MÄLARDALENS HÖGSKOLA Akademin för utbildning, kultur och kommunikation Avdelningen för tillämpad matematik Examinator: Erik Darpö TENTAMEN I MATEMATIK MMA11 Matematisk grundkurs TEN Datum: 11 juni 014 Skrivtid: 3 timmar Hjälpmedel: Skrivdon. Denna tentamen TEN består av nio stycken uppgifter, som vardera kan ge maximalt 3 poäng. För betyget godkänd krävs en erhållen poängsumma om minst 13 poäng. För att sammanfattningsbetyget godkänd skall ges på kursen krävs godkänt resultat på samtliga de tre examinationsmomenten INL1, TEN1 och TEN. För sammanfattningsbetyget väl godkänd skall ges krävs därutöver att S 1 + S 61, där S 1 och S betecknar den erhållna poängen vid tentamen TEN1 respektive TEN. Lösningar förutsätts innefatta ordentliga motiveringar och tydliga svar. Samtliga lösningsblad skall vid inlämning vara sorterade i den ordning som uppgifterna är givna i. 1. Ange a) ekvationen för den räta linje i planet som passerar genom punkterna (1, 1) och ( 1, 3), b) värdet av sin(x), då cos(x) = 1, c) samtliga primitiva funktioner till f(x) = e x. Glöm inte att motivera dina svar.. Vilken sorts kurva beskriver ekvationen x(x 1) + y + y 3 = (x 1)? Ange två punkter som ligger på kurvan. Glöm inte att verifiera att punkterna du anger verkligen ligger på kurvan. 3. Lös ekvationen sin (x) + 3 sin( π x) 3 = 0. 4. a) Bestäm derivatan av funktionen f(x) = 1 1 + x. b) Bestäm en primitiv funktion till g(x) = 1 (1 + x). 5. Bestäm alla reella tal x som uppfyller att 0 x π och att tangenten till kurvan y = sin(cos(x)) är parallell med x-axeln. 6. Låt z = i. Bestäm a) z, b) z, c) z 4. 7. Bestäm arean av det område som innesluts av x-axeln och kurvan y = sin(x) mellan x = 0 och x = π. 8. I en triangel har två av sidorna längd 1 respektive, och vinkeln dememellan är π 3. Bestäm samtliga vinklar i triangeln. 9. Låt z = r(cos(θ) + i sin(θ)) vara ett komplext tal, skrivet på polär form. a) Skriv talet z på polär form. b) Lös ekvationen z = i. Ange specifikt hur många lösningar ekvationen har. Du kan svara antingen på cartesisk (rektangulär) eller polär form.
MÄLARDALENS HÖGSKOLA Akademin för utbildning, kultur och kommunikation Avdelningen för tillämpad matematik Examinator: Erik Darpö TENTAMEN I MATEMATIK MMA11 Matematisk grundkurs TEN BEDÖMNINGSPRINCIPER med POÄNGSPANN Läsår: 013/14 Tentamen TEN 014-06-11 1. a) x y b) 0 1 c) F med F( x) e C, där C betecknar en godtycklig konstant. Kurvan är en parabel och ekvationen kan skrivas som x 5 ( y 1) P : (5, 1) och Q : (4,0) är två exempel på punkter som tillhör kurvan POÄNGSPANN (maxpoäng) för olika delmoment i uppgifter 1p: Korrekt bestämt en ekvation för den räta linjen 1p: Korrekt bestämt värdet av sin(x ) då cos( x ) 1 1p: Korrekt bestämt en allmän primitiv till f Den som i deluppgift b) har argumenterat endast utifrån att cos( ) 1 får 0p i uppgift b) 1p: Korrekt angivit att kurvan är en parabel 1p: Korrekt bestämt en punkt på kurvan 1p: Korrekt bestämt en punkt till på kurvan 3. x n där n Z 1p: Korrekt omskrivit ekvationen till formen cos ( x ) 3cos( x) 0 1p: Korrekt faktorisera i ekvationen till (cos( x ) 1)(cos( x) ) 0 1p: Korrekt tolkat ekvationen som ekvivalent med (cos( x ) 1) (cos( x) ), korrekt funnit rötterna till cos( x ) 1, och korrekt noterat att cos( x ) (för reella x ) saknar rötter ( 4. a) f ( x) (1 x) 1 b) dx g( x) C (1 x) med t.ex. C 0 1p: Korrekt bestämt derivatan till funktionen f p: Korrekt bestämt en primitiv till funktionen g Den som i deluppgift b) har missat att ta med en faktor 1 i den icke-konstanta delen, men har det övriga rätt, får 1p för sin lösning av uppgift b) 5. 0,, 1p: Korrekt bestämt derivatan av funktionen sin(cos()) 1p: Korrekt satt derivatan lika med noll för att finna de x för vilka tangenten till kurvan är parallell med x -axeln, dvs funnit ekvationen cos(cos( x )) sin( x) 0, samt korrekt utrett för vilka x faktorn sin(x ) är lika med noll och i intervallet 0, funnit att detta gäller för x 0 x x 1p: Korrekt utrett för vilka x den andra faktorn, cos(cos(x )), är lika med noll och funnit att detta villkor ej löses av något (reellt) x 6. a) i b) 5 c) 5 1p: Korrekt bestämt konjugatet till i 1p: Korrekt bestämt absolutbeloppet av i 1p: Korrekt bestämt absolutbeloppet av ( i) Den som i deluppgift c) har gjort principiellt rätt, men utifrån ett i deluppgift b) uppkommet, felaktigt men icke orimligt svar (dvs reellt och 0 ), får 1p för sin lösning av uppgift c) 4 1 ()
7. a.e. 1p: Korrekt insett det faktum att integranden är lika med absolutbeloppet av sin( x ), och inte sin( x ), och korrekt utifrån detta omskrivit integralen utan absolutbelopp i integranden 1p: Korrekt bestämt en primitiv till integranden 1p: Korrekt gjort insättning av gränserna, och korrekt utfört en avslutande summering Den som har formulerat integralen med sin( x ) som integrand kan få som mest 1p och då ifall en primitiv till sin( x ) är korrekt bestämd. 8. 6, 3, 3p: Korrekt bevisat att den tredje sidan måste vara lika med 3 och att en av de icke givna vinklarna är rät Den som endast har förmodat att en av de icke givna vinklarna är rät, och sedan endast subtraherat fram den tredje vinkeln, får totalt 0p. r cos( ) i sin( r i 9. a) i 4 i5 4 b) ( z e ) ( z e ) i 1 ( z ) ( z 1 i ) e ) 1p: Korrekt bestämt z på polär form 1p: Korrekt funnit den ena roten till ekvationen z i 1p: Korrekt funnit den andra roten till ekvationen z i ()