Envariabelanalys 5B Matlablaboration

Storlek: px
Starta visningen från sidan:

Download "Envariabelanalys 5B Matlablaboration"

Transkript

1 Mariana Dalarsson, ME & Johan Svenonius, IT Envariabelanalys 5B47 - Matlablaboration 7-- Kurs: 5B47 Handledare: Karim Daho

2 Uppgift Situationen kan illustreras med följande figur: Följande krafter verkar på kroppen med massan m: F Fjäder = -k( (.) F Dämpning = -cv = -c'( (.) F( = a cos( (.3) Uppgift Enligt Newtons andra lag kan vi skriva följande ekvation: ma = m''( = F( k( - c'( (.) vilket kan skrivas om som: c k F( ' '( + '( + ( = (.) m m m Om vi benämner c c = = m m, k = μ k μ = m m, F ( = f( (.3) m kan vi skriva: '' + ' + μ = f ( (.4) För f( =, ingen etern kraft, gäller den homogena ekvationen: '' + ' + μ = (.5)

3 Detta är en differentialekvation vars karakteristiska ekvation kan lösas enligt följande: k + k + μ = (.6) Lösningarna till den karakteristiska ekvationen är följande k (.7) / = ± μ Vi kan nu skilja på fyra olika lösningstyper beroende på värdena av konstanterna och μ. Dessa lösningstyper med motsvarande lösningar till den karakteristiska ekvationen är:. Överkritisk dämpning med > μ k = ± μ = ±, = μ (.8) / >. Kritisk dämpning med = μ k = k = (.9) 3. Odämpad harmonisk svängning med = k = ± μ = ± iμ, μ (.) / > 4. Dämpad harmonisk svängning med < < μ k = ± μ = ± i, = μ (.) / > Låt oss nu hitta lösningar till den homogena ekvationen med f( =, för dessa fyra olika fall. Lösning Överkritisk dämpning I detta fall blir både k och k reella, k k ( + H. Lösningen till differentialekvationen blir därför: k t k t = Ae Be (.) Insättning av värdena för k och k ger: + t t H ( = Ae + Be (.3) eller [ ] t Ae + Be t t H ( = e (.4) Detta är den allmäna lösningen för godtyckliga initialvillkor. Som ett eempel, skall vi testa den för de specifika värdena () = och () =. () = A + B = (.5) t t t t t t '() = ' = e ( Ae + Be ) + e ( Ae Be ) =. Med = blir detta: (.6) ( A + B) + ( A B ) '() = = (.7) Med vetskapen om att A + B =, kan vi vidare skriva: 3

4 ( A ) ' () = + B = eller (.8) ( A B) = (.9) eller = A B (.) Från (.) kan vi lösa ut uttryck för A och B. Vi börjar med att få fram A genom att addera till båda leden. A B + A + B = + (.) B försvinner och vi får: A = + = + + A = (.) För att få fram B, ersätter vi uttrycket för A i (.): A B = B = + (.3) Detta blir vidare: = + = B = + (.4) Med A och B bestämda, kan vi ersätta dem i (.4): = e t t t t ( e + e ) + ( e e ) t H ( (.5) Slutligen kan vi skriva ett uttryck för H (, enligt följande: H t ( = e cosh t ( + sinh( ) (.6) Lösning Kritisk dämpning För = μ, gäller: k = k = (.7) Lösningen för denna differentialekvation med dubbelrot till den karakteristiska ekvationen, är: t ( = ( ) At + B e (.8) 4

5 Derivatan av detta uttryck är: t ( At + B) ( e t '( = Ae + ) (.9) vilket kan skrivas om som: ' ( = e t ( A At B) '( = e t [ A( B) ] (.3) För de specifika villkoren () = och () =, kan vi få fram A och B enligt följande: () = B = (.3) () = A B = A = A = (.3) Med dessa insatta i (.8) kan vi slutligen få fram: t ( = ( t + ) e = ( + e t (.33) Lösning 3 Odämpad kritisk svängning För k = ± μ = ± iμ, μ, gäller följande allmäna lösning: / > iμt iμt H ( = Ae + Be (.34) För de specifika villkoren () = och () =, kan vi få fram A och B enligt följande: () = A + B = (.35) () = iμ ( A B) = (.36) Dessa villkor ger vidare: A + B = A = B = A = B (.37) Med dessa insatta i (.34) kan vi slutligen få fram: iμt iμt ( = ( e + e ) = cos μt Lösning 4 Dämpad harmonisk svängning (.38) Rötterna i lösningarna till den karakteristiska ekvationen är imaginära. k k gäller och k = ± i, = μ. Den allmäna lösningen kan fås enligt: / H ( = Ae ( i) t + Be ( i) t (.39) eller it it [ Ae + Be ] B = t H ( = e, A, (.4) där vi noterar att A och B är komplea tal. Dessa två komplea tal är inte helt oberoende av varandra, utan B måste vara lika med A komplet konjugerat för att lösningen H (, som anges i (.4), skall förbli ett reellt tal. 5

6 Detta är den allmäna lösningen för godtyckliga initialvillkor. Vi ska dock testa dem för de specifika värdena () = och () =. () = A + B = (.4) t it it t it it '() = ' = e ( Ae + Be ) + e ( Aie Bie ) = Med t = blir detta: (.4) ( A + B) + ( ia i ) ' () = B = (.43) Med vetskapen om att A + B =, fås följande fram efter viss omskrivning: ( A B) = i (.44) eller i = A B (.45) Från (.45) kan vi lösa ut uttryck för A och B. Vi börjar med att få fram A genom att addera till båda leden. A B + A + B = i (.46) B försvinner och vi får: A = A = = (.47) i i i För att få fram B, ersätter vi uttrycket för A i (.45): A B = + i B = i i Detta blir vidare: + B = = + = + = A i i i i i Med A och B bestämda, kan vi ersätta dem i (.4): it it it it ( e + e ) + ( e e ) t H ( = e i Slutligen kan vi skriva ett uttryck för H (, enligt följande: H ( = e t cost sin t (.48) (.49) (.5) (.5) De typiska lösningarna till den homogena ekvationen (.5), för f( =, visas i figurerna -3 i uppgiften 5 a) nedan. Dessa omfattar överkritisk dämpning, kritisk dämpning och dämpad harmonisk svängning. Lösningen för odämpad harmonisk svängning, med =, visas inte eftersom den representeras av en enkel trigonometrisk funktion, som t.e. cos(μ i (.38). 6

7 Uppgift 3 När den eterna kraften är skild från noll och lika med f( = a cos t, gäller följande ekvation: '' + ' + μ = acos t (3.) Partikulärlösningen till ekvationen (3.) beskriver de påtvingade svängningarna och vi kan anta att dessa svängningar har samma frekvens som kraften f(. Därmed kan vi skriva P ( = Acos t + Bsin t (3.) De första och andra derivatorna av funktionen (3.) är lika med ( = Asin t + Bcos t (3.) P ( = Acos t Bsin t = ( (3.3) P Om vi ersätter (3.)-(3.4) i (3.) får vi ( A( μ ) + B) cos t + ( B( μ ) A)sin t = a cos t (3.4) eller A ( μ ) + B = a (3.5) B( μ μ ) A = A = B (3.6) Om vi nu ersätter (3.6) i (3.5) får vi ( μ ) eller B + B = a (3.7) = a ( μ ) + 4 (3.8) B Från ekvationerna (3.6) och (3.8) erhålles också μ = a (3.9) ( μ ) + 4 A Om vi nu ersätter (3.8) och (3.9) i (3.) får vi följande allmänna uttryck för P (: P [( μ ) cos t sin t] a ( = + ( μ ) + 4 (3.) För = μ uppstår s.k. resonans, d.v.s. de påtvingade svängningarna har sin största amplitud. Lösningen (3.) blir då a a P ( = sin t = B sin t, B = (3.) 7

8 Från resonanslösningen (3.) ser vi att för (ingen dämpning), så går amplituden av de påtvingade svängningarna mot oändligheten, d.v.s. a B =, (3.) De typiska lösningarna till den kompletta ekvationen (.4), för f( = a cos t, visas i figurerna 4-9 i uppgiften 5 b) nedan. Dessa lösningar fås som en en överlagring av partikulärlösningen (3.) på den gällande homogena lösningen, beroende av värdena på parametrarna och μ. Uppgift 4 Ett annat eempel på fysikaliska problem som beskrivs av svängningsekvationen (3.) är en s.k. RLC-krets i kretsteorin. Låt oss anta att en väelspänningskälla v( = V cos t ansluts till en seriekrets med ett motstånd med resistans R, en spole med en induktans L och en kondensator med kapacitans C. Genom seriekretsen går då strömmen i(. Se bilden nedan. Enligt spänningslagen är summan av alla spänningar i en sluten krets lika med noll, d.v.s. v ( u u u = (4.) R L C Å andra sidan, gäller följande spänning- respektive strömrelationer för motstånd, spolar och kondensatorer: u dil di duc = RiR = Ri, ul = L = L, ic = i C (4.) dt dt dt R = Om vi ersätter i-u relationen för kondensatorer i de två u-i relationerna för motstånd och spolar får vi följande två relationer: duc d uc ur = RC, ul = LC (4.3) dt dt Från (4.) med (4.3) erhålles duc d uc v ( RC LC u = C (4.4) dt dt eller 8

9 d u dt C R duc V + + uc = cos t (4.5) L dt LC LC Om vi nu inför följande beteckningar: R V ( = uc (, =, μ =, a = (4.6) L LC LC Kan ekvationen (4.5) reduceras till ekvationen (3.), d.v.s. '' + ' + μ = acos t (4.7) Samtliga lösningar till ekvationen (3.) enligt ovan, såväl homogena lösningar som partikulärlösningar, gäller även för RLC-kretsekvationen (4.5) med beteckningarna i (4.6). Med andra ord är dessa två fysikaliska problem fullständigt kompatibla med varandra. Uppgift 5 Vi ska med Matlab studera vad som händer när man varierar konstanterna i svängningsekvationen, my ''( + dy'( + ky( = f (. I våra eperiment arbetar vi med funktionen y ''( + dy'( + ky( = sin( a. Till hjälp har vi Matlabs kommando ode45 som löser differentialekvationer och filen svfun.m från kurshemsidan som innehåller högerledsekvationen. För varje uppgift skapar vi också en skriptfil som vi matar med konstanterna för att underlätta arbetet. a) Dämpningskonstanten d = och drivfunktionen f ( = är givna. Vi ska studera hur många ma och min lösningskurvan, y (, har i intervallet t, när fjäderkonstanten k varierar. Begynnelsevillkoren låter vi vara y ( ) = y'() =. Vi skapar skriptfilen tryfuna.m, där vi fyller i värdena för de givna konstanterna d och a, och låter k, som ska varieras, vara inparameter för skriptfilen. Vi anropar så ode45 med högerledsekvationsfilen, intervallet och begynnelsevillkoren och plottar slutligen: function [ output ] = tryfuna( input ) global DAMPNING FREKVENS FJADER; DAMPNING = ; FREKVENS = ; FJADER = input; [t y]=ode45('svfun',[ ],[;]); plot(t,y(:,)); Svfun.m låter vi vara som den är med undantag för att vi lägger till k=fjader; och kommenterar bort de andra raderna som gör tilldelningar för k. Genom att anropa tryfuna med olika värden för k kan man komma fram till vissa slutsatser. För k går y när t, detta efter endast ett maimum som beror på valet av 4 9

10 begynnelsevillkor. För k > får vi istället en oscillerande rörelse med avtagande amplitud. 4 Då har vi ett oändligt antal maima och minima allteftersom lösningsfunktionen oscillerar. Dessa iakttagelser sammanfattas i ett antal figurer nedan, för olika värden av konstanten k Figur, k = / Figur, k = /4

11 Figur 3, k = 4 b) Givet är fjäderkonstanten k = 4 och dämpningskonstanten d =.. Undersökas ska hur lösningskurvans utseende varierar med frekvensen a i drivfunktionen. I uppgift 3 konstaterade vi att när den yttre, påtvingade kraftens frekvens överensstämmer med systemets egenfrekvens, uppstår resonans. Därför kan vi dra slutsatsen att a = k = bör ge maimalt utslag. Vi testar enligt samma mönster som i uppgift 5a), genom att skriva en motsvarande funktion för att enkelt prova värden. Dessa iakttagelser sammanfattas i ett antal figurer nedan, för olika värden av konstanten a.

12 Figur 4. a = Likt övriga grafer utom a = visar denna svävning Figur 5. a = Detta är resonanssituationen med k = 4 = a, då man får största möjliga amplitud, samt en dominerande sinusfunktion.

13 Figur 6. a = 4 För a-värdena som är mindre än (< ), har vi följande grafer: Figur 7. a = / 3

14 Figur 8. a = /8 Problemet kan också närmas från andra hållet. Låt a = 3, och dämpkonstanten får fortsatt vara d =.. Vi har att a = k k = a = 9. I figur X ser vi att svaret stämmer och att svävning uppstår i närliggande fall. Detta visas i Figur 9. nedan. k=3 k= k=9, resonans k= Figur 9. 4

15 c) Vi låter k = om y och k =. om y <. Samtidigt låter vi a = och varierar d mellan.5 och.5. För att få k att bero av y skapar vi en ny fil med högerledsekvationer med svfun.m som utgånspunkt. Vår kallar den svfunt.m och inför dessa ändringar: kommenterar bort k=fjader; genom att sätta procenttecken före avkommenterar istället raden k=fjader(y()); eftersom det är y som k ska bero av funktionen fjader(y) som ska tillse att k är respektive. beroende på y-värdet skrivs enligt nedan och tillfogas i slutet av filen svfunt.m: function k=fjader(y) n=length(y); if y(,n) >= k=; else k=.; end Nu kan MATLAB-grafer genereras för olika värden av d. Dessa visas i Figur - nedan Figur. d =.5 5

16 Figur. d = Figur. d =.3 6

17 Figur 3. d = Figur 4. d =.5 7

18 Figur 5. d = Figur 6. d =.95 8

19 Figur 7. d = Figur 8. d =.8 9

20 Figur 9. d = Figur. d =.6

21 Figur. d =.5 I Figur - finns inget regelbundet mönster och vi kan inte längre tala om olika typer av lösningar, eftersom parametern k är ej längre konstant. Referenser:. 47matlab.pdf, Envariabelanalys med Matlab, KTH, 5B47 Envariabelanalys för IT och ME s hemsida.. pdf, Lab Svängningar (se kursboken Analys i en variabel sid ), KTH, 5B47 Envariabelanalys för IT och ME s hemsida. 3. Arne Persson, Lars-Christer Böiers,, Analys i en variabel, Studentlitteratur,

Andra ordningens kretsar

Andra ordningens kretsar Andra ordningens kretsar Svängningskretsar LCR-seriekrets U L (t) U s U c (t) U R (t) L di(t) dt + Ri(t) + 1 C R t0 i(t)dt + u c (0) = U s LCR-seriekrets För att undvika integralen i ekvationen, så deriverar

Läs mer

KOMIHÅG 12: Ekvation för fri dämpad svängning: x + 2"# n

KOMIHÅG 12: Ekvation för fri dämpad svängning: x + 2# n KOMIHÅG 1: ------------------------------------------------------ Ekvation för fri dämpad svängning: x + "# n x + # n x = a, Tre typer av dämpning: Svag, kritisk och stark. 1 ------------------------------------------------------

Läs mer

Labb 3: Ekvationslösning med Matlab (v2)

Labb 3: Ekvationslösning med Matlab (v2) Envariabelanalys Labb 3: Ekvationslösning 1/13 Labb 3: Ekvationslösning med Matlab (v2) Envariabelanalys 2007-03-05 Björn Andersson (IT-06), bjoa@kth.se Johannes Nordkvist (IT-06), nordkv@kth.se Det finns

Läs mer

Vi betraktar homogena partiella differentialekvationer (PDE) av andra ordningen

Vi betraktar homogena partiella differentialekvationer (PDE) av andra ordningen Produktlösningar Vi betraktar homogena partiella differentialekvationer (PDE) av andra ordningen u( u( u( u( u( A B C D E 0 (ekv 0) y y y som är definierad på ett (ändligt eller oändlig rektangulär område

Läs mer

Spänningsfallet över ett motstånd med resistansen R är lika med R i(t)

Spänningsfallet över ett motstånd med resistansen R är lika med R i(t) Tillämpningar av differentialekvationer, LR kretsar TILLÄMPNINGAR AV DIFFERENTIAL EKVATIONER LR KRETSAR Låt vara strömmen i nedanstående LR krets (som innehåller element en spole med induktansen L henry,

Läs mer

Alltså är {e 3t, e t } en bas för lösningsrummet, och den allmänna lösningen kan därmed skrivas

Alltså är {e 3t, e t } en bas för lösningsrummet, och den allmänna lösningen kan därmed skrivas ektion 7, Envariabelanalys den 8 oktober 1999 Visa att funktionerna y 1 = e r 1t och y = e r t, där r 1 r, är linjärt oberoende. 17.7. Finn den allmänna lösningen till y 3y = 0. Vi ska visa implikationen

Läs mer

Crash Course Envarre2- Differentialekvationer

Crash Course Envarre2- Differentialekvationer Crash Course Envarre2- Differentialekvationer Mattehjälpen Maj 2018 Contents 1 Introduktion 2 2 Integrerande faktor 2 3 Separabla diffekvationer 3 4 Linjära diffekvationer 4 4.1 Homogena lösningar till

Läs mer

DIFFERENTIALEKVATIONER. INLEDNING OCH GRUNDBEGREPP

DIFFERENTIALEKVATIONER. INLEDNING OCH GRUNDBEGREPP DIFFERENTIALEKVATIONER INLEDNING OCH GRUNDBEGREPP Differentialekvation (DE) är en ekvation som innehåller derivator av en eller flera okända funktioner ORDINÄRA DIFFERENTIAL EKVATIONER i) En differentialekvation

Läs mer

KOMIHÅG 18: Ekvation för fri dämpad svängning: x + 2"# n. x j,

KOMIHÅG 18: Ekvation för fri dämpad svängning: x + 2# n. x j, KOMIHÅG 18: ------------------------------------------------------ Ekvation för fri dämpad svängning: x + "# n x + # n x = # n x j, 1 med konstanterna! n = k m och!" n = c m. ------------------------------------------------------

Läs mer

Föreläsning 17: Jämviktsläge för flexibla system

Föreläsning 17: Jämviktsläge för flexibla system 1 KOMIHÅG 16: --------------------------------- Ellipsbanans storaxel och mekaniska energin E = " mgm 2a ------------------------------------------------------ Föreläsning 17: Jämviktsläge för flexibla

Läs mer

DIFFERENTIALEKVATIONER. INLEDNING OCH GRUNDBEGREPP

DIFFERENTIALEKVATIONER. INLEDNING OCH GRUNDBEGREPP Armin Halilovic: EXTRA ÖVNINGAR DIFFERENTIALEKVATIONER. INLEDNING OCH GRUNDBEGREPP Differentialekvation (DE) är en ekvation som innehåller derivator av en eller flera okända funktioner. ORDINÄRA DIFFERENTIALEKVATIONER

Läs mer

SKALNING OCH RESONANS

SKALNING OCH RESONANS SKALNING OCH RESONANS INGEMAR NÅSELL Abstract. Dessa föreläsningsanteckningar kompletterar Avsnitten 3.8 och 3.9 i kursboken av Boyce och diprima. De behandlar ett av de viktigaste avsnitten i kursen,

Läs mer

Studietips info r kommande tentamen TEN1 inom kursen TNIU23

Studietips info r kommande tentamen TEN1 inom kursen TNIU23 Studietips info r kommande tentamen TEN inom kursen TNIU3 Lämplig ordning på sammanfattande studier inom denna kurs: Inled med att grundligt studera föreläsningsanteckningarna Därefter läs tillhörande

Läs mer

ÖVN 2 - DIFFERENTIALEKVATIONER OCH TRANSFORMMETODER - SF1683. Inofficiella mål

ÖVN 2 - DIFFERENTIALEKVATIONER OCH TRANSFORMMETODER - SF1683. Inofficiella mål ÖVN 2 - DIFFERENTIALEKVATIONER OCH TRANSFORMMETODER - SF1683 KARL JONSSON Nyckelord och innehåll Andra ordningens linjära differentialekvationer Homogena ekvationen Fundamental lösningsmängd, y 1 (t),

Läs mer

Svängningar. Innehåll. Inledning. Litteraturhänvisning. Förberedelseuppgifter. Svängningar

Svängningar. Innehåll. Inledning. Litteraturhänvisning. Förberedelseuppgifter. Svängningar Svängningar Innehåll Inledning Inledning... 1 Litteraturhänvisning... 1 Förberedelseuppgifter... 1 Utförande... 3 Det dämpade men odrivna systemet... 3 Det drivna systemet... 4 Några praktiska tips...

Läs mer

DIFFERENTIALEKVATIONER. INLEDNING OCH GRUNDBEGREPP

DIFFERENTIALEKVATIONER. INLEDNING OCH GRUNDBEGREPP DIFFERENTIALEKVATIONER INLEDNING OCH GRUNDBEGREPP Differentialekvation (DE) är en ekvation som innehåller derivator av en eller flera okända funktioner ORDINÄRA DIFFERENTIALEKVATIONER i) En differentialekvation

Läs mer

TENTAMEN HF1006 och HF1008

TENTAMEN HF1006 och HF1008 TENTAMEN HF006 och HF008 Datum TEN jan 06 Tid 5-75 Analys och linjär algebra, HF008 (Medicinsk teknik), lärare: Inge Jovik Analys och linjär algebra, HF008 (Elektroteknik), lärare: Marina Arakelyan Linjär

Läs mer

Teori för linjära ordinära differentialkvationer med konstanta koefficienter

Teori för linjära ordinära differentialkvationer med konstanta koefficienter Institutionen för Matematik SF1625 Envariabelanalys Läsåret 2016/2017 Teori för linjära ordinära differentialkvationer med konstanta koefficienter 1. FÖRSTA ORDNINGEN Homogena fallet. En homogen linjär

Läs mer

DIFFERENTIALEKVATIONER. INLEDNING OCH GRUNDBEGREPP

DIFFERENTIALEKVATIONER. INLEDNING OCH GRUNDBEGREPP DIFFERENTIALEKVATIONER INLEDNING OCH GRUNDBEGREPP Differentialekvation (DE) är en ekvation som innehåller derivator av en eller flera okända funktioner ORDINÄRA DIFFERENTIALEKVATIONER i) En differentialekvation

Läs mer

TENTAMEN HF1006 och HF1008

TENTAMEN HF1006 och HF1008 TENTAMEN HF006 och HF008 Datum TEN 8 jan 08 Tid 8- Analys och linjär algebra, HF008 (Medicinsk teknik), lärare: Erik Melander, Analys och linjär algebra, HF008 (Elektroteknik), lärare: Marina Arakelyan

Läs mer

2D1212 NumProg för P1, VT2006 PROJEKTUPPGIFT

2D1212 NumProg för P1, VT2006 PROJEKTUPPGIFT 1 Lennart Edsberg Beatrice Frock Katarina Gustavsson NADA, mars 2006 2D1212 NumProg för P1, VT2006 PROJEKTUPPGIFT A I detta projekt ska du tillämpa de metoder som du lärt dig under kursens gång för att

Läs mer

Program: DATA, ELEKTRO

Program: DATA, ELEKTRO Program: DATA, ELEKTRO TENTAMEN Datum: 0 aug 007 Kurser: MATEMATIK OCH MAT STATISTIK 6H3000, 6L3000, MATEMATIK 6H30 TEN (Differential ekvationer, komplea tal) Skrivtid: 3:5-7:5 Lärare: Armin Halilovic

Läs mer

SF1625 Envariabelanalys

SF1625 Envariabelanalys Föreläsning 9 Institutionen för matematik KTH 16 september 2016 Homogena injära ODE m konst koeff Sist: homogena linjära ODE med konstanta koefficienter. Första ordningens sådan ekvation kan skrivas y

Läs mer

LÖSNINGSFÖRSLAG TILL TENTAMEN 2 SF1664

LÖSNINGSFÖRSLAG TILL TENTAMEN 2 SF1664 LÖSNINGSFÖRSLAG TILL TENTAMEN 2 SF1664 Tillämpad envariabelanalys med numeriska metoder för CFATE1 den 1 mars 214 kl 8.-1. 1. Bestäm värdemängden till funktionen f(x) = 2 arctan x + ln (1 + x 2 ), där

Läs mer

För startpopulationer lika med de stationära lösningarna kommer populationerna att förbli konstant.

För startpopulationer lika med de stationära lösningarna kommer populationerna att förbli konstant. Lösningsförslag till tentamensskrivning i Differentialekvationer I, SF633(5B6) Tisdagen den 6 augusti, kl -9 Hjälpmedel: BETA, Mathematics Handbook Redovisa lösningarna på ett sådant sätt att beräkningar

Läs mer

SF1625 Envariabelanalys Lösningsförslag till tentamen DEL A

SF1625 Envariabelanalys Lösningsförslag till tentamen DEL A SF165 Envariabelanalys Lösningsförslag till tentamen 15-4-7 DEL A 1. Låt f(x) = arcsin x + 1 x. A. Bestäm definitionsmängden till funktionen f. B. Bestäm funktionens största och minsta värde. (Om du har

Läs mer

d dx xy ( ) = y 2 x, som uppfyller villkoret y(1) = 1. x, 0 x<1, y(0) = 0. Bestäm även y( 2)., y(0) = 0 har entydig lösning.

d dx xy ( ) = y 2 x, som uppfyller villkoret y(1) = 1. x, 0 x<1, y(0) = 0. Bestäm även y( 2)., y(0) = 0 har entydig lösning. Bestäm den lösning till differentialekvationen Ange även lösningens eistensintervall SF6 Differentialekvationer I MODULUPPGIFTER Första ordningens differentialekvationer med modeller d d y ( ) = y 2, som

Läs mer

SF1625 Envariabelanalys Tentamen Lördagen den 11 januari, 2014

SF1625 Envariabelanalys Tentamen Lördagen den 11 januari, 2014 SF65 Envariabelanalys Tentamen Lördagen den januari, 04 Skrivtid: 9:00-4:00 Tillåtna hjälpmedel: inga Examinator: Bengt Ek, Maria Saprykina Tentamen består av nio uppgifter som vardera ger maximalt fyra

Läs mer

b) (2p) Bestäm alla lösningar med avseende på z till ekvationen Uppgift 3. ( 4 poäng) a ) (2p) Lös följande differentialekvation ( y 4) y

b) (2p) Bestäm alla lösningar med avseende på z till ekvationen Uppgift 3. ( 4 poäng) a ) (2p) Lös följande differentialekvation ( y 4) y TENTAMEN Datum: 6 april 00 TEN: Differentialekvationer, komplea tal och Taylors formel Kurskod HF000, HF00, 6H0, 6H000, 6L000 Skrivtid: 8:5-:5 Hjälpmedel: Bifogat formelblad och miniräknare av vilken typ

Läs mer

Prov i matematik Distans, Matematik A Analys UPPSALA UNIVERSITET Matematiska institutionen

Prov i matematik Distans, Matematik A Analys UPPSALA UNIVERSITET Matematiska institutionen UPPSALA UNIVERSITET Matematiska institutionen Anders Källström Prov i matematik Distans, Matematik A Analys 6 Skrivtid: -5. Hjälpmedel: Gymnasieformelsamling. Lösningarna skall åtföljas av förklarande

Läs mer

SF1625 Envariabelanalys Lösningsförslag till tentamen DEL A

SF1625 Envariabelanalys Lösningsförslag till tentamen DEL A SF1625 Envariabelanalys Lösningsförslag till tentamen 2012-10-17 DEL A 1. Visa att ekvationen x 3 12x + 1 = 0 har tre lösningar i intervallet 4 x 4. Motivera ordentligt! (4 p) Lösningsförslag. Vi skall

Läs mer

Matematik 5 svar. Kapitel Test Blandade uppgifter Kapitel a) dy

Matematik 5 svar. Kapitel Test Blandade uppgifter Kapitel a) dy Matematik 5 svar Kapitel 3... 1 Test 3... 26 Blandade uppgifter... 29 Kapitel 3 3101. a) y (x) = 2x y(x) = x 2 + C b) y (x) = x 2 x + 1 y(x) = x3 x2 + x + C 3 2 c) y x 2 + 2 = 0 y = x 2 2 y(x) = x3 2x

Läs mer

TENTAMEN TEN2 i HF1006 och HF1008

TENTAMEN TEN2 i HF1006 och HF1008 TENTAMEN TEN i HF006 och HF008 Moment TEN (analys) Datum 5 april 09 Tid 8- Lärare: Maria Shamoun, Armin Halilovic Eaminator: Armin Halilovic Betygsgränser: För godkänt krävs0 av ma 4 poäng För betyg A,

Läs mer

Tentamen i matematik. f(x) = 1 + e x.

Tentamen i matematik. f(x) = 1 + e x. Lösningsförslag Högskolan i Skövde (SK, JS) Tentamen i matematik Kurs: MA52G Matematisk Analys MA23G Matematisk analys för ingenjörer Tentamensdag: 202-03-23 kl 4.30-9.30 Hjälpmedel : Inga hjälpmedel utöver

Läs mer

ODE av andra ordningen, och system av ODE

ODE av andra ordningen, och system av ODE ODE av andra ordningen, och system av ODE Exempel på di erentialekvation av andra ordningen (innehåller andra derivata) Pendel beskrives av Newtons andra lag: Kraft = massa Acceleration Acceleration =

Läs mer

Lösningsförslag. Högskolan i Skövde (JS, SK) Svensk version Tentamen i matematik

Lösningsförslag. Högskolan i Skövde (JS, SK) Svensk version Tentamen i matematik Lösningsförslag Högskolan i Skövde (JS, SK) Svensk version Tentamen i matematik Kurs: MA15G Matematisk Analys MA13G Matematisk analys för ingenjörer Tentamensdag: 9-3-7 kl 8.3-1.3 Hjälpmedel : Inga hjälpmedel

Läs mer

SVAR: Det är modell 1 som är rimlig för en avsvalningsprocess. Föremålets temperatur efter lång tid är 20 grader Celsius.

SVAR: Det är modell 1 som är rimlig för en avsvalningsprocess. Föremålets temperatur efter lång tid är 20 grader Celsius. Lösningsförslag till tentamensskrivning i SF633 Differentialekvationer I Onsdagen den maj 03, kl 0800-300 Hjälpmedel: BETA, Mathematics Handbook Redovisa lösningarna på ett sådant sätt att beräkningar

Läs mer

(2xy + 1) dx + (3x 2 + 2x y ) dy = 0.

(2xy + 1) dx + (3x 2 + 2x y ) dy = 0. UPPSALA UNIVERSITET Matematiska institutionen Marko Djordjevic Prov i matematik Civilingenjörsprogrammen Ordinära differentialekvationer, 2 poäng 2006-03-06 Skrivtid: 9.00 1.00. Tillåtna hjälpmedel: Skrivdon,

Läs mer

Mekanik SG1108 Mekanikprojekt Dubbelpendel

Mekanik SG1108 Mekanikprojekt Dubbelpendel Mekanik SG1108 Mekanikprojekt Dubbelpendel Studenter: Peyman Ahmadzade Alexander Edström Robert Hurra Sammy Mannaa Handledare: Göran Karlsson karlsson@mech.kth.se Innehåll Sammanfattning... 3 Inledning...

Läs mer

Prov i Matematik Prog: NV, Lär., fristående Analys MN UPPSALA UNIVERSITET Matematiska institutionen Michael Melgaard, tel

Prov i Matematik Prog: NV, Lär., fristående Analys MN UPPSALA UNIVERSITET Matematiska institutionen Michael Melgaard, tel UPPSALA UNIVERSITET Matematiska institutionen Michael Melgaard, tel 070 4 4075 Prov i Matematik Prog: NV, Lär., fristående Analys MN 006-05-4 Skrivtid: 5 0. Hjälpmedel: Skrivdon. Lösningarna skall åtföljas

Läs mer

AC-kretsar. Växelströmsteori. Lund University / Faculty / Department / Unit / Document / Date

AC-kretsar. Växelströmsteori. Lund University / Faculty / Department / Unit / Document / Date AC-kretsar Växelströmsteori Signaler Konstant signal: Likström och likspänning (DC) Transienta strömmar/spänningar Växelström och växelspänning (AC) Växelström/spänning Växelström alternating current (AC)

Läs mer

Datorlaboration i differentialekvationer

Datorlaboration i differentialekvationer Umeå Universitet --5 Matematiska instutitionen Datorlaboration i differentialekvationer Umeå universitet --5 Inledning Laborationen består av fyra uppgifter och för detaljer och givna ekvationer i uppgifterna

Läs mer

Institutionen för matematik KTH. Tentamensskrivning, , kl B1210 och 5B1230 Matematik IV, för B, M, och I.

Institutionen för matematik KTH. Tentamensskrivning, , kl B1210 och 5B1230 Matematik IV, för B, M, och I. Institutionen för matematik KTH Tentamensskrivning, 23--9, kl 4 9 5B2 och 5B23 Matematik IV, för B, M, och I Hjälpmedel: BETA, Mathematics Handbook För godkänt betyg 3 krävs 7 poäng, medan för betyg 4

Läs mer

SF1625 Envariabelanalys Lösningsförslag till tentamen DEL A

SF1625 Envariabelanalys Lösningsförslag till tentamen DEL A SF1625 Envariabelanalys Lösningsförslag till tentamen 215-1-27 DEL A 4 1. Betrakta funktionen f som ges av f(x) = 1 + x + (x 2). 2 A. Bestäm definitionsmängden till f. B. Bestäm alla intervall där f är

Läs mer

TATA42: Föreläsning 9 Linjära differentialekvationer av ännu högre ordning

TATA42: Föreläsning 9 Linjära differentialekvationer av ännu högre ordning TATA42: Föreläsning 9 Linjära differentialekvationer av ännu högre ordning Johan Thim 4 mars 2018 1 Linjära DE av godtycklig ordning med konstanta koefficienter Vi kommer nu att betrakta linjära differentialekvationer

Läs mer

10. Kretsar med långsamt varierande ström

10. Kretsar med långsamt varierande ström 1. Kretsar med långsamt varierande ström [RMC] Elektrodynamik, ht 25, Krister Henriksson 1.1 1.1. Villkor för långsamt varierande I detta kapitel behandlas den teori som kan användas för att analysera

Läs mer

Chalmers Tekniska Högskola och Mars 2003 Göteborgs Universitet Fysik och teknisk fysik Kristian Gustafsson Maj Hanson. Svängningar

Chalmers Tekniska Högskola och Mars 2003 Göteborgs Universitet Fysik och teknisk fysik Kristian Gustafsson Maj Hanson. Svängningar Chalmers Tekniska Högskola och Mars 003 Göteborgs Universitet Fysik och teknisk fysik Kristian Gustafsson Maj Hanson Svängningar Introduktion I mekanikkurserna arbetar vi parallellt med flera olika metoder

Läs mer

Institutionen för Matematik, KTH Lösningar till tentamen i Analys i en variabel för I och K (SF1644) 1/ e x h. (sin x) 2 1 cos x.

Institutionen för Matematik, KTH Lösningar till tentamen i Analys i en variabel för I och K (SF1644) 1/ e x h. (sin x) 2 1 cos x. Institutionen för Matematik, KTH Lösningar till tentamen i Analys i en variabel för I och K (SF644) /6 29. Bestäm med derivatans definition d dx ex. Derivatans definition är f (x) = lim h h ( f(x + h)

Läs mer

LABORATIONSHÄFTE NUMERISKA METODER GRUNDKURS 1, 2D1210 LÄSÅRET 03/04. Laboration 3 3. Torsionssvängningar i en drivaxel

LABORATIONSHÄFTE NUMERISKA METODER GRUNDKURS 1, 2D1210 LÄSÅRET 03/04. Laboration 3 3. Torsionssvängningar i en drivaxel Lennart Edsberg Nada, KTH December 2003 LABORATIONSHÄFTE NUMERISKA METODER GRUNDKURS 1, 2D1210 M2 LÄSÅRET 03/04 Laboration 3 3. Torsionssvängningar i en drivaxel 1 Laboration 3. Differentialekvationer

Läs mer

y + 1 y + x 1 = 2x 1 z 1 dy = ln z 1 = x 2 + c z 1 = e x2 +c z 1 = Ce x2 z = Ce x Bestäm den allmänna lösningen till differentialekvationen

y + 1 y + x 1 = 2x 1 z 1 dy = ln z 1 = x 2 + c z 1 = e x2 +c z 1 = Ce x2 z = Ce x Bestäm den allmänna lösningen till differentialekvationen UPPSALA UNIVERSITET Matematiska institutionen Vera Djordjevic PROV I MATEMATIK Civilingenjörsprogrammen Ordinära differentialekvationer 2007-10-12 Skrivtid: 9-14. Tillåtna hjälpmedel: Mathematics Handbook

Läs mer

Sammanfattning av kursen ETIA01 Elektronik för D, Del 1 (föreläsning 1-10)

Sammanfattning av kursen ETIA01 Elektronik för D, Del 1 (föreläsning 1-10) Sammanfattning av kursen ETIA0 Elektronik för D, Del (föreläsning -0) Kapitel : sid 37 Definitioner om vad laddning, spänning, ström, effekt och energi är och vad dess enheterna är: Laddningsmängd q mäts

Läs mer

Laboration 1, M0039M, VT16

Laboration 1, M0039M, VT16 Laboration 1, M0039M, VT16 1 Förberedelser Ove Edlund, Staffan Lundberg LTU (1) Gör dig bekant med Matlab-manualen finns för nedladdning på Fronter. (2) Läs igenom laborationens teoridel, avsnitt 2 nedan.

Läs mer

Lennart Edsberg Nada,KTH Mars 2003 LABORATIONSHÄFTE NUMERISKA METODER GRUNDKURS 1, 2D1210 LÄSÅRET 02/03. Laboration 3 4. Elmotor med resonant dämpare

Lennart Edsberg Nada,KTH Mars 2003 LABORATIONSHÄFTE NUMERISKA METODER GRUNDKURS 1, 2D1210 LÄSÅRET 02/03. Laboration 3 4. Elmotor med resonant dämpare Lennart Edsberg Nada,KTH Mars 2003 LABORATIONSHÄFTE NUMERISKA METODER GRUNDKURS 1, 2D1210 M2 LÄSÅRET 02/03 Laboration 3 4. Elmotor med resonant dämpare 1 Laboration 3. Differentialekvationer Elmotor med

Läs mer

MAPLE MIKAEL STENLUND

MAPLE MIKAEL STENLUND MAPLE MIKAEL STENLUND. Introduktion I dina inlämningsuppgifter skall ett program som heter Maple användas för att lösa ett antal matematiska problem. Maple är ett symbolhanterande program som har ett antal

Läs mer

Komplettering: 9 poäng på tentamen ger rätt till komplettering (betyg Fx).

Komplettering: 9 poäng på tentamen ger rätt till komplettering (betyg Fx). TENTAMEN juni 0 HF006 och HF008 Tid :-7: Moment: TEN (Analys), hp, skriftlig tentamen Kurser: Analys och linjär algebra, HF008, lärare: Fredrik Bergholm och Inge Jovik, Linjär algebra och analys, HF006,

Läs mer

R LÖSNINGG. Låt. (ekv1) av ordning. x),... satisfierar (ekv1) C2,..., Det kan. Ekvationen y (x) har vi. för C =4 I grafen. 3x.

R LÖSNINGG. Låt. (ekv1) av ordning. x),... satisfierar (ekv1) C2,..., Det kan. Ekvationen y (x) har vi. för C =4 I grafen. 3x. Armin Halilovic: EXTRA ÖVNINGAR, SF676 Begynnelsevärdesproblem Enkla DE ALLMÄN LÖSNING PARTIKULÄR LÖSNING SINGULÄR R LÖSNINGG BEGYNNELSEVÄRDESPROBLEM (BVP) Låt ( n) F(,,,, y ( )) vara en ordinär DE av

Läs mer

Institutionen för Matematik, KTH Torbjörn Kolsrud

Institutionen för Matematik, KTH Torbjörn Kolsrud Institutionen för Matematik, KTH Torbjörn Kolsrud 5B 6, Differential- och integralkalkyl II, del, envariabel, för F. Tentamen torsdag 3 maj 7, 8.-3. Förslag till lösningar.. Ange definitions- och värdemängderna

Läs mer

4. Elektromagnetisk svängningskrets

4. Elektromagnetisk svängningskrets 4. Elektromagnetisk svängningskrets L 15 4.1 Resonans, resonansfrekvens En RLC krets kan betraktas som en harmonisk oscillator; den har en egenfrekvens. Då energi tillförs kretsen med denna egenfrekvens

Läs mer

Planering för Matematik kurs E

Planering för Matematik kurs E Planering för Matematik kurs E Läromedel: Holmström/Smedhamre, Matematik från A till E, kurs E Antal timmar: 60 (0 + 0) I nedanstående planeringsförslag tänker vi oss att E-kursen studeras på 60 klocktimmar.

Läs mer

1. (a) Beräkna gränsvärdet (2p) e x + ln(1 x) 1 lim. (b) Beräkna integralen. 4 4 x 2 dx. x 3 (x 1) 2. f(x) = 3. Lös begynnelsevärdesproblemet (5p)

1. (a) Beräkna gränsvärdet (2p) e x + ln(1 x) 1 lim. (b) Beräkna integralen. 4 4 x 2 dx. x 3 (x 1) 2. f(x) = 3. Lös begynnelsevärdesproblemet (5p) Högskolan i Halmstad Tentamensskrivning ITE/MPE-lab MA2 Envariabelanalys 6 hp Mikael Hindgren Fredagen den 3 januari 27 35-6722 Skrivtid: 5.-2. Inga hjälpmedel. Fyll i omslaget fullständigt och skriv namn

Läs mer

Spänningsfallet över ett motstånd med resistansen R är lika med R i(t)

Spänningsfallet över ett motstånd med resistansen R är lika med R i(t) TILLÄMPNINGA AV DIFFEENTIAL EKVATIONE L KETSA Låt vara strömmen i nedanstående L krets (som innehåller element en sole med induktansen L henry, en motstånd med resistansen ohm, en kondensator med kaacitansen

Läs mer

LAB 4. ORDINÄRA DIFFERENTIALEKVATIONER. 1 Inledning. 2 Eulers metod och Runge-Kuttas metod

LAB 4. ORDINÄRA DIFFERENTIALEKVATIONER. 1 Inledning. 2 Eulers metod och Runge-Kuttas metod TANA21+22/ 30 september 2016 LAB 4. ORDINÄRA DIFFERENTIALEKVATIONER 1 Inledning Vi skall studera begynnelsevärdesproblem, både med avseende på stabilitet och noggrannhetens beroende av steglängden. Vi

Läs mer

TENTAMEN HF1006 och HF1008

TENTAMEN HF1006 och HF1008 TENTAMEN HF6 och HF8 Datum TEN 8 jan 9 Tid -8 Linjär algebra och analys, HF6 och HF8 Lärare: Maria Shamoun, Armin Halilovic Eaminator: Armin Halilovic Betygsgränser: För godkänt krävs av ma poäng För betyg

Läs mer

Kap 3.7, 17.8 Linjära differentialekvationer med konstanta koefficienter.

Kap 3.7, 17.8 Linjära differentialekvationer med konstanta koefficienter. Kap 3.7, 17.8 Linjära differentialekvationer med konstanta koefficienter. 401. (A) Bestäm de allmänna lösningarna till följande differentialekvationer: a. y 3y = 0 b. y 2y 3y = 0 c. y 2y = 0 d. y 4y +

Läs mer

Högskolan i Skövde (SK, YW) Svensk version Tentamen i matematik

Högskolan i Skövde (SK, YW) Svensk version Tentamen i matematik Högskolan i Skövde (SK, YW) Svensk version Tentamen i matematik Kurs: MA52G Matematisk Analys MA23G Matematisk analys för ingenjörer Tentamensdag: 2-5-5 kl 8.3-3.3 Hjälpmedel : Inga hjälpmedel utöver bifogat

Läs mer

Uppgifter 2 Grundläggande akustik (II) & SDOF

Uppgifter 2 Grundläggande akustik (II) & SDOF Uppgifter Grundläggande akustik (II) & SDOF. Två partiklar rör sig med harmoniska rörelser. = 0 u ( Acos( där u ( Acos( t ) 6 a. Vad är frekvensen för de båda rörelserna? b. Vad är periodtiden? c. Den

Läs mer

Lösningsförslag till tentan i 5B1115 Matematik 1 för B, BIO, E, IT, K, M, ME, Media och T,

Lösningsförslag till tentan i 5B1115 Matematik 1 för B, BIO, E, IT, K, M, ME, Media och T, Institutionen för Matematik, KTH. Lösningsförslag till tentan i 5B5 Matematik för B, BIO, E, IT, K, M, ME, Media och T, 8.. Visa att påståendet P n : n + n < 4 n är sant för n =,, 4.... (a) P : + = 4 +

Läs mer

= y(0) för vilka lim y(t) är ändligt.

= y(0) för vilka lim y(t) är ändligt. Lösningsförslag till tentamensskrivning i SF633 Differentialekvationer I och SF637 Differentialekvationer och transformer III Lördagen den 4 februari, kl 4-9 Hjälpmedel: BETA, Mathematics Handbook Redovisa

Läs mer

SF1625 Envariabelanalys Lösningsförslag till tentamen DEL A. e 50k = k = ln 1 2. k = ln = ln 2

SF1625 Envariabelanalys Lösningsförslag till tentamen DEL A. e 50k = k = ln 1 2. k = ln = ln 2 SF625 Envariabelanalys Lösningsförslag till tentamen 23--24 DEL A. Den :a januari 26 låstes kg av ett visst radioaktivt ämne in i en källare. Ämnet sönderfaller i en takt som är direkt proportionell mot

Läs mer

Bose-Einsteinkondensation. Lars Gislén, Malin Sjödahl, Patrik Sahlin

Bose-Einsteinkondensation. Lars Gislén, Malin Sjödahl, Patrik Sahlin Bose-Einsteinkondensation Lars Gislén, Malin Sjödahl, Patrik Sahlin 3 mars, 009 Inledning Denna laboration går ut på att studera Bose-Einsteinkondensation för bosoner i en tredimensionell harmonisk-oscillatorpotential.

Läs mer

MATEMATIK Chalmers tekniska högskola Tentamen , kl och v 4 =

MATEMATIK Chalmers tekniska högskola Tentamen , kl och v 4 = MATEMATIK Chalmers tekniska högskola Tentamen 9--7, kl. 8.3 -.3 TMV36 Analys och linjär algebra K Kf Bt, del B Telefonvakt: Richard Lärkäng, telefon: 73-8834 Inga hjälpmedel. Kalkylator ej tillåten. Uppgifterna

Läs mer

Prov i matematik Distans, Matematik A Analys UPPSALA UNIVERSITET Matematiska institutionen

Prov i matematik Distans, Matematik A Analys UPPSALA UNIVERSITET Matematiska institutionen UPPSALA UNIVERSITET Matematiska institutionen Anders Källström Prov i matematik Distans, Matematik A Analys 23 2 5 Skrivtid: -5. Hjälpmedel: Gymnasieformelsamling. Lösningarna skall åtföljas av förklarande

Läs mer

IN Inst. för Fysik och materialvetenskap ---------------------------------------------------------------------------------------------- INSTRUKTION TILL LABORATIONEN INDUKTION ---------------------------------------------------------------------------------------------

Läs mer

(y 2 xy) dx + x 2 dy = 0 y(e) = e. = 2x + y y = 2x + 3y 2e 3t, = (x 2)(y 1) y = xy 4. = x 5 y 3 y = 2x y 3.

(y 2 xy) dx + x 2 dy = 0 y(e) = e. = 2x + y y = 2x + 3y 2e 3t, = (x 2)(y 1) y = xy 4. = x 5 y 3 y = 2x y 3. UPPSALA UNIVERSITET Matematiska institutionen Pepe Winkler tel. 018-471 2 89 Prov i matematik Civilingenjörsprogrammen Ordinära differentialekvationer, 2 poäng 2005-01-10 Skrivtid: 8.00 1.00. Hjälpmedel:

Läs mer

10. Kretsar med långsamt varierande ström

10. Kretsar med långsamt varierande ström 10. Kretsar med långsamt varierande ström [RMC] Elektrodynamik, vt 2008, Kai Nordlund 10.1 10.1. Villkor för långsamt varierande I detta kapitel behandlas den teori som kan användas för att analysera kretsar

Läs mer

Bedömningsanvisningar

Bedömningsanvisningar Bedömningsanvisningar NpMab ht 01 Eempel på ett godtagbart svar anges inom parentes. Till en del uppgifter är bedömda elevlösningar bifogade för att ange nivån på bedömningen. Om bedömda elevlösningar

Läs mer

x 2 5x + 4 2x 3 + 3x 2 + 4x + 5. d. lim 2. Kan funktionen f definieras i punkten x = 1 så att f blir kontinuerlig i denna punkt? a.

x 2 5x + 4 2x 3 + 3x 2 + 4x + 5. d. lim 2. Kan funktionen f definieras i punkten x = 1 så att f blir kontinuerlig i denna punkt? a. . Beräkna följande gränsvärden: a. lim 2 5 + 6 2 2. b. lim 2 5 + 4 3 + 2 4 2. c. lim. d. lim 2 3 + 3 2 + 4 + 5 2 + + 3 + 2 2 + 3 + 4. 2. Kan funktionen f definieras i punkten = så att f blir kontinuerlig

Läs mer

10. Kretsar med långsamt varierande ström

10. Kretsar med långsamt varierande ström . Kretsar med långsamt varierande ström För en normalstor krets kan vi med andra ord använda drivande spänningar med frekvenser upp till 7 Hz, förutsatt att analysen sker med de metoder som vi nu kommer

Läs mer

Högskolan i Skövde (SK, JS) Svensk version Tentamen i matematik Lösningsförslag till del I

Högskolan i Skövde (SK, JS) Svensk version Tentamen i matematik Lösningsförslag till del I Högskolan i Skövde (SK, JS) Svensk version Tentamen i matematik Lösningsförslag till del I Kurs: MA15G Matematisk Analys MA13G Matematisk analys för ingenjörer MA71A Matematik för lärare C, delkurs Matematisk

Läs mer

TENTAMEN TEN2 i HF1006 och HF1008

TENTAMEN TEN2 i HF1006 och HF1008 TENTAMEN TEN i HF006 och HF008 Moment TEN (analys) Datum 0 aug 09 Tid 8- Lärare: Maria Shamoun, Armin Halilovic Eaminator: Armin Halilovic Betygsgränser: För godkänt krävs0 av ma 4 poäng För betyg A, B,

Läs mer

MA2001 Envariabelanalys 6 hp Mikael Hindgren Tisdagen den 12 januari 2016 Skrivtid:

MA2001 Envariabelanalys 6 hp Mikael Hindgren Tisdagen den 12 januari 2016 Skrivtid: Högskolan i Halmstad Tentamensskrivning ITE/MPE-lab MA Envariabelanalys 6 p Mikael Hindgren Tisdagen den januari 6 Skrivtid: 9.-3. Inga jälpmedel. Fyll i omslaget fullständigt oc skriv namn på varje papper.

Läs mer

TENTAMEN HF1006 och HF1008 TEN2 10 dec 2012

TENTAMEN HF1006 och HF1008 TEN2 10 dec 2012 TENTAMEN HF006 och HF008 TEN 0 dec 0 Anals och linjär algebra, HF008 (Medicinsk teknik), lärare: Svante Granqvist Anals och linjär algebra, HF008 (Elektroteknik), lärare: Inge Jovik, Linjär algebra och

Läs mer

dy dx = ex 2y 2x e y.

dy dx = ex 2y 2x e y. UPPSALA UNIVERSITET Matematiska institutionen Pepe Winkler tel. 018-471 3 89 Prov i matematik Civilingenjörsprogrammen Ordinära differentialekvationer, poäng 005-04-04 Skrivtid: 14 19. Hjälpmedel: Skrivdon,

Läs mer

SF1625 Envariabelanalys Lösningsförslag till tentamen DEL A

SF1625 Envariabelanalys Lösningsförslag till tentamen DEL A SF1625 Envariabelanalys Lösningsförslag till tentamen 211-1-18 DEL A 1. Låt x och y vara två tal vars summa är 6. Ange det minimala värdet som uttrycket 2x 2 + y 2 kan anta. Lösningsförslag. Eftersom vi

Läs mer

m 1 =40kg k 1 = 200 kn/m l 0,1 =0.64 m u 0 =5.0 mm x p,1 = X 1 sin ωt + C 1 x p,2 = X 2 sin ωt + C 2,

m 1 =40kg k 1 = 200 kn/m l 0,1 =0.64 m u 0 =5.0 mm x p,1 = X 1 sin ωt + C 1 x p,2 = X 2 sin ωt + C 2, Linköpings tekniska högskola 2016 10 14 IEI/Mekanik och hållfasthetslära Peter Christensen Datorsimuleringsuppgift i Mekanik Y del 1 (TMME12) Syftet med denna uppgift är att simulera hur ett mekaniskt

Läs mer

MEKANIK LABORATION 2 KOPPLADE SVÄNGNINGAR. FY2010 ÅK2 Vårterminen 2007

MEKANIK LABORATION 2 KOPPLADE SVÄNGNINGAR. FY2010 ÅK2 Vårterminen 2007 I T E T U N I V E R S + T O C K H O L M S S FYSIKUM Stockholms universitet Fysikum 3 april 007 MEKANIK LABORATION KOPPLADE SVÄNGNINGAR FY010 ÅK Vårterminen 007 Mål Laborationen avser att ge allmän insikt

Läs mer

, x > 0. = sinx. Integrera map x : x 3 y = cosx + C. 1 cosx x 3. = kn där k är. k = 1 22 ln 1 2 = 1 22 ln2, N(t) = N 0 e t. 2 t 32 N 1.

, x > 0. = sinx. Integrera map x : x 3 y = cosx + C. 1 cosx x 3. = kn där k är. k = 1 22 ln 1 2 = 1 22 ln2, N(t) = N 0 e t. 2 t 32 N 1. Lösningsförslag till tentamensskrivning i Diff & Trans I, 5B Lördagen den januari, kl 9-4 Hjälpmedel: BETA, Mathematics Handbook Redovisa lösningarna på ett sådant sätt att beräkningar och resonemang är

Läs mer

Tentamen i Envariabelanalys 1

Tentamen i Envariabelanalys 1 Linköpings universitet Matematiska institutionen Matematik och tillämpad matematik Kurskod: TATA4 Provkod: TEN Tentamen i Envariabelanalys 4--8 kl. 8.. Inga hjälpmedel. Lösningarna ska vara fullständiga,

Läs mer

Studietips inför kommande tentamen TEN1 inom kursen TNIU23

Studietips inför kommande tentamen TEN1 inom kursen TNIU23 Studietips inför kommande tentamen TEN1 inom kursen TNIU23 Lämplig ordning på sammanfattande studier inom denna kurs: Inled med att grundligt studera föreläsningsanteckningarna Därefter läs tillhörande

Läs mer

med angivande av definitionsmängd, asymptoter och lokala extrempunkter. x 2 e x =

med angivande av definitionsmängd, asymptoter och lokala extrempunkter. x 2 e x = UPPSALA UNIVERSITET Matematiska institutionen Anders Källström Prov i matematik Distans, Matematik A Analys 2004 02 4 Skrivtid: 0-5. Hjälpmedel: Gymnasieformelsamling. Lösningarna skall åtföljas av förklarande

Läs mer

Uppgifter 9 och 10 är för de som studerar byggteknik

Uppgifter 9 och 10 är för de som studerar byggteknik INLÄMNINGSPPGIFT MATEMATIK OCH MATEMATISK STATISTIK, HF003 007/08 ( DIFFERENTIAL EKVATIONER ) armin@sth.kth.se www.sth.kth.se/armin tel 08 790 80 Inlämningsuppgift består av två uppgifter. Individuellt

Läs mer

Sammanfattning av ordinära differentialekvationer

Sammanfattning av ordinära differentialekvationer Sammanfattning av ordinära differentialekvationer Joakim Edsjö 1 Institutionen för teoretisk fysik, Uppsala Universitet Telefon: 018-18 32 50 eller 018-18 76 30 19 februari 1995 1 Första ordningens differentialekvationer

Läs mer

x 1(t) = x 2 (t) x 2(t) = x 1 (t)

x 1(t) = x 2 (t) x 2(t) = x 1 (t) Differentialekvationer II Modellsvar till räkneövning 4 16.4. 218 (kl 12-14 B222) 1. Lös det linjära homogena DE-systemet x 1(t) = x 2 (t) x 2(t) = x 1 (t) med matrismetoden. Påminnelse: egenvärden och

Läs mer

Matematik E (MA1205)

Matematik E (MA1205) Matematik E (MA105) 50 p Betygskriterier med eempeluppgifter Värmdö Gymnasium Mål och betygskriterier Ma E (MA105) Matematik Läsåret 003-004 Betygskriterier enligt Skolverket KRITERIER FÖR BETYGET GODKÄND

Läs mer

R AKNE OVNING VECKA 1 David Heintz, 31 oktober 2002

R AKNE OVNING VECKA 1 David Heintz, 31 oktober 2002 RÄKNEÖVNING VECKA David Heintz, 3 oktober 22 Innehåll Uppgift 27. 2 Uppgift 27.8 4 3 Uppgift 27.9 6 4 Uppgift 27. 9 5 Uppgift 28. 5 6 Uppgift 28.2 8 7 Uppgift 28.4 2 Uppgift 27. Determine primitive functions

Läs mer

VÄXELSTRÖM SPÄNNINGSDELNING

VÄXELSTRÖM SPÄNNINGSDELNING UMEÅ UNIVERSITET Tillämpad fysik och elektronik Agneta Bränberg 1996-06-12 VÄXELSTRÖM SPÄNNINGSDELNING Laboration E10 ELEKTRO Personalia: Namn: Kurs: Datum: Återlämnad (ej godkänd): Rättningsdatum Kommentarer

Läs mer

INLÄMNINGSUPPGIFT 1 MATEMATIK 2, HF1000 ( DIFFERENTIAL EKVATIONER)

INLÄMNINGSUPPGIFT 1 MATEMATIK 2, HF1000 ( DIFFERENTIAL EKVATIONER) INLÄMNINGSPPGIFT MATEMATIK, HF000 ( DIFFERENTIAL EKVATIONER) armin@sth.kth.se www.sth.kth.se/armin tel 08 790 80 Inlämningsuppgift består av tre uppgifter. Individuellt arbete. Du väljer tre av nedanstående

Läs mer

Genom att kombinera ekvationer (1) och (3) fås ett samband mellan strömmens och spänningens amplitud (eller effektivvärden) C, (4)

Genom att kombinera ekvationer (1) och (3) fås ett samband mellan strömmens och spänningens amplitud (eller effektivvärden) C, (4) VÄXELSTRÖMSKRETSEN 1 Inledning Behandlandet av växelströmskretsar baserar sig på tre grundkomponenters, motståndets (resistans R), spolens (induktans L) och kondensatorns (kapacitans C) funktionsprinciper.

Läs mer

LAB 1. FELANALYS. 1 Inledning. 2 Flyttal. 1.1 Innehåll. 2.1 Avrundningsenheten, µ, och maskinepsilon, ε M

LAB 1. FELANALYS. 1 Inledning. 2 Flyttal. 1.1 Innehåll. 2.1 Avrundningsenheten, µ, och maskinepsilon, ε M TANA21+22/ 5 juli 2016 LAB 1. FELANALYS 1 Inledning I laborationerna används matrishanteringsprogrammet MATLAB. som genomgående använder dubbel precision vid beräkningarna. 1.1 Innehåll Du ska 1. bestämma

Läs mer

Bestäm uttrycken för följande spänningar/strömmar i kretsen, i termer av ( ) in a) Utspänningen vut b) Den totala strömmen i ( ) c) Strömmen () 2

Bestäm uttrycken för följande spänningar/strömmar i kretsen, i termer av ( ) in a) Utspänningen vut b) Den totala strömmen i ( ) c) Strömmen () 2 7 Elektriska kretsar Av: Lasse Alfredsson och Klas Nordberg 7- Nedan finns en krets med resistanser. Då kretsen ansluts till en annan elektrisk krets uppkommer spänningen vin ( t ) och strömmen ( ) Bestäm

Läs mer