Tentamen ellära 92FY21 och 27
|
|
- Ann-Sofie Lindqvist
- för 8 år sedan
- Visningar:
Transkript
1 Tentmen ellär 92FY21 och kl Svren nges på seprt ppper. Fullständig lösningr med ll steg motiverde och beteckningr utstt sk redoviss för tt få full poäng. Poängen för en helt korrekt löst uppgift nges i nslutning till vrje uppgift. Tillåtn hjälpmedel är miniräknre och Physics Hndbook. Lösningrn till tentmen kommer tt nslås på kursens hemsid direkt efter tentmen. För betyget godkänd (G) krävs 12 poäng och för väl godkänd (VG) 18 poäng. Eventuell bonuspoäng kommer tt dders till poängen på tentmen upp till mxpoängen. Lyck till! /Dniel Söderström
2 1. En LRC-krets i serie hr R = 15,0 Ω, L = 25,0 mh och C = 30,0 µf. Kretsen är koppld till en växelspänningskäll med en rms-spänning på 120 V och frekvens 200 Hz. () Vd är kretsens impedns? (1) Kretsens impedns är Z = R 2 + (ωl 1/ωC) 2 som med värden instt blir 15,8 Ω (b) Vd är rms-spänningen över motståndet? (1) Rms-spänningen över motståndet är V rms,r = RI rms där I rms = V rms /Z. Med värden instt får vi V rms,r = 114 V. (c) Vd är rms-spänningen över spolen? (1) Rms-spänningen över spolen är V rms,l = X L I rms = ωli rms = 239 V. (d) Vd är spänningens mplitud över kondenstorn? (1) Spänningens mplitud över kondenstorn är V C = 2V rms,c = 2X C I rms = 2I rms /ωc = 285 V. 2. En olddd kondenstor på 30,0 µf är koppld i serie med ett motstånd på 25,0 Ω, en öppen strömbrytre och ett btteri, se figur 1. Btteriet hr en intern resistns på 10,0 Ω och spänningen över btteriet då strömbrytren är öppen är 50,0 V. Kblrn i kretsen hr försumbr resistns. Vid tiden t = 0 stängs strömbrytren. () Vd blir den mximl strömmen genom motståndet och när uppnås den? Motiver ditt svr! (1) Precis när strömbrytren stängs uppträder kondenstorn som en kortslutning (inget spänningsfll över den). Den mximl strömmen blir då br beroende på motståndet i kretsen och spänningen, I 0 = V/R tot = 50,0/(25,0 + 10,0) = 1,43 A. (b) Hur mycket lddning finns det på kondenstorn då strömmen i kretsen är 0,850 A? (1) Lddningen på kondenstorn är proportionell mot strömmen som går till kondenstorn. Strömmen kommer vt exponentiellt enligt i = I 0 exp( t/rc), där I 0 är mxströmmen. Lddningen på kondenstorn ökr exponentiellt enligt q = Q f [1 exp( t/rc)], där Q f är den mximl lddningen på kondenstorn, som ges v Q f = CV. Löser mn ut tiden då strömmen är 0,850 A och sätter in den i uttrycket för lddningen q får mn q = 608 µc. (c) Kondenstorn är en plttkondenstor med plttvståndet 0,5 mm. Ett dielektriskt mteril med dielektricitetskonstnten 7,0 fyller utrymmet melln plttorn. Vd är det elektrisk fältet i det dielektrisk mterilet när lddningen är som störst på kondenstorn? (2) Det elektrisk fältet i en plttkondenstor kn nses vr homogent. Då spänningen över kondenstorn är V = 50,0 V då kondenstorn är fullt lddd kommer fältet i dielektrikt vr E = V/dɛ r = 50,0/0, ,0 = 14, V/m. Tentmen ellär (92FY21 och 27) 31 mj 2013 Sid 1 v 5
3 SW C R Figur 1: Kretsen i uppgift En lfprtikel rör sig med en hstighet v 5, m/s i en riktning vinkelrät mot ett mgnetiskt fält som hr styrkn 0,040 T. Alfprtikelns lddning är 3, C och dess mss är 6, kg. () Vilken rdie kommer lfprtikelns bn tt h? (3) Rdien R bestäms v lfprtikelns hstighet, mss och lddning, smt mgnetfältets storlek enligt R = mv/ q B, då hstigheten och mgnetfältets riktning är vinkelrät. Sätts de ngivn värden in fås 0,26 m. (b) Hur lång tid tr det för lfprtikeln tt gå ett vrv runt dess bn? (1) Tiden ett vrv tr beror på frten och rdien. Då krften på prtikeln är vinkelrät mot rörelsen uträtts inget rbete och frten är konstnt. Tiden blir då t = R/v = 3,2 µs 4. Två lång prllell trådr för strömmr på 10 A i motstt riktning. De är seprerde med 40 cm. Vd är storleken på mgnetfältet i trådrns pln i en punkt som ligger 20 cm från en tråd och 60 cm från den ndr? (4) Mgnetfältets storlek på vståndet r från en lång rk ledre som för strömmen I är B = µ 0 I/r. Då ledrn för ström i motstt riktning i förhållnde till vrndr kommer mgnetfältet från de två ledrn i den sökt punkten vr riktde åt motstt håll (in och ut ur plnet). Summn v mgnetfälten ger mgnetfältets storlek i punkten, enligt superpositionsprincipen. Vi hr B 1 + B 2 = µ 0 I ( 1 r 1 1 r 2 ) = 6,7 µt. 5. En proton släpps från vil 5,0 cm från en lång, rk, mycket tunn lednde tråd som hr en lddning på +5,50 µc per meter. () Härled ett uttryck för det elektrisk fältet i ll punkter i rummet runt ledren. (2) Tråden nts ligg utefter x-xeln och dels upp i små segment dx med lddning dq. Tråden går från x = till x =. Det elektrisk fältet från dq på ett vstånd R utefter y-xeln är de = dq 4πɛ 0 R 2 ˆR. Tentmen ellär (92FY21 och 27) 31 mj 2013 Sid 2 v 5
4 dq måste ju vr lddningen per meter, λ, gånger det lill segmentet dx, dq = λdx. Då ˆR = R/ R och R = r r, där r är positionsvektorn för fältpunkten och r är positionsvektorn för källpunkten, får vi de = λ [ ] ydx 4πɛ 0 (x 2 + y 2 ) 3/2 ŷ xdx (x 2 + y 2 ˆx. ) 3/2 Dett integrers därefter utefter trådens längd från x = till x = för tt få det totl fältet i punkten på y-xeln. Vi ser tt ˆx-delen kommer tt försvinn när vi integrerr över intervllet, så kvr blir E = λ ( ) 2 4πɛ 0 y( 2 + y 2 ) 1/2 ŷ. Då tråden är mycket lång hr vi tt, så E = λ ɛ 0 yŷ, vilket är fältet i ll punkter runt den lång tråden på grund v symmetri. (b) Hur långt från ledren kommer protonen h fått en hstighet på 2550 km/s? Protonens mss m p = 1, kg. (2) Protonen får kinetisk energi E kin på grund v tt den tppr elektrisk potentiell energi U. Vi måste h tt E kin = U då energin bevrs. U = qv b och V b = Om vi stoppr in E-fältet från () får vi b b E dl = Edy. V b = λ ɛ 0 b dy y = λ ln b ɛ 0. U = λ ɛ 0 ln b, så E kin = U ger, om mn löser ut b som efterfrågs, b = exp 1 2 mv2 ɛ 0 qλ Sätter mn in givn värden fås tt b = 7,0 cm från ledren.. 6. En rektngulär sling ligger bredvid en lång rk ledre som för strömmen I l = 10,0 A (se figur). Den lång rk ledren är prllell till rektngelns sidor och ligger i smm pln som rektngeln. Rektngeln hr sidorn 1,0 m och 2,0 m och den ligger till en börjn 0,10 m från den lång ledren. Plötsligt börjr rektngeln rör sig åt höger med en hstighet v v = 50,0 m/s (nt tt den får konstnt hstighet ögonblickligen). Med vilken krft måste rektngeln drs för tt den sk håll konstnt hstighet då dess vänstr sid befinner sig 1,0 m från den lång ledren (bortse från luftmotstånd)? Rektngeln är gjord v en tunn tråd med resistnsen 0,10 Ω/m. (4) Denn uppgift kn löss på två sätt. Här är det en. Tentmen ellär (92FY21 och 27) 31 mj 2013 Sid 3 v 5
5 1,0 m Il 2,0 m v 1,0 m Figur 2: Rektngel bredvid lång rk ledre. Mgnituden på mgnetfältet från ledren som för strömmen I l på vståndet r är B = µ 0I l r. Då rektngeln rör sig i förhållnde till ledren kommer det mgnetisk flödet Φ b genom ren S som rektngeln omsluter tt ändrs. Enligt E = dφ B dt kommer en emk tt uppstå i rektngeln, vilken ger upphov till en ström i rektngelns tråd. En ström i en ledre i ett mgnetfält kommer tt påverks v en krft enligt F = BIl, där l är ledrens längd som ligger vinkelrätt mot hstighet och mgnetfält. Denn krft måste övervinns för tt rektngeln sk kunn håll konstnt frt. Vi söker lltså emk:n för tt räkn ut strömmen för tt kunn få frm krften på rektngeln. Om vståndet melln ledren och rektngelns vänstr sid beteckns, rektngelns kortsid p och långsid l får vi flödet genom rektngeln som Φ B = S BdA = lµ 0I l +p 1 r dr = lµ 0I l ln + p. Vi kn nvänd sklärer för mgnetfält och ytnorml, eftersom rektngeln och ledren befinner sig i smm pln och mgnetfältet därför är vinkelrätt mot rektngelytn. För tt få emk:n måste vi deriver flödet med vseende på tiden. Det end som vrierr med tiden i uttrycket för flödet är, så vi får Men d dt = v, rektngelns frt. Så E = dφ B dt E = lµ 0I l = lµ 0I l p d ( + p) dt. p ( + p) v. Strömmen I som går i rektngeln beror nu på motståndet R. Vi hr givet en resistns per meter, vilket ger oss det totl motståndet i tråden om vi multiplicerr med längden 2(l+ p), R = 0,1 6,0 = 0,6 Ω, I = E R = lµ 0I l p R ( + p) v. Rektngeln hr två sidor, långsidorn, som är vinkelrät mot hstigheten och mgnetfältet och båd kommer lltså utsätts för en krft. Men mgnetfältet är olik stort vid de två långsidorn, så nettokrften blir skillnden melln de två krftern, eftersom strömmen går åt olik håll i vänster och höger sid. Vi får F net = Il[B() B( + p)] = l2 µ 2 0 I2 l 4π 2 R ( p 1 ( + p) v 1 ). + p Tentmen ellär (92FY21 och 27) 31 mj 2013 Sid 4 v 5
6 Med värden instt, med = 1,0 m och v = 50,0 m/s, får vi tt krften som måste påverk rektngeln för tt den sk håll konstnt frt är F net = 3, N. Tentmen ellär (92FY21 och 27) 31 mj 2013 Sid 5 v 5
Tentamen ellära 92FY21 och 27
Tentmen ellär 92FY21 och 27 201-08-22 kl. 8 13 Svren nges på seprt ppper. Fullständig lösningr med ll steg motiverde och eteckningr utstt sk redoviss för tt få full poäng. Poängen för en helt korrekt löst
Tentamen för FYSIK (TFYA68), samt ELEKTROMAGNETISM (TFYA48, 9FY321)
Tentmen för FYK (TFYA68), smt LKTROMAGNTM (TFYA48, 9FY321) 2013-01-09 kl. 14.00-19.00 Tillåtn hjälpmedel: Physics Hndbook (Nordling, Östermn), miniräknre, smt formelsmling som bifogs denn tentmen men består
m 1 + m 2 v 2 m 1 m 2 v 1 Mekanik mk, SG1102, Problemtentamen 2013 08 20, kl 14-18 KTH Mekanik 2013 08 20
KTH Mekanik 2013 08 20 Mekanik mk, SG1102, Problemtentamen 2013 08 20, kl 14-18 Uppgift 1: En bil börjar accelerera med ẍ(0) = a 0 från stillastående. Accelerationen avtar exponentiellt och ges av ẍ(t)
Föreläsning 7b. 3329 Längdskalan är L = 2 3
Föreläsning 7b 3329 Längdskln är L = 2 3 eller 2 : 3 som det oft skrivs i smbnd med krtor. Från teorin får vi tt A, reskln är längdskln i kvdrt det vill säg A = L 2. I denn uppgift ger det A = ( ) 2 2
Skriftlig tentamen i Elektromagnetisk fältteori för π3 (ETEF01) och F3 (ETE055)
Skriftlig tentmen i Elektromgnetisk fältteori för π3 (ETEF1) och F3 (ETE55) Tid och plts: 7 jnuri, 215, kl. 8. 13., lokl: MA9, E F. Kursnsvrig lärre: Anders Krlsson, tel. 222 4 89. Tillåtn hjälpmedel:
Tentamen för FYSIK (TFYA68), samt ELEKTROMAGNETISM (TFYA48, 9FY321)
Tentmen för FYK (TFYA68), smt LKTROMAGNTM (TFYA48, 9FY321) 2012-08-16 kl. 8.00-13.00 Tillåtn hjälpmedel: Physics Hndbook (Nordling, Östermn), miniräknre, smt formelsmling som bifogs denn tentmen men består
Addition och subtraktion
Sidor i boken 35-39 Addition och subtrktion Vi börjr med lite ritmetik. Heltlsddition innebär ing som helst problem. Här tr vi lämpligen räknedosn till hjälp. Eempel. 3+00+5 = 7 Så länge ll nämnre är lik
93FY51/ STN1 Elektromagnetism Tenta : svar och anvisningar
15825 93FY51 1 93FY51/ STN1 Elektromgnetism Tent 15825: svr och nvisningr Uppgift 1 Från Couloms lg och E F/q hr vi uttrycket: E 1 4πε ρl dl r Vi väljer cylindrisk koordinter och sätter r zẑ ˆR och dl
1 Bestäm Théveninekvivalenten med avseende på nodparet a-b i nedanstående krets.
(7) 9 jnuri 009 Institutionen för elektro och informtionsteknik Dniel Sjöerg ETE5 Ellär och elektronik, tentmen jnuri 009 Tillåtn hjälpmedel: formelsmling i kretsteori. Oserver tt uppgiftern inte är sorterde
Stokes sats och Integralberäkning Mats Persson
Föreläsning 5/9 tokes sts och Integrlberäkning Mts Persson 1 tokes sts Först given på skrivningen för mith sk priset i februri 185 i mbridge. Bäst student J.. Mxwell). ts: Den slutn kurvn är rnden till
Tentamen i Elektromagnetisk fältteori för π3 och Modellering och simulering inom fältteori för F3, 29 augusti, 2008, kl
Tentmen i Elektromgnetisk fältteori för π3 och Modellering och simulering inom fältteori för F3, 9 ugusti, 8, kl. 14. 19., lokl: MA9A Kursnsvrig lärre: Gerhrd Kristensson, tel. 45 6 & Anders Krlsson tel.
Tentamen i ETE115 Ellära och elektronik, 3/6 2017
Tentmen i ETE115 Ellär och elektronik, 3/6 17 Tillåtn hjälpmedel: Formelsmling i kretsteori. Oserver tt uppgiftern inte är sorterde i svårighetsordning. All lösningr skll ges tydlig motiveringr. 1 8 V
SF1625 Envariabelanalys
SF1625 Envribelnlys Föreläsning 13 Institutionen för mtemtik KTH 27 september 2017 SF1625 Envribelnlys Anmäl er till tentn Anmäl er till tentn nu. Det görs vi min sidor. Om det inte går, mejl studentexpeditionen
LINJÄR ALGEBRA II LEKTION 1
LINJÄR ALGEBRA II LEKTION JOHAN ASPLUND INNEHÅLL. VEKTORRUM OCH DELRUM Hel kursen Linjär Algebr II hndlr om vektorrum och hur vektorrum (eller linjär rum, som de iblnd klls) beter sig. Tidigre hr mn ntgligen
SF1625 Envariabelanalys
Modul 5: Integrler Institutionen för mtemtik KTH 30 november 4 december Integrler Integrler är vd vi sk håll på med denn veck och näst. Vi kommer tt gör följnde: En definition v vd begreppet betyder En
Tentamen för FYSIK (TFYA68), samt ELEKTROMAGNETISM (TFYA48, 9FY321)
Tentmen för FYK (TFYA68), smt LKTROMAGNTM (TFYA48, 9FY31) 013-05-8 kl. 08.00-13.00 Tillåtn hjälpmedel: Physics Hndbook (Nordling, Östermn) - egn bokmärken ok, dock ej formler, nteckningr miniräknre - grfräknre
Lösningar till tentamen i EF för π3 och F3
Lösningr till tentmen i EF för π3 och F3 Tid och plts: 31 oktober, 14, kl. 14.19., lokl: Vic 3BC. Kursnsvrig lärre: Gerhrd Kristensson. Lösning problem 1 Vi beräknr potentilen från en stv och multiplicerr
Tentamen för FYSIK (TFYA68), samt ELEKTROMAGNETISM (TFYA48, 9FY321)
Tentmen för FYK (TFYA68), smt LKTOMAGNTM (TFYA48, 9FY321) 2012-05-30 kl. 14.00-19.00 Tillåtn hjälpmedel: Physics Hndbook (Nordling, Östermn), miniräknre, smt formelsmling som bifogs denn tentmen men består
Tentamen i Eleffektsystem 2C1240 4 poäng
Tentmen i Eleffektytem C40 4 poäng Ondgen 5 december 004 kl 4.00-9.00 (Frågetund: 5.00, 6.00 och 7.30) Hjälpmedel: En hndkriven A4-id, Bet eller Joefon, fickräknre. Endt en uppgift per bld! Teern lämn
Rätt svar (1p): u A. α β A B. u B. b) (max 3p) I början har endast puck A rörelseenergi: E AB,i = 1 2 m Av 2 A = 1 2 m Au 2 A
1 I ett experiment hängdes vikter med olik stor mss i en lätt fjäder. Vikten drogs neråt och perioden för den hrmonisk oscilltionen som då uppstod mättes. Frekvensen för oscilltorn f = 2π 1 k mv. Nednstående
Mätning av effekter. Vad är elektrisk effekt? Vad är aktiv-, skenbar- reaktiv- medel- och direkteffekt samt effektfaktor?
Mätning av effekter Vad är elektrisk effekt? Vad är aktiv-, skenbar- reaktiv- medel- och direkteffekt samt effektfaktor? Denna studie ger vägledning om de grundläggande parametrarna för 3-fas effektmätning.
Tentamen ETE115 Ellära och elektronik för F och N,
Tentmen ETE5 Ellär och elektronik för F och N, 009 087 Tillåtn hjälpmedel: formelsmling i kretsteori och elektronik. Oserver tt uppgiftern inte är ordnde i svårighetsordning. All lösningr skll ges tydlig
Lösningar till repetitionstentamen i EF för π3 och F3
Lösningr till repetitionstentmen i EF för π3 oh F3 Lösning problem Från Poyntingvektorn (r, t = E(r, t H(r, t = A ẑ η 0 konstterr vi tt vågens utbredningsriktning ê är vilket leder till tt dess vågvektor
Tentamen i Fysik A, Tekniskt-Naturvetenskapligt basår
Tentamen i Fysik A, Tekniskt-Naturvetenskapligt basår Datum: 05-01-20 Skrivtid: 16.00-22.00 Hjälpmedel: Räknare, formelsamling Lärare: A. Gustafsson, M. Hamrin, L. Lundmark och L-E. Svensson Namn: Grupp:
Uppsala Universitet Matematiska Institutionen Bo Styf. Genomgånget på föreläsningarna 21-25. Föreläsning 21, 27/1 2010:
Uppsl Universitet Mtemtisk Institutionen Bo Styf Envribelnlys, 0 hp STS, X 00-0-7 Föreläsning, 7/ 00: Genomgånget på föreläsningrn - 5. Generliserde integrler. Vi hr vist tt den bestämd integrlen I b f
Föreläsning 1 i Elektronik ESS010
Elektro och informationsteknik Föreläsning 1 i Elektronik ESS010 Hambley Kap 1 Potential Den elektriska potentialen betecknas 1 v eller V och talar om hur stor potentiell energi en laddning har. Energin
Tentamen i EITF90 Ellära och elektronik, 28/8 2018
Tentmen i EITF9 Ellär och elektronik, 8/8 8 Tillåtn hjälpmedel: Formelsmling i kretsteori. Oserver tt uppgiftern inte är sorterde i svårighetsordning. All lösningr skll ges tydlig motiveringr. Bestäm Thévenin-ekvivlenten
David Wessman, Lund, 30 oktober 2014 Statistisk Termodynamik - Kapitel 5. Sammanfattning av Gunnar Ohléns bok Statistisk Termodynamik.
Sammanfattning av Gunnar Ohléns bok Statistisk Termodynamik. 1 Jämviktsvillkor Om vi har ett stort system som består av ett litet system i kontakt med en värmereservoar. Storheter för det lilla systemet
Tentamen i SG1102 Mekanik, mindre kurs
Tentamen i SG1102 Mekanik, mindre kurs 2014-03-20 Var noga med att skilja på skalärer och vektorer. Rita tydliga figurer och motivera lösningarna väl. Enda tillåtna hjälpmedel är papper, penna, linjal
Tentamen i ELEKTROMAGNETISM I, för F1 och Q1 (1FA514)
Uppsl universitet Institutionen för fysik och stronomi Gbriell Andersson Skrivtid: 5 tim Tentmen i ELEKTROMAGNETISM I, 2013-05-31 för F1 och Q1 (1FA514) Kn även skrivs v studenter på ndr progrm där 1FA514
TATA42: Tips inför tentan
TATA42: Tips inför tentn John Thim 25 mj 205 Syfte Tnken med dett kort dokument är tt ge lite extr studietips inför tentn. Kursinnehållet definiers så klrt fortfrnde v kursplnen och kurslitterturen så
Lösningar till tentamen i EF för π3 och F3
Lösningr till tentmen i EF för π och F Tid och plts: 7 jnuri, 4, kl. 8.., lokl: MA9, EF. Kursnsvrig lärre: Gerhrd Kristensson. Lösning problem Den totlt upplgrde elektrosttisk energin ges v W = i,j= i
23 mars 2006, kl.9.00-13.00 Inga hjälpmedel, förutom skrivmateriel. Betygsgränser: 15p. för Godkänd, 22p. för Väl Godkänd av max. 35p.
HH / Georgi Tchilikov GEOMETRI och LINJÄR ALGEBRA, 5p. 3 mrs 6, kl.9.-3. Ing hjälpmedel, förutom skrivmteriel. Betygsgränser: 5p. för Godkänd, p. för Väl Godkänd v mx. 35p. Om ej nnt säges, gäller tt ll
TILLÄMPNINGAR AV INTEGRALER. VOLYMBERÄKNING.
Armin lilovic: EXTA ÖNINGA olmeräkning TILLÄMPNINGA A INTEGALE. OLYMEÄNING. uvud verktg för volmeräkning är duelintegrl som tillör kursen i flervrielnls, men någr volmeräkningr kn vi gör med jälp v enkelintegrl.
Tentamen i ETE115 Ellära och elektronik, 25/8 2015
Tentmen i ETE5 Ellär och elektronik, 5/8 05 Tillåtn hjälpmedel: Formelsmling i kretsteori. Oserver tt uppgiftern inte är sorterde i svårighetsordning. All lösningr skll ges tydlig motiveringr. Bestäm Thévenin-ekvivlenten
LEDNINGAR TILL PROBLEM I KAPITEL 9. Förklaring till dragkraftens storlek är: f
LEDNINGAR TILL PROBLE I KAPITEL 9 LP 9. N S S S Vi sk bestä stockens frt so funktion v tiden och frilägger den därför. Den påverks v tyngdkrften, norlkrften N, friktionskrften f st drgkrften S från otorn.
TIMREDOVISNINGSSYSTEM
TIMREDOVISNINGSSYSTEM Företagsekonomiska Institutionen Inledning med begreppsförklaring Huvudmeny Budgethantering Planering Rapportering Signering Utskrifter/Rapporter Byt lösenord Logga ut 1 Inledning
Tentamen i ETE115 Ellära och elektronik, 10/1 2015
Tentmen i ETE Ellär och elektronik, 0/ 20 Tillåtn hjälpmedel: Formelsmling i kretsteori. Observer tt uppgiftern inte är sorterde i svårighetsordning. All lösningr skll ges tydlig motiveringr. g 2 v in
Lösningar till uppgifter i magnetostatik
Lösningr till uppgifter i mgnetosttik 16-1-14 Uppgift 1 Metodvl: Biot-Svrts lg ing symmetrier som kn nvänds. Biot-Svrts lg evluerd i origo r = är B = µ 4π dr r r = µ dr r 4π r Linjeelementet dr bestäms
Modul 6: Integraler och tillämpningar
Institutionen för Matematik SF65 Envariabelanalys Läsåret 5/6 Modul 6: Integraler och tillämpningar Denna modul omfattar kapitel 6. och 6.5 samt kapitel 7 i kursboken Calculus av Adams och Essex och undervisas
Ellära. Ohms lag U = R * I. Ett av världens viktigaste samband kallas Ohms lag.
Ohms lag Ett av världens viktigaste samband kallas Ohms lag. Här anges sambandet mellan spänningen över en komponent, U volt, strömmen genom den, I ampere, och komponentens motstånd R ohm. Sambandet lyder:
anslås på kursens hemsida Resultatet: anslås på kursens hemsida Granskning:
Dugg i Elektromgnetisk fältteori för F. EEF31 7-11-4 kl. 8.3-1.3 Tillåtn hjälpmedel: BETA, Physics Hndbook, Formelsmling i Elektromgnetisk fältteori, Vlfri klkyltor men ing egn nteckningr utöver egn formler
Kontrollskrivning i Linjär algebra 2014 10 30, 14 18.
LINKÖPINGS UNIVERSITET Matematiska Institutionen Ulf Janfalk Kurskod: TATA Provkod: KTR Kontrollskrivning i Linjär algebra, 8. Inga hjälpmedel. Ej räknedosa. På uppgift skall endast svar ges. Varje rätt
Skriftlig tentamen i Elektromagnetisk fältteori för π3 (ETEF01) och F3 (EITF85)
Skriftlig tentmen i Elektromgnetisk fältteori för π3 (ETEF) och F3 (EITF85) Ti och plts: 3 oktober, 8, kl. 4. 9., lokl: MA A H. Kursnsvrig lärre: Aners Krlsson, tel. 4 89 och 733 35958. Tillåtn hjälpmeel:
Stockholms Tekniska Gymnasium 2014-11-19. Prov Fysik 2 Mekanik
Prov Fysik 2 Mekanik För samtliga uppgifter krävs om inte annat står antingen en tydlig och klar motivering eller fullständig lösning och att det går att följa lösningsgången. Fråga 1: Keplers tredje lag
Elektricitet och magnetism
Elektricitet och magnetism Eldistribution Laddning Ett grundläggande begrepp inom elektricitetslära är laddning. Under 1700-talet fann forskarna två sorters laddning POSITIV laddning och NEGATIV laddning
Tentamen i Elektromagnetisk fältteori för π3 och Modellering och simulering inom fältteori för F3, 17 december, 2007, kl. 8 13, lokal: Gasque
Tentmen i Elektromgnetisk fältteori för π och Modellering och simulering inom fältteori för F, 17 decemer, 2007, kl. 8 1, lokl: Gsque Kursnsvrig lärre: Gerhrd Kristensson, tel. 222 45 62 & Anders Krlsson
Ellära. Laboration 1 Mätning av ström och spänning
Ellära. Laboration 1 Mätning av ström och spänning Labhäftet underskrivet av läraren gäller som kvitto för labben. Varje laborant måste ha ett eget labhäfte med ifyllda förberedelseuppgifter och ifyllda
4-6 Trianglar Namn:..
4-6 Trianglar Namn:.. Inledning Hittills har du arbetat med parallellogrammer. En sådan har fyra hörn och motstående sidor är parallella. Vad händer om vi har en geometrisk figur som bara har tre hörn?
1. Frekvensfunktionen nedan är given. (3p)
TENTAMEN I MATEMATIK MED MATEMATISK STATISTIK HF14 TEN 11 kl 1.15-.15 Hjälpmedel: Formler och tabeller i statistik, räknedosa Fullständiga lösningar erfordras till samtliga uppgifter. Lösningarna skall
1 e x2. lim. x ln(1 + x) lim. 1 (1 x 2 + O(x 4 )) = lim. x 0 x 2 /2 + O(x 3 ) x 2 + O(x 4 ) = lim. 1 + O(x 2 ) = lim = x = arctan x 1
UPPSALA UNIVERSITET Svr till tent i mtemtik Mtemtisk institutionen Anlys MN Distns Jons Elisson 7-- Skrivtid: - 5. Observer tt problemen inte står i svårighetsordning. All svr sk motivers. Det kn krävs
Nämnarens adventskalendern 2007
Nämnarens adventskalendern 2007 1 När det närmar sig jul är det kallt. Då behöver de tre tomtenissarna både halsduk och mössa när de leker i snön. I korgen ligger en röd, en blå och en randig halsduk.
TIMREDOVISNINGSSYSTEM
TIMREDOVISNINGSSYSTEM Företagsekonomiska Institutionen Inledning med begreppsförklaring Huvudmeny Planering Rapportering Signering Utskrifter/Rapporter Byt lösenord Logga ut 1 Inledning med begreppsförklaring
SF1626 Flervariabelanalys Tentamen 8 juni 2011, Svar och lösningsförslag
SF166 Flervribelnlys Tentmen 8 juni 11, 8. - 13. Svr och lösningsförslg Del A (1 estäm en ekvtion för tngentplnet till ytn z + y z 3 1 i punkten (, y, (1, 1,. (3p b Punkten (, y, z (1.1,.9, t ligger på
Elektronen och laddning
Detta är en något omarbetad version av Studiehandledningen som användes i tryckta kursen på SSVN. Sidhänvisningar hänför sig till Quanta A 2000, ISBN 91-27-60500-0 Där det har varit möjligt har motsvarande
för M Skrivtid utbreder sig (0,5 p)
Tentamen i tillämpad Våglära FAF260, 2015 06 05 för M Skrivtid 08.00 13.00 Hjälpmedel: Formelblad och miniräknare Uppgifterna är inte sorteradee i svårighetsgrad Börja varje ny uppgift på ett nytt blad
Vektorer. Avsnitt 1. Ange lägesvektorerna för de två väteatomerna på formen: r = x ˆx + y ˆx
Avsnitt 1 Vektorer 1.1 Skissen nedn visr molekylgeometrin för H 2 O, där syretomen befinner sig i origo och vätetomern lägger symmetriskt kring x-xeln. Bindningslängden är = 96 pm och bindningsvinkeln
Tentamen i ETE115 Ellära och elektronik, 4/1 2017
Tentmen i ETE5 Ellär och elektronik, 4/ 07 Tillåtn hjälpmedel: Formelsmling i kretsteori. Oserver tt uppgiftern inte är sorterde i svårighetsordning. All lösningr skll ges tydlig motiveringr. v 0 i 0 Beräkn
m/s3,61 m/s, 5,0 s och 1,5 m/s 2 får vi längden av backen, 3,611,5 5,011,1 m/s11,1 3,6 km/h40,0 km/h
Lina Rogström linro@ifm.liu.se Lösningar till Exempeltentamen, HT014, Fysik 1 för Basåret, BFL101 Del A A1. (p) En cyklist passerar ett backkrön. På backkrönet har han hastigheten 13 km/h och han accelererar
Försättsblad till skriftlig tentamen vid Linköpings Universitet
Försättsblad till skriftlig tentamen vid Linköpings Universitet Datum för tentamen 2013-03-15 Sal (1) Om tentan går i flera salar ska du bifoga ett försättsblad till varje sal och ringa in vilken sal som
Blixtrarna hettar upp luften så att den exploderar, det är det som är åskknallen.
STATISK ELEKTICITET Elektriciteten upptäcktes första gången av grekerna omkring 600 fkr. En man vid namn Thales upptäckte att när han gned en bit bärnsten med en tygbit, så drog bärnstenen till sig småsaker.
DEMONSTRATIONER MAGNETISM II. Helmholtzspolen Elektronstråle i magnetfält Bestämning av e/m
FyL VT6 DEMONSTRATIONER MAGNETISM II Helmholtzspolen Elektronstråle i magnetfält Bestämning av e/m Uppdaterad den 19 januari 6 Introduktion FyL VT6 I litteraturen och framför allt på webben kan du enkelt
1 Bestäm Théveninekvivalenten med avseende på nodparet a-b i nedanstående krets.
(9) 2 oktoer 2008 Institutionen för elektro- och informtionsteknik Dniel Sjöerg ETE5 Ellär och elektronik, tentmen oktoer 2008 Tillåtn hjälpmedel: formelsmling i kretsteori. Oserver tt uppgiftern inte
Volum av rotationskroppar. Båglängd, rotationsytor. Adams 7.1, 7.2, 7.3
Volum v rottionskroppr. Båglängd, rottionsytor. Adms 7., 7., 7.3 Volum v rottionskroppr. Båglängd, rottionsytor. Integrtion v rtionell uttryck, prtilbråksuppdelning. Exempel med invers substitutioner.
Monteringsanvisning. Bakåtvänd montering. Godkänd höjd 61-105 cm. Maximal vikt 18 kg. UN regulation no. R129 i-size. Ålder 6 mån - 4 år. 1 a.
1 6 d c e Monteringsnvisning f h g i j k l m 7 8 10 2 3 9 c e d Bkåtvänd montering Godkänd höjd 61-105 cm 4 5 11 12 Mximl vikt 18 kg Ålder 6 mån - 4 år UN regultion no. R129 i-size 8 9 Tck för tt du vlde
Analys -Volym. Författarna och Bokförlaget Borken, 2011. Volym - 1
Anlys -Volym Teori Så beräkns volymen v en rottionskropp med snittren A(). Teori Sklmetoden för volymberäkningr.. Modell Sklmetoden för volymberäkningr... Modell Beräkning v volym om inte A() är cirkulär.
Sfärisk trigonometri
Sfärisk trigonometri Inledning Vi vill nvänd den sfärisk trigonometrin för beräkningr på storcirkelrutter längs jordytn (för sjöfrt och luftfrt). En storcirkel är en cirkel på sfären vrs medelpunkt smmnfller
Tillämpad Matematik I Övning 4
HH/ITE/BN Tillämpd Mtemtik I, Övning 8 6 Tillämpd Mtemtik I Övning 6 8 Allmänt Övningsuppgiftern, speciellt Tpuppgifter i först hnd, är eempel på uppgifter du kommer tt möt på tentmen. På denn är du ensm,
Elektriska komponenter och kretsar. Emma Björk
Elektriska komponenter och kretsar Emma Björk Elektromotorisk kraft Den mekanism som alstrar det E-fält som driver runt laddningarna i en sluten krets kallas emf(electro Motoric Force trots att det ej
Lathund, procent med bråk, åk 8
Lathund, procent med bråk, åk 8 Procent betyder hundradel, men man kan också säga en av hundra. Ni ska kunna omvandla mellan bråkform, decimalform och procentform. Nedan kan ni se några omvandlingar. Bråkform
Kylfrysguide [Namn] Elektroskandia Sverige AB [år-månad-dag]
Kylfrysguide [Nmn] Elektroskndi Sverige AB [år-månd-dg] Kylfrysguide Vilken kyl-frys sk du välj? Nturligtvis är det utrymmet som är det först tt t hänsyn till. Vnligst instlltionsbredd är 60 cm, men även
حرکات تمرینی برای ماهیچه های فک که تحت فشار قرار دارند
پارسی Persiska/ Persiska - Rörelseträning för överbelastad käkmuskulatur حرکات تمرینی برای ماهیچه های فک که تحت فشار قرار دارند هدف از این حرکات تمرینی هدف از حرکات تمرینی آنست که ماهیچه های فک نرمتر شوند.
SF1620 Matematik och modeller
KTH Teknikvetenskap, Institutionen för matematik 1 SF160 Matematik och modeller 007-09-10 Andra veckan Trigonometri De trigonometriska funktionerna och enhetscirkeln Redan vid förra veckans avsnitt var
Tentamen i FysikB IF0402 TEN2:3 2010-08-12
Tentamen i FysikB IF040 TEN: 00-0-. Ett ekolod kan användas för att bestämma havsdjupet. Man sänder ultraljud med frekvensen 5 khz från en båt. Ultraljudet reflekteras mot havets botten. Tiden det tar
Föreläsning 8 och 9. insignal. utsignal. Tvåport. Hambley avsnitt 5.5-6.1
1 Föreläsning 8 och 9 Hambley avsnitt 5.56.1 Tvåport En tvåport är en krets med en ingångsport och en gångsport. Dess symbol är en rektangel med ingångsporten till vänster och gångsporten till höger. Tvåporten
Kapitel 6. f(x) = sin x. Figur 6.1: Funktionen sin x. 1 Oinas-Kukkonen m.fl. Kurs 6 kapitel 1
Kapitel 6 Gränsvärde 6. Definition av gränsvärde När vi undersöker gränsvärdet av en funktion undersöker vi vad som händer med funktionsvärdet då variabeln, x, går mot ett visst värde. Frågeställningen
Skriv tydligt! Uppgift 1 (5p)
1(1) IF1611 Ingenjörsmetodik för IT och ME, HT 1 Tentmen Gäller även studenter som är registrerde på B1116 Torsdgen den 1 okt, 1, kl. 14.-19. Skriv tydligt! Skriv nmn och personnummer på ll inlämnde ppper!
konstanterna a och b så att ekvationssystemet x 2y = 1 2x + ay = b 2 a b
Tentamen i Inledande matematik för V och AT, (TMV25), 20-0-26. Till denna uppgift skulle endast lämnas svar, men här ges kortfattade lösningar. a) Bestäm { konstanterna a och b så att ekvationssystemet
Webb-bidrag. Sök bidrag på webben www.solvesborg.se. Gäller från 2015-01-01
Sök bidrag på webben www.solvesborg.se Gäller från 2015-01-01 Innehåll Kontaktperson Fritids- och turismkontoret Sölvesborg kommun Inledning Följande bidrag går att söka på webben Logga in Dokumenthantering
Preliminär version 2 juni 2014, reservation för fel. Tentamen i matematik. Kurs: MA152G Matematisk Analys MA123G Matematisk analys för ingenjörer
Lösningsförslg Högskoln i Skövde SK, JS) Preliminär version juni 0, reservtion för fel. Tentmen i mtemtik Kurs: MA5G Mtemtisk Anlys MAG Mtemtisk nlys för ingenjörer Tentmensdg: 0-05- kl.0-9.0 Hjälpmedel
Ändra föreningsuppgifter i föreningsregistret i Interbook
Ändra föreningsuppgifter i föreningsregistret i Interbook Välkommen till föreningsregistret i Interbook! När föreningen fått användarnamn och lösenord kan du gå in och ändra uppgifterna. Kom ihåg att gå
Tentamen i elektromagnetisk fältteori för E
Tentmen i elektromgnetisk fältteori för E måndg, 6 dec 3, kl. 8-3, Vic:A-C Del : flervlsfrågor (p) OBS. Endst svr (A)-(E) efterfrågs. Ingen motivtion behövs i Del.. Guss lg kn inte nvänds för tt förenkl
Lösningsförslag till finaltävlingen den 19 november 2005
SKOLORNAS MATEMATIKTÄVLING Svensk Mtemtikersmfundet Lösningsförslg till finltävlingen den 19 novemer 2005 1 Vi utvecklr de åd leden och får ekvtionen vilken efter förenkling kn skrivs x 3 + xy + x 2 y
FRÅN A TILL Ö LäraMera Ab / www.laramera.se och Allemansdata Ab / www.allemansdata.se FRÅN A TILL Ö
I programmet finns 11 olika aktiviteter för att träna varje bokstav och på att känna igen ord. För varje bokstav kan olika övningsblad skrivas ut: Inledningsvis väljer du vilken bokstav du vill öva på.
Materiens Struktur. Lösningar
Mteriens Struktur Räkneövning 1 Lösningr 1. I ntriumklorid är vrje N-jon omgiven v sex Cl-joner. Det intertomär vståndet är,8 Å. Ifll tomern br skulle växelverk med Coulombväxelverkn oh br med de närmste
Manual BizPart Semesterplan
Manual BizPart Semesterplan Innehåll 1 Om manualen... 2 2 Komma igång... 2 2.1 För användare... 2 2.1.1 Logga in... 2 2.1.2 Ansök om semester... 3 2.1.3 Visa semestertabell... 3 2.1.4 Ta bort semesteransökan...
DOP-matematik Copyright Tord Persson. Bråktal -3-2 -1 0 1 2 3. Läs av vilka tal på tallinjen, som pilarna pekar på. Uppgift nr 10 -3-2 -1 0 1 2 3
Bråktal Uppgift nr En limpa delas i 4 lika stora delar. Hur stor del av limpan blir varje del? Uppgift nr 2 Hur många tiondelar behövs för att det skall räcka till en hel? Uppgift nr Hur läser man ut bråket
C100-LED Duschhörn med LED-Belysning
SVENSKA C100-LE uschhörn med LE-elysning COPYRIGHT CAINEX A ARUMSPROUKTER, LJUNGY, SWEEN MONTERINGSANVISNING Totl höjd: 1900 mm 6 mm härdt gls A 900 800 700 884 784 684 C 900 800 800 884 784 784 39 8 Prod.#
Tentamen i matematisk statistik (9MA241/9MA341/LIMAB6, STN2) 2012-01-09 kl 08-13
LINKÖPINGS UNIVERSITET MAI Johan Thim Tentamen i matematisk statistik (9MA241/9MA341/LIMAB6, STN2) 212-1-9 kl 8-13 Hjälpmedel är: miniräknare med tömda minnen och formelbladet bifogat. Varje uppgift är
Hemsida Arbetsrum. Skapa arbetsrumslista
Skapa arbetsrumslista Hemsida Arbetsrum För att kunna skapa en arbetsrumslista så markerar du i navigeringsfönstret där den nya sidan ska ligga. Klicka på menyknappen till höger om sidnamnet och sedan
Algebra, polynom & andragradsekvationer en pampig rubrik på ett annars relativt obetydligt dokument
Algebra, polynom & andragradsekvationer en pampig rubrik på ett annars relativt obetydligt dokument Distributiva lagen a(b + c) = ab + ac 3(x + 4) = 3 x + 3 4 = 3x + 12 3(2x + 4) = 3 2x + 3 4 = 6x + 12
0 a. a -Â n 2 p n. beskriver på sedvanligt sätt en a-periodisk utvidgning av f. Nedanför ritas en partialsumma av Fourierserien.
Sinus- och cosinusserier I slutet v kursen där vi skll lös differentilekvtioner på ändlig intervll v typen H, L, behöver vi konstruer Fourierserier med en viss typ v uppförnde i intervllens ändpunkter.
NTI gymnasiet i Stockholm. Skolan erbjuder. Skolans målsättning är
Skolan erbjuder Skolans målsättning är Resultat av elevenkät för Elprogrammet (EC), år 2 Svarsalternativen för enkäten har grupperats i två grupper: Instämmer = Helt/I huvudsak Instämmer inte = Delvis/Inte
XIV. Elektriska strömmar
Elektromgnetismens grunder Strömmens riktning Mn definierr tt strömmen går från plus (+) till minus (-). För tt få till stånd en ström måste mn. Spänningskäll 2. Elektriskt lednde ledningr 3. Sluten krets
Tentamen i Modern fysik, TFYA11, TENA
IFM - Institutionen för Fysik, Kemi och Biologi Linköpings universitet Tentamen i Modern fysik, TFYA11, TENA Tisdagen den 23/8 2011 kl. 14.00-18.00 i TER2 Tentamen består av 4 sidor (inklusive denna sida)
När jag har arbetat klart med det här området ska jag:
Kraft och rörelse När jag har arbetat klart med det här området ska jag: kunna ge exempel på olika krafter och kunna använda mina kunskaper om dessa när jag förklarar olika fysikaliska fenomen, veta vad
Får nyanlända samma chans i den svenska skolan?
Får nyanlända samma chans i den svenska skolan? Sammanställning oktober 2015 De nyanlända eleverna (varit här högst fyra år) klarar den svenska skolan sämre än andra elever. Ett tydligt tecken är att för
Bruksanvisning. Elverk Art.: 90 42 040. Annelundsgatan 7A I 749 40 Enköping I Tel 010-209 70 50 I Fax 0171-44 14 10 I www.p-lindberg.
Bruksanvisning Elverk Art.: 90 42 040 Annelundsgatan 7A I 749 40 Enköping I Tel 010-209 70 50 I Fax 0171-44 14 10 I www.p-lindberg.se Lycka till med din produkt från P. Lindberg! Innan du installerar och
Skriva B gammalt nationellt prov
Skriva B gammalt nationellt prov Skriva B.wma Då fortsätter vi skrivträningen. Detta avsnitt handlar om att anpassa sin text till en särskild situation, en speciell texttyp och särskilda läsare. Nu ska