Stokes sats och Integralberäkning Mats Persson
|
|
- Lina Eriksson
- för 8 år sedan
- Visningar:
Transkript
1 Föreläsning 5/9 tokes sts och Integrlberäkning Mts Persson 1 tokes sts Först given på skrivningen för mith sk priset i februri 185 i mbridge. Bäst student J.. Mxwell). ts: Den slutn kurvn är rnden till ytn. Då gäller för ett kontinuerligt deriverbrt vektorfält u på tt u nd = u dr, 1) där n och är orienterde enligt högerhndsregeln. Noter tt från Guss sts och tt rottionen är divergensfri, dvs u = 0 följer tt ytintegrlen hr smm värde för ll ytor med smm rnd. I krtesisk koordinter ges rottionen v ˆx ŷ ẑ u = x y y u x u y u z. ) Med hjälp v en kurvintegrl kn vi konstruer en koordintoberoende definition v rottionen. Längs enhetsvektorn ˆn hr rot u en komponent 1 ˆn rotu = lim u dr, ) δ 0 δ δ där δ är ett litet ytelement med normlen ˆn. För tt se vr rottionen hr fått sitt nmn ifrån låt oss betrkt hstighetsfältet i en stelt roternde kropp. Hstighetsfältet i denn kropp kn skrivs som v = Ω r. Om vi låter Ω vr prllell med z-xeln, så blir hstigheten v = 0, 0, Ω) x, y, z) = Ωy, Ωx, 0). Rottionen v dett vektorfält är v v = Exempel: Beräkn integrlen längs kurvn Ωx) z, Ωy), Ωx) + Ωy) ) = 0, 0, Ω). ) z x y F dr 5) F = F 0 x + y + 1 ) y, x, 0) 6) x + y =, z = 0. 7) Lösning: i konstterr först tt kurvn är en ellips med hlvxlrn och. Om vi studerr F så ser vi tt F är singulär i origo. i beräknr också F som blir F = F 0 ẑ. 8) i kn inte omedelbrt tillämp tokes sts eftersom F är singulär i origo eller mer korrekt längs z-xeln. För tt tillämp tokes sts måste vi skär ut en liten cirkel kring origo. i lägger därför in en cirkel med rdien ɛ runt origo, och tillämpr därefter tokes sts på ytn melln 1
2 ɛ och. Om ytn skll h ẑ som normlvektor så måste vi följ moturs och ɛ medurs. tokes sts ger tt F dr = F) ẑd = F 0 d 9) + ɛ Om vi nu låter rdien för ɛ, ɛ, gå mot noll, så blir ytintegrlen ren för ellipsen, π. Det återstår nu tt beräkn kurvintegrlen i kn i cylinderkoordinter skriv F = F 0 ρ + 1 ɛ F dr. 10) ) ρˆφ = F 0 ρ + ρ ) ˆφ. 11) Dessutom hr ɛ tngentvektorn ˆφ och ɛ tngentvektorn ˆφ. Dett ger tt integrlen blir F dr = F dr = F 0 ɛ ɛ ɛ + ɛ ) π ) ) dφ = πf 0 + ɛ. 1) 0 Integrlen går mot πf 0 då ɛ 0. Alltså hr vi till slut F dr = F dr + F) d = πf 0 πf 0 = 6πF 0. 1) ɛ 1.1 Konservtiv fält och rottion i hr definiert ett konservtivt fält som ett fält F sådnt tt F dr = 0 1) för vrje sluten kurv. Enligt tokes sts följer det nu tt ett fält som hr F = 0 överllt i ett enkelt smmnhängnde område är konservtivt. Kurvintegrler Exempel: PLK Kp..5 Uppg. : Beräkn integrlen F dr, 15) där F = [ x y + z) ] ˆx + y z ) ŷ + [ z x + y) ] ẑ, 16) och är den kurv som utgör skärningen melln cylindern och sfären x ) + y =, z 0, 17) x + y + z = R, R >, 18) där är en konstnt med dimensionen längd. Lösning: i kn först konstter tt skärningen melln cylinder och sfär är en ellips vrs exkt form är något komplicerd tt fstställ. Eftersom kurvn är en sluten kurv är det locknde tt nvänd tokes sts, så vi beräknr rottionen ˆx ŷ ẑ F = x y z x y + z) y z z x + y) = + ) ˆx + ) ŷ + ẑ = ẑ. 19)
3 Alltså är rottionen v F en rent vertikl vektor. i kn nu nvänd tokes sts F dr = F d. 0) Lägg märke till tt ytn skll orienters så tt den följer högerhndsregeln. Dett betyder tt om vi följer kurvn moturs så skll normlen ˆn till pek uppåt. F d = ẑ ˆnd = ẑ ˆnd. 1) klärprodukten i den sist integrlen betyder tt vi projicerr ner ren på ett pln vinkelrät mot ẑ, det vill säg på xy-plnet. I dett plnet är skärningen cylinderns tvärsnittsyt, en cirkel med rdien, och integrlen blir cirkelren π. Alltså blir integrlen till slut F dr = π = π. ) Alerntivt kn mn välj bottenytn och mntelytn nednför kurvn som den inneslutn ytn. På mntelytn är F ˆn = 0 eftersom ˆn ẑ och normlytintegrlen över mntelytn ger inget bidrg. På bottenytn är ˆn = ẑ så tt ytnormlintegrlen blir då gånger bottenytn. Exempel: PLK Kp..5, Uppg. : En prtikel påverks v krftfältet F = F 0 [ πy + sin ) ˆx + x ŷ + πx cos ẑ ]. ) ilket rbete uträttr fältet då prtikeln rör sig i positiv riktning kring den cirkel som ges v skärningen melln x + y + z = ) och x = z? 5) Lösning: För tt få ut rbetet behöver vi beräkn integrlen F dr. 6) i börjr med tt bestämm skärningskurvn. x + y + z = är en sfär med rdien och centrum i origo, medn x = z är ett pln med normlvektorn ˆn = 1 1, 0, 1). 7) kärningen melln de båd ytorn blir en cirkel med rdien. Den motsvrnde cirkelskivn hr också normlvektorn ˆn. Med det vl som vi hr gjort v normlvektorn, så gäller tokes sts om prtikeln rör sig moturs längs cirkeln. i beräknr nu rottionen längs ytnormlen ˆn F = F 0 πy x + sin y x πx z cos F 0 1 π = ). 8) tokes sts ger oss sedn vilket är svret. F dr = F d = 1 π F 0 1 π π F 0 = d = π 1 π) F 0, 9)
4 Ytintegrler Exempel: PLK Kp.., Uppg. 7: Låt vr ytn y + z = 1, 1 x 1, z 0 med uppåt riktd normlvektor. Beräkn F d, 0) där F = x, x yz, x y z ). Lösning: Ytn är en den övre hlvn v en cylinder med x-xeln som symmetrixel. För tt tillämp Guss sts behöver vi slut denn yt, vilket vi kn gör genom tt lägg till två hlvcirklr, 1 och vid x = 1 och x = 1, smt en bottenyt,. Normlvektorn till dess ytor skll väljs som en kontinuerlig fortsättning v normlvektorn på. Dett innebär tt 1 och får normlvektorern ˆx och ˆx, smt tt normlvektorn till blir ẑ. i ser nu tt normlvektorn överllt pekr ut från den volym som innesluts v, 1, och, vilket är vd som krävs för tt vi skll kunn nvänd Guss sts. i kn nu beräkn divergensen F = x x + x yz ) + x y z ) = 1 + x z + x y = 1 + x ρ, 1) y z där vi hr infört ρ = y + z. i inför lltså en form v cylindrisk koordinter som utgår från x-xeln istället för som vnligt från z-xeln. i kn nu beräkn volymsintegrlen 1 1 π Fd = d + x ρ dϕρdρdx. ) Tänk här på tt vi br integrerr över en hlvcylinder, så tt integrtionsintervllet för ϕ går från 0 till π. Den först integrlen är br hlvcylindersn volym, så nu får vi Fd = 1 π + π [ x ] 1 1 [ ρ ] = π + π + 1 ) 1 = 7π 6. ) i får nu t hnd om de enskild begränsningsytorn. F d = xd = d = π 1 1 1, ) eftersom x = 1 på 1. På smm sätt får vi på F d = xd = π, 5) då x = 1 på. lutligen så finner vi tt på så är F d = x y zd = 0, 6) ty z = 0 på. Om vi ställer smmn dess uträkningr hr vi F d + F d + F d + F d = 1 Fd, 7) och om vi här löser ut integrlen över smt sätter in värden för de enskild integrlern får vi F d = 7π 6 π π = π 6. 8) Kommentr: För tt ytintegrlen skll vr definierd måste en yt vr orienterbr, det vill säg de skll gå tt kontinuerligt trnsporter normlvektorn från en del v ytn till en nnn.
5 Det finns exempel på ytor som inte är orienterbr, till exempel Möbius-bnd, och för sådn ytor kn mn inte definier en ytintegrl. Exempel: Beräkn ytintegrlen ˆx + yŷ + z ẑ ) d 9) över den slutn ytn : x + y + z = z. Lösning: i börjr med tt studer ytn. Den kn skrivs om som Efter kvdrtkomplettering hr vi x + y + z z = 0. 0) x + y + z ) =. 1) Dett är en sfär med rdien och centrum i 0, 0, ). Lägg märke till tt eftersom ytn redn är sluten, så råder det inte någon tvekn om hur normlvektorn är riktd. Konventionen säger oss tt normlvektorn för en sluten yt lltid pekr ut från den inneslutn volymen. I och med tt vi redn hr en sluten yt, så är det locknde tt nvänd Guss sts, och därför beräknr vi divergensen ˆx + yŷ + z ẑ ) = + z. ) Innn vi tr itu med volymsintegrlen byter vi z-koordinten till z = z, så tt sfären i de ny koordintern får sitt centrum i origo. I dess koordinter blir divergensen + z. Enligt Guss sts blir vår ytintegrl nu ˆx + yŷ + z ẑ ) d = + z ) d = d = π, ) eftersom z är en udd funktion och volymen är symmetrisk med vseende på xz plnet så är z d = 0. lutligen värdet på vår ursprunglig ytintegrl är då π. 5
FFM234, Klassisk fysik och vektorfält - Föreläsningsanteckningar
FFM234, Klssisk fysik och vektorfält - Föreläsningsnteckningr Christin Forssén, Institutionen för fysik, Chlmers, Göteborg, verige ep 13, 218 4. Integrlstser Minnesregel för strukturen på ll integrlstser
Läs merGauss och Stokes analoga satser och fältsingulariteter: källor och virvlar Mats Persson
Föreläsning 14/9 Guss och tokes nlog stser och fältsingulriteter: källor och virvlr Mts Persson 1 tser nlog med Guss och tokes stser 1.1 tser nlog med Guss sts Det finns ett pr stser som är mycket när
Läs merSF1626 Flervariabelanalys Tentamen 8 juni 2011, Svar och lösningsförslag
SF166 Flervribelnlys Tentmen 8 juni 11, 8. - 13. Svr och lösningsförslg Del A (1 estäm en ekvtion för tngentplnet till ytn z + y z 3 1 i punkten (, y, (1, 1,. (3p b Punkten (, y, z (1.1,.9, t ligger på
Läs merLINJÄR ALGEBRA II LEKTION 1
LINJÄR ALGEBRA II LEKTION JOHAN ASPLUND INNEHÅLL. VEKTORRUM OCH DELRUM Hel kursen Linjär Algebr II hndlr om vektorrum och hur vektorrum (eller linjär rum, som de iblnd klls) beter sig. Tidigre hr mn ntgligen
Läs mer19 Integralkurvor, potentialer och kurvintegraler i R 2 och R 3
Nr9,3mj-5,Ameli 9 Integrlkurvor, potentiler och kurvintegrler i R och R 3 9. Integrlkurvor En integrlkurv r(t) ((t), (t)) till ett vektorfält F(, ) är en kurv där vektorfältet är en tngent till kurvn i
Läs mer6 Greens formel, Stokes sats och lite därtill
6 Greens formel, tokes sts och lite därtill 6.1 Greens formel i låter de två sklärvärd funktionern P (, ) och Q(, ) vr kontinuerligt deriverbr i ett öppet område i -plnet. Området begränss v en positivt
Läs merkonstanterna a och b så att ekvationssystemet x 2y = 1 2x + ay = b 2 a b
Tentamen i Inledande matematik för V och AT, (TMV25), 20-0-26. Till denna uppgift skulle endast lämnas svar, men här ges kortfattade lösningar. a) Bestäm { konstanterna a och b så att ekvationssystemet
Läs merTILLÄMPNINGAR AV INTEGRALER. VOLYMBERÄKNING.
Armin lilovic: EXTA ÖNINGA olmeräkning TILLÄMPNINGA A INTEGALE. OLYMEÄNING. uvud verktg för volmeräkning är duelintegrl som tillör kursen i flervrielnls, men någr volmeräkningr kn vi gör med jälp v enkelintegrl.
Läs merAddition och subtraktion
Sidor i boken 35-39 Addition och subtrktion Vi börjr med lite ritmetik. Heltlsddition innebär ing som helst problem. Här tr vi lämpligen räknedosn till hjälp. Eempel. 3+00+5 = 7 Så länge ll nämnre är lik
Läs mer3.1 Linjens ekvation med riktningskoefficient. y = kx + l.
Kapitel Analytisk geometri Målet med detta kapitel är att göra läsaren bekant med ekvationerna för linjen, cirkeln samt ellipsen..1 Linjens ekvation med riktningskoefficient Vi utgår från ekvationen 1
Läs mer24 Integraler av masstyp
Nr, mj -5, Ameli Integrler v msstyp Kurvintegrler v msstyp Vi hr hittills studert en typ v kurvintegrl, R F dr, där vi integrerr den komponent v ett vektorfält F som är tngentiell till kurvn ( dr) i punkter
Läs merKryssproblem (redovisningsuppgifter).
Uppsala Universitet Matematiska Institutionen Bo Styf Flervariabelanalys, 5 hp STS, X 2010-03-19 Kryssproblem (redovisningsuppgifter). Till var och en av de åtta lektionerna hör ett par problem, som kallas
Läs merTATA42: Tips inför tentan
TATA42: Tips inför tentn John Thim 25 mj 205 Syfte Tnken med dett kort dokument är tt ge lite extr studietips inför tentn. Kursinnehållet definiers så klrt fortfrnde v kursplnen och kurslitterturen så
Läs mer13 Generaliserade dubbelintegraler
Nr 3, 4 pril -5, Ameli 3 Generliserde dubbelintegrler 3. Generliserde enkelintegrler Integrerbrhet är definiert för funktioner som är begränsde och definierde på ett ändligt intervll. ett kn i mång fll
Läs merModul 6: Integraler och tillämpningar
Institutionen för Matematik SF65 Envariabelanalys Läsåret 5/6 Modul 6: Integraler och tillämpningar Denna modul omfattar kapitel 6. och 6.5 samt kapitel 7 i kursboken Calculus av Adams och Essex och undervisas
Läs merLösningsskiss för tentamen Vektorfält och klassisk fysik (FFM234 och FFM232)
Lösningsskiss för tentmen Vektorfält och klssisk fysik (FFM34 och FFM3) Tid och plts: Måndgen den 3 oktober 07 klockn 4.00-8.00 i Mskinslrn. Lösningsskiss: Christin Forssén Dett är enbrt en skiss v den
Läs merFöreläsning 7b. 3329 Längdskalan är L = 2 3
Föreläsning 7b 3329 Längdskln är L = 2 3 eller 2 : 3 som det oft skrivs i smbnd med krtor. Från teorin får vi tt A, reskln är längdskln i kvdrt det vill säg A = L 2. I denn uppgift ger det A = ( ) 2 2
Läs mer0 a. a -Â n 2 p n. beskriver på sedvanligt sätt en a-periodisk utvidgning av f. Nedanför ritas en partialsumma av Fourierserien.
Sinus- och cosinusserier I slutet v kursen där vi skll lös differentilekvtioner på ändlig intervll v typen H, L, behöver vi konstruer Fourierserier med en viss typ v uppförnde i intervllens ändpunkter.
Läs merx 2 + px = ( x + p 2 x 2 2x = ( x + 2
Inledande kurs i matematik, avsnitt P.3 P.3. Bestäm en ekvation för cirkeln med mittpunkt i (0, 0) och radie 4. Med hjälp av kvadratkompletteringsformeln + p = ( + p ) ( p ) En cirkel med mittpunkt i (
Läs merKapitel 6. f(x) = sin x. Figur 6.1: Funktionen sin x. 1 Oinas-Kukkonen m.fl. Kurs 6 kapitel 1
Kapitel 6 Gränsvärde 6. Definition av gränsvärde När vi undersöker gränsvärdet av en funktion undersöker vi vad som händer med funktionsvärdet då variabeln, x, går mot ett visst värde. Frågeställningen
Läs merUppsala Universitet Matematiska Institutionen Bo Styf. Genomgånget på föreläsningarna 21-25. Föreläsning 21, 27/1 2010:
Uppsl Universitet Mtemtisk Institutionen Bo Styf Envribelnlys, 0 hp STS, X 00-0-7 Föreläsning, 7/ 00: Genomgånget på föreläsningrn - 5. Generliserde integrler. Vi hr vist tt den bestämd integrlen I b f
Läs merVolum av rotationskroppar. Båglängd, rotationsytor. Adams 7.1, 7.2, 7.3
Volum v rottionskroppr. Båglängd, rottionsytor. Adms 7., 7., 7.3 Volum v rottionskroppr. Båglängd, rottionsytor. Integrtion v rtionell uttryck, prtilbråksuppdelning. Exempel med invers substitutioner.
Läs merAlgebra, polynom & andragradsekvationer en pampig rubrik på ett annars relativt obetydligt dokument
Algebra, polynom & andragradsekvationer en pampig rubrik på ett annars relativt obetydligt dokument Distributiva lagen a(b + c) = ab + ac 3(x + 4) = 3 x + 3 4 = 3x + 12 3(2x + 4) = 3 2x + 3 4 = 6x + 12
Läs mer4-3 Vinklar Namn: Inledning. Vad är en vinkel?
4-3 Vinklar Namn: Inledning I det här kapitlet skall du lära dig allt om vinklar: spetsiga, trubbiga och räta vinklar. Och inte minst hur man mäter vinklar. Att mäta vinklar och sträckor är grundläggande
Läs merVolymer av n dimensionella klot
252 Volymer av n dimensionella klot Mikael Passare Stockholms universitet Ett klot med radien r är mängden av punkter vars avstånd till en given punkt (medelpunkten) är högst r. Låt oss skriva B 3 (r)
Läs merTavelpresentation grupp 5E
Tvelpresenttion grupp 5E Elis Elmquist, Mtild Hnes, Isk Pettersson, Juli Wennerblom, John Jxing, Boel Brndström, Edvin Cllisen, Cjs Hjolmn 19 februri 2017 1 Multipelintegrler Frmställningen för definitionen
Läs merLathund, procent med bråk, åk 8
Lathund, procent med bråk, åk 8 Procent betyder hundradel, men man kan också säga en av hundra. Ni ska kunna omvandla mellan bråkform, decimalform och procentform. Nedan kan ni se några omvandlingar. Bråkform
Läs mer4-6 Trianglar Namn:..
4-6 Trianglar Namn:.. Inledning Hittills har du arbetat med parallellogrammer. En sådan har fyra hörn och motstående sidor är parallella. Vad händer om vi har en geometrisk figur som bara har tre hörn?
Läs merSF1620 Matematik och modeller
KTH Teknikvetenskap, Institutionen för matematik 1 SF160 Matematik och modeller 007-09-10 Andra veckan Trigonometri De trigonometriska funktionerna och enhetscirkeln Redan vid förra veckans avsnitt var
Läs merSEPARABLA DIFFERENTIALEKVATIONER
SEPARABLA DIFFERENTIALEKVATIONER En differentialekvation (DE) av första ordningen sägs vara separabel om den kan skrivas på formen P ( y) Q( ) () Den allmänna lösningen till () erhålles genom att integrera
Läs merTIMREDOVISNINGSSYSTEM
TIMREDOVISNINGSSYSTEM Företagsekonomiska Institutionen Inledning med begreppsförklaring Huvudmeny Budgethantering Planering Rapportering Signering Utskrifter/Rapporter Byt lösenord Logga ut 1 Inledning
Läs merSammanfattning på lättläst svenska
Sammanfattning på lättläst svenska Utredningen skulle utreda och lämna förslag i vissa frågor som handlar om svenskt medborgarskap. Svenskt medborgarskap i dag Vissa personer blir svenska medborgare när
Läs merWebb-bidrag. Sök bidrag på webben www.solvesborg.se. Gäller från 2015-01-01
Sök bidrag på webben www.solvesborg.se Gäller från 2015-01-01 Innehåll Kontaktperson Fritids- och turismkontoret Sölvesborg kommun Inledning Följande bidrag går att söka på webben Logga in Dokumenthantering
Läs merÖvningshäfte i matematik för. Kemistuderande BL 05
Övningshäfte i matematik för Kemistuderande BL 05 Detta häfte innehåller några grundläggande övningar i de delar av matematiken som man har användning för i de tidiga kemistudierna. Nivån är gymnasiematematik,
Läs merSammanfattning av kursdag 2, 2013-03-07 i Stra ngna s och 2013-03-12 Eskilstuna
Sammanfattning av kursdag 2, 2013-03-07 i Stra ngna s och 2013-03-12 Eskilstuna Sammanfattning och genomgång av lektion 1 samt hemläxa. -Hur ta ut en position i sjökortet? Mät med Passaren mellan positionen
Läs merVi skall skriva uppsats
Vi skall skriva uppsats E n vacker dag får du höra att du skall skriva uppsats. I den här texten får du veta vad en uppsats är, vad den skall innehålla och hur den bör se ut. En uppsats är en text som
Läs merTMV151/TMV181. Fredrik Lindgren. 19 november 2013
TMV151/TMV181 Fredrik Lindgren Mtemtisk vetenskper Chlmers teknisk högskol och Göteborgs universitet 19 november 2013 F. Lindgren (Chlmers&GU) Envribelnlys 19 november 2013 1 / 24 Outline 1 Mss, moment
Läs mer1 Navier-Stokes ekvationer
Föreläsning 5. 1 Navier-Stokes ekvationer I förra föreläsningen härledde vi rörelsemängdsekvationen Du j Dt = 1 τ ij + g j. (1) ρ x i Vi konstaterade också att spänningstensorn för en inviskös fluid kan
Läs mer23 mars 2006, kl.9.00-13.00 Inga hjälpmedel, förutom skrivmateriel. Betygsgränser: 15p. för Godkänd, 22p. för Väl Godkänd av max. 35p.
HH / Georgi Tchilikov GEOMETRI och LINJÄR ALGEBRA, 5p. 3 mrs 6, kl.9.-3. Ing hjälpmedel, förutom skrivmteriel. Betygsgränser: 5p. för Godkänd, p. för Väl Godkänd v mx. 35p. Om ej nnt säges, gäller tt ll
Läs merTräning i bevisföring
KTHs Matematiska Cirkel Träning i bevisföring Andreas Enblom Institutionen för matematik, 2005 Finansierat av Marianne och Marcus Wallenbergs Stiftelse 1 Mängdlära Här kommer fyra tips på hur man visar
Läs merTvå konstiga klockor
strävorna C Två konstiga klockor resonemang geometri Avsikt och matematikinnehåll Det som kan göra det svårt för barn att avläsa en analog klocka är att förstå att den består av två skalor som är beroende
Läs merUtveckla arbetsmiljö och verksamhet genom samverkan
DEL 1: Utveckla arbetsmiljö och verksamhet genom samverkan Modulen inleds med det övergripande målet för modul 6 och en innehållsförteckning över utbildningens olika delar. Börja med att sätta ramarna
Läs merUppsala Universitet Matematiska Institutionen Thomas Erlandsson
Uppsl Universitet Mtemtisk Institutionen Thoms Erlndsson RÄTA LINJER, PLAN, SKALÄRPRODUKT, ORTOGONALITET MM VERSION MER OM EKVATIONSSYSTEM Linjär ekvtionssystem och den geometri mn kn härled ur dess är
Läs merInstitutionen för matematik Envariabelanalys 1. Jan Gelfgren Datum: Fredag 9/12, 2011 Tid: 9-15 Hjälpmedel: Inga (ej miniräknare)
Umeå universitet Dugga i matematik Institutionen för matematik Envariabelanalys 1 och matematisk statistik IE, ÖI, Stat. och Frist. Jan Gelfgren Datum: Fredag 9/12, 2011 Tid: 9-15 Hjälpmedel: Inga (ej
Läs merDu ska nu skapa ett litet program som skriver ut Hello World.
Tidigare har vi gjort all programmering av ActionScript 3.0 i tidslinjen i Flash. Från och med nu kommer vi dock att ha minst två olika filer för kommande övningar, minst en AS-fil och en FLA-fil. AS Denna
Läs merIdag. Hur vet vi att vår databas är tillräckligt bra?
Idag Hur vet vi att vår databas är tillräckligt bra? Vad är ett beroende? Vad gör man om det blivit fel? Vad är en normalform? Hur når man de olika normalformerna? DD1370 (Föreläsning 6) Databasteknik
Läs merNågra integraler. Kjell Elfström. x = f 1 (y) = arcsin y. . 1 y 2 Vi låter x och y byta roller och formulerar detta resultat som en sats: cos x = 1
F r å g L u n d o m m t e m t i k Mtemtikcentrum Mtemtik NF Någr integrler Kjell Elfström Invers funktioner Om f är en funktion, och ekvtionen f() = till vrje V f hr en entdigt bestämd lösning D f, så
Läs merElektronen och laddning
Detta är en något omarbetad version av Studiehandledningen som användes i tryckta kursen på SSVN. Sidhänvisningar hänför sig till Quanta A 2000, ISBN 91-27-60500-0 Där det har varit möjligt har motsvarande
Läs merFullför installation av ELIQ
Fullför installation av ELIQ För Enova pilot skall kunna starta och för att du skall få bästa hjälp med att optimera din elförbrukning så behöver du fullföra din installation av din utrustning: ELIQ Elmätarsensor
Läs merTATA42: Föreläsning 1 Kurvlängd, area och volym
TATA4: Föreläsning Kurvlängd, re och volm John Thim 5 pril 6 Kurvlängd Vi börjr med tt betrkt situtionen då en kurv i plnet ges på prmeterform: ((t), (t)). Dett innebär tt både - och -koordintern simultnt
Läs merVarför är det så viktigt hur vi bedömer?! Christian Lundahl!
Varför är det så viktigt hur vi bedömer?! Christian Lundahl! Fyra olika aspekter! Rättvisa! Reflektion och utvärdering av vår egen undervisning! Motivation för lärande! Metalärande (kunskapssyn)! 1. Rättvisa!
Läs merVÄRDERINGSÖVNINGAR. Vad är Svenskt?
VÄRDERINGSÖVNINGAR Vad är Svenskt? Typ av övning: Avstamp till diskussion. Övningen belyser hur svårt det är att säga vad som är svenskt och att normen vad som anses vara svenskt ändras med tiden och utifrån
Läs merHar vi lösningen för en bättre hemtjänst? Självklart.
Har vi lösningen för en bättre hemtjänst? Självklart. Låt oss prata om Självklarhetsmetoden. Låt oss prata om Självklarhetsmetoden! 164 000 äldre är beroende av hemtjänsten i sin vardag. Och det är du
Läs mer1 e x2. lim. x ln(1 + x) lim. 1 (1 x 2 + O(x 4 )) = lim. x 0 x 2 /2 + O(x 3 ) x 2 + O(x 4 ) = lim. 1 + O(x 2 ) = lim = x = arctan x 1
UPPSALA UNIVERSITET Svr till tent i mtemtik Mtemtisk institutionen Anlys MN Distns Jons Elisson 7-- Skrivtid: - 5. Observer tt problemen inte står i svårighetsordning. All svr sk motivers. Det kn krävs
Läs merBibliotekMitt.se. Riktlinjer för Boktips, Artiklar, Arrangemang, Utställningar Arrangemang mm
BibliotekMitt.se Riktlinjer för Boktips, Artiklar, Arrangemang, Utställningar Arrangemang mm Här hittar du speciella riktlinjer för BibliotekMitt. Vill du ha mer detaljerat om varje funktion så finns en
Läs merTillämpning av integraler
CTH/GU LABORATION 3 MVE6 - /3 Mtemtisk vetenskper Inledning Tillämpning v integrler Vi skll se på två tillämpningr v integrler. Först ren oh volymen v rottionskropp sedn omkretsen v en ellips. Rottionskroppr
Läs merPartnerskapsförord. giftorättsgods görs till enskild egendom 1, 2. Parter 3. Partnerskapsförordets innehåll: 4
Partnerskapsförord giftorättsgods görs till enskild egendom 1, 2 Parter 3 Namn Telefon Adress Namn Telefon Adress Partnerskapsförordets innehåll: 4 Vi skall ingå registrerat partnerskap har ingått registrerat
Läs mer1. Frekvensfunktionen nedan är given. (3p)
TENTAMEN I MATEMATIK MED MATEMATISK STATISTIK HF14 TEN 11 kl 1.15-.15 Hjälpmedel: Formler och tabeller i statistik, räknedosa Fullständiga lösningar erfordras till samtliga uppgifter. Lösningarna skall
Läs merDOP-matematik Copyright Tord Persson. Bråktal -3-2 -1 0 1 2 3. Läs av vilka tal på tallinjen, som pilarna pekar på. Uppgift nr 10 -3-2 -1 0 1 2 3
Bråktal Uppgift nr En limpa delas i 4 lika stora delar. Hur stor del av limpan blir varje del? Uppgift nr 2 Hur många tiondelar behövs för att det skall räcka till en hel? Uppgift nr Hur läser man ut bråket
Läs merTentamen i Analys B för KB/TB (TATA09/TEN1) kl 08 13
LINKÖPINGS UNIVERSITET Mtemtisk Institutionen Jokim Arnlind Tentmen i Anlys B för KB/TB (TATA9/TEN 5-6- kl 8 3 Ing hjälpmedel är tillåtn. Vrje uppgift kn ge mximlt 3 poäng. Betygsgränser: 8p för etyg 3,
Läs merORTONORMERADE BASER I PLAN (2D) OCH RUMMET (3D) ORTONORMERAT KOORDINAT SYSTEM
Armin Hlilovi: EXTRA ÖVNINGAR 1 v 1 Ortonormerde bser oh koordinter i 3D-rummet ORTONORMERADE BASER I PLAN D OCH RUMMET 3D ORTONORMERAT KOORDINAT SYSTEM Vi säger tt en bs i rummet e r, e r, e r z e r,
Läs merTentamen ellära 92FY21 och 27
Tentmen ellär 92FY21 och 27 2013-05-31 kl. 8 13 Svren nges på seprt ppper. Fullständig lösningr med ll steg motiverde och beteckningr utstt sk redoviss för tt få full poäng. Poängen för en helt korrekt
Läs merSnabbslumpade uppgifter från flera moment.
Snabbslumpade uppgifter från flera moment. Uppgift nr Ställ upp och dividera utan hjälp av miniräknare talet 48 med 2 Uppgift nr 2 Skriv talet 3 8 00 med hjälp av decimalkomma. Uppgift nr 3 Uppgift nr
Läs merNär jag har arbetat klart med det här området ska jag:
Kraft och rörelse När jag har arbetat klart med det här området ska jag: kunna ge exempel på olika krafter och kunna använda mina kunskaper om dessa när jag förklarar olika fysikaliska fenomen, veta vad
Läs merÖvningshäfte Algebra, ekvationssystem och geometri
Stockholms Tekniska Gmnasium --9 Övningshäfte Algebra, ekvationssstem och geometri Nivå: rätt svårt Fråga : f är ett polnom. Beräkna värdet av f, f och fπ Fråga : Ingångslönen på företaget Börjes Gurkinläggning
Läs merHemsida Arbetsrum. Skapa arbetsrumslista
Skapa arbetsrumslista Hemsida Arbetsrum För att kunna skapa en arbetsrumslista så markerar du i navigeringsfönstret där den nya sidan ska ligga. Klicka på menyknappen till höger om sidnamnet och sedan
Läs merFör dig som är valutaväxlare. Så här följer du reglerna om penningtvätt i din dagliga verksamhet INFORMATION FRÅN FINANSINSPEKTIONEN
För dig som är valutaväxlare Så här följer du reglerna om penningtvätt i din dagliga verksamhet INFORMATION FRÅN FINANSINSPEKTIONEN MARS 2016 DU MÅSTE FÖLJA LAGAR OCH REGLER Som valutaväxlare ska du följa
Läs merDagens ämnen. Repetition: kvadratiska former och andragradskurvor Andragradsytor System av differentialekvationer
Dgens ämnen Repetition: kvdrtisk former oh ndrgrdskurvor Andrgrdsytor System v differentilekvtioner Rng, signtur oh tekenkrktär Sts 9.1.11. Låt Q: E R, dim E = n vr en kvdrtisk form. Då gäller λ min u
Läs merm 1 + m 2 v 2 m 1 m 2 v 1 Mekanik mk, SG1102, Problemtentamen 2013 08 20, kl 14-18 KTH Mekanik 2013 08 20
KTH Mekanik 2013 08 20 Mekanik mk, SG1102, Problemtentamen 2013 08 20, kl 14-18 Uppgift 1: En bil börjar accelerera med ẍ(0) = a 0 från stillastående. Accelerationen avtar exponentiellt och ges av ẍ(t)
Läs merNATIONELLA MATEMATIKTÄVLING
NATIONELLA MATEMATIKTÄVLING PRATA OM SPELS EN KURS I SANNOLIKHET 1 INLEDNING Sannolikhetskursen består av sju olika steg där det sista steget utgörs av själva tävlingsmomentet. Det är upp till pedagogen
Läs merArbeta bäst där du är Dialect Unified Mi
Arbeta bäst där du är Dialect Unified Mi [Skriv sammanfattningen av dokumentet här. Det är vanligtvis en kort sammanfattning av innehållet i dokumentet. Skriv sammanfattningen av dokumentet här. Det är
Läs mer1 Föreläsning IX, tillämpning av integral
Föreläsning IX, tillämpning v integrl. Volym v någr kroppr.. Skiv- oc sklmetodern, m.m. Vi kn tänk oss en limp (röd) som längsledes är genomorrd v eln,. Limpn skivs i n lik tjock skivor, lltså med tjocklek
Läs merLinjära system av differentialekvationer
CTH/GU LABORATION MVE0-0/03 Matematiska vetenskaper Linjära system av differentialekvationer Inledning Vi har i envariabelanalysen sett på allmäna system av differentialekvationer med begynnelsevillkor
Läs merMöbiustransformationer.
224 Om Möbiustransformationer Torbjörn Kolsrud KTH En Möbiustransformation är en komplexvärd funktion f av en komplex variabel z på formen f(z) = az + b cz + d. Här är a b c och d komplexa tal. Ofta skriver
Läs merEnkätresultat för elever i år 2 i Nösnäsgymnasiet 2 i Stenungsund våren 2014
Enkätresultat för elever i år 2 i Nösnäsgymnasiet 2 i Stenungsund våren 2014 Antal elever: 47 Antal svarande: 40 Svarsfrekvens: 85% Klasser: 12BAa, 12BAb, 12LL Skolenkäten Skolenkäten går ut en gång per
Läs merSkriva B gammalt nationellt prov
Skriva B gammalt nationellt prov Skriva B.wma Då fortsätter vi skrivträningen. Detta avsnitt handlar om att anpassa sin text till en särskild situation, en speciell texttyp och särskilda läsare. Nu ska
Läs merORTONORMERAT KOORDINAT SYSTEM. LÄNGDEN AV EN VEKTOR. AVSTÅND MELLEN TVÅ PUNKTER. MITTPUNKT. TYNGDPUNKT. SFÄR OCH KLOT.
Armin Hlilovi: EXTRA ÖVNINGAR v Vektorer oh koordinter i D-rummet ORTONORMERAT KOORDINAT SYSTEM LÄNGDEN AV EN VEKTOR AVSTÅND MELLEN TVÅ PUNKTER MITTPUNKT TYNGDPUNKT SFÄR OCH KLOT INLEDNING För tt bild
Läs merEnkätresultat för elever i åk 9 i Borås Kristna Skola i Borås hösten 2012. Antal elever: 20 Antal svarande: 19 Svarsfrekvens: 95% Klasser: Klass 9
Enkätresultat för elever i åk 9 i Borås Kristna Skola i Borås hösten 2012 Antal elever: 20 Antal svarande: 19 Svarsfrekvens: 95% Klasser: Klass 9 Skolenkäten Skolenkäten går ut en gång per termin till
Läs merSammanfatta era aktiviteter och effekten av dem i rutorna under punkt 1 på arbetsbladet.
Guide till arbetsblad för utvecklingsarbete Arbetsbladet är ett verktyg för dig och dina medarbetare/kollegor när ni analyserar resultatet från medarbetarundersökningen. Längst bak finns en bilaga med
Läs merAdministration Excelimport
Administration Excelimport För att importera medlemmar till registret så laddar man först ner mallen för importfil, fyller i uppgifterna och laddar sedan upp filen genom att klicka på + Importera fil.
Läs merFöreläsning 5: Rekursion
Föreläsning 5: Rekursion Vi har tidigare sett att man kan dela upp problem i mindre bitar med hjälp av underprogram, vilket är ett utmärkt sätt att lösa problem. Detta är ganska lätt att rita upp för sig
Läs merFacit med lösningsförslag kommer att anslås på vår hemsida www.ebersteinska.norrkoping.se. Du kan dessutom få dem via e-post, se nedan.
Detta häfte innehåller uppgifter från fyra olika områden inom matematiken. Meningen är att de ska tjäna som en självtest inför gymnasiet. Klarar du dessa uppgifter så är du väl förberedd inför gymnasiestudier
Läs merEnkät om heltid i kommuner och landsting 2015
Enkät om heltid i kommuner och landsting 2015 Enkät om heltid i kommuner och landsting 2015 1 Enkät om heltid i kommuner och landsting 2015 2 Innehåll Heltidsarbetet ökar... 5 Varför ska fler jobba heltid?...
Läs mer7. SAMHÄLLSORIENTERING ÅK 5
7. SAMHÄLLSORIENTERING ÅK 5 7.2. Elevhäfte 2 7.2.1. Livsfrågor Eva och Micke går båda i 5:an. De träffas ofta efter skolan och lyssnar på musik eller gör hemläxan tillsammans. Ibland funderar de på frågor
Läs merAvsikt På ett lekfullt sätt färdighetsträna, utveckla elevers känsla för hur vårt talsystem är uppbyggt samt hitta mönster som uppkommer.
Strävorna 4A 100-rutan... förmåga att förstå, föra och använda logiska resonemang, dra slutsatser och generalisera samt muntligt och skriftligt förklara och argumentera för sitt tänkande.... grundläggande
Läs merPresentationsövningar
Varje möte då temadialog används bör inledas med en presentationsövning. har flera syften. Både föräldrar och ledare har nytta av att gå igenom samtliga deltagares namn och dessutom få en tydlig bild av
Läs merMängder i R n. Funktioner från R n till R p
Kpitel 1 Mängder i R n. Funktioner från R n till R p 1.1. Euklidisk rummet R n : geometri Som vnligt betecknr vi med R n mängden v ll reell n-tiplr = ( 1, 2,..., n ) med origo (nollvektorn) = (,,...,)
Läs merDavid Wessman, Lund, 30 oktober 2014 Statistisk Termodynamik - Kapitel 5. Sammanfattning av Gunnar Ohléns bok Statistisk Termodynamik.
Sammanfattning av Gunnar Ohléns bok Statistisk Termodynamik. 1 Jämviktsvillkor Om vi har ett stort system som består av ett litet system i kontakt med en värmereservoar. Storheter för det lilla systemet
Läs merTentamen i Linjär algebra (TATA31/TEN1) 2013 08 24, 14 19.
LINKÖPINGS UNIVERSITET Matematiska Institutionen Ulf Janfalk Kurskod: TATA Provkod: TEN Tentamen i Linjär algebra (TATA/TEN 8, 9. Inga hjälpmedel. Ej räknedosa. För godkänt räcker 9 poäng och minst uppgifter
Läs merIdag: Dataabstraktion
Idag: Dataabstraktion Hur använder vi det vi hittills kan om Scheme för att realisera (implementera) sammansatta data? Hur separerar man datastrukturen från resten av ett program så att ändringar i datastrukturen
Läs merKonferens Vem bestämmer om arkiv
Konferens Vem bestämmer om arkiv Tid: Tisdagen den 17 november 09:00-16:30 Plats: Elite Grand Hotell, Gävle Närvarande: 66 anmälda + 14 föredragshållare och samrådsgruppen Här följer en sammanställning
Läs mera n = A2 n + B4 n. { 2 = A + B 6 = 2A + 4B, S(5, 2) = S(4, 1) + 2S(4, 2) = 1 + 2(S(3, 1) + 2S(3, 2)) = 3 + 4(S(2, 1) + 2S(2, 2)) = 7 + 8 = 15.
1 Matematiska Institutionen KTH Lösningar till tentamensskrivning på kursen Diskret Matematik, moment A, för D och F, SF161 och SF160, den juni 008 kl 08.00-1.00. DEL I 1. (p) Lös rekursionsekvationen
Läs merKommunikationspolicy i korthet för Lidingö stad
Kommunikationspolicy i korthet för Lidingö stad En policy ger stöd Att kommunicera är en del av vardagen för oss som arbetar i Lidingö stad. Att kommunikationen fungerar är viktigt för att vi ska kunna
Läs merEnkätresultat för elever i år 2 i Mega Musik gymnasium hösten 2014. Antal elever: 47 Antal svarande: 46 Svarsfrekvens: 98% Klasser: MM13
Enkätresultat för elever i år 2 i Mega Musik gymnasium hösten 2014 Antal elever: 47 Antal svarande: 46 Svarsfrekvens: 98% Klasser: MM13 Skolenkäten Skolenkäten går ut en gång per termin till de skolor
Läs merEnkätresultat för elever i år 2 i Praktiska Skövde i Praktiska Sverige AB hösten 2014
Enkätresultat för elever i år 2 i Praktiska Skövde i Praktiska Sverige AB hösten 2014 Antal elever: 18 Antal svarande: 13 Svarsfrekvens: 72% Klasser: År 2 Skolenkäten Skolenkäten går ut en gång per termin
Läs merBered en buffertlösning. Niklas Dahrén
Bered en buffertlösning Niklas Dahrén Grundprincipen vid beredning av en buffertlösning ü När vi bereder en buffertlösning blandar vi en svag syra med dess korresponderande bas (den bas som syran också
Läs merEfter att du har installerat ExyPlus Office med tillhörande kartpaket börjar du med att göra följande inställningar:
EXYPLUS OFFICE manual Välkommen till ExyPlus Office! Efter att du har installerat ExyPlus Office med tillhörande kartpaket börjar du med att göra följande inställningar: Hämta fordon Hämta alla fordonsenheter
Läs merFrågor och svar för föreningar om nya ansökningsregler för aktivitetsbidrag från och med 1 januari 2017
Frågor och svar för föreningar om nya ansökningsregler för aktivitetsbidrag från och med 1 januari 2017 Innehåll Generella frågor... 2 Vad är det som ändras 1 januari 2017?... 2 Vad behöver min förening
Läs mer1.1 Sfäriska koordinater
Föreläsning 3 Mång fysiklisk problem hr någon slgs symmetri. Mest vnligt förekommnde är sfärisk cylinisk. Det visr sig tt mn kn förenkl beräkningr betydligt om mn nvänder sfärisk /eller cylinisk koordinter..
Läs mer