Föreläsning 17: Jämviktsläge för flexibla system

Save this PDF as:
 WORD  PNG  TXT  JPG

Storlek: px
Starta visningen från sidan:

Download "Föreläsning 17: Jämviktsläge för flexibla system"

Transkript

1 1 KOMIHÅG 16: Ellipsbanans storaxel och mekaniska energin E = " mgm 2a Föreläsning 17: Jämviktsläge för flexibla system Fjäderkraft: När en rak fjäder är i vila har den en längd som kallas vilolängd Om en fjäder sitter fast i ena änden och i andra änden påverkas av en dragkraft F drag ändras dess längd En ideal fjäder ändrar sin längd proportionellt mot kraftens styrka, dvs dubbelt så stor förändring av längd för dubbla kraften Sambandet mellan dragkraft och förlängning kan skrivas: F drag = k( x " L)e x, där x anger läget av den rörliga änden, L är vilolängden och k är den så kallade fjäderkonstanten som bestämmer styvheten i fjädern Vektorn e x anger förlängningsriktningen OBS: Fjäderns egen kraft är motsatt riktad dragkraften! Dvs: F fjäder = "k( x " L)e x (fjäderkraften)

2 2 Ofta betecknas fjäderkraften i denna kurs med F k, där k betyder fjäderkonstanten för fjädern När den rörliga fjäderänden är i (det enda) läget x = L finns ingen kraft i fjädern Exempel: Betrakta en massa som hänger i en fjäder med känd vilolängd L och känd fjäderkonstant k Bestäm massans jämviktsläge! Lösning: Massan påverkas av två krafter, tyngdkraften mge x (neråt i figuren) och en fjäderkraft "k( x " L)e x (uppåt) Vid jämvikt blir totala vertikala kraften noll, dvs "k(x " L) + mg = 0 Den rörliga fjäderänden befinner sig i läget x = L + mg, som även beskriver jämviktsläget för k massan Där kan massan ligga still Jämviktslägen kan vara stabila eller instabila I detta fall är jämviktsläget stabilt

3 3 Sammanfogade fjädrar Sammanfogade fjädrar dras ut en total sträcka x = x 1 + x 2 för en given dragkraft F Kraften är lika i båda fjädrarna enligt Newton 2 för den masslösa fogen mellan fjädrarna Man får: F x = x 1 + x 2 = 1 + F F k 1 Den sammansatta fjädern 1 k 2 beter sig som en fjäder med fjäderkonstant k sådan att: 1 = 1 + k k 1 1 k 2 Fria svängningar I Fjäderkraften I fjäderns viloläge är kraften noll Om massan förskjuts ett stycke x från jämviktsläget uppstår den återförande kraften: F = "kx e x

4 4 Viskös friktion Bromskraften är hela tiden motriktad röreseriktningen ( v = x e x ) och kan skrivas: F = "c x e x, där c beror av vätsketyp samt storlek och form hos husvagnen Ekvationen för dämpad svängning Newtons 2:a lag för vagnen ger m x = "c x " kx, eller x + 2"# n x + # 2 n x = 0, med konstanterna " n 2 = k m och 2"# n = c m Den nya parametern är dämpningsfaktorn eller dämpningsförhållandet " # 0 Det odämpade fallet " = 0: Amplitud och fas Man kan lätt verifiera att tidsfunktionen x(t) = Acos " n t + # ( ) + x j av utslaget satisfierar den odämpade, fria svängningsekvationen: x + " n 2 x = " n 2 x j Den fria, odämpade vibrationsrörelsen beskrivs av jämviktsläget: x j, amplituden: A, naturliga vinkelhastigheten: " n = fas: " = # n t + $, begynnelsefas: " k m,

5 5 Olika trigonometriska uttryck Två olika men ekvivalenta matematiska skepnader $ & Acos (" n t + #) + x j, x = % Enligt trigonometriskt '& Bcos (" n t) + Csin (" n t) + x j samband: cos(" n t + #) = cos(#)cos(" n t)$ sin(#)sin(" n t) fås koefficientsambandet: A = B 2 + C 2 Problem: En partikel med massan m sitter fast i en fjäder och lyder svängningsekvationen x + " 2 n x = 0 Rörelsen börjar i jämviktsläget x = 0 med hastigheten x = v 0 a) Hur stor är fjäderkonstanten k? b) Hur stor är då den totala mekaniska energin E i rörelsen? c) Bestäm även amplituden i svängningsrörelsen Korta svar: a) Fjäderkonstanten: k = m" n2 b) Energin: E = m 2 v 2 0 c) Amplituden (enl EP): k 2 A2 = m 2 v 0 2 " A = v 0 " n

6 6 Problem: En vagn med massa 2M som befinner sig i jämviktsläget enligt figuren ges plötsligt farten v 0 så att den påbörjar en svängningsrörelse Fjädern som är fäst i vagnen har en känd fjäderkonstant k Bestäm den tid det tar för vagnen att återkomma till jämviktsläget Lösning: Bara fjäderkraften F = "kx i rörelseriktningen Newtons 2:a lag: 2M x = "kx Svängningsekvationen: x + k 2M x = 0 Naturliga vinkelfrekvensen för svängningen: k " n = 2M Svängningsperioden: " = 2# 2M n k Vagnen återkommer efter en halv period : Svar: t = 1 2 " n = # 2M k

7 7 KOMIHÅG 19: x + " 2 n x = " 2 n x j (fri odämpad svängningsekv) Fri odämpad svängningsrörelse: $ Acos (" n t + #) + x j, x = % & Bcos (" n t) + Csin (" n t) + x j Föreläsning 18: Fria svängningar II Den svagt dämpade svängningen Betrakta svängningsekvationen x + 2"# n x + # 2 n x = # 2 n x j Svängningen i föregående föreläsning: x(t) = Acos " n t + # minskar aldrig Denna svängningsfunktion kan inte satisfiera svängningsekvationen med " # 0 ( ) + x j är odämpad och amplituden Visa att funktionen x(t) = Ae "#$ nt cos( 1"# 2 $ n t + %) + x j satisfierar svängninsekvationen Bevis: Derivera funktionen en gång och använd (1): x (t) = "#$ n [ x(t) " x j ] " 1"# 2 $ n Ae "#$ n t sin( 1"# 2 $ n t + %) (2) Derivera ytterligare en gång och använd (2) samt (1): (1)

8 8 x (t) = "#$ n x (t) "#$ n { x (t) + #$ n [ x(t) " x j ]} "( 1"# 2 )$ 2 n [ x(t) " x j ] = "2#$ n x (t) "$ 2 n x(t) " x j Detta är ekvivalent med den dämpade svängningsekvationen x + 2"# n x + # 2 n x = # 2 n x j VSB [ ] I praktiska problemlösningar används uttrycket: x(t) = e "#$ ( nt Bcos( 1"# 2 $ n t) + Csin ( 1"# 2 $ n t) ) + x j för det fall att 0 " # <1 Man måste även veta två (extra) sanningar om x(t), t ex begynnelsevillkoren x(0) = x 0 och x (0) = v 0, dvs läge och hastighet vid tiden t = 0 c=42 Ns/m 2 kg k=392 N/m x Problem: Bestäm dämpningsförhållandet för systemet i figuren k Lösning: " n = m = s-1 =14 s -1 2" n # = c m " c " = 2# n m = 42 4 $14 = 3 4

9 9 Egenskaper-svag dämpning: - Perioden " d : En del av funktionen x(t) (som finns innanför stora parentesen, dvs cosinus och sinus) är trots allt periodisk Den tid det tar för den delen att upprepa sig är perioden " d : " d = 2# $ d = 2# $ n 1%& 2 -Logaritmiska dekrementet " : Experimentellt mäter man förhållandet mellan två på varandra följande amplituder A N och A N +1 på samma sida och får det logaritmiska dekrementet " : # " = ln A & N % ( $ A N +1 ' Det man mäter motsvarar alltså i teorin produkten "# n $ d

10 10 Problem: Bestäm vilka entydiga koefficienter i den allmänna lösningen som motsvarar en svagt dämpad rörelse som börjar i utslagsläget x 0 med hastigheten v 0 Lösning: Allmän lösning: ( ) + Csin ( 1"# 2 $ n t) x(t) = e "#$ ( nt Bcos 1"# 2 $ n t ) + x j I begynnelsen är läge och hastighet: x(0) = B + x j och x (0) = "#$ n B + $ n C 1"# 2 Om vi sätter in initialvärdena och löser ut koefficienterna får vi: B = x 0 " x j, ( ) C = v 0 + "# n x 0 $ x j # n 1$" 2 Alltså: % ( x 0 " x j )cos 1"# 2 ( ' ( $ n t) * x(t) = e "#$ n t' + v * 0 + #$ n ( x 0 " x ' j ) ' sin 1"# 2 $ $ n ( 1"# 2 n t * )* & )

11 11 II: Kritisk dämpning, " =1: Vad händer med svängningen i exemplet om dämpningsförhållandet blir 'kritiskt', dvs " #1 Kritisk dämpningsrörelse Genom en gränsövergång kan vi se vad som händer med den svagt dämpade rörelsen: % ( x 0 " x j )cos 1"# 2 ( ' ( $ n t) * x(t) = e "#$ n t ' + v + #$ x " x * ' 0 n( 0 j) ' sin 1"# 2 $ $ n ( 1"# 2 n t * )* & ) Tänk att tiden t är godtycklig men fix Låt sedan " #1 Cosinusen blir 1, men sinusen blir 0 samtidigt som koefficienten framför blir oändlig Man måste använda övergången sin 1" # 2 $ n t ( ) % 1" # 2 $ n t innan man får resultatet: x(t) = e "# n t x 0 + ( v 0 + # n x 0 )t ( ) + x j

12 12 Problem: Visa att den kritiska rörelsen satisfierar svängningsekvationen med " =1 Bevis: Först tar vi fram hastighetsfunktionen ur x(t) = e "# n t ( x 0 + ( v 0 + # n x 0 )t) + x j, dvs x (t) = "# n [ x(t) " x j ] + e "# n t ( v 0 + # n x 0 ) (*) Då ser vi att x(0) = x 0 + x j och x (0) = "# n [ x(0) " x j ] + ( v 0 + # n x 0 ) = v 0 Accelerationen beräknas nu: x (t) = "# n x (t) "# n e "# n t ( v 0 + # n x 0 ) men från hastigheten (*) fås e "# n t ( v 0 + # n x 0 ) = x (t) + # n [ x(t) " x j ], dvs x (t) = "# n x (t) "# n [ x (t) + # n [ x(t) " x j ]] eller x (t) + 2" n x (t) + " 2 n x(t) = " 2 n x j, som är svängningsekvationen i det kritiska fallet

13 13 3 dämpningstyper I: Svag dämpning, 0 < " <1 ( ) + Csin ( 1"# 2 $ n t) x(t) = e "#$ ( nt Bcos 1"# 2 $ n t ) + x j Dämpningseffekter: Amplituden försvinner alltid, till sist Svängningsfrekvensen (takten) " d = 1#$ 2 " n är mindre än " n II: Kritisk dämpning, " =1 x(t) = e "# n t B + Ct ( ) + x j III: Stark dämpning, " >1 x(t) = e "#$ ( nt Be # 2 "1 $ t n + Ce " # 2 "1 $ n ) t + x j

KOMIHÅG 18: Ekvation för fri dämpad svängning: x + 2"# n. x j,

KOMIHÅG 18: Ekvation för fri dämpad svängning: x + 2# n. x j, KOMIHÅG 18: ------------------------------------------------------ Ekvation för fri dämpad svängning: x + "# n x + # n x = # n x j, 1 med konstanterna! n = k m och!" n = c m. ------------------------------------------------------

Läs mer

KOMIHÅG 12: Ekvation för fri dämpad svängning: x + 2"# n

KOMIHÅG 12: Ekvation för fri dämpad svängning: x + 2# n KOMIHÅG 1: ------------------------------------------------------ Ekvation för fri dämpad svängning: x + "# n x + # n x = a, Tre typer av dämpning: Svag, kritisk och stark. 1 ------------------------------------------------------

Läs mer

Mer Friktion jämviktsvillkor

Mer Friktion jämviktsvillkor KOMIHÅG 6: --------------------------------- Torr friktion: F! µn. Viskös friktion: F = "cv. Extra villkor för jämvikt: risk för glidning eller stjälpning. ---------------------------------- Föreläsning

Läs mer

Inre krafters resultanter

Inre krafters resultanter KOMIHÅG 6: --------------------------------- Torr friktion: F " µn Normalkraftens angrepp?? Risk för glidning eller stjälpning ---------------------------------- Föreläsning 7: Inre krafters resultanter

Läs mer

Tentamen i Mekanik SG1102, m. k OPEN m fl. Problemtentamen OBS: Inga hjälpmedel förutom rit- och skrivdon får användas!

Tentamen i Mekanik SG1102, m. k OPEN m fl. Problemtentamen OBS: Inga hjälpmedel förutom rit- och skrivdon får användas! 014-08-19 Tentamen i Mekanik SG110, m. k OPEN m fl. OBS: Inga hjälpmedel förutom rit- och skrivdon får användas! KTH Mekanik Problemtentamen 1. En boll med massa m skjuts ut ur ett hål så att den hamnar

Läs mer

. Bestäm för denna studs stöttalet e! Lösning: Energiprincipen för bollens fall ner mot underlaget ger omedelbart före stöt:

. Bestäm för denna studs stöttalet e! Lösning: Energiprincipen för bollens fall ner mot underlaget ger omedelbart före stöt: KOMIHÅG 19: ------------------------------------------------------ Dämpade vibrationer: Fria fallet Kritisk dämpningsrörelse x(t) = e "# nt ( B + Ct) + x j Svag dämpningsrörelse x(t) = e "#$ nt ( Bcos(

Läs mer

Tentamen i Mekanik SG1107, baskurs S2. Problemtentamen

Tentamen i Mekanik SG1107, baskurs S2. Problemtentamen 010-05-6 Tentamen i Mekanik SG1107, baskurs S OBS: Inga hjälpmede förutom rit- och skrivdon får användas! KTH Mekanik Problemtentamen 1 En cylinder med massan M vilar på en homogen horisontell planka med

Läs mer

Tentamen i Mekanik SG1102, m. k OPEN. Problemtentamen

Tentamen i Mekanik SG1102, m. k OPEN. Problemtentamen 014-06-04 Tentamen i Mekanik SG110, m. k OPEN. OBS: Inga hjälpmedel förutom rit- och skrivdon får användas! KTH Mekanik 1. Problemtentamen En boll skjuts ut genom ett hål med en hastighet v så att den

Läs mer

Omtentamen i Mekanik I SG1130, grundkurs för CMATD och CL. Problemtentamen

Omtentamen i Mekanik I SG1130, grundkurs för CMATD och CL. Problemtentamen 2015-06-12 Omtentamen i Mekanik I SG1130, grundkurs för CMATD och CL. OBS: Inga hjälpmede förutom rit- och skrivdon får användas! KTH Mekanik Problemtentamen 1. Med hjälp av en tråd kan ett homogent block

Läs mer

Tentamen i Mekanik SG1130, baskurs P1 m fl. Problemtentamen OBS: Inga hjälpmedel förutom rit- och skrivdon får användas!

Tentamen i Mekanik SG1130, baskurs P1 m fl. Problemtentamen OBS: Inga hjälpmedel förutom rit- och skrivdon får användas! 014-03-17 Tentamen i Mekanik SG1130, baskurs P1 m fl OBS: Inga hjälpmedel förutom rit- och skrivdon får användas! 1 KTH Mekanik Problemtentamen En tunn homogen stav i jämvikt med massan m har i ena ändpunkten

Läs mer

KUNGL TEKNISKA HÖGSKOLAN INSTITUTIONEN FÖR MEKANIK Richard Hsieh, Karl-Erik Thylwe

KUNGL TEKNISKA HÖGSKOLAN INSTITUTIONEN FÖR MEKANIK Richard Hsieh, Karl-Erik Thylwe Tentamen i SG1102 Mekanik, mindre kurs för Bio, Cmedt, Open Uppgifterna skall lämnas in på separata papper. Problemdelen. För varje uppgift ges högst 6 poäng. För godkänt fordras minst 8 poäng. Teoridelen.

Läs mer

Tentamen i Mekanik SG1102, m. k OPEN. Problemtentamen

Tentamen i Mekanik SG1102, m. k OPEN. Problemtentamen 2015-06-01 Tentamen i Mekanik SG1102, m. k OPEN OBS: Inga hjälpmedel förutom rit- och skrivdon får användas KTH Mekanik Problemtentamen 1. En bil med massan m kör ett varv med konstant fartökning ( v =)

Läs mer

Tentamen i Mekanik 5C1107, baskurs S2. Problemtentamen

Tentamen i Mekanik 5C1107, baskurs S2. Problemtentamen 006-08-8 Tentaen i Mekanik 5C1107, baskurs S. OBS: Inga hjälpede föruto rit- och skrivdon får användas! KTH Mekanik 1. Probletentaen Ett glatt hoogent klot ed assan vilar ot två plana, hårda och glatta

Läs mer

Tentamen i Mekanik SG1107, baskurs S2. Problemtentamen

Tentamen i Mekanik SG1107, baskurs S2. Problemtentamen 007-08-30 Tentaen i Mekanik SG1107, baskurs S. OBS: Inga hjälpede föruto rit- och skrivdon får användas! KTH Mekanik 1. Probletentaen En hoogen stång ed assan är fäst i ena änden i en fritt vridbar led.

Läs mer

LÄRARHANDLEDNING Harmonisk svängningsrörelse

LÄRARHANDLEDNING Harmonisk svängningsrörelse LÄRARHANDLEDNING Harmonisk svängningsrörelse Utrustning: Dator med programmet LoggerPro LabQuest eller LabPro Avståndsmätare Kraftgivare Spiralfjäder En vikt Stativmateriel Kraftgivare Koppla mätvärdesinsamlaren

Läs mer

Tentamen i Mekanik SG1102, m. k OPEN. Problemtentamen

Tentamen i Mekanik SG1102, m. k OPEN. Problemtentamen 2015-06-01 Tentamen i Mekanik SG1102, m. k OPEN OBS: Inga hjälpmedel förutom rit- och skrivdon får användas! KTH Mekanik Problemtentamen 1. En bil med massan m kör ett varv med konstant fartökning ( v

Läs mer

" e n Föreläsning 3: Typiska partikelrörelser och accelerationsriktningar

 e n Föreläsning 3: Typiska partikelrörelser och accelerationsriktningar KOMIHÅG 2: 1 Cylinderkomponenter: Hastighet v = r e r + r" e " + z e z Acceleration: a = ( r " r# 2 )e r + ( r # + 2 r # )e # + z e z Naturliga komponenter: v = ve t a = v e t + v 2 " e n ------------------------------------

Läs mer

Harmonisk oscillator Ulf Torkelsson

Harmonisk oscillator Ulf Torkelsson 1 Haronisk rörelse Föreläsning 13/9 Haronisk oscillator Ulf Torkelsson Betrakta en potentiell energi, V (x), so har ett iniu vid x, och studera rörelsen i närheten av detta iniu. O vi släpper en partikel

Läs mer

DIFFERENTIALEKVATIONER. INLEDNING OCH GRUNDBEGREPP

DIFFERENTIALEKVATIONER. INLEDNING OCH GRUNDBEGREPP DIFFERENTIALEKVATIONER INLEDNING OCH GRUNDBEGREPP Differentialekvation (DE) är en ekvation som innehåller derivator av en eller flera okända funktioner ORDINÄRA DIFFERENTIAL EKVATIONER i) En differentialekvation

Läs mer

" e n och Newtons 2:a lag

 e n och Newtons 2:a lag KOMIHÅG 4: --------------------------------- 1 Energistorheter: P = F v, U "1 = t 1 # Pdt. Energilagar: Effektlagen, Arbetets lag ---------------------------------- Föreläsning 5: Tillämpning av energilagar

Läs mer

Vågrörelselära och optik

Vågrörelselära och optik Vågrörelselära och optik Kapitel 14 Harmonisk oscillator 1 Vågrörelselära och optik 2 Vågrörelselära och optik Kurslitteratur: University Physics by Young & Friedman (14th edition) Harmonisk oscillator:

Läs mer

NEWTONS 3 LAGAR för partiklar

NEWTONS 3 LAGAR för partiklar wkomihåg 12: Acceleration-med olika komponenter. ----------------------------------------- Föreläsning 13: Dynamik kraft-rörelse (orsakverkan) NEWTONS 3 LAGAR för partiklar 1 1. En 'fri' partikel förblir

Läs mer

1. Mekanisk svängningsrörelse

1. Mekanisk svängningsrörelse 1. Mekanisk svängningsrörelse Olika typer av mekaniska svängningar och vågrörelser möter oss överallt i vardagen allt från svajande höghus till telefoner med vibrationen påslagen hör till denna kategori.

Läs mer

6.4 Svängningsrörelse Ledningar

6.4 Svängningsrörelse Ledningar 6.4 Svängningsrörelse Ledningar 6.166 b) Krafterna i de båda fjädrarna är lia stora och lia med raften på roppen (inses genom att man frilägger roppen och de två fjädrarna var för sig). Kroppens förflyttning

Läs mer

DIFFERENTIALEKVATIONER. INLEDNING OCH GRUNDBEGREPP

DIFFERENTIALEKVATIONER. INLEDNING OCH GRUNDBEGREPP DIFFERENTIALEKVATIONER INLEDNING OCH GRUNDBEGREPP Differentialekvation (DE) är en ekvation som innehåller derivator av en eller flera okända funktioner ORDINÄRA DIFFERENTIALEKVATIONER i) En differentialekvation

Läs mer

MEKANIK LABORATION 2 KOPPLADE SVÄNGNINGAR. FY2010 ÅK2 Vårterminen 2007

MEKANIK LABORATION 2 KOPPLADE SVÄNGNINGAR. FY2010 ÅK2 Vårterminen 2007 I T E T U N I V E R S + T O C K H O L M S S FYSIKUM Stockholms universitet Fysikum 3 april 007 MEKANIK LABORATION KOPPLADE SVÄNGNINGAR FY010 ÅK Vårterminen 007 Mål Laborationen avser att ge allmän insikt

Läs mer

Definitioner: hastighet : v = dr dt = r fart : v = v

Definitioner: hastighet : v = dr dt = r fart : v = v KOMIHÅG 8: --------------------------------- Jämvikten kan rubbas: stjälpning, glidning Flexibla system- jämvikt bara i jämviktslägen ---------------------------------- Föreläsning 9: PARTIKELKINEMATIK

Läs mer

Tentamen i Mekanik II

Tentamen i Mekanik II Institutionen för fysik och astronomi F1Q1W2 Tentamen i Mekanik II 30 maj 2016 Hjälpmedel: Mathematics Handbook, Physics Handbook och miniräknare. Maximalt 5 poäng per uppgift. För betyg 3 krävs godkänd

Läs mer

Mekanik FK2002m. Kinetisk energi och arbete

Mekanik FK2002m. Kinetisk energi och arbete Mekanik FK2002m Föreläsning 6 Kinetisk energi och arbete 2013-09-11 Sara Strandberg SARA STRANDBERG P. 1 FÖRELÄSNING 6 Introduktion Idag ska vi börja prata om energi. - Kinetisk energi - Arbete Nästa gång

Läs mer

Grundläggande om krafter och kraftmoment

Grundläggande om krafter och kraftmoment Grundläggande om krafter och kraftmoment Text: Nikodemus Karlsson Original character art by Esa Holopainen, http://www.verikoirat.com/ Krafter - egenskaper och definition Vardaglig betydelse Har med påverkan

Läs mer

Inlupp 3 utgörs av i Bedford-Fowler med obetydligt ändrade data. B

Inlupp 3 utgörs av i Bedford-Fowler med obetydligt ändrade data. B Inlupp Sommarkurs 20 Mekanik II En trissa (ett svänghjul) har radie R 0.6 m och är upphängd i en horisontell friktionsfri axel genom masscentrum.. Ett snöre lindas på trissans utsida och en konstant kraft

Läs mer

9.1 Kinetik Rotation kring fix axel Ledningar

9.1 Kinetik Rotation kring fix axel Ledningar 9.1 Kinetik Rotation kring fix axel Ledningar 9.5 Frilägg hjulet och armen var för sig. Normalkraften kan beräknas med hjälp av jämvikt för armen. 9.6 Frilägg armen, och beräkna normalkraften. a) N µn

Läs mer

Övningstenta Svar och anvisningar. Uppgift 1. a) Hastigheten v(t) får vi genom att integrera: v(t) = a(t)dt

Övningstenta Svar och anvisningar. Uppgift 1. a) Hastigheten v(t) får vi genom att integrera: v(t) = a(t)dt Övningstenta 015 Svar och anvisningar Uppgift 1 a) Hastigheten v(t) får vi genom att integrera: v(t) = a(t)dt tillsammans med begynnelsevillkoret v(0) = 0. Vi får: v(t) = 0,5t dt = 1 6 t3 + C och vi bestämmer

Läs mer

9.2 Kinetik Allmän plan rörelse Ledningar

9.2 Kinetik Allmän plan rörelse Ledningar 9.2 Kinetik Allmän plan rörelse Ledningar 9.43 b) Villkor för att linan inte skall glida ges av ekv (4.1.6). 9.45 Ställ upp grundekvationerna, ekv (9.2.1) + (9.2.4), för trådrullen. I momentekvationen,

Läs mer

Lennart Edsberg Nada,KTH Mars 2003 LABORATIONSHÄFTE NUMERISKA METODER GRUNDKURS 1, 2D1210 LÄSÅRET 02/03. Laboration 3 4. Elmotor med resonant dämpare

Lennart Edsberg Nada,KTH Mars 2003 LABORATIONSHÄFTE NUMERISKA METODER GRUNDKURS 1, 2D1210 LÄSÅRET 02/03. Laboration 3 4. Elmotor med resonant dämpare Lennart Edsberg Nada,KTH Mars 2003 LABORATIONSHÄFTE NUMERISKA METODER GRUNDKURS 1, 2D1210 M2 LÄSÅRET 02/03 Laboration 3 4. Elmotor med resonant dämpare 1 Laboration 3. Differentialekvationer Elmotor med

Läs mer

Matematik D (MA1204)

Matematik D (MA1204) Matematik D (MA104) 100 p Betygskriterier med eempeluppgifter Värmdö Gymnasium Betygskriterier enligt Skolverket Kriterier för betyget Godkänd Eleven använder lämpliga matematiska begrepp, metoder och

Läs mer

university-logo Mekanik Repetition CBGA02, FYGA03, FYGA07 Jens Fjelstad 1 / 11

university-logo Mekanik Repetition CBGA02, FYGA03, FYGA07 Jens Fjelstad 1 / 11 Mekanik Repetition CBGA02, FYGA03, FYGA07 Jens Fjelstad 2010 03 18 1 / 11 Översikt Friläggning Newtons 2:a lag i tre situationer jämvikt partiklar stela kroppars plana rörelse Energilagen Rörelsemängd

Läs mer

Påtvingad svängning SDOF

Påtvingad svängning SDOF F(t)=F 0 cosω 0 t Förflyttning x M k Vi betraktar det vanliga fjäder-massa systemet men nu påverkas systemet med en kraft som varierar periodiskt i tiden: F(t)=F 0 cosω 0 t Den periodiskt varierande kraften

Läs mer

VSMA01 - Mekanik ERIK SERRANO

VSMA01 - Mekanik ERIK SERRANO VSMA01 - Mekanik ERIK SERRANO Översikt Kursintroduktion Kursens syfte och mål Kursprogram Upprop Inledande föreläsning Föreläsning: Kapitel 1. Introduktion till statik Kapitel 2. Att räkna med krafter

Läs mer

6.2 Partikelns kinetik - Tillämpningar Ledningar

6.2 Partikelns kinetik - Tillämpningar Ledningar 6.2 Partikelns kinetik - Tillämpningar Ledningar 6.13 Det som känns som barnets tyngd är den uppåtriktade kraft F som mannen påverkar barnet med. Denna fås ur Newton 2 för barnet. Svar i kilogram måste

Läs mer

SG1108 Tillämpad fysik, mekanik för ME1 (7,5 hp)

SG1108 Tillämpad fysik, mekanik för ME1 (7,5 hp) Läsåret 11/12 Utförliga lärandemål SG1108 Tillämpad fysik, mekanik för ME1 (7,5 hp) Richard Hsieh Huvudsakligt innehåll: Vektoralgebra och dimensionsbetraktelser. Kraft och kraftmoment. Kraftsystem; kraftpar,

Läs mer

(Eftersom kraften p. g. a. jordens gravitation är lite jämfört med inbromsningskraften kan du försumma gravitationen i din beräkning).

(Eftersom kraften p. g. a. jordens gravitation är lite jämfört med inbromsningskraften kan du försumma gravitationen i din beräkning). STOCHOLMS UNIVERSITET FYSIKUM Tentamensskrivning i Mekanik FyU01 och FyU03 Måndag 3 oktober 2005 kl. 9-15 Införda beteckningar skall definieras och uppställda ekvationer motiveras, detta gäller även när

Läs mer

Kursens olika delar. Föreläsning 0 (Självstudium): INTRODUKTION

Kursens olika delar. Föreläsning 0 (Självstudium): INTRODUKTION 1 Föreläsning 0 (Självstudium): INTRODUKTION Kursens olika delar Teorin Tentamen efter kursen och/eller KS1+KS2 Inlämningsuppgifter Lära känna kraven på redovisningar! Problemlösning Tentamen efter kursen

Läs mer

TFYA16/TEN :00 13:00

TFYA16/TEN :00 13:00 Link opings Universitet Institutionen f or fysik, kemi och biologi Marcus Ekholm TFYA16/TEN2 Ovningstentamen Mekanik 2015 8:00 13:00 Tentamen best ar av 6 uppgifter som vardera kan ge upp till 4 po ang.

Läs mer

Föreläsning 2,dynamik. Partikeldynamik handlar om hur krafter påverkar partiklar.

Föreläsning 2,dynamik. Partikeldynamik handlar om hur krafter påverkar partiklar. öreläsning 2,dynamik Partikeldynamik handlar om hur krafter påverkar partiklar. Exempel ges på olika typer av krafter, dessa kan delas in i mikroskopiska och makroskopiska. De makroskopiska krafterna kan

Läs mer

Teori för linjära ordinära differentialkvationer med konstanta koefficienter

Teori för linjära ordinära differentialkvationer med konstanta koefficienter Institutionen för Matematik SF1625 Envariabelanalys Läsåret 2016/2017 Teori för linjära ordinära differentialkvationer med konstanta koefficienter 1. FÖRSTA ORDNINGEN Homogena fallet. En homogen linjär

Läs mer

GÖTEBORGS UNIVERSITET Institutionen för fysik LÖSNINGAR TILL TENTAMEN I MEKANIK B För FYP100, Fysikprogrammet termin 2

GÖTEBORGS UNIVERSITET Institutionen för fysik LÖSNINGAR TILL TENTAMEN I MEKANIK B För FYP100, Fysikprogrammet termin 2 GÖTEBORGS UNIVERSITET Institutionen för fysik LÖSNINGAR TILL TENTAMEN I MEKANIK B För FYP100, Fysikprogrammet termin Tid: Plats: Ansvarig: Hjälpmedel: Tisdag juni 009, kl 8 30 13 30 V-huset Lennart Sjögren,

Läs mer

Modellering av Dynamiska system. - Uppgifter till övning 1 och 2 17 mars 2010

Modellering av Dynamiska system. - Uppgifter till övning 1 och 2 17 mars 2010 Modellering av Dynamiska system - Uppgifter till övning 1 och 2 17 mars 21 Innehållsförteckning 1. Repetition av Laplacetransformen... 3 2. Fysikalisk modellering... 4 2.1. Gruppdynamik en sciologisk modell...

Läs mer

Lösningar Kap 11 Kraft och rörelse

Lösningar Kap 11 Kraft och rörelse Lösningar Kap 11 Kraft och rörelse Andreas Josefsson Tullängsskolan Örebro Lösningar Fysik 1 Heureka: kapitel 11 11.1.-11.2 Se facit eller figurerna nedan. 1 11.3 Titta på figuren. Dra linjer parallella

Läs mer

Tentamen i Mekanik SG1130, baskurs. Problemtentamen

Tentamen i Mekanik SG1130, baskurs. Problemtentamen 013-03-14 Tentamen i Meani SG1130, basurs. OBS: Inga hjälpmedel förutom rit- och srivdon får användas KTH Meani 1. Problemtentamen En ub med massa m står lutad mot en vertial sträv vägg och med stöd på

Läs mer

6.3 Partikelns kinetik - Härledda lagar Ledningar

6.3 Partikelns kinetik - Härledda lagar Ledningar 6.3 Partikelns kinetik - Härledda lagar Ledningar 6.104 Om du inte tidigare gått igenom illustrationsexempel 6.3.3, gör det först. Låt ϕ vara vinkeln mellan radien till kroppen och vertikalen (det vill

Läs mer

27,8 19,4 3,2 = = 1500 2,63 = 3945 N = + 1 2. = 27,8 3,2 1 2,63 3,2 = 75,49 m 2

27,8 19,4 3,2 = = 1500 2,63 = 3945 N = + 1 2. = 27,8 3,2 1 2,63 3,2 = 75,49 m 2 Lina Rogström linro@ifm.liu.se Lösningar till tentamen 150407, Fysik 1 för Basåret, BFL101 Del A A1. (2p) Eva kör en bil med massan 1500 kg med den konstanta hastigheten 100 km/h. Längre fram på vägen

Läs mer

LABORATIONSHÄFTE NUMERISKA METODER GRUNDKURS 1, 2D1210 LÄSÅRET 03/04. Laboration 3 3. Torsionssvängningar i en drivaxel

LABORATIONSHÄFTE NUMERISKA METODER GRUNDKURS 1, 2D1210 LÄSÅRET 03/04. Laboration 3 3. Torsionssvängningar i en drivaxel Lennart Edsberg Nada, KTH December 2003 LABORATIONSHÄFTE NUMERISKA METODER GRUNDKURS 1, 2D1210 M2 LÄSÅRET 03/04 Laboration 3 3. Torsionssvängningar i en drivaxel 1 Laboration 3. Differentialekvationer

Läs mer

Betygskriterier Matematik D MA p. Respektive programmål gäller över kurskriterierna

Betygskriterier Matematik D MA p. Respektive programmål gäller över kurskriterierna Betygskriterier Matematik D MA04 00p Respektive programmål gäller över kurskriterierna MA04 är en nationell kurs och skolverkets kurs- och betygskriterier finns på http://www3.skolverket.se/ Detta är vår

Läs mer

Mekaniska vågor. Emma Björk

Mekaniska vågor. Emma Björk Mekaniska vågor Emma Björk Olika typer av vågfenomen finns överallt! Mekaniska vågor Ljudvågor Havsvågor Seismiska vågor Vågor på sträng Elektromagnetiska vågor Ljus Radiovågor Mikrovågor IR UV Röntgenstrålning

Läs mer

Tentamen Mekanik F del 2 (FFM520)

Tentamen Mekanik F del 2 (FFM520) Tentamen Mekanik F del 2 (FFM520) Tid och plats: Måndagen den 23 maj 2011 klockan 14.00-18.00 i V. Hjälpmedel: Physics Handbook, Beta, Lexikon, typgodkänd miniräknare samt en egenhändigt skriven A4 med

Läs mer

m 1 =40kg k 1 = 200 kn/m l 0,1 =0.64 m u 0 =5.0 mm x p,1 = X 1 sin ωt + C 1 x p,2 = X 2 sin ωt + C 2,

m 1 =40kg k 1 = 200 kn/m l 0,1 =0.64 m u 0 =5.0 mm x p,1 = X 1 sin ωt + C 1 x p,2 = X 2 sin ωt + C 2, Linköpings tekniska högskola 2016 10 14 IEI/Mekanik och hållfasthetslära Peter Christensen Datorsimuleringsuppgift i Mekanik Y del 1 (TMME12) Syftet med denna uppgift är att simulera hur ett mekaniskt

Läs mer

, x > 0. = sinx. Integrera map x : x 3 y = cosx + C. 1 cosx x 3. = kn där k är. k = 1 22 ln 1 2 = 1 22 ln2, N(t) = N 0 e t. 2 t 32 N 1.

, x > 0. = sinx. Integrera map x : x 3 y = cosx + C. 1 cosx x 3. = kn där k är. k = 1 22 ln 1 2 = 1 22 ln2, N(t) = N 0 e t. 2 t 32 N 1. Lösningsförslag till tentamensskrivning i Diff & Trans I, 5B Lördagen den januari, kl 9-4 Hjälpmedel: BETA, Mathematics Handbook Redovisa lösningarna på ett sådant sätt att beräkningar och resonemang är

Läs mer

Laboration Svängningar

Laboration Svängningar Laboration Svängningar Laboranter: Fredrik Olsen Roger Persson Utförande datum: 2007-11-22 Inlämningsdatum: 2007-11-29 Fjäder Högtalarmembran Stativ Fjäder Ultraljudssensor Försökets avsikt Syftet med

Läs mer

Lösningar till problemtentamen

Lösningar till problemtentamen KTH Mekanik 2007 05 09 Mekanik bk och I, 5C03-30, för I och BD, 2007 05 09, kl 08.00-2.00 Lösningar till probletentaen Uppgift : En partikel i A ed assa hänger i två lika långa trådar fästa i punkterna

Läs mer

Var i en nöjespark får man uppleva de starkaste krafterna? Enligt

Var i en nöjespark får man uppleva de starkaste krafterna? Enligt Ann-Marie Pendrill & David Eager Studsmattematte fritt fall och harmonisk svängningsrörelse Studsmattor finns i många trädgårdar och lekplatser. Under studsandet rör man sig huvudsakligen i vertikalled

Läs mer

Biomekanik, 5 poäng Introduktion -Kraftbegreppet. Mekaniken är en grundläggande del av fysiken ingenjörsvetenskapen

Biomekanik, 5 poäng Introduktion -Kraftbegreppet. Mekaniken är en grundläggande del av fysiken ingenjörsvetenskapen Biomekanik Mekanik Skillnad? Ambition: Att ge översiktliga kunskaper om mekaniska sammanhang och principer som hör samman med kroppsrörelser och rörelser hos olika idrottsredskap. Mekaniken är en grundläggande

Läs mer

PRÖVNINGSANVISNINGAR

PRÖVNINGSANVISNINGAR PRÖVNINGSANVISNINGAR Prövning i Matematik D Kurskod Ma 104 Gymnasiepoäng 100 Läromedel Prov Muntligt prov Inlämningsuppgift Kontakt med examinator Övrigt Valfri aktuell lärobok för kurs Matematik D t.ex.

Läs mer

Tentamensskrivning i Mekanik (FMEA30) Del 1 Statik och partikeldynamik

Tentamensskrivning i Mekanik (FMEA30) Del 1 Statik och partikeldynamik Mekanik, LTH Tentamensskrivning i Mekanik (FMEA30) Del 1 Statik och partikeldynamik Fredagen den 25 oktober 2013, kl. 14-19 Namn(texta):. Personnr: ÅRSKURS M:... Namn(signatur).. Skrivningen består av

Läs mer

Harmonisk svängningsrörelse

Harmonisk svängningsrörelse Institutionen för Fysik och Astronomi Mekanik HI: 214 Harmonisk svängningsrörelse I den här laborationen kommer vi att titta på svängningsrörelse med olika egenskaper: fri odämpad, fri dämpad och tvungen

Läs mer

Övningsuppgifter till Originintroduktion

Övningsuppgifter till Originintroduktion UMEÅ UNIVERSITET 05-08-01 Institutionen för fysik Ylva Lindgren Övningsuppgifter till Originintroduktion Uppgift 1. I ett experiment vill man bestämma fjäderkonstanten k för en viss fjäder. Med olika kraft

Läs mer

y(0) = e + C e 1 = 1

y(0) = e + C e 1 = 1 KTH-matematik Tentamensskrivning, 006-01-14, kl. 14.00 19.00. 5B106 Differentialekvationer I, för BDMP. Hjälpmedel: BETA, Mathematics Handbook. För godkänt betyg (3) krävs minst 17 poäng, för betyg 4 krävs

Läs mer

Andra ordningens kretsar

Andra ordningens kretsar Andra ordningens kretsar Svängningskretsar LCR-seriekrets U L (t) U s U c (t) U R (t) L di(t) dt + Ri(t) + 1 C R t0 i(t)dt + u c (0) = U s LCR-seriekrets För att undvika integralen i ekvationen, så deriverar

Läs mer

= y(0) för vilka lim y(t) är ändligt.

= y(0) för vilka lim y(t) är ändligt. Lösningsförslag till tentamensskrivning i SF633 Differentialekvationer I och SF637 Differentialekvationer och transformer III Lördagen den 4 februari, kl 4-9 Hjälpmedel: BETA, Mathematics Handbook Redovisa

Läs mer

Var ligger tyngdkrafternas enkraftsresultant? Totala tyngdkraftmomentet (mätt i origo) för kropp bestående av partiklar: M O. # m j.

Var ligger tyngdkrafternas enkraftsresultant? Totala tyngdkraftmomentet (mätt i origo) för kropp bestående av partiklar: M O. # m j. 1 KOMIHÅG 4: --------------------------------- Enkraftsresultantens existens. Vanliga resultanter vid analys av jämvikter. Jämviktsanalys: a) Kraftanalys - rita+symboler b) Jämviktslagar- Euler 1+2 c)

Läs mer

TFYA58, Fysik, 8 hp, 3 delar

TFYA58, Fysik, 8 hp, 3 delar 1. Vågrörelselära (mekaniska vågor, optik, diffraktion ) 7x2 tim föreläsning 6x2tim lektion 2. Experimentell problemlösning TFYA58, Fysik, 8 hp, 3 delar Ht 1 Ht 2 2x1 tim föreläsning 2 st Richardslabbar

Läs mer

Roterande obalans Kritiskt varvtal för roterande axlar

Roterande obalans Kritiskt varvtal för roterande axlar Roterande obalans Kritiskt varvtal för roterande axlar Rotation, krit. varvtal, s 1 m 0 Roterande obalans e Modeller för roterande maskiner ej fullständigt utbalanserade t ex tvättmaskiner, motorer, verkstadsmaskiner

Läs mer

Basala kunskapsmål i Mekanik

Basala kunskapsmål i Mekanik Basala kunskapsmål i Mekanik I kunskapsmålen nedan används termerna definiera, förklara och redogöra återkommande. Här följer ett försök att klargöra vad som avses med dessa. Definiera Skriv ner en definition,

Läs mer

e 3 e 2 e 1 Kapitel 3 Vektorer i planet och i rummet precis ett sätt skrivas v = x 1 e 1 + x 2 e 2

e 3 e 2 e 1 Kapitel 3 Vektorer i planet och i rummet precis ett sätt skrivas v = x 1 e 1 + x 2 e 2 Kapitel 3 Vektorer i planet och i rummet B e 3 e 2 A e 1 C Figur 3.16 Vi har ritat de riktade sträckor som representerar e 1, e 2, e 3 och v och som har utgångspunkten A. Vidare har vi skuggat planet Π

Läs mer

Final i Wallenbergs fysikpris

Final i Wallenbergs fysikpris Final i Wallenbergs fysikpris 5-6 mars 011. Teoriprov. Lösningsförslag. 1) Fysikern Hilda leker med en protonstråle i en vakuumkammare. Hon accelererar protonerna från stillastående med en protonkanon

Läs mer

LEDNINGAR TILL PROBLEM I KAPITEL 14. Kroppen har en rotationshastighet. Kulan P beskriver en cirkelrörelse. För ren rotation gäller

LEDNINGAR TILL PROBLEM I KAPITEL 14. Kroppen har en rotationshastighet. Kulan P beskriver en cirkelrörelse. För ren rotation gäller LEDNINR TILL ROBLEM I KITEL 4 L 4. Kroppen har en rotationshastighet. Kulan beskriver en cirkelrörelse. För ren rotation gäller v = r v = 5be O t Eftersom och r O är vinkelräta bestäms storleken av kryssprodukten

Läs mer

x p,1 = X 1 sin ωt + C 1 x p,2 = X 2 sin ωt + C 2, m 1 =20.0 kg m 2 =1.0 kg F 0 =10N k 1 = 4000 N/m m 1 =20.0 kg k 1 = 4000 N/m l 01 =0.

x p,1 = X 1 sin ωt + C 1 x p,2 = X 2 sin ωt + C 2, m 1 =20.0 kg m 2 =1.0 kg F 0 =10N k 1 = 4000 N/m m 1 =20.0 kg k 1 = 4000 N/m l 01 =0. Linköpings tekniska högskola 2015 10 15 IEI/Mekanik och hållfasthetslära Peter Christensen Datorsimuleringsuppgift i Mekanik Y del 1 (TMME12) Syftet med denna uppgift är att simulera hur ett mekaniskt

Läs mer

FINALTÄVLING SVENSKA FYSIKERSAMFUNDET

FINALTÄVLING SVENSKA FYSIKERSAMFUNDET FYSIKTÄVLINGEN FINALTÄVLING 24 april 1999 SVENSKA FYSIKERSAMFUNDET 1. Estimate, by using generally known properties of a typical car, the energy content of one litre of petrol. Some typical data for a

Läs mer

Kapitel 4 Arbete, energi och effekt

Kapitel 4 Arbete, energi och effekt Arbete När en kraft F verkar på ett föremål och föremålet flyttar sig sträckan s i kraftens riktning säger vi att kraften utför ett arbete på föremålet. W = F s Enheten blir W = F s = Nm = J (joule) (enheten

Läs mer

Repetitionsuppgifter i Fysik 1

Repetitionsuppgifter i Fysik 1 Repetitionsuppgifter i Fysik 1 Uppgifterna i detta häfte syftar till att kort repetera några begrepp från fysiklektionerna i höstas. Det är inte på något sätt ett komplett repetionsmaterial, utan tanken

Läs mer

STABILITET FÖR LINJÄRA HOMOGENA SYSTEM MED KONSTANTA KOEFFICIENTER

STABILITET FÖR LINJÄRA HOMOGENA SYSTEM MED KONSTANTA KOEFFICIENTER Armin Halilovic: EXTRA ÖVNINGAR, SF676 STABILITET FÖR LINJÄRA HOMOGENA SYSTEM MED KONSTANTA KOEFFICIENTER Innehåll Stabilitet för en kritisk punkt (grundbegrepp) Stabilitet för ett linjärt homogent system

Läs mer

SF1625 Envariabelanalys Lösningsförslag till tentamen DEL A

SF1625 Envariabelanalys Lösningsförslag till tentamen DEL A SF165 Envariabelanalys Lösningsförslag till tentamen 15-4-7 DEL A 1. Låt f(x) = arcsin x + 1 x. A. Bestäm definitionsmängden till funktionen f. B. Bestäm funktionens största och minsta värde. (Om du har

Läs mer

Elektroakustik Något lite om analogier

Elektroakustik Något lite om analogier Elektroakustik 2003-09-02 10.13 Något lite om analogier Svante Granqvist 2002 Något lite om analogier När man räknar på mekaniska system behöver man ofta lösa differentialekvationer och dessutom tänka

Läs mer

Tentamen Mekanik F del 2 (FFM520)

Tentamen Mekanik F del 2 (FFM520) Tentamen Mekanik F del 2 (FFM520) Tid och plats: Lördagen den 19 januari 2013 klockan 08.30-12.30 i M. Hjälpmedel: Physics Handbook, Beta, Typgodkänd miniräknare samt en egenhändigt skriven A4 med valfritt

Läs mer

Tillåtna hjälpmedel: Physics Handbook, Beta, kalkylator i fickformat, samt en egenhändigt skriven A4- sida med valfritt innehåll.

Tillåtna hjälpmedel: Physics Handbook, Beta, kalkylator i fickformat, samt en egenhändigt skriven A4- sida med valfritt innehåll. Tentamen i Mekanik för F, del B Tisdagen 17 augusti 2004, 8.45-12.45, V-huset Examinator: Martin Cederwall Jour: Ling Bao, tel. 7723184 Tillåtna hjälpmedel: Physics Handbook, Beta, kalkylator i fickformat,

Läs mer

WALLENBERGS FYSIKPRIS

WALLENBERGS FYSIKPRIS WALLENBERGS FYSIKPRIS KVALIFICERINGSTÄVLING 23 januari 2014 SVENSKA FYSIKERSAMFUNDET LÖSNINGSFÖRSLAG 1. (a) När bilens fart är 50 km/h är rörelseenergin W k ( ) 2 1,5 10 3 50 3,6 2 J 145 10 3 J. Om verkningsgraden

Läs mer

Övningar Arbete, Energi, Effekt och vridmoment

Övningar Arbete, Energi, Effekt och vridmoment Övningar Arbete, Energi, Effekt och vridmoment G1. Ett föremål med massan 1 kg lyfts upp till en nivå 1,3 m ovanför golvet. Bestäm föremålets lägesenergi om golvets nivå motsvarar nollnivån. G10. En kropp,

Läs mer

Matematik 4 Kap 2 Trigonometri och grafer

Matematik 4 Kap 2 Trigonometri och grafer Matematik 4 Kap 2 Trigonometri och grafer Konkretisering av ämnesplan (länk) http://www.ioprog.se/public_html/ämnesplan_matematik/struktur_ämnesp lan_matematik/struktur_ämnesplan_matematik.html Inledande

Läs mer

(y 2 xy) dx + x 2 dy = 0 y(e) = e. = 2x + y y = 2x + 3y 2e 3t, = (x 2)(y 1) y = xy 4. = x 5 y 3 y = 2x y 3.

(y 2 xy) dx + x 2 dy = 0 y(e) = e. = 2x + y y = 2x + 3y 2e 3t, = (x 2)(y 1) y = xy 4. = x 5 y 3 y = 2x y 3. UPPSALA UNIVERSITET Matematiska institutionen Pepe Winkler tel. 018-471 2 89 Prov i matematik Civilingenjörsprogrammen Ordinära differentialekvationer, 2 poäng 2005-01-10 Skrivtid: 8.00 1.00. Hjälpmedel:

Läs mer

Introduktion. Torsionspendel

Introduktion. Torsionspendel Chalmers Tekniska Högskola och Göteborgs Universitet November 00 Fysik och teknisk fysik Kristian Gustafsson och Maj Hanson (Anpassat för I1 av Göran Niklasson) Svängningar Introduktion I mekanikkursen

Läs mer

Enda tillåtna hjälpmedel är papper, penna, linjal och suddgummi. Skrivtid 4 h. OBS: uppgifterna skall inlämnas på separata papper.

Enda tillåtna hjälpmedel är papper, penna, linjal och suddgummi. Skrivtid 4 h. OBS: uppgifterna skall inlämnas på separata papper. KTH Mekanik Fredrik Lundell Mekanik mindre kurs för E1 och Open1 Läsåret 05/06 Tentamen i 5C110 Mekanik mk, kurs E1 och Open 1 006-03-15 Var noga med att skilja på skalärer och vektorer. Rita tydliga figurer

Läs mer

Vågrörelselära. Christian Karlsson Uppdaterad: Har jag använt någon bild som jag inte får använda så låt mig veta så tar jag bort den.

Vågrörelselära. Christian Karlsson Uppdaterad: Har jag använt någon bild som jag inte får använda så låt mig veta så tar jag bort den. Vågrörelselära Christian Karlsson Uppdaterad: 161003 Har jag använt någon bild som jag inte får använda så låt mig veta så tar jag bort den. christian.karlsson@ckfysik.se [14] 1 Elasticitet (bl.a. fjädrar)

Läs mer

Hjälpmedel: Miniräknare, bifogat formelblad textilmekanik och hållfasthetslära 2011, valfri formelsamling i fysik, passare, linjal

Hjälpmedel: Miniräknare, bifogat formelblad textilmekanik och hållfasthetslära 2011, valfri formelsamling i fysik, passare, linjal Textil mekanik och hållfasthetslära Provmoment: tentamen Ladokkod: 51MH01 Tentamen ges för: Textilingenjörsprogrammet TI2 7,5 högskolepoäng Namn: (Ifylles av student) Personnummer: (Ifylles av student)

Läs mer

Krafter och Newtons lagar

Krafter och Newtons lagar Mekanik I, Laboration 2 Krafter och Newtons lagar Newtons andra lag är det viktigaste hjälpmedel vi har för att beskriva vad som händer med en kropp och med kroppens rörelse när den påverkas av andra kroppar.

Läs mer

Övningar till datorintroduktion

Övningar till datorintroduktion Institutionen för Fysik Umeå Universitet Ylva Lindgren Sammanfattning En samling uppgifter att göra i MATLAB, vilka ska utföras enskilt eller i grupp om två. Datorintroduktion Handledare: (it@tekniskfysik.se)

Läs mer

Biomekanik, 5 poäng Jämviktslära

Biomekanik, 5 poäng Jämviktslära Jämvikt Vid jämvikt (ekvilibrium) är en kropp i vila eller i rätlinjig rörelse med konstant hastighet. Jämvikt kräver att: Alla verkande krafter tar ut varandra, Σ F = 0 (translationsjämvikt) Alla verkande

Läs mer

Gunga med Galileo matematik för hela kroppen

Gunga med Galileo matematik för hela kroppen Ann-Marie Pendrill Gunga med Galileo matematik för hela kroppen På en lekplats eller i en nöjespark finns möjlighet att påtagligt uppleva begrepp från fysik och matematik med den egna kroppen. Med hjälp

Läs mer

Laboration 2 Mekanik baskurs

Laboration 2 Mekanik baskurs Laboration 2 Mekanik baskurs Utförs av: William Sjöström Oskar Keskitalo Uppsala 2014 12 11 1 Introduktion När man placerar ett föremål på ett lutande plan så kommer föremålet att börja glida längs med

Läs mer

Information om ämnet Militärteknik med diagnostiskt självtest av förkunskaper till blivande studerande på Stabsutbildningen (SU)

Information om ämnet Militärteknik med diagnostiskt självtest av förkunskaper till blivande studerande på Stabsutbildningen (SU) Sida 1 (6) Information om ämnet Militärteknik med diagnostiskt självtest av förkunskaper till blivande studerande på Stabsutbildningen (SU) Militärteknik kan sägas vara läran om hur tekniken interagerar

Läs mer