTAMEN I SF190 (f d 5B2501 ) SANNOLIKHETSLÄRA OCH STATISTIK FÖR - ÅRIG MEDIA MÅNDAGEN DEN 1 AUGUSTI 2012 KL 08.00 1.00. Examinator: Gunnar Englund, tel. 07 21 7 45 Tillåtna

Läs mer

Matematikcentrum 1(7) Matematisk Statistik Lunds Universitet MASB11 - Biostatistisk grundkurs HT2007. Laboration. Simulering

Matematikcentrum 1(7) Matematisk Statistik Lunds Universitet MASB11 - Biostatistisk grundkurs HT2007. Laboration. Simulering Matematikcentrum 1(7) Matematisk Statistik Lunds Universitet MASB11 - Biostatistisk grundkurs HT007 Laboration Simulering Grupp A: 007-11-1, 8.15-.00 Grupp B: 007-11-1, 13.15-15.00 Introduktion Syftet

Läs mer

Lösningsförslag till Tentamen. TSFS06 Diagnos och övervakning 14 augusti, 2007, kl

Lösningsförslag till Tentamen. TSFS06 Diagnos och övervakning 14 augusti, 2007, kl Lösningsförslag till Tentamen TSFS06 Diagnos och övervakning 14 augusti, 007, kl. 14.00-18.00 Tillåtna hjälpmedel: TeFyMa, Beta, Physics Handbook, Reglerteknik (Glad och Ljung), Formelsamling i statistik

Läs mer

x f (x) dx 1/8. Kan likhet gälla i sistnämnda relation. (Torgny Lindvall.) f är en kontinuerlig funktion på 1 x sådan att lim a

x f (x) dx 1/8. Kan likhet gälla i sistnämnda relation. (Torgny Lindvall.) f är en kontinuerlig funktion på 1 x sådan att lim a Elementa Årgång 50, 967 Årgång 50, 967 Första häftet 2603. Låt ξ, ξ 2,..., ξ n vara stokastiska variabler med väntevärden E[ξ i ], i =, 2,..., n. Visa att E[max(ξ, ξ 2,..., ξ n )] max(e[ξ ], E[ξ 2 ],...,

Läs mer

Statistisk analys av komplexa data

Statistisk analys av komplexa data Statistisk analys av komplexa data Trunkerade data och Tobitregression Bertil Wegmann Avdelning statistik, IDA, Linköpings universitet November 10, 2015 Bertil Wegmann (statistik, LiU) Trunkerade data

Läs mer

Statistisk analys av komplexa data

Statistisk analys av komplexa data Statistisk analys av komplexa data Kategoriska data Bertil Wegmann Avdelning statistik, IDA, Linköpings universitet November 12, 2013 Bertil Wegmann (statistik, LiU) Kategoriska data November 12, 2013

Läs mer

Finansmatematik II Kapitel 3 Risk och diversifiering

Finansmatematik II Kapitel 3 Risk och diversifiering STOCKHOLMS UNIVERSITET MATEMATISKA INSTITUTIONEN Avd. för Matematisk statistik Thomas Höglund Version 04 0 8 Finansmatematik II Kapitel 3 Risk och diversifiering 2 Finansmatematik II Risk och diversifiering

Läs mer

Växande och avtagande

Växande och avtagande Växande och avtagande Innehåll 1 Växande och avtagande 1 Andraderivatan.1 Andraderivatan och acceleration................... Andrederivatans tecken.........................1 Andraderivatans nollställen:

Läs mer

LABORATIONSHÄFTE NUMERISKA METODER GRUNDKURS 1, 2D1210 LÄSÅRET 03/04. Laboration 3 3. Torsionssvängningar i en drivaxel

LABORATIONSHÄFTE NUMERISKA METODER GRUNDKURS 1, 2D1210 LÄSÅRET 03/04. Laboration 3 3. Torsionssvängningar i en drivaxel Lennart Edsberg Nada, KTH December 2003 LABORATIONSHÄFTE NUMERISKA METODER GRUNDKURS 1, 2D1210 M2 LÄSÅRET 03/04 Laboration 3 3. Torsionssvängningar i en drivaxel 1 Laboration 3. Differentialekvationer

Läs mer

Tillämpad statistik (A5), HT15 Föreläsning 6: Några övriga urvalsmetoder

Tillämpad statistik (A5), HT15 Föreläsning 6: Några övriga urvalsmetoder Tillämpad statistik (A5), HT15 Föreläsning 6: Några övriga smetoder Ronnie Pingel Statistiska institutionen Senast uppdaterad: 2015-11-11 Några övriga smetoder OSU-UÅ (med eller utan stratifiering) förutsätter

Läs mer

FACIT (korrekta svar i röd fetstil)

FACIT (korrekta svar i röd fetstil) v. 2013-01-14 Statistik, 3hp PROTOKOLL FACIT (korrekta svar i röd fetstil) Datorlaboration 2 Konfidensintervall & hypotesprövning Syftet med denna laboration är att ni med hjälp av MS Excel ska fortsätta

Läs mer

1 Förberedelseuppgifter

1 Förberedelseuppgifter LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK LABORATION 2 MATEMATISK STATISTIK FÖR B, K, N, BME OCH KEMISTER; FMS086 & MASB02 Syfte: Syftet med dagens laborationen är att du skall: bli

Läs mer

Till ampad statistik (A5) Förläsning 13: Logistisk regression

Till ampad statistik (A5) Förläsning 13: Logistisk regression Till ampad statistik (A5) Förläsning 13: Logistisk regression Ronnie Pingel Statistiska institutionen Senast uppdaterad: 2016-03-08 Exempel 1: NTU2015 Exempel 2: En jobbannons Exempel 3 1 1 Klofstad, C.

Läs mer

AMatematiska institutionen avd matematisk statistik

AMatematiska institutionen avd matematisk statistik Kungl Tekniska Högskolan AMatematiska institutionen avd matematisk statistik TENTAMEN I 5B1503 STATISTIK MED FÖRSÖKSPLANERING FÖR B OCH K FREDAGEN DEN 11 JANUARI 2002 KL 14.00 19.00. Examinator: Gunnar

Läs mer

Medicinsk statistik II

Medicinsk statistik II Medicinsk statistik II Läkarprogrammet termin 5 VT 2013 Susanna Lövdahl, Msc, doktorand Klinisk koagulationsforskning, Lunds universitet E-post: susanna.lovdahl@med.lu.se Dagens föreläsning Fördjupning

Läs mer

Laboration 5: Regressionsanalys. 1 Förberedelseuppgifter. 2 Enkel linjär regression LABORATION 5 MATEMATISK STATISTIK AK FÖR CDE, FMS012, VT08

Laboration 5: Regressionsanalys. 1 Förberedelseuppgifter. 2 Enkel linjär regression LABORATION 5 MATEMATISK STATISTIK AK FÖR CDE, FMS012, VT08 LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK LABORATION 5 MATEMATISK STATISTIK AK FÖR CDE, FMS012, VT08 Laboration 5: Regressionsanalys Syftet med den här laborationen är att du skall

Läs mer

Laboration 3: Stora talens lag, centrala gränsvärdessatsen och enkla punktskattningar

Laboration 3: Stora talens lag, centrala gränsvärdessatsen och enkla punktskattningar LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK LABORATION 3 MATEMATISK STATISTIK AK FÖR CDIFYSIKER, FMS012/MASB03, HT12 Laboration 3: Stora talens lag, centrala gränsvärdessatsen och enkla

Läs mer

Statistisk analys av komplexa data

Statistisk analys av komplexa data Statistisk analys av komplexa data Kategoriska data Bertil Wegmann Avdelning statistik, IDA, Linköpings universitet November 18, 2016 Bertil Wegmann (statistik, LiU) Kategoriska data November 18, 2016

Läs mer

Användning. Fixed & Random. Centrering. Multilevel Modeling (MLM) Var sak på sin nivå

Användning. Fixed & Random. Centrering. Multilevel Modeling (MLM) Var sak på sin nivå Användning Multilevel Modeling (MLM) Var sak på sin nivå Kimmo Sorjonen Sektionen för Psykologi Karolinska Institutet Kärt barn har många namn: (1) Random coefficient models; () Mixed effect models; (3)

Läs mer

Tomträttsindexet i KPI: förslag om ny beräkningsmetod

Tomträttsindexet i KPI: förslag om ny beräkningsmetod STATISTISKA CENTRALBYRÅN PM 1(7) Tomträttsindexet i KPI: förslag om ny beräkningsmetod Enhetens förslag. Enheten för prisstatistik föreslår att en ny beräkningsmetod införs för tomträttsindexet så snart

Läs mer

Att mäta hälsa och sjukdom. Kvantitativa metoder II: teori och tillämpning Folkhälsovetenskap 4, termin 6 Hanna Hultin hanna.hultin@ki.

Att mäta hälsa och sjukdom. Kvantitativa metoder II: teori och tillämpning Folkhälsovetenskap 4, termin 6 Hanna Hultin hanna.hultin@ki. Att mäta hälsa och sjukdom Kvantitativa metoder II: teori och tillämpning Folkhälsovetenskap 4, termin 6 Hanna Hultin hanna.hultin@ki.se Disposition Introduktion Vad är epidemiologi? Varför behövs epidemiologin?

Läs mer