Osäkerhet. Probabilistiska resonemang. Sannolikhet. Osäkerhet. ! Osäkerhet! Grundläggande sannolikhetslära. ! Bayesianska nätverk
|
|
- Vilhelm Eliasson
- för 6 år sedan
- Visningar:
Transkript
1 Probabilistiska resoemag Osäkerhet! Osäkerhet! Grudläggade saolikhetslära! Stokastiska variabler! Bayes teorem! Bayesiaska ätverk! Kostruktio! Iferes! Agete har ästa aldrig tillgåg till hela saige om omgivige! Ofullstädig eller felaktig förståelse av världe, jfr qualificatio problem! Exempel:! Mål: cykla hem efter jobbet! Om ite: Jag måste jobba, Jag blir bortbjude, Cykel stule eller pukterad, Huset bruit er, Jag blir bortrövad etc etc! Ka mildra målet: komma hem ågåg! Eller resursera: jag sticker u ia jag blir bortrövad och cykel stule! Ratioella beslut fattade baserat på hur viktigt målet är jämfört med de kostad det iebär att å målet i termer av hur troligt det är att ma lyckas Osäkerhet Saolikhet Diagosregel d Lufttomt(d Pukterig(d Ite korrekt eftersom alla lufttomma däck ite pukterade d Lufttomt(d Pukterig(d IgeVetil(d IgeSlag(d ItePumpat(d!! qualificatio Fukar ite med d Pukterig(d Lufttomt(d eftersom det ka vara pyspuka, ypukat etc Om iget oförutsett iträffat så: Icke-mooto logik d Lufttomt(d MPukterig(d Pukterig(d Vill ha ågot i stil med: d Lufttomt(d 0,8 Pukterig(d! Saolikhete för pukterig givet att däcket är lufttomt är 0,8! Detta betyder att 80% av alla lufttomma däck har pukterig ite att vi har 80% pukterig, dvs satser är saa eller falska med viss saolikhet.! Grad av saig hateras med Fuzzy logic
2 Beslutsteoretisk aget Stokastiska variabler! Räka ut saolikheter för uvarade tillståd baserat på percept och hadlig! Räka ut utfallssaolikheter för hadligar baserat på hadligsbeskrivigar och uvarade tillståd! Välj hadlig med högst förvätad yttighet givet saolikhete att lyckas och iformatio om hadligars yttighet E beslutsteoretisk aget ka ite med säkerhet välja e hadlig, utföra de och vara säker på utfallet Stokastiska variabler! P(a beteckar saolikhete att de stokastiska variabel a är sa, ovillkorligt! Stokastiska variabler skrivs med iledade versal, ex Pukterig! I boke beteckas okäda stokastiska variabler med lite bokstav, P(a, vilket vi gör här också! Stokastisk variabel, X, har saolikhet för olika värde ur e värdedomäe <x 1, x 2, x >! Valig domä är <true, false>! P(Pukterig=true = 0,2! Logiska koektiv! P(Pukterig = true Cykelpump= false = 0,99 Kovetioer Saolikhetsfördelig! P(X=true skrivs P(x och P(X=false skrivs P( x,! P(Pukterig=true skrivs som P(pukterig! P(cykelpump pukterig = 0,1! Stokastisk variabels värdedomä ka ha fler olika värde! P(Däcket=pukterat = 0,2! P(Däcket=opumpat = 0,3! P(Däcket=helt = 0,5! P beteckar e vektor av saolikheter! P(Däcket = <0,2, 0,3, 0,5>! För domäe <true, false> beteckar P(Cykelpump alla värde, dvs P(Cykelpump=true och P(Cykelpump=false! P(Cykelpump, Pukterig beteckar alla kombiatioer av värde! P(cykelpump, Pukterig beteckar de fall då Cykelpump=true meda Pukterig är atige true eller false
3 Grudläggade axiom Betigad saolikhet! 0! P(a! 1! P(true = 1; P(false = 0! För variabel D med domäe d 1,..d gäller:! i= 1 P( D = = 1! P(a! b = P(a + P(b P(a " b d i! Saolikhete att a är sa givet att b är sa teckas P(a b! P(pukterig luft = 0,8, förutsatt att vi bara vet lufttomt! P(pukterig luft cykelpump = 0,01, om vi vet mer! Betigad saolikhet ka defiieras i termer av ovillkorlig saolikhet P(a b = P(a"b P(b! Produktregel a b P(a"b = P(a bp(b P(a"b = P(b ap(a Kedjeregel Sammaslage saolikhetsfördelig, 1! Produktregel för P P(A,B = P(A BP(B P(A = a 1 " B = b 1 = P(A = a 1 B = b 1 # P(B = b 1 P(A = a 1 " B = b 2 = P(A = a 1 B = b 2 # P(B = b 2! Ka också skrivas P(a 1,a 2,...,a = P(a a "1,...,a 1 P(a "1,...,a 1 fortsätt applicera P(a 1,a 2,...,a = P(a a "1,...,a 1 P(a "1 a "2..,a 1...P(a 2 a 1 P(a 1 P(a 1,a 2,...,a = # P(a i a i"1,...,a 1 Kedjeregel! P(Pukterig beteckar såväl P(pukterig som P( pukterig, ex P(Pukterig = <0,6, 0,4> P(Pukterig Pukterig=true 0,6 Pukterig=false 0,4! För två variabler med tvåvärd värdedomä (t.ex. true, false blir det 2 x 2 = 4 värde, ex P(Pukterig, Luft beteckar alla kombiatioer av de stokastiska variablera Pukterig och Luft
4 Sammaslage saolikhetsfördelig, 2 Oberoede! Tabelles värde måste summeras till 1! Ur tabelle fås t.ex.: luft P(Pukterig, Luft luft pukterig 0,1 0,4 pukterig 0,4 0,1 P( pukterig" luft = 0,4 P(Pukterig" luft = 0,1+ 0,4 = 0,5 P( pukterig luft = P( pukterig" luft P( luft = 0,4 0,4 + 0,1 = 0,8! P(Pukterig, Luft ger tabell med 2x2=4 värde! Fler variabler P(Pukterig, Luft, Cykelpump ger tabell med 2x2x2=8 värde! För biära stokastiska variabler har vi 2 värde! P(Tärig=6 Tärig=1 = P(Tärig=6, dvs saolikhete för att få 6 är oberoede av tidigare tärigskast! P(Pukterig, Sol är också oberoede och ka skrivas som P(Pukterig!P(Sol med 2+2 värde! P(Pukterig, Sol, Tadvärk, FredPåJorde är oberoede, dvs P(Pukterig!P(Sol!P(Tadvärk!P(FredPåJorde! Ger tabell med =8 värde istället för 2 4 =16 värde Bayes teorem Bayes teorem, 2 P(a "b = P(a bp(b P(a "b = P(b ap(a P(a bp(b = P(b ap(a P(b ap(a P(a b = P(b P(B AP(A P(A B = P(B Produktregel Bayes teorem Bayes teorem för flervärda variabler! Fördele med Bayes teorem är de låter oss uttrycka diagossambad i termer av kausalsambad! Kausalsambad, P(a b, b orsakar a, me vi vill ofta diagostisera utifrå observatioer! Exempel P(rödaPrickar mässlig = 0,8 (kausalsambad P(mässlig = 0,3 (ovillkorligt P(rödaPrickar = 0,5 Diagostisera mässlig utifrå patiet med röda prickar: P(mässlig rödaprickar = P(rödaPrickar mässligp(mässlig 0,8 " 0,3 = P(rödaPrickar 0,5
5 Mer Bayes Mer geerell Bayes P(a b = P(b ap(a P(b! Om vi har flera möjliga orsaker till e viss observatio! Eftersom vi har disjukta hädelser som fyller hela utfallsrummet ka P(b teckas som: P(b = P(aP(b a + P( ap(b a o 2 o 1 s o o 3 P(a b = a a b P(b ap(a P(aP(b a + P( ap(b a P(s = " P(o i P(s o i P(o k s = P(s o P(o k k " P(o i P(s o i Exempel, Kahema & Tversky, 1972! Stad med två taxibolag: Blå har 85%, Gröa har 15%! Taxi ibladad i smitigsolycka! Vitte säger att de var grö! Test visar att vittet bladar ihop gröt och blått 20% av falle! Hur tillförlitligt är vittet? P(grö vittargrö P(vittarGrö grö = 0,8 P(vittarGrö blå = 0,2 P(vittarGrö gröp(grö P(grö vittargrö = P(vittarGrö P(vittarGrö = P(gröP(vittarGrö grö + P(blåP(vittarGrö Blå 0,15 " 0,8 P(grö vittargrö = 0,15 " 0,8 + 0,85 " 0,2 = 0,41 Normaliserig, 1 P(vittarGrö gröp(grö P(grö vittargrö = P(vittarGrö P(vittarGrö blåp(blå P(blå vittargrö = P(vittarGrö! I båda falle har vi P(vittarGrö i ämare och egetlige är vi mest itresserade av vilke av dessa som är mest saolik! Vi ormaliserar och iför: " = 1 P(vittarGrö
6 Normaliserig, 2 Exempel. Är e idivid med röda prickar marsia eller ite? P(marsia = 0,2 P( marsia =1" P(marsia = 0,8 P(rödaPrickar marsia = 0,96 P(rödaPrickar marsia = 0,26 OBS! P(rödaPrickar marsia # 1" P(rödaPrickar marsia Till skillad frå P(rödaPrickar marsia =1" P( rödaprickar marsia P(rödaPrickar marsia $ P(marsia P(marsia rödaprickar = P(rödaPrickar P(rödaPrickar marsia $ P( marsia P( marsia rödaprickar = P(rödaPrickar 1 Normalisera och iför % = P(rödaPrickar P(marsia rödaprickar = % $ P(rödaPrickar marsia $ P(marsia = 0,96 $ 0,2 $% = 0,19 $% P( marsia rödaprickar = % $ P(rödaPrickar marsia $ P( marsia = 0,26 $ 0,8 $% = 0,21$% Normaliserad Bayes P(Y X="P(X YP(Y där! är e ormaliserigskostat som ser till att P(Y X summeras till 1! P(X Y kausalsambad, ex mässlig ger röda prickar! Vi har också P(a "b P(a b = = # $ P(a"b P(b Jämför med Bayes P(a b = P(b ap(a P(b = # $ P(b a $ P(a Exempel, taligekäig Villkorligt oberoede, 1 Ma vill välja det mest saolika ord som e viss ljudsigal svarar mot P(Ord Sigal = P(Sigal Ord " P(Ord = # " P(Sigal Ord " P(Ord P(Sigal P(Ord ager hur valigt ett visst ord är (i e viss kotext P(Sigal Ord är de akustiska modelle och ager vilke ljudsigal ett ord oftast ger upphov till Ex: P( räv räv = 0,7 P( oäv räv = 0,1 P( rev räv = 0,2 P(mässlig rödaprickar " feber = # $ P(rödaPrickar " feber mässligp(mässlig! Skalar ite upp eftersom vi har kombiatioer av värde, geerellt P(X 1,X 2,,X Y ger 2 värde! Me både röda prickar och feber beror på mässlig så vi ka ata att röda prickar (feber ite påverkas av om ma har feber (röda prickar eller ite, givet att vi vet mässlig. De är villkorligt oberoede P(mässlig rödaprickar " feber = # $ P(rödaPrickar mässlig $ P( feber mässlig $ P(mässlig
7 Villkorligt oberoede, 2 Naive Bayes Geerellt:! Om variablera X och Y är villkorligt oberoede givet variabel Z så gäller att: P(X, Y Z = P(X Z! P(Y Z! Vi har också variatera: P(X Y, Z = P(X Z och P(Y X, Z = P(Y Z om X och Y villkorligt oberoede givet Z P(Feber Mässlig RödaPrickar = P(Feber Mässlig dvs saolikhete för feber givet att ma har mässlig påverkas ite av om ma har röda prickar eller ej! Om e orsak ka ge upphov till flera olika effekter så ka ma förekla de sammaslaga saolikhetsfördelige P(Mässlig,RödaPrickar,Feber = produktregel = P(Mässlig " P(RödaPrickar,Feber Mässlig Villkorligt oberoede ger : P(Mässlig,RödaPrickar,Feber = P(Mässlig " P(Feber Mässlig " P(RödaPrickar Mässlig Mer geerellt P(Orsak, Effekt 1,Effekt 2,...Effekt = P(Orsak # P(Effekt i Orsak! Kallas Naive Bayes eftersom de också iblad aväds är effektera ite är villkorligt oberoede Tolkig av saolikhet Bayesiaska ätverk! Frekvetialister! Saolikheter baseras på experimet! Subjektivister! Saolikheter kommer ur agetes övertygelse! Objektivister! Saolikhetera är objektiva saigar! Stokastiska variabler represeterade som oder i ett ätverk! Riktade läkar mella par av oder! E tabell med villkorssaolikheter som ager effekte på e od frå förälderodera! Grafe har iga riktade cykler (DAG
8 Exempel Bayesiaskt ätverk! Are skriver ett pythoprogram me iget häder i föstret. Cursor blikar i skalföstret. Bug eller datorkrasch?! Stokastiska variabler Bug! Bug!!! -föstret! Operativsystemet! Skalföstret Tcsh Övergågssaolikheter Bayesiaskt ätverk Ovillkorlig Ett beroede Tsch P(tsch P( tsch P(dator P( dator T 0,9 0,1 0,9 0,1 F 0,01 0,99 Beror av två stokastiska variabler Bug P(idle, Bug P( idle, Bug T T 0,9 0,1 T F 0,2 0,8 F T 0,8 0,2 F F 0,001 0,999 P(dator 0,9 P(tsch T F 0,9 0,01 Tcsh Tsch Os P(tsch Os T 0,9 F 0,01 P(bug Bug 0,8 Bug P(idle, Bug T T 0,9 T F 0,2 F T 0,8 F F 0,001 Idle P(exec Idle T 0,9 F 0,05
9 Iferes i bayesiaskt ätverk, 1 Iferes i bayesiaskt ätverk, 2! Det bayesiaska ätverket beskriver domäe P(X 1 =v 1, X 2 =v 2, X =v ka beräkas utifrå föräldraras påverka t.ex. P(dator idle exec bug tsch os = P(dator!P(bug!P(os dator!p(tsch os! P(idle dator bug!p( exec idle=0,9"0,8"0,9"0,9"0,9"0,1=0,053 Bug! Mer geerellt: P(X 1,X 2,...,X = " P(X i Parets(X i om ode X i bara beror av oder ovaför, dvs Parets(X i # { X i$1,...,x 2,X 1 } dvs villkorligt oberoede! I pythoprogrammerigsätet får t.ex. ite Idles fuktioalitet beror av att Os fugerar, dvs P( Tsch, Os, Idle, Bug, = P( Idle Tcsh Iferes i bayesiaska ät, 3 Iferes i bayesiaska ät, 4! Betigade saolikheter P(a b="!p(a b eller mer geerellt P(A B="!P(A,B där P(A,B kommer ur sambadet för föräldrars påverka! Exempel P(exec bug. Beror av såväl som Idle som räkas ut geom att summera över alla möjliga värde, dvs true och false Bug P(exec bug = " # $ P(exec Idle # $ P(Idle bug, # P( # P(bug Idle P(idle bug, # P( # P(bug = % $ P(idle bug, # P( # P(bug = % # (P(idle bug & dator # P(dator # P(bug + P(idle bug& dator # P( dator # P(bug = % # (0,9 # 0,9 # 0,8 + 0,8 # 0,1# 0,8 = % # 0,712 P( idle bug, = % # (0,1# 0,9 # 0,8 + 0,2 # 0,1 # 0,8 = % # 0,088 P(Idle bug, = %# < 0,712, 0,088 >=< 0,89, 0,11 > P(exec bug = " # (P(exec idle # 0,89 + P(exec idle # 0,11 = " # (0,9 # 0,89 + 0,05 # 0,11 = " # 0,80595 P( exec bug = " # (P( exec idle # 0,89 + P( exec idle # 0,11 = " # (0,1# 0,89 + 0,95 # 0,11 = " # 0,1935 P( bug =< 0,8055, 0,1934 > Tcsh
10 Iferes i bayesiaska ätverk, 4 Iferes i bayesiaska ät, 5! Diagos! Frå effekt till orsak P( dator exec! Kausalitet! Frå orsak till effekt P(exec dator! Iterkausalitet! Mella orsaker till samma effekt P( dator bug idle! Bladad iferes P(bug exec dator! Beräkigstugt och det geerella fallet är NP-komplett! Villkorliga oberoede gör det iblad lättare! Ofta approximativa lösigar Sammafattig, 1 Sammafattig, 2! Stokastisk variabel A med saolikhet att vara sa P(A=true, skrivs också P(a! Iga problem, t.ex. P(a=0,8, eller P(A = <0,8 0,2>! P(A,B ger tabell med 4 (2 2 värde! stokastiska variabler P(X 1, X ger 2 värde.! Problem!! Oberoede P(Tärig=6 Tärig = 1 = P(Tärig=6 a a b 0,2 0,3 b 0,4 0,1! Bayes teorem, frå kausal(orsaksambad till diagossambad P(b ap(a P(a b = = "P(b ap(a P(b P(A B = "P(B AP(A! Villkorligt oberoede P(Orsak Obs 1...Obs = P(Orsak Obs 1...P(Orsak Obs! kombierat med kedjeregel P(Orsak,Obs 1...Obs = P(OrsakP(Orsak Obs 1...Obs! ger Naive Bayes P(Orsak,Obs 1...Obs = P(Orsak P(Orsak Obs i "
11 Sammafattig, 3! Bayesiaskt ätverk tar häsy till beroede mella variabler och Bug 1 värde vardera Os, Tcsh och 2 värde vardera 4 värde Totalt 12 värde Bug Tcsh! Jämför: 6 stokastiska variabler ger 2 6 = 64 värde
Artificiell intelligens Probabilistisk logik
Probabilistiska resoemag Artificiell itelliges Probabilistisk logik Are Jösso HCS/IDA Osäkerhet Grudläggade saolikhetslära Stokastiska variabler Bayes teorem Bayesiaska ätverk Kostruktio Iferes Osäkerhet
729G43 Artificiell intelligens Probabilistisk logik. Arne Jönsson HCS/IDA
729G43 Artificiell intelligens Probabilistisk logik Arne Jönsson HCS/IDA Probabilistiska resonemang Osäkerhet Grundläggande sannolikhetslära Stokastiska variabler Bayes teorem Bayesianska nätverk Konstruktion
Borel-Cantellis sats och stora talens lag
Borel-Catellis sats och stora tales lag Guar Eglud Matematisk statistik KTH Vt 2005 Iledig Borel-Catellis sats är e itressat och avädbar sats framför allt för att bevisa stora tales lag i stark form. Vi
Lycka till! I(X i t) 1 om A 0 annars I(A) =
Avd Matematisk statistik TENTAMEN I SF955 f d 5B555 DATORINTENSIVA METODER ONSDAGEN DEN AUGUSTI 008 KL 400 900 Examiator: Guar Eglud, tel 790746 Email: guare@mathkthse Tillåta hjälpmedel: Formel- och tabellsamlig
Sannolikhetslära. c 2015 Eric Järpe Högskolan i Halmstad
Saolikhetslära c 201 Eric Järpe Högskola i Halmstad Saolikhetslära hadlar om att mäta hur saolikt (dvs hur ofta ) ma ka förväta sig att ågot iträffar. Därför sorterar saolikhetslära uder de matematiska
θx θ 1 om 0 x 1 f(x) = 0 annars
Avd. Matematisk statistik TENTAMEN I SF903 SANNOLIKHETSLÄRA OCH STATISTIK FÖR 3-ÅRIG Media TIMEH TORSDAGEN DEN TREDJE JUNI 200 KL 4.00 9.00. Examiator: Guar Eglud, tel. 790 74 06 Tillåta hjälpmedel: Läroboke.
SANNOLIKHETER. Exempel. ( Tärningskast) Vi har sex möjliga utfall 1, 2, 3, 4, 5 och 6. Därför är utfallsrummet Ω = {1, 2, 3, 4, 5,6}.
rmi Halilovic: EXTR ÖVIGR SOLIKHETER GRUDLÄGGDE BEGRE OH BETEKIGR Utfall Resultat av ett slumpmässigt försök. Utfallsrummet ägde av alla utfall (beteckas oftast med Ω ). Hädelse E delmägd av utfallsrummet.
1. Test av anpassning.
χ -metode. χ -metode ka avädas för prövig av hypoteser i flera olika slag av problem: om e stokastisk variabel följer e viss saolikhetsfördelig med käda eller okäda parametrar. om två stokastiska variabler
Föreläsning 3. 732G04: Surveymetodik
Föreläsig 3 732G04: Surveymetodik Dages föreläsig Obudet slumpmässigt urval (OSU) Populatiosparametrar och stickprovsstatistikor Vätevärdesriktighet Ädliga och oädliga populatioer Medelvärde, adel Kofidesitervall
Sannolikheten. met. A 3 = {2, 4, 6 }, 1 av 11
rmi Halilovic: EXTR ÖVIGR SOLIKHETER GRUDLÄGGDE EGRE OH ETEKIGR Utfall Resultat av ett slumpmässigt försök. Utfallsrummet ägde av alla utfall (beteckas oftast medd Ω ). Hädelse E delmägd av utfallsrumm
. Mängden av alla möjliga tillstånd E k kallas tillståndsrummet.
Stokastiska rocesser Defiitio E stokastisk rocess är e mägd familj av stokastiska variabler Xt arameter t är oftast me ite alltid e tidsvariabel rocesse kallas diskret om Xt är e diskret s v för varje
Armin Halilovic: EXTRA ÖVNINGAR
Stokastiska rocesser Defiitio E stokastisk rocess är e mägd (familj) av stokastiska variabler X(t) arameter t är oftast (me ite alltid) e tidsvariabel rocesse kallas diskret om X(t) är e diskret s v för
MS-A0409 Grundkurs i diskret matematik Sammanfattning, del I
MS-A0409 Grudkurs i diskret matematik Sammafattig, del I G. Gripeberg Aalto-uiversitetet 2 oktober 2013 G. Gripeberg (Aalto-uiversitetet) MS-A0409 Grudkurs i diskret matematiksammafattig, del 2Ioktober
F10 ESTIMATION (NCT )
Stat. teori gk, ht 2006, JW F10 ESTIMATION (NCT 8.1-8.3) Ordlista till NCT Iferece Parameter Estimator Estimate Ubiased Bias Efficiecy Cofidece iterval Cofidece level (Studet s) t distributio Slutledig,
Grundläggande matematisk statistik
Grudläggade matematisk statistik Puktskattig Uwe Mezel, 2018 uwe.mezel@slu.se; uwe.mezel@matstat.de www.matstat.de Saolikhetsteori: Saolikhetsteori och statistikteori vad vi gjorde t.o.m. u vi hade e give
Antalet sätt att välja ut r objekt bland n stycken med hänsyn till ordning är np r = n(n 1) (n r + 1).
Harald Lag Formelsamlig och Tabeller i Statistik och Saolikhetsteori (15/11-10) Datareducerig Om x 1,..., x är ett stickprov ur e populatio så defiieras medelvärdet x x = 1 k=1 x k och stadardavvikelse
Finansiell Statistik (GN, 7,5 hp,, HT 2008) Föreläsning 4 (del 2)
Fiasiell Statistik (GN, 7,5 hp,, HT 008) Föreläsig 4 (del ) Pukt- och itervallskattig (LLL Kap 10) Departmet of Statistics (Gebreegus Ghilagaber, PhD, Associate Professor) Fiacial Statistics (Basic-level
Tolkning av sannolikhet. Statistikens grunder, 15p dagtid. Lite mängdlära. Lite mängdlära, forts. Frekventistisk n A /n P(A) då n
Tolkig av saolikhet Statistikes gruder, 15p dagtid HT 01 Föreläsigar F4-F6 Frekvetistisk A / A) då Klassisk atal(a) / atal(ω) = A) storlek(a) / storlek(ω) = A) Subjektiv (persolig) isats/total vist = A)
SAMMANFATTNING TAMS79 Matematisk statistik, grundkurs
SAMMANFATTNING TAMS79 Matematisk statistik, grudkurs LÄST SOM EN DEL AV CIVILINGENJÖRSPROGRAMMET I INDUSTRIELL EKONOMI VID LITH, HT 2015 Versio: 1.0 Seast reviderad: 2016-02-01 Författare: Viktor Cheg
Minsta kvadrat-metoden, MK. Maximum likelihood-metoden, ML. Medelfel. E(X i ) = µ i (θ) MK-skattningen av θ fås genom att minimera
Matematisk statistik slumpes matematik Saolikhetsteori hur beskriver ma slumpe? Statistikteori vilka slutsatser ka ma dra av ett datamaterial? Statistikteori översikt Puktskattig Hur gör ma e bra gissig
Genomsnittligt sökdjup i binära sökträd
Iformatiostekologi Tom Smedsaas 10 augusti 016 Geomsittligt sökdjup i biära sökträd Detta papper visar att biära sökträd som byggs upp av slumpmässiga data är bra. Beteckigar och defiitioer Defiitio De
TAMS79: Föreläsning 9 Approximationer och stokastiska processer
TAMS79: Föreläsig 9 Approximatioer och stokastiska processer Joha Thim 18 ovember 2018 9.1 Biomialfördelig Vi har reda stött på dea fördelig flera gåger. Situatioe är att ett slumpförsök har två möjliga
LÖSNINGAR TILL. Räkningar: (z i z) 2 = , Δ = z = 1 n. n 1. Konfidensintervall:
LÖSNINGAR TILL Matematisk statistik Tetame: 2014 10 28 kl 14 00 19 00 Matematikcetrum FMS 086 Matematisk statistik för B, K, N och BME, 7.5 hp Luds tekiska högskola MASB02 Matematisk statistik för kemister,
TAMS15: SS1 Markovprocesser
TAMS15: SS1 Markovprocesser Joha Thim (joha.thim@liu.se) 21 ovember 218 Vad häder om vi i e Markovkedja har kotiuerlig tid istället för diskreta steg? Detta är ett specialfall av e kategori stokastiska
Statistisk analys. Vilka slutsatser kan dras om populationen med resultatet i stickprovet som grund? Hur säkra uttalande kan göras om resultatet?
Statistisk aalys Vilka slutsatser ka dras om populatioe med resultatet i stickprovet som grud? Hur säkra uttalade ka göras om resultatet? Mats Guarsso Tillämpad matematik III/Statistik - Sida 83 Exempel
4.2.3 Normalfördelningen
4.2.3 Normalfördelige Biomial- och Poissofördelige är två exempel på fördeligar för slumpvariabler som ka ata ädligt eller uppräkeligt måga olika värde. Sådaa fördeligar sägs vara diskreta. Ofta är ett
Avd. Matematisk statistik
Avd. Matematisk statistik TENTAMEN I SF1917/SF1918/SF1919 SANNOLIKHETSTEORI OCH STATISTIK, TISDAG 8 JANUARI 2019 KL 8.00 13.00. Examiator för SF1917/1919: Jörge Säve-Söderbergh, 08-790 65 85. Examiator
Högskoleutbildad 0,90*0,70=0,63 0,80*0,30=0,24 0,87 Ej högskoleutbildad 0,07 0,06 0,13 0,70 0,30 1,00
Lösigsförslag UPPGIFT 1 Kvia Ma Högskoleutbildad 0,90*0,70=0,63 0,80*0,30=0,24 0,87 Ej högskoleutbildad 0,07 0,06 0,13 0,70 0,30 1,00 Pr(ej högskoleutbildad kvi=0,07=7% Pr(högskoleutbildad)=0,87 c) Pr(Kvi*Pr(Högskoleutbildad)=0,70*0,87=0,609
a) Beräkna E (W ). (2 p)
Avd. Matematisk statistik TENTAMEN I SF19 och SF191 SANNOLIKHETSTEORI OCH STATISTIK, TISDAGEN DEN 13:E MARS 18 KL 8. 13.. Examiator: Björ-Olof Skytt, 8 79 86 49. Tillåta hjälpmedel: Formel- och tabellsamlig
b) Bestäm det genomsnittliga antalet testade enheter, E (X), samt även D (X). (5 p)
Avd Matematisk statistik TENTAMEN I SF922, SF923 och SF924 SANNOLIKHETSTEORI OCH STATISTIK, TISDAGEN DEN 29:E MAJ 208 KL 0800 300 Examiator för SF922/SF923: Tatjaa Pavleko, 08-790 84 66 Examiator för SF924:
(a) Skissa täthets-/frekvensfunktionen och fördelningsfunktionen för X. Glöm inte att ange värden på axlarna.
1 0,5 0 LÖSNINGAR till tetame: Statistik och saolikhetslära (LMA120) Tid och plats: 08:30-12:30 de 6 april 2016 Hjälpmedel: Typgodkäd miiräkare, formelblad Betygsgräser: 3: 12 poäg, 4: 18 poäg, 5: 24 poäg.
2. Konfidensintervall för skillnaden mellan två proportioner.
Föreläsig 12 LV1, Torsdag 12/10 Upplägg 1. Kofidesitervall för proportioer. 2. Kofidesitervall för skillade mella två proportioer. 3. Grafteori Kofidesitervall för proportioer Atag att vi vill skatta adele
TMS136: Dataanalys och statistik Tentamen 2013-10-26 med lösningar
TMS36: Dataaalys och statistik Tetame 03-0-6 med lösigar Examiator och jour: Mattias Sude, tel. 0730 79 9 79 Hjälpmedel: Chalmersgodkäd räkare och formelsamlig formelsamlig delas ut med teta). Betygsgräser:
Finansiell Statistik (GN, 7,5 hp,, HT 2008) Föreläsning 4 (del 1)
Fiasiell Statistik (GN, 7,5 hp,, HT 008) Föreläsig 4 (del 1) Sampligfördeligar (LLL Kap 8) Departmet of Statistics (Gebreegus Ghilagaber, PhD, Associate Professor) Fiacial Statistics (Basic-level course,
Tentamen i matematisk statistik
MSTA3, Saolikhetsteori A, 5 p 5--7 Tetame i matematisk statistik Saolikhetsteori A, 5 poäg Skrivtid: 9.-5.. Tillåta hjälpmedel: Tabellsamlig, ege miiräkare. Studetera får behålla tetamesuppgiftera. På
Föreläsning 10: Kombinatorik
DD2458, Problemlösig och programmerig uder press Föreläsig 10: Kombiatorik Datum: 2009-11-18 Skribeter: Cecilia Roes, A-Soe Lidblom, Ollata Cuba Gylleste Föreläsare: Fredrik Niemelä 1 Delmägder E delmägd
TENTAMEN I MATEMATISK STATISTIK
TETAME I MATEMATISK STATISTIK Te i kurse 6H, KÖTEORI OCH MATEMATISK STATISTIK, Te i kurse 6H, 6L MATEMATIK OCH MATEMATISK STATISTIK, Skrivtid: :-7: Lärare: Armi Halilovic Kurskod 6H, 6H, 6L, 6A Hjälpmedel:
1. (a) Eftersom X och Y har samma fördelning så har de även samma väntevärde och standardavvikelse. E(X 2 ) = k
LÖSNINGAR TILL Matematisk statistik, Matematikcetrum Tetame: 5 kl 8 Luds tekiska högskola FMS, FMS, FMS, FMS 5, MAS 9 Matematisk statistik för ED, F, I, FED och fysiker. a Eftersom X och Y har samma fördelig
z Teori z Hypotesgenerering z Observation (empirisk test) z Bara sanningen : Inga falska teser z Hela sanningen : Täcker alla sanna teser
Teoribildig Översikt forskigsmetodik Mål för veteskape: Att kostruera bättre och bättre teorier De veteskapliga processe z Teori z Hypotesgeererig z Observatio (empirisk test) z Abduktio (det observerade
Matematisk statistik TMS063 Tentamen
Matematisk statistik TMS063 Tetame 208-05-30 Tid: 8:30-2:30 Tetamesplats: SB Hjälpmedel: Bifogad formelsamlig och tabell samt Chalmersgodkäd räkare. Kursasvarig: Olof Elias Telefovakt/jour: Olof Elias,
MS-A0409 Grundkurs i diskret matematik I
MS-A0409 Grudkurs i diskret matematik I G. Gripeberg Mägder och logik Relatioer och fuktioer Aalto-uiversitetet oktober 04 Kombiatorik etc. G. Gripeberg (Aalto-uiversitetet MS-A0409 Grudkurs i diskret
Sannolikheter 0 < P < 1. Definition sannolikhet: Definition sannolikhet: En sannolikhet kan anta värden från 0 till 1
Saolikheter E saolikhet ka ata värde frå 0 till 1 0 < P < 1 Beteckas: P Pr Prob Saolikhete för e hädelse Hädelse A P(A) Pr(A) Prob(A) Defiitio saolikhet: De frekves med vilke hädelse av itresse iträffar
Repetition: Enkel sampling. Systemplanering VT11. Repetition: Enkel sampling. Repetition: Enkel sampling
Systemplaeri VT Föreläsi F6: Mote Carlo Iehåll:. Repetitio av ekel sampli 2. Sampli av elmarkader 3. Multi-areamodelle 4. Räka exempel Repetitio: Ekel sampli Mål: Få fram E[X] Defiitio av E[X]: EX [ ]
Föreläsning 2: Punktskattningar
Föreläsig : Puktskattigar Joha Thim joha.thim@liu.se 7 augusti 08 Repetitio Stickprov Defiitio. Låt de stokastiska variablera X, X,..., X vara oberoede och ha samma fördeligsfuktio F. Ett stickprov x,
Intervallskattning. c 2005 Eric Järpe Högskolan i Halmstad. Antag att vi har ett stickprov x 1,..., x n på X som vi vet är N(µ, σ) men vi vet ej
Itervallskattig c 005 Eric Järpe Högskola i Halmstad Atag att vi har ett stickprov x,..., x på X som vi vet är Nµ, σ me vi vet ej värdet av µ = EX. Då ka vi beräka x, vvr skattig av µ. För att få reda
Induktion LCB Rekursion och induktion; enkla fall. Ersätter Grimaldi 4.1
duktio LCB 2000 Ersätter Grimaldi 4. Rekursio och iduktio; ekla fall E talföljd a a 0 a a 2 ka aturligtvis defiieras geom att ma ager e explicit formel för uträkig av dess elemet, som till exempel () a
Uppgifter 3: Talföljder och induktionsbevis
Gruder i matematik och logik (017) Uppgifter 3: Talföljder och iduktiosbevis Ur Matematik Origo 5 Talföljder och summor 3.01 101. E talföljd defiieras geom formel a 8 + 6. a) Är det e rekursiv eller e
Introduktion till statistik för statsvetare
"Det fis iget så praktiskt som e bra teori" November 2011 Bakgrud Stadardiserig E saolikhetsekvatio Kosekves av stora tales lag Stora tales lag ger att är slumpvariablera X i är oberoede, med e och samma
ENDIMENSIONELL ANALYS B1 FÖRELÄSNING VI. Föreläsning VI. Mikael P. Sundqvist
Föreläsig VI Mikael P. Sudqvist Aritmetisk summa, exempel Exempel I ett sällskap på 100 persoer skakar alla persoer had med varadra (precis e gåg). Hur måga hadskakigar sker? Defiitio I e aritmetisk summa
Remiss Remissvar lämnas i kolumnen Tillstyrkes term och Tillstyrkes def(inition) och eventuella synpunkter skrivs i kolumnen Synpunkter.
1(10) Svar lämat av (kommu, ladstig, orgaisatio etc.): Remiss Remissvar lämas i kolume Tillstyrkes term och Tillstyrkes (iitio) och evetuella sypukter skrivs i kolume Sypukter. Begreppe redovisas i Socialstyrelses
Föreläsning G70 Statistik A
Föreläsig 5 732G70 Statistik A Egeskaper hos stickprovsstatistikora Stickprovsmedelvärde Stickprovssumma Stickprovsadel Lägesmått Spridig Medelfel EX VarX 2 2 E X Var X E P Var P X X 1 1 P Eftersom respektive
Tentamen Metod C vid Uppsala universitet, , kl
Tetame Metod C vid Uppsala uiversitet, 160331, kl. 08.00 12.00 Avisigar Av rättigspraktiska skäl skall var och e av de tre huvudfrågora besvaras på separata pappersark. Börja alltså på ett ytt pappersark
Hambley avsnitt 12.7 (även 7.3 för den som vill läsa lite mer om grindar)
1 Föreläsig 5/11 Hambley avsitt 12.7 (äve 7.3 för de som vill läsa lite mer om gridar) Biära tal Vi aväder ormalt det decimala talsystemet, vilket har base 10. Talet 2083 rereseterar då 2 10 3 0 10 2 8
Tentamen 19 mars, 8:00 12:00, Q22, Q26
Avdelige för elektriska eergisystem EG225 DRIFT OCH PLANERING AV ELPRODUKTION Vårtermie 25 Tetame 9 mars, 8: 2:, Q22, Q26 Istruktioer Skriv alla svar på det bifogade svarsbladet. Det är valfritt att också
Tentamen i Statistik STG A01 (12 hp) 5 mars 2010, kl. 08.15 13.15
Karlstads uiversitet Fakultete för ekoomi, kommuikatio och IT Statistik Tetame i Statistik STG A0 ( hp) 5 mars 00, kl. 08.5 3.5 Tillåta hjälpmedel: Bifogad formel- och tabellsamlig (skall retureras) samt
Föreläsning G70, 732G01 Statistik A. Föreläsningsunderlagen är baserade på underlag skrivna av Karl Wahlin
Föreläsig 5 73G70, 73G01 Statistik A Föreläsigsuderlage är baserade på uderlag skriva av Karl Wahli Kapitel 5 Stickprovsteori Sid 15-150 Statistisk iferes Populatio (äve målpopulatio) = de (på logisk väg
Operativsystem - Baklås
Operativsystem - Baklås Mats Björkma 2017-02-01 Lärademål Vad är baklås? Villkor för baklås Strategier för att hatera baklås Operativsystem, Mats Björkma, MDH 2 Defiitio av baklås (boke 6.2) A set of processes
S0005M V18, Föreläsning 10
S0005M V18, Föreläsig 10 Mykola Shykula LTU 2018-04-19 Mykola Shykula (LTU) S0005M V18, Föreläsig 10 2018-04-19 1 / 15 Hypotesprövig ett stickprov, σ okäd. Stadardiserig av stickprovsmedelvärdet då σ är
TENTAMEN I MATEMATIK MED MATEMATISK STATISTIK HF1004 TEN kl
TENTAMEN I MATEMATIK MED MATEMATISK STATISTIK HF004 TEN 0-04-5 kl 8.5-.5 Hjälpmedel: Formler och tabeller i statistik, räkedosa Fullstädiga lösigar erfordras till samtliga uppgifter. Lösigara skall vara
Linjär Algebra (lp 1, 2016) Lösningar till skrivuppgiften Julia Brandes
Lijär Algebra (lp 1, 2016) Lösigar till skrivuppgifte Julia Brades Uppgift 1. Betecka mägde av alla matriser med M(). Vi har e elemetvist defiierad additio av två matriser A, B M(). De är defiierad geom
MS-A0409 Grundkurs i diskret matematik Sammanfattning, del I
MS-A0409 Gudkus i disket matematik Sammafattig, del I G. Gipebeg 1 Mägde och logik 2 Relatioe och fuktioe Aalto-uivesitetet 15 maj 2014 3 Kombiatoik etc. G. Gipebeg Aalto-uivesitetet MS-A0409 Gudkus i
Tentamen i Elektronik, ESS010, del 2 den 14 dec 2009 klockan 14:00 19:00.
Tekiska Högskola i Lud Istitutioe för Elektroveteskap Tetame i Elektroik, ESS010, del 2 de 14 dec 2009 klocka 14:00 19:00. Uppgiftera i tetame ger totalt 60p. Uppgiftera är ite ordade på ågot speciellt
1. BERÄKNING AV GRÄNSVÄRDEN ( då x 0 ) MED HJÄLP AV MACLAURINUTVECKLING. n x
BERÄKNING AV GRÄNSVÄRDEN ( då ) MED HJÄLP AV MACLAURINUTVECKLING a) Maclauris formel ( ) f () f () f () f ( ) f () + f () + + + +!!! ( ) f ( c) där R och c är tal som ligger mella och ( + )! Amärkig Eftersom
Anmärkning: I några böcker använder man följande beteckning ]a,b[, [a,b[ och ]a,b] för (a,b), [a,b) och (a,b].
MÄNGDER Stadardtalmägder: N={0,, 2, 3, } mägde av alla aturliga tal (I ågra böcker N={,2,3, }) Z={ 3, 2,,0,, 2, 3, 4, } mägde av alla hela tal m Q={, där m, är hela tal och 0 } mägde av alla ratioella
Hambley avsnitt 12.7 (även 7.3 för den som vill läsa lite mer om grindar)
1 Föreläsig 6, Ht 2 Hambley avsitt 12.7 (äve 7.3 för de som vill läsa lite mer om gridar) Biära tal Vi aväder ormalt det decimala talsystemet, vilket har base 10. Talet 2083 rereseterar då 2 10 3 0 10
101. och sista termen 1
Lektio, Evariabelaalys de ovember 999 5.. Uttryck summa j uta summasymbole. j + Termera är idexerade frå j = till j = och varje term är blir j j+. Summa Skriver vi upp summa uta summasymbole blir de +
vara ett polynom där a 0, då kallas n för polynomets grad och ibland betecknas n grad( P(
Armi Halilovic: EXTRA ÖVNINGAR Polyom POLYNOM OCH ALGEBRAISKA EKVATIONER Defiitio Polyom är uttrycket av type a a a 0 ( där är ett icke-egativt heltal) Defiitio Låt P( a a a0 vara ett polyom där a 0, då
FORMELSAMLING MATEMATISK STATISTIK, FMS601. Fördelning Väntevärde Varians. p x (1 p) n x x = 0, 1,..., n np np(1 p) ) x = 0, 1,..., n np.
LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK FORMELSAMLING MATEMATISK STATISTIK, FMS601 Valiga fördeligar Fördelig Vätevärde Varias Biomialfördelig, Bi (, p ) P (X = x) = ( x) p x (1 p)
TENTAMEN Datum: 16 okt 09
TENTAMEN Datum: 6 okt 09 Kurs: KÖTEORI OCH MATEMATISK STATISTIK HF00 TEN (Matematisk statistik ) Te i kurse HF00 ( Tidigare k 6H0), KÖTEORI OCH MATEMATISK STATISTIK, Te i kurse HF00, 6H000, 6L000 MATEMATIK
Tentamen i Statistik, STA A13 Deltentamen 2, 5p 5 juni 2004, kl
Karlstads uiversitet Istitutioe för iformatiostekologi Avdelige för statistik Tetame i Statistik, STA A13 Deltetame, 5p 5 jui 004, kl. 09.00-13.00 Tillåta hjälpmedel: Asvarig lärare: Övrigt: Bifogad formel-
Vid mer än 30 frihetsgrader approximeras t-fördelningen med N(0; 1). Konfidensintervallet blir då
Stat. teori gk, ht 006, JW F7 ENKEL LINJÄR REGRESSION, FORTS. (NCT.5-.7) Statistisk iferes rörade β Vi vet reda att b är e vätevärdesriktig skattig av modellparameter β. Vi vet också att skattige b har
Tentamen i Statistik, STA A13 Deltentamen 2, 5p 20 januari 2007, kl. 09.00-13.00
0.01.007 Tetame i Statistik, STA A13 Deltetame, 5p 0 jauari 007, kl. 09.00-13.00 Tillåta hjälpmedel: Bifogad formel- och tabellsamlig (skall retureras) samt miiräkare. Asvarig lärare: Haah Hall Övrigt:
Normalfördelningens betydelse. Sannolikhet och statistik. Täthetsfunktion, väntevärde och varians för N (µ, σ)
Normalfördeliges betydelse Empirisktse gur: måga storheter approximativt ormalfördelade Summa av måga ugefär oberoede och ugefär likafördelade s.v. är approximativt ormalfördelad CGS Exempel: mätfel =
Tentamen i Kunskapsbaserade system, 5p, Data 3
Kuskapsbaserade system, tetame 2000-03-0 Istitutioe för tekik Tetame i Kuskapsbaserade system, 5p, Data 3 Datum: 2000-03-0 Tid: 8.00-3.00 Lärare: Potus Bergste, 3365 Hjälpmedel: Miiräkare Uppgiftera ska
Stat. teori gk, ht 2006, JW F13 HYPOTESPRÖVNING (NCT ) Ordlista till NCT
Stat. teori gk, ht 2006, JW F13 HYPOTESPRÖVNING (NCT 10.1-10.3) Ordlista till NCT Hypothesis testig Null hypothesis Alterative hypothesis Simple / composite Oe-sided /two-sided Reject Test statistic Type
Inledande matematisk analys (TATA79) Höstterminen 2016 Föreläsnings- och lekionsplan
Iledade matematisk aalys TATA79) Hösttermie 016 Föreläsigs- och lekiospla Föreläsig 1 Logik, axiom och argumet iom matematik, talbeteckigssystem för hetal, ratioella tal, heltalspoteser. Lektio 1 och Hadledigstillfälle
Sannolikhetsteori FORMELSAMLING MATEMATISK STATISTIK, AK FÖR I, FMS 120, HT-00. Kap 2: Sannolikhetsteorins grunder
LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK FORMELSAMLING MATEMATISK STATISTIK, AK FÖR I, FMS 10, HT-00 Saolikhetsteori Kap : Saolikhetsteoris gruder Följade gäller för saolikheter: 0
Föreläsning G70, 732G01 Statistik A. Föreläsningsunderlagen är baserade på underlag skrivna av Karl Wahlin
Föreläsig 6 732G70, 732G01 Statistik A Föreläsigsuderlage är baserade på uderlag skriva av Karl Wahli Kapitel 6 Iferes om e populatio Sid 151-185 Puktskattig och itervallskattig Statistisk iferes om populatiosmedelvärde
F19 HYPOTESPRÖVNING (NCT ) Hypotesprövning för en differens mellan två medelvärden
Stat. teori gk, ht 006, JW F19 HPOTESPRÖVNING (NCT 11.1-11.) Hypotesprövig för e differes mella två medelvärde Samma beteckigar som vid kofidesitervall för differes mella två populatiosmedelvärde: Medelvärde
För att skatta väntevärdet för en fördelning är det lämpligt att använda Medelvärdet. E(ξ) =... = µ
1 February 1, 2018 1 Förel. VII Puktskattigar av parametrar i fördeligar 1.1 Puktskattig För att skatta vätevärdet för e fördelig är det lämpligt att aväda Medelvärdet ξ = 1 ξ j. Vi tar u vätevärdet av
MA2018 Tillämpad Matematik III-Statistik, 3.5hp,
MA018 Tillämpad Matematik III-Statistik,.hp, 018-0-1 Hjälpmedel: Pea, radergummi och lijal. Räkedosa och medföljade formelsamlig är tillåte! Tetame består av 0 frågor! Edast Svarsblakette ska lämas i!
F3 Lite till om tidsserier. Statistikens grunder 2 dagtid. Sammansatta index 4. Deflatering HT Laspeyres index: Paasche index: Index.
F3 Lite till om tidsserier Deflaterig, att justera för iflatioe tatistikes gruder dagtid 4 3,5 3,5,5 Mjölk ockerdricka HT,5 975 976 977 978 979 98 98 98 Löpade priser År Mjölk ockerdricka KPI 945 = 975,34,
x 1 x 2 x 3 x 4 x 5 x 6 HL Z x x x
Uppgift 1 a) Vi iför slackvariabler x 4, x 5 och x 6 och löser problemet med hjälp av simplexalgoritme. Z -2-1 1 0 0 0 0 x 4 1 1-1 1 0 0 20 x 5 2 1 1 0 1 0 30 x 6 1-1 2 0 0 1 10 x 1 blir igåede basvariabel
Lösning till tentamen för kursen Log-linjära statistiska modeller 29 maj 2007
STOCKHOLMS UNIVERSITET MS 3150 MATEMATISKA INSTITUTIONEN TENTAMEN Avd. Matematisk statistik 29 maj 2007 Lösig till tetame för kurse Log-lijära statistiska modeller 29 maj 2007 Uppgift 1 a Modelle uta ågra
E F. pn-övergång. Ferminivåns temperaturberoende i n-dopade halvledare. egen ledning. störledning
ÖVRGÅNG De eklaste halvledarkomoete är diode. Diode består av e doad och e doad del. Vid kotaktyta mella och doat område ustår ett ire elektriskt fält.g.a. att elektroer i ledigsbadet å sida diffuderar
Tentamen i Sannolikhetsteori III 13 januari 2000
STOCKHOLMS UNIVERSITET MATEMATISK STATISTIK Louise af Klitberg Lösigar Tetame i Saolikhetsteori III 13 jauari 2000 Uppgift 1 a) Det mest detaljerade utfallsrummet är med uppebara beteckigar Ω = {(B1, B2),
Webprogrammering och databaser. Begrepps-modellering. Exempel: universitetsstudier Kravspec. ER-modellen. Exempel: kravspec forts:
Webprogrammerig och databaser Koceptuell datamodellerig med Etitets-Relatiosmodelle Begrepps-modellerig Mål: skapa e högivå-specifikatio iformatiosiehållet i database Koceptuell modell är oberoede DBMS
Duo HOME Duo OFFICE. Programmerings manual SE 65.044.20-1
Duo HOME Duo OFFICE Programmerigs maual SE 65.044.20-1 INNEHÅLL Tekiska data Sida 2 Motage Sida 3-5 Programmerig Sida 6-11 Admiistrerig Sida 12-13 Hadhavade Sida 14-16 TEKNISKA DATA TEKNISK SPECIFIKATION
Digital signalbehandling Alternativa sätt att se på faltning
Istitutioe för data- oc elektrotekik 2-2- Digital sigalbeadlig Alterativa sätt att se på faltig Faltig ka uppfattas som ett kostigt begrepp me adlar i grude ite om aat ä att utgåede frå e isigal x [],
Datorövning 2 Fördelningar inom säkerhetsanalys
Luds tekiska högskola Matematikcetrum Matematisk statistik STATISTISKA METODER FÖR SÄKERHETSANALYS FMS065, HT-15 Datorövig 2 Fördeligar iom säkerhetsaalys I dea datorövig ska vi studera ågra grudläggade
Databaser - Design och programmering. Databasdesign. Kravspecifikation. Begrepps-modellering. Design processen. ER-modellering
Databaser desig och programmerig Desig processe Databasdesig Förstudie, behovsaalys ER-modellerig Kravspecifikatio För att formulera e kravspecifikatio: Idetifiera avädare Studera existerade system Vad
Introduktionsblocket SSA Ht-16. Forskningsansatser och studiedesign Peter Nygren
Itroduktiosblocket SSA Ht-16 Forskigsasatser och studiedesig Peter Nygre 160830 Så här möter flertalet patieter medicisk forskig Forskigsasatser och studiedesig - pla Vad är forskig/veteskap Vad käeteckar
95%-igt konfidensintervall för andel kalsongbärare i populationen: Slutsats: Med 95% säkerhet finns andelen kalsongbärare i intervallet 38-48%
UPPGIFT 1 Vi slumpmässigt urval har varje iivi e kä saolikhet att komma me i urvalet Resultatet går att geeralisera till populatioe är ma gjort slumpmässigt urval UPPGIFT A) Kostatterme: De som ite får
MS-A0509 Grundkurs i sannolikhetskalkyl och statistik Sammanfattning, del II
MS-A0509 Grudkurs i saolikhetskalkyl och statistik Sammafattig, del II G. Gripeberg Aalto-uiversitetet 14 februari 014 G. Gripeberg Aalto-uiversitetet) MS-A0509 Grudkurs i saolikhetskalkyl och statistiksammafattig,
Cartesisk produkt. Multiplikationsprincipen Ï Ï Ï
Kombiatorik Kombiatorik hadlar oftast om att räka hur måga arragemag det fis av e viss typ. Sådaa kalkyler uderlättas om ma ka hitta relevata represetatioer av de ibladade arragemage ågot som illustreras
Skattning / Inferens. Sannolikhet och statistik. Skattning / Inferens. Vad är det som skattas?
Skattig / Iferes Saolikhet och statistik Puktskattig Försöket att beskriva e hel populatio pga ågra få mätvärde! Oberservatio = Populatio HT 2008 UweMezel@mathuuse http://wwwmathuuse/ uwe/ Populatio har
Trigonometriska polynom
Trigoometriska polyom Itroduktio Iga strägistrumet eller blåsistrumet ka producera estaka siustoer, blott lieära kombiatioer av dem, där de med lägsta frekvese kallas för grudtoe, och de övriga för övertoer.
Örserumsviken. Förorenade områden Årsredovisning. Ansvar för sanering av förorenade områden. Årsredovisningslagen och god redovisningssed
Föroreade område Årsredovisig Örserumsvike Birgit Fleig Auktoriserad revisor Sustaiability Director birgit.fleig@se.ey.com 19 september 2005 1 2 Årsredovisigslage och god redovisigssed Föroreade område
Z-Testet. Idè. Repetition normalfördelning. rdelning. Testvariabel z
Repetitio ormalfördelig rdelig Z-Testet X i. Medelvärdets fördelig:.stadardiserad ormalfördelig: N (, ) X N, X X N (, ) N (,) X N, X N(,) 3. Kvatiler: uwe.meel@math.uu.se Vad gör g r Z-testetZ? H : e ormalfördelad
Egna funktioner. Vad är sin? sin är namnet på en av många inbyggda funktioner i Ada (och den återfinns i paketet Ada.Numerics.Elementary_Functions)
- 1 - Vad är si? si är amet på e av måga ibyggda fuktioer i Ada (och de återfis i paketet Ada.Numerics.Elemetary_Fuctios) si är deklarerad att ta emot e parameter (eller ett argumet) av typ Float (mätt