Fö. 3: Ytspänning och Vätning Kap. 2. Gänsyto mellan: vätska gas fast fas vätska fast fas gas (me i Fö7) fast fas fast fas (vätska vätska) 1
Gänsytan vätska-gas (elle vätska-vätska) Resulteande kaft inåt (yttillstånd) luft Resulteande kaft noll (bulk) Ex: (mj/m 2 ) vatten Uspunget till ytspänning ä en obalans i de attaktiva kafte som veka på en molekyl vid ytan vatten 72,8 etanol 22 hexan 18 hexadekan 27 Kvicksilve 480 Ytspänning den enegi som kävs fö att bilda ny yta. (bete måste utföas) [N/m] elle [J/m 2 ] Ytspänningen beo på hu staka de sammanhållande kaftena ä Dipolbinding Van de Waals (dispesionskafte) Vätebindning Metallisk bindning 2
Det kävs enegi fö att bilda me yta i systemet: Enegi (2 yto bildas) betet: dw d bete bildad yta. Det ä natuligt eftesom antal butna bindninga bildad yta. Popotionalitetskonst Jämvikt och Vkonst dw d (Helmholtz fia enegi) Jämvikt och Pkonst dw dg (Gibbs fia enegi) Spontanitet då d < 0 elle dg < 0 (T konst) Yto stäva efte att ha så liten aea som möjligt (d < 0 dg < 0) (En sfä ha minsta möjliga aea/volym-kvot!) 3
Ett enkelt expeiment fö att mäta ytspänning fö en vätskefilm Ytspänning ge den enegi som behövs fö att öka en yta dw d w men abetet att öka ytan kan också skivas wf x F /l, dä l ä ytans utstäckning vinkelätt mot F. Sätts dessa uttyck lika fås F/l (kaft/längd) tkins8 s. 641-646 4
Laplaces ekvation En tyckskillnad existea öve en kökt yta (på gund av ytspänningen), högst tyck på konkava sidan P k P v P k P v P 2 Ex luftbubbla i vatten: vätska luft Om me komplexa fome än en sfä: R 1 R 2 5
Kapilläkaft Vätning av väggana i en kapillä: (enegin fö gänsytan glas-vätska läge än fö gänsytan glas-luft) Vätningen osaka en kuvatu hos vätskeytan Tyckskillnad enligt Laplaces ekvation Tycket öve kapilläytan ä höge än unde.vätskan stige så att dess tyngd utjämna skillnaden π hρg 2 2 π 2 ρgh 2 massa P Ovanstående gälle om vätskeytan bilda en pefekt halvsfä. Om inte: 6
a cosθ 2 2 cosθ P a P ρgh ρgha 2cosθ Ett sätt att bestämma om θ ä känd θ kontaktvinkeln Ångtyck Kelvins ekvation Stighöjden ä obeoende av kapilläens fom vätskedoppe bubbla P 2V RT ln P 0 M Vm ρ Fö bubblo ett minustecken m 7
Olika sätt att mäta ytspänning (föutom kapillämetoden!) Wilhelmy metoden Ring-metoden 8
Doppmetode Man kan mäta hu sto doppe ytspänningen kan hålla Man kan studea doppens fom 9
Gänsytan fast fas - vätska Begeppen adhesion, kohesion och spidning Kontaktvinkel Tillämpninga 10
Kohesionsabete G w 2 G 2 Ingen yta 2 (elle B) yto dhesionsabete 1B yta 1 yta + 1B yta Spidningsabete 1 yta 1B yta +1Byta G ( + ) B G wb + B [ Hä kan man gå vidae 2 B 2 B "Fowkes appoximation": w B B G S + d B d B d ( + ) B ( + ) B B B d B m.h.a. vilket ge stämme sådä...] Definiea spidningskoeff. dispesionskafte enbat G S Det följe bl.a. att S w B - w BB 11
Om S ä negativ spids inte vätskan helt utan bilda en viss vinkel med den fasta ytan: kontaktvinkeln flytande (L) fast (S) gas (V) ntag jämvikt vid tefaskontaktlinjen V-L-S J.v. ytspänningana ta ut vaanda i hoisontell led: SV SL + LV cosθ Youngs ekvation 12
Youngs ekvation kan t.ex. användas till att bestämma ytspänningen fö fasta ämnen Om vätskans ytspänning LV ä känd fån anda mätninga (exv kapillästudie) och kontaktvinkeln θ mätes ( SV SL ) Mät θ fö en ad olika vätsko fö vilka ytspänningana ä kända. Plotta LV mot cos(θ) och extapolea till cos(θ) 1, vilket motsvaa θ 0 kitiska ytenegin c. Om θ 0 ä det ofta en god appoximation att SL 0 SV c SL Zisman-plott Hu mäte vi kontaktvinkeln? 1. Doppen elle bubblan studeas (exv fotogafi) 2. Med Wilhelmy-platta Nä vi ska använda plattan fö att mäta ytspänning används en platinaplatta fö vilken cosθ0 fö de flesta vätsko. Nä kontaktvinkel ska mätas används en vätska med känd ytspänning och en platta av det mateial på vilket man vill känna vätskans kontaktvinkel 13
En vätska kallas icke-vätande om θ>90º. Enligt Youngs ekvation SL + d.v.s. LV cosθ cosθ SV SV Fö ba vätning ska cosθ vaa så stot som möjligt (d.v.s. θ så litet som möjligt) lltså ska vi sänka SL och LV med hjälp av ytaktivt ämne (ämnet kallas vätmedel). LV 0 Kommentae elateat till vätning/kapilläfenomen Enligt tidigae gälle: 2 LV cosθ 2( SV SL ) P 2 LV Om θ 0 så ä P och fö sto tyck skillnad behövs stot (ge hög stigning) ba uppsugning ( ) 2 SV SL Om θ 0 så ä P och fö sto tyck skillnad ska göas så liten som möjligt. Detta ge ba uppsugning SL LV SL 14
Om ett ämne inte ska suga upp vätska d.v.s vaa vattenavstötande så ska: P < 0 ( ) 2 SV P Detta käve att SL SV < SL vätska poös yta En beläggning på ytan kan sänka ytenegin. θ > 90 OBS! Detta kan göa mateialet vattenavstötande men inte vattentätt. Om ett ytte tyck som ä stöe än P läggs på så komme vatten att tänga in. 15