Stokes sats och Integralberäkning Mats Persson

Storlek: px
Starta visningen från sidan:

Download "Stokes sats och Integralberäkning Mats Persson"

Transkript

1 Föreläsning 5/9 tokes sts och Integrlberäkning Mts Persson 1 tokes sts Först given på skrivningen för mith sk priset i februri 185 i mbridge. Bäst student J.. Mxwell). ts: Den slutn kurvn är rnden till ytn. Då gäller för ett kontinuerligt deriverbrt vektorfält u på tt u nd = u dr, 1) där n och är orienterde enligt högerhndsregeln. Noter tt från Guss sts och tt rottionen är divergensfri, dvs u = 0 följer tt ytintegrlen hr smm värde för ll ytor med smm rnd. I krtesisk koordinter ges rottionen v ˆx ŷ ẑ u = x y y u x u y u z. ) Med hjälp v en kurvintegrl kn vi konstruer en koordintoberoende definition v rottionen. Längs enhetsvektorn ˆn hr rot u en komponent 1 ˆn rotu = lim u dr, ) δ 0 δ δ där δ är ett litet ytelement med normlen ˆn. För tt se vr rottionen hr fått sitt nmn ifrån låt oss betrkt hstighetsfältet i en stelt roternde kropp. Hstighetsfältet i denn kropp kn skrivs som v = Ω r. Om vi låter Ω vr prllell med z-xeln, så blir hstigheten v = 0, 0, Ω) x, y, z) = Ωy, Ωx, 0). Rottionen v dett vektorfält är v v = Exempel: Beräkn integrlen längs kurvn Ωx) z, Ωy), Ωx) + Ωy) ) = 0, 0, Ω). ) z x y F dr 5) F = F 0 x + y + 1 ) y, x, 0) 6) x + y =, z = 0. 7) Lösning: i konstterr först tt kurvn är en ellips med hlvxlrn och. Om vi studerr F så ser vi tt F är singulär i origo. i beräknr också F som blir F = F 0 ẑ. 8) i kn inte omedelbrt tillämp tokes sts eftersom F är singulär i origo eller mer korrekt längs z-xeln. För tt tillämp tokes sts måste vi skär ut en liten cirkel kring origo. i lägger därför in en cirkel med rdien ɛ runt origo, och tillämpr därefter tokes sts på ytn melln 1

2 ɛ och. Om ytn skll h ẑ som normlvektor så måste vi följ moturs och ɛ medurs. tokes sts ger tt F dr = F) ẑd = F 0 d 9) + ɛ Om vi nu låter rdien för ɛ, ɛ, gå mot noll, så blir ytintegrlen ren för ellipsen, π. Det återstår nu tt beräkn kurvintegrlen i kn i cylinderkoordinter skriv F = F 0 ρ + 1 ɛ F dr. 10) ) ρˆφ = F 0 ρ + ρ ) ˆφ. 11) Dessutom hr ɛ tngentvektorn ˆφ och ɛ tngentvektorn ˆφ. Dett ger tt integrlen blir F dr = F dr = F 0 ɛ ɛ ɛ + ɛ ) π ) ) dφ = πf 0 + ɛ. 1) 0 Integrlen går mot πf 0 då ɛ 0. Alltså hr vi till slut F dr = F dr + F) d = πf 0 πf 0 = 6πF 0. 1) ɛ 1.1 Konservtiv fält och rottion i hr definiert ett konservtivt fält som ett fält F sådnt tt F dr = 0 1) för vrje sluten kurv. Enligt tokes sts följer det nu tt ett fält som hr F = 0 överllt i ett enkelt smmnhängnde område är konservtivt. Kurvintegrler Exempel: PLK Kp..5 Uppg. : Beräkn integrlen F dr, 15) där F = [ x y + z) ] ˆx + y z ) ŷ + [ z x + y) ] ẑ, 16) och är den kurv som utgör skärningen melln cylindern och sfären x ) + y =, z 0, 17) x + y + z = R, R >, 18) där är en konstnt med dimensionen längd. Lösning: i kn först konstter tt skärningen melln cylinder och sfär är en ellips vrs exkt form är något komplicerd tt fstställ. Eftersom kurvn är en sluten kurv är det locknde tt nvänd tokes sts, så vi beräknr rottionen ˆx ŷ ẑ F = x y z x y + z) y z z x + y) = + ) ˆx + ) ŷ + ẑ = ẑ. 19)

3 Alltså är rottionen v F en rent vertikl vektor. i kn nu nvänd tokes sts F dr = F d. 0) Lägg märke till tt ytn skll orienters så tt den följer högerhndsregeln. Dett betyder tt om vi följer kurvn moturs så skll normlen ˆn till pek uppåt. F d = ẑ ˆnd = ẑ ˆnd. 1) klärprodukten i den sist integrlen betyder tt vi projicerr ner ren på ett pln vinkelrät mot ẑ, det vill säg på xy-plnet. I dett plnet är skärningen cylinderns tvärsnittsyt, en cirkel med rdien, och integrlen blir cirkelren π. Alltså blir integrlen till slut F dr = π = π. ) Alerntivt kn mn välj bottenytn och mntelytn nednför kurvn som den inneslutn ytn. På mntelytn är F ˆn = 0 eftersom ˆn ẑ och normlytintegrlen över mntelytn ger inget bidrg. På bottenytn är ˆn = ẑ så tt ytnormlintegrlen blir då gånger bottenytn. Exempel: PLK Kp..5, Uppg. : En prtikel påverks v krftfältet F = F 0 [ πy + sin ) ˆx + x ŷ + πx cos ẑ ]. ) ilket rbete uträttr fältet då prtikeln rör sig i positiv riktning kring den cirkel som ges v skärningen melln x + y + z = ) och x = z? 5) Lösning: För tt få ut rbetet behöver vi beräkn integrlen F dr. 6) i börjr med tt bestämm skärningskurvn. x + y + z = är en sfär med rdien och centrum i origo, medn x = z är ett pln med normlvektorn ˆn = 1 1, 0, 1). 7) kärningen melln de båd ytorn blir en cirkel med rdien. Den motsvrnde cirkelskivn hr också normlvektorn ˆn. Med det vl som vi hr gjort v normlvektorn, så gäller tokes sts om prtikeln rör sig moturs längs cirkeln. i beräknr nu rottionen längs ytnormlen ˆn F = F 0 πy x + sin y x πx z cos F 0 1 π = ). 8) tokes sts ger oss sedn vilket är svret. F dr = F d = 1 π F 0 1 π π F 0 = d = π 1 π) F 0, 9)

4 Ytintegrler Exempel: PLK Kp.., Uppg. 7: Låt vr ytn y + z = 1, 1 x 1, z 0 med uppåt riktd normlvektor. Beräkn F d, 0) där F = x, x yz, x y z ). Lösning: Ytn är en den övre hlvn v en cylinder med x-xeln som symmetrixel. För tt tillämp Guss sts behöver vi slut denn yt, vilket vi kn gör genom tt lägg till två hlvcirklr, 1 och vid x = 1 och x = 1, smt en bottenyt,. Normlvektorn till dess ytor skll väljs som en kontinuerlig fortsättning v normlvektorn på. Dett innebär tt 1 och får normlvektorern ˆx och ˆx, smt tt normlvektorn till blir ẑ. i ser nu tt normlvektorn överllt pekr ut från den volym som innesluts v, 1, och, vilket är vd som krävs för tt vi skll kunn nvänd Guss sts. i kn nu beräkn divergensen F = x x + x yz ) + x y z ) = 1 + x z + x y = 1 + x ρ, 1) y z där vi hr infört ρ = y + z. i inför lltså en form v cylindrisk koordinter som utgår från x-xeln istället för som vnligt från z-xeln. i kn nu beräkn volymsintegrlen 1 1 π Fd = d + x ρ dϕρdρdx. ) Tänk här på tt vi br integrerr över en hlvcylinder, så tt integrtionsintervllet för ϕ går från 0 till π. Den först integrlen är br hlvcylindersn volym, så nu får vi Fd = 1 π + π [ x ] 1 1 [ ρ ] = π + π + 1 ) 1 = 7π 6. ) i får nu t hnd om de enskild begränsningsytorn. F d = xd = d = π 1 1 1, ) eftersom x = 1 på 1. På smm sätt får vi på F d = xd = π, 5) då x = 1 på. lutligen så finner vi tt på så är F d = x y zd = 0, 6) ty z = 0 på. Om vi ställer smmn dess uträkningr hr vi F d + F d + F d + F d = 1 Fd, 7) och om vi här löser ut integrlen över smt sätter in värden för de enskild integrlern får vi F d = 7π 6 π π = π 6. 8) Kommentr: För tt ytintegrlen skll vr definierd måste en yt vr orienterbr, det vill säg de skll gå tt kontinuerligt trnsporter normlvektorn från en del v ytn till en nnn.

5 Det finns exempel på ytor som inte är orienterbr, till exempel Möbius-bnd, och för sådn ytor kn mn inte definier en ytintegrl. Exempel: Beräkn ytintegrlen ˆx + yŷ + z ẑ ) d 9) över den slutn ytn : x + y + z = z. Lösning: i börjr med tt studer ytn. Den kn skrivs om som Efter kvdrtkomplettering hr vi x + y + z z = 0. 0) x + y + z ) =. 1) Dett är en sfär med rdien och centrum i 0, 0, ). Lägg märke till tt eftersom ytn redn är sluten, så råder det inte någon tvekn om hur normlvektorn är riktd. Konventionen säger oss tt normlvektorn för en sluten yt lltid pekr ut från den inneslutn volymen. I och med tt vi redn hr en sluten yt, så är det locknde tt nvänd Guss sts, och därför beräknr vi divergensen ˆx + yŷ + z ẑ ) = + z. ) Innn vi tr itu med volymsintegrlen byter vi z-koordinten till z = z, så tt sfären i de ny koordintern får sitt centrum i origo. I dess koordinter blir divergensen + z. Enligt Guss sts blir vår ytintegrl nu ˆx + yŷ + z ẑ ) d = + z ) d = d = π, ) eftersom z är en udd funktion och volymen är symmetrisk med vseende på xz plnet så är z d = 0. lutligen värdet på vår ursprunglig ytintegrl är då π. 5

FFM234, Klassisk fysik och vektorfält - Föreläsningsanteckningar

FFM234, Klassisk fysik och vektorfält - Föreläsningsanteckningar FFM234, Klssisk fysik och vektorfält - Föreläsningsnteckningr Christin Forssén, Institutionen för fysik, Chlmers, Göteborg, verige ep 13, 218 4. Integrlstser Minnesregel för strukturen på ll integrlstser

Läs mer

Gauss och Stokes analoga satser och fältsingulariteter: källor och virvlar Mats Persson

Gauss och Stokes analoga satser och fältsingulariteter: källor och virvlar Mats Persson Föreläsning 14/9 Guss och tokes nlog stser och fältsingulriteter: källor och virvlr Mts Persson 1 tser nlog med Guss och tokes stser 1.1 tser nlog med Guss sts Det finns ett pr stser som är mycket när

Läs mer

SF1626 Flervariabelanalys Tentamen 8 juni 2011, Svar och lösningsförslag

SF1626 Flervariabelanalys Tentamen 8 juni 2011, Svar och lösningsförslag SF166 Flervribelnlys Tentmen 8 juni 11, 8. - 13. Svr och lösningsförslg Del A (1 estäm en ekvtion för tngentplnet till ytn z + y z 3 1 i punkten (, y, (1, 1,. (3p b Punkten (, y, z (1.1,.9, t ligger på

Läs mer

LINJÄR ALGEBRA II LEKTION 1

LINJÄR ALGEBRA II LEKTION 1 LINJÄR ALGEBRA II LEKTION JOHAN ASPLUND INNEHÅLL. VEKTORRUM OCH DELRUM Hel kursen Linjär Algebr II hndlr om vektorrum och hur vektorrum (eller linjär rum, som de iblnd klls) beter sig. Tidigre hr mn ntgligen

Läs mer

19 Integralkurvor, potentialer och kurvintegraler i R 2 och R 3

19 Integralkurvor, potentialer och kurvintegraler i R 2 och R 3 Nr9,3mj-5,Ameli 9 Integrlkurvor, potentiler och kurvintegrler i R och R 3 9. Integrlkurvor En integrlkurv r(t) ((t), (t)) till ett vektorfält F(, ) är en kurv där vektorfältet är en tngent till kurvn i

Läs mer

6 Greens formel, Stokes sats och lite därtill

6 Greens formel, Stokes sats och lite därtill 6 Greens formel, tokes sts och lite därtill 6.1 Greens formel i låter de två sklärvärd funktionern P (, ) och Q(, ) vr kontinuerligt deriverbr i ett öppet område i -plnet. Området begränss v en positivt

Läs mer

konstanterna a och b så att ekvationssystemet x 2y = 1 2x + ay = b 2 a b

konstanterna a och b så att ekvationssystemet x 2y = 1 2x + ay = b 2 a b Tentamen i Inledande matematik för V och AT, (TMV25), 20-0-26. Till denna uppgift skulle endast lämnas svar, men här ges kortfattade lösningar. a) Bestäm { konstanterna a och b så att ekvationssystemet

Läs mer

TILLÄMPNINGAR AV INTEGRALER. VOLYMBERÄKNING.

TILLÄMPNINGAR AV INTEGRALER. VOLYMBERÄKNING. Armin lilovic: EXTA ÖNINGA olmeräkning TILLÄMPNINGA A INTEGALE. OLYMEÄNING. uvud verktg för volmeräkning är duelintegrl som tillör kursen i flervrielnls, men någr volmeräkningr kn vi gör med jälp v enkelintegrl.

Läs mer

Addition och subtraktion

Addition och subtraktion Sidor i boken 35-39 Addition och subtrktion Vi börjr med lite ritmetik. Heltlsddition innebär ing som helst problem. Här tr vi lämpligen räknedosn till hjälp. Eempel. 3+00+5 = 7 Så länge ll nämnre är lik

Läs mer

3.1 Linjens ekvation med riktningskoefficient. y = kx + l.

3.1 Linjens ekvation med riktningskoefficient. y = kx + l. Kapitel Analytisk geometri Målet med detta kapitel är att göra läsaren bekant med ekvationerna för linjen, cirkeln samt ellipsen..1 Linjens ekvation med riktningskoefficient Vi utgår från ekvationen 1

Läs mer

24 Integraler av masstyp

24 Integraler av masstyp Nr, mj -5, Ameli Integrler v msstyp Kurvintegrler v msstyp Vi hr hittills studert en typ v kurvintegrl, R F dr, där vi integrerr den komponent v ett vektorfält F som är tngentiell till kurvn ( dr) i punkter

Läs mer

Kryssproblem (redovisningsuppgifter).

Kryssproblem (redovisningsuppgifter). Uppsala Universitet Matematiska Institutionen Bo Styf Flervariabelanalys, 5 hp STS, X 2010-03-19 Kryssproblem (redovisningsuppgifter). Till var och en av de åtta lektionerna hör ett par problem, som kallas

Läs mer

TATA42: Tips inför tentan

TATA42: Tips inför tentan TATA42: Tips inför tentn John Thim 25 mj 205 Syfte Tnken med dett kort dokument är tt ge lite extr studietips inför tentn. Kursinnehållet definiers så klrt fortfrnde v kursplnen och kurslitterturen så

Läs mer

13 Generaliserade dubbelintegraler

13 Generaliserade dubbelintegraler Nr 3, 4 pril -5, Ameli 3 Generliserde dubbelintegrler 3. Generliserde enkelintegrler Integrerbrhet är definiert för funktioner som är begränsde och definierde på ett ändligt intervll. ett kn i mång fll

Läs mer

Modul 6: Integraler och tillämpningar

Modul 6: Integraler och tillämpningar Institutionen för Matematik SF65 Envariabelanalys Läsåret 5/6 Modul 6: Integraler och tillämpningar Denna modul omfattar kapitel 6. och 6.5 samt kapitel 7 i kursboken Calculus av Adams och Essex och undervisas

Läs mer

Lösningsskiss för tentamen Vektorfält och klassisk fysik (FFM234 och FFM232)

Lösningsskiss för tentamen Vektorfält och klassisk fysik (FFM234 och FFM232) Lösningsskiss för tentmen Vektorfält och klssisk fysik (FFM34 och FFM3) Tid och plts: Måndgen den 3 oktober 07 klockn 4.00-8.00 i Mskinslrn. Lösningsskiss: Christin Forssén Dett är enbrt en skiss v den

Läs mer

Föreläsning 7b. 3329 Längdskalan är L = 2 3

Föreläsning 7b. 3329 Längdskalan är L = 2 3 Föreläsning 7b 3329 Längdskln är L = 2 3 eller 2 : 3 som det oft skrivs i smbnd med krtor. Från teorin får vi tt A, reskln är längdskln i kvdrt det vill säg A = L 2. I denn uppgift ger det A = ( ) 2 2

Läs mer

0 a. a -Â n 2 p n. beskriver på sedvanligt sätt en a-periodisk utvidgning av f. Nedanför ritas en partialsumma av Fourierserien.

0 a. a -Â n 2 p n. beskriver på sedvanligt sätt en a-periodisk utvidgning av f. Nedanför ritas en partialsumma av Fourierserien. Sinus- och cosinusserier I slutet v kursen där vi skll lös differentilekvtioner på ändlig intervll v typen H, L, behöver vi konstruer Fourierserier med en viss typ v uppförnde i intervllens ändpunkter.

Läs mer

x 2 + px = ( x + p 2 x 2 2x = ( x + 2

x 2 + px = ( x + p 2 x 2 2x = ( x + 2 Inledande kurs i matematik, avsnitt P.3 P.3. Bestäm en ekvation för cirkeln med mittpunkt i (0, 0) och radie 4. Med hjälp av kvadratkompletteringsformeln + p = ( + p ) ( p ) En cirkel med mittpunkt i (

Läs mer

Kapitel 6. f(x) = sin x. Figur 6.1: Funktionen sin x. 1 Oinas-Kukkonen m.fl. Kurs 6 kapitel 1

Kapitel 6. f(x) = sin x. Figur 6.1: Funktionen sin x. 1 Oinas-Kukkonen m.fl. Kurs 6 kapitel 1 Kapitel 6 Gränsvärde 6. Definition av gränsvärde När vi undersöker gränsvärdet av en funktion undersöker vi vad som händer med funktionsvärdet då variabeln, x, går mot ett visst värde. Frågeställningen

Läs mer

Uppsala Universitet Matematiska Institutionen Bo Styf. Genomgånget på föreläsningarna 21-25. Föreläsning 21, 27/1 2010:

Uppsala Universitet Matematiska Institutionen Bo Styf. Genomgånget på föreläsningarna 21-25. Föreläsning 21, 27/1 2010: Uppsl Universitet Mtemtisk Institutionen Bo Styf Envribelnlys, 0 hp STS, X 00-0-7 Föreläsning, 7/ 00: Genomgånget på föreläsningrn - 5. Generliserde integrler. Vi hr vist tt den bestämd integrlen I b f

Läs mer

Volum av rotationskroppar. Båglängd, rotationsytor. Adams 7.1, 7.2, 7.3

Volum av rotationskroppar. Båglängd, rotationsytor. Adams 7.1, 7.2, 7.3 Volum v rottionskroppr. Båglängd, rottionsytor. Adms 7., 7., 7.3 Volum v rottionskroppr. Båglängd, rottionsytor. Integrtion v rtionell uttryck, prtilbråksuppdelning. Exempel med invers substitutioner.

Läs mer

Algebra, polynom & andragradsekvationer en pampig rubrik på ett annars relativt obetydligt dokument

Algebra, polynom & andragradsekvationer en pampig rubrik på ett annars relativt obetydligt dokument Algebra, polynom & andragradsekvationer en pampig rubrik på ett annars relativt obetydligt dokument Distributiva lagen a(b + c) = ab + ac 3(x + 4) = 3 x + 3 4 = 3x + 12 3(2x + 4) = 3 2x + 3 4 = 6x + 12

Läs mer

4-3 Vinklar Namn: Inledning. Vad är en vinkel?

4-3 Vinklar Namn: Inledning. Vad är en vinkel? 4-3 Vinklar Namn: Inledning I det här kapitlet skall du lära dig allt om vinklar: spetsiga, trubbiga och räta vinklar. Och inte minst hur man mäter vinklar. Att mäta vinklar och sträckor är grundläggande

Läs mer

Volymer av n dimensionella klot

Volymer av n dimensionella klot 252 Volymer av n dimensionella klot Mikael Passare Stockholms universitet Ett klot med radien r är mängden av punkter vars avstånd till en given punkt (medelpunkten) är högst r. Låt oss skriva B 3 (r)

Läs mer

Tavelpresentation grupp 5E

Tavelpresentation grupp 5E Tvelpresenttion grupp 5E Elis Elmquist, Mtild Hnes, Isk Pettersson, Juli Wennerblom, John Jxing, Boel Brndström, Edvin Cllisen, Cjs Hjolmn 19 februri 2017 1 Multipelintegrler Frmställningen för definitionen

Läs mer

Lathund, procent med bråk, åk 8

Lathund, procent med bråk, åk 8 Lathund, procent med bråk, åk 8 Procent betyder hundradel, men man kan också säga en av hundra. Ni ska kunna omvandla mellan bråkform, decimalform och procentform. Nedan kan ni se några omvandlingar. Bråkform

Läs mer

4-6 Trianglar Namn:..

4-6 Trianglar Namn:.. 4-6 Trianglar Namn:.. Inledning Hittills har du arbetat med parallellogrammer. En sådan har fyra hörn och motstående sidor är parallella. Vad händer om vi har en geometrisk figur som bara har tre hörn?

Läs mer

SF1620 Matematik och modeller

SF1620 Matematik och modeller KTH Teknikvetenskap, Institutionen för matematik 1 SF160 Matematik och modeller 007-09-10 Andra veckan Trigonometri De trigonometriska funktionerna och enhetscirkeln Redan vid förra veckans avsnitt var

Läs mer

SEPARABLA DIFFERENTIALEKVATIONER

SEPARABLA DIFFERENTIALEKVATIONER SEPARABLA DIFFERENTIALEKVATIONER En differentialekvation (DE) av första ordningen sägs vara separabel om den kan skrivas på formen P ( y) Q( ) () Den allmänna lösningen till () erhålles genom att integrera

Läs mer

TIMREDOVISNINGSSYSTEM

TIMREDOVISNINGSSYSTEM TIMREDOVISNINGSSYSTEM Företagsekonomiska Institutionen Inledning med begreppsförklaring Huvudmeny Budgethantering Planering Rapportering Signering Utskrifter/Rapporter Byt lösenord Logga ut 1 Inledning

Läs mer

Sammanfattning på lättläst svenska

Sammanfattning på lättläst svenska Sammanfattning på lättläst svenska Utredningen skulle utreda och lämna förslag i vissa frågor som handlar om svenskt medborgarskap. Svenskt medborgarskap i dag Vissa personer blir svenska medborgare när

Läs mer

Webb-bidrag. Sök bidrag på webben www.solvesborg.se. Gäller från 2015-01-01

Webb-bidrag. Sök bidrag på webben www.solvesborg.se. Gäller från 2015-01-01 Sök bidrag på webben www.solvesborg.se Gäller från 2015-01-01 Innehåll Kontaktperson Fritids- och turismkontoret Sölvesborg kommun Inledning Följande bidrag går att söka på webben Logga in Dokumenthantering

Läs mer

Övningshäfte i matematik för. Kemistuderande BL 05

Övningshäfte i matematik för. Kemistuderande BL 05 Övningshäfte i matematik för Kemistuderande BL 05 Detta häfte innehåller några grundläggande övningar i de delar av matematiken som man har användning för i de tidiga kemistudierna. Nivån är gymnasiematematik,

Läs mer

Sammanfattning av kursdag 2, 2013-03-07 i Stra ngna s och 2013-03-12 Eskilstuna

Sammanfattning av kursdag 2, 2013-03-07 i Stra ngna s och 2013-03-12 Eskilstuna Sammanfattning av kursdag 2, 2013-03-07 i Stra ngna s och 2013-03-12 Eskilstuna Sammanfattning och genomgång av lektion 1 samt hemläxa. -Hur ta ut en position i sjökortet? Mät med Passaren mellan positionen

Läs mer

Vi skall skriva uppsats

Vi skall skriva uppsats Vi skall skriva uppsats E n vacker dag får du höra att du skall skriva uppsats. I den här texten får du veta vad en uppsats är, vad den skall innehålla och hur den bör se ut. En uppsats är en text som

Läs mer

TMV151/TMV181. Fredrik Lindgren. 19 november 2013

TMV151/TMV181. Fredrik Lindgren. 19 november 2013 TMV151/TMV181 Fredrik Lindgren Mtemtisk vetenskper Chlmers teknisk högskol och Göteborgs universitet 19 november 2013 F. Lindgren (Chlmers&GU) Envribelnlys 19 november 2013 1 / 24 Outline 1 Mss, moment

Läs mer

1 Navier-Stokes ekvationer

1 Navier-Stokes ekvationer Föreläsning 5. 1 Navier-Stokes ekvationer I förra föreläsningen härledde vi rörelsemängdsekvationen Du j Dt = 1 τ ij + g j. (1) ρ x i Vi konstaterade också att spänningstensorn för en inviskös fluid kan

Läs mer

23 mars 2006, kl.9.00-13.00 Inga hjälpmedel, förutom skrivmateriel. Betygsgränser: 15p. för Godkänd, 22p. för Väl Godkänd av max. 35p.

23 mars 2006, kl.9.00-13.00 Inga hjälpmedel, förutom skrivmateriel. Betygsgränser: 15p. för Godkänd, 22p. för Väl Godkänd av max. 35p. HH / Georgi Tchilikov GEOMETRI och LINJÄR ALGEBRA, 5p. 3 mrs 6, kl.9.-3. Ing hjälpmedel, förutom skrivmteriel. Betygsgränser: 5p. för Godkänd, p. för Väl Godkänd v mx. 35p. Om ej nnt säges, gäller tt ll

Läs mer

Träning i bevisföring

Träning i bevisföring KTHs Matematiska Cirkel Träning i bevisföring Andreas Enblom Institutionen för matematik, 2005 Finansierat av Marianne och Marcus Wallenbergs Stiftelse 1 Mängdlära Här kommer fyra tips på hur man visar

Läs mer

Två konstiga klockor

Två konstiga klockor strävorna C Två konstiga klockor resonemang geometri Avsikt och matematikinnehåll Det som kan göra det svårt för barn att avläsa en analog klocka är att förstå att den består av två skalor som är beroende

Läs mer

Utveckla arbetsmiljö och verksamhet genom samverkan

Utveckla arbetsmiljö och verksamhet genom samverkan DEL 1: Utveckla arbetsmiljö och verksamhet genom samverkan Modulen inleds med det övergripande målet för modul 6 och en innehållsförteckning över utbildningens olika delar. Börja med att sätta ramarna

Läs mer

Uppsala Universitet Matematiska Institutionen Thomas Erlandsson

Uppsala Universitet Matematiska Institutionen Thomas Erlandsson Uppsl Universitet Mtemtisk Institutionen Thoms Erlndsson RÄTA LINJER, PLAN, SKALÄRPRODUKT, ORTOGONALITET MM VERSION MER OM EKVATIONSSYSTEM Linjär ekvtionssystem och den geometri mn kn härled ur dess är

Läs mer

Institutionen för matematik Envariabelanalys 1. Jan Gelfgren Datum: Fredag 9/12, 2011 Tid: 9-15 Hjälpmedel: Inga (ej miniräknare)

Institutionen för matematik Envariabelanalys 1. Jan Gelfgren Datum: Fredag 9/12, 2011 Tid: 9-15 Hjälpmedel: Inga (ej miniräknare) Umeå universitet Dugga i matematik Institutionen för matematik Envariabelanalys 1 och matematisk statistik IE, ÖI, Stat. och Frist. Jan Gelfgren Datum: Fredag 9/12, 2011 Tid: 9-15 Hjälpmedel: Inga (ej

Läs mer

Du ska nu skapa ett litet program som skriver ut Hello World.

Du ska nu skapa ett litet program som skriver ut Hello World. Tidigare har vi gjort all programmering av ActionScript 3.0 i tidslinjen i Flash. Från och med nu kommer vi dock att ha minst två olika filer för kommande övningar, minst en AS-fil och en FLA-fil. AS Denna

Läs mer

Idag. Hur vet vi att vår databas är tillräckligt bra?

Idag. Hur vet vi att vår databas är tillräckligt bra? Idag Hur vet vi att vår databas är tillräckligt bra? Vad är ett beroende? Vad gör man om det blivit fel? Vad är en normalform? Hur når man de olika normalformerna? DD1370 (Föreläsning 6) Databasteknik

Läs mer

Några integraler. Kjell Elfström. x = f 1 (y) = arcsin y. . 1 y 2 Vi låter x och y byta roller och formulerar detta resultat som en sats: cos x = 1

Några integraler. Kjell Elfström. x = f 1 (y) = arcsin y. . 1 y 2 Vi låter x och y byta roller och formulerar detta resultat som en sats: cos x = 1 F r å g L u n d o m m t e m t i k Mtemtikcentrum Mtemtik NF Någr integrler Kjell Elfström Invers funktioner Om f är en funktion, och ekvtionen f() = till vrje V f hr en entdigt bestämd lösning D f, så

Läs mer

Elektronen och laddning

Elektronen och laddning Detta är en något omarbetad version av Studiehandledningen som användes i tryckta kursen på SSVN. Sidhänvisningar hänför sig till Quanta A 2000, ISBN 91-27-60500-0 Där det har varit möjligt har motsvarande

Läs mer

Fullför installation av ELIQ

Fullför installation av ELIQ Fullför installation av ELIQ För Enova pilot skall kunna starta och för att du skall få bästa hjälp med att optimera din elförbrukning så behöver du fullföra din installation av din utrustning: ELIQ Elmätarsensor

Läs mer

TATA42: Föreläsning 1 Kurvlängd, area och volym

TATA42: Föreläsning 1 Kurvlängd, area och volym TATA4: Föreläsning Kurvlängd, re och volm John Thim 5 pril 6 Kurvlängd Vi börjr med tt betrkt situtionen då en kurv i plnet ges på prmeterform: ((t), (t)). Dett innebär tt både - och -koordintern simultnt

Läs mer

Varför är det så viktigt hur vi bedömer?! Christian Lundahl!

Varför är det så viktigt hur vi bedömer?! Christian Lundahl! Varför är det så viktigt hur vi bedömer?! Christian Lundahl! Fyra olika aspekter! Rättvisa! Reflektion och utvärdering av vår egen undervisning! Motivation för lärande! Metalärande (kunskapssyn)! 1. Rättvisa!

Läs mer

VÄRDERINGSÖVNINGAR. Vad är Svenskt?

VÄRDERINGSÖVNINGAR. Vad är Svenskt? VÄRDERINGSÖVNINGAR Vad är Svenskt? Typ av övning: Avstamp till diskussion. Övningen belyser hur svårt det är att säga vad som är svenskt och att normen vad som anses vara svenskt ändras med tiden och utifrån

Läs mer

Har vi lösningen för en bättre hemtjänst? Självklart.

Har vi lösningen för en bättre hemtjänst? Självklart. Har vi lösningen för en bättre hemtjänst? Självklart. Låt oss prata om Självklarhetsmetoden. Låt oss prata om Självklarhetsmetoden! 164 000 äldre är beroende av hemtjänsten i sin vardag. Och det är du

Läs mer

1 e x2. lim. x ln(1 + x) lim. 1 (1 x 2 + O(x 4 )) = lim. x 0 x 2 /2 + O(x 3 ) x 2 + O(x 4 ) = lim. 1 + O(x 2 ) = lim = x = arctan x 1

1 e x2. lim. x ln(1 + x) lim. 1 (1 x 2 + O(x 4 )) = lim. x 0 x 2 /2 + O(x 3 ) x 2 + O(x 4 ) = lim. 1 + O(x 2 ) = lim = x = arctan x 1 UPPSALA UNIVERSITET Svr till tent i mtemtik Mtemtisk institutionen Anlys MN Distns Jons Elisson 7-- Skrivtid: - 5. Observer tt problemen inte står i svårighetsordning. All svr sk motivers. Det kn krävs

Läs mer

BibliotekMitt.se. Riktlinjer för Boktips, Artiklar, Arrangemang, Utställningar Arrangemang mm

BibliotekMitt.se. Riktlinjer för Boktips, Artiklar, Arrangemang, Utställningar Arrangemang mm BibliotekMitt.se Riktlinjer för Boktips, Artiklar, Arrangemang, Utställningar Arrangemang mm Här hittar du speciella riktlinjer för BibliotekMitt. Vill du ha mer detaljerat om varje funktion så finns en

Läs mer

Tillämpning av integraler

Tillämpning av integraler CTH/GU LABORATION 3 MVE6 - /3 Mtemtisk vetenskper Inledning Tillämpning v integrler Vi skll se på två tillämpningr v integrler. Först ren oh volymen v rottionskropp sedn omkretsen v en ellips. Rottionskroppr

Läs mer

Partnerskapsförord. giftorättsgods görs till enskild egendom 1, 2. Parter 3. Partnerskapsförordets innehåll: 4

Partnerskapsförord. giftorättsgods görs till enskild egendom 1, 2. Parter 3. Partnerskapsförordets innehåll: 4 Partnerskapsförord giftorättsgods görs till enskild egendom 1, 2 Parter 3 Namn Telefon Adress Namn Telefon Adress Partnerskapsförordets innehåll: 4 Vi skall ingå registrerat partnerskap har ingått registrerat

Läs mer

1. Frekvensfunktionen nedan är given. (3p)

1. Frekvensfunktionen nedan är given. (3p) TENTAMEN I MATEMATIK MED MATEMATISK STATISTIK HF14 TEN 11 kl 1.15-.15 Hjälpmedel: Formler och tabeller i statistik, räknedosa Fullständiga lösningar erfordras till samtliga uppgifter. Lösningarna skall

Läs mer

DOP-matematik Copyright Tord Persson. Bråktal -3-2 -1 0 1 2 3. Läs av vilka tal på tallinjen, som pilarna pekar på. Uppgift nr 10 -3-2 -1 0 1 2 3

DOP-matematik Copyright Tord Persson. Bråktal -3-2 -1 0 1 2 3. Läs av vilka tal på tallinjen, som pilarna pekar på. Uppgift nr 10 -3-2 -1 0 1 2 3 Bråktal Uppgift nr En limpa delas i 4 lika stora delar. Hur stor del av limpan blir varje del? Uppgift nr 2 Hur många tiondelar behövs för att det skall räcka till en hel? Uppgift nr Hur läser man ut bråket

Läs mer

Tentamen i Analys B för KB/TB (TATA09/TEN1) kl 08 13

Tentamen i Analys B för KB/TB (TATA09/TEN1) kl 08 13 LINKÖPINGS UNIVERSITET Mtemtisk Institutionen Jokim Arnlind Tentmen i Anlys B för KB/TB (TATA9/TEN 5-6- kl 8 3 Ing hjälpmedel är tillåtn. Vrje uppgift kn ge mximlt 3 poäng. Betygsgränser: 8p för etyg 3,

Läs mer

ORTONORMERADE BASER I PLAN (2D) OCH RUMMET (3D) ORTONORMERAT KOORDINAT SYSTEM

ORTONORMERADE BASER I PLAN (2D) OCH RUMMET (3D) ORTONORMERAT KOORDINAT SYSTEM Armin Hlilovi: EXTRA ÖVNINGAR 1 v 1 Ortonormerde bser oh koordinter i 3D-rummet ORTONORMERADE BASER I PLAN D OCH RUMMET 3D ORTONORMERAT KOORDINAT SYSTEM Vi säger tt en bs i rummet e r, e r, e r z e r,

Läs mer

Tentamen ellära 92FY21 och 27

Tentamen ellära 92FY21 och 27 Tentmen ellär 92FY21 och 27 2013-05-31 kl. 8 13 Svren nges på seprt ppper. Fullständig lösningr med ll steg motiverde och beteckningr utstt sk redoviss för tt få full poäng. Poängen för en helt korrekt

Läs mer

Snabbslumpade uppgifter från flera moment.

Snabbslumpade uppgifter från flera moment. Snabbslumpade uppgifter från flera moment. Uppgift nr Ställ upp och dividera utan hjälp av miniräknare talet 48 med 2 Uppgift nr 2 Skriv talet 3 8 00 med hjälp av decimalkomma. Uppgift nr 3 Uppgift nr

Läs mer

När jag har arbetat klart med det här området ska jag:

När jag har arbetat klart med det här området ska jag: Kraft och rörelse När jag har arbetat klart med det här området ska jag: kunna ge exempel på olika krafter och kunna använda mina kunskaper om dessa när jag förklarar olika fysikaliska fenomen, veta vad

Läs mer

Övningshäfte Algebra, ekvationssystem och geometri

Övningshäfte Algebra, ekvationssystem och geometri Stockholms Tekniska Gmnasium --9 Övningshäfte Algebra, ekvationssstem och geometri Nivå: rätt svårt Fråga : f är ett polnom. Beräkna värdet av f, f och fπ Fråga : Ingångslönen på företaget Börjes Gurkinläggning

Läs mer

Hemsida Arbetsrum. Skapa arbetsrumslista

Hemsida Arbetsrum. Skapa arbetsrumslista Skapa arbetsrumslista Hemsida Arbetsrum För att kunna skapa en arbetsrumslista så markerar du i navigeringsfönstret där den nya sidan ska ligga. Klicka på menyknappen till höger om sidnamnet och sedan

Läs mer

För dig som är valutaväxlare. Så här följer du reglerna om penningtvätt i din dagliga verksamhet INFORMATION FRÅN FINANSINSPEKTIONEN

För dig som är valutaväxlare. Så här följer du reglerna om penningtvätt i din dagliga verksamhet INFORMATION FRÅN FINANSINSPEKTIONEN För dig som är valutaväxlare Så här följer du reglerna om penningtvätt i din dagliga verksamhet INFORMATION FRÅN FINANSINSPEKTIONEN MARS 2016 DU MÅSTE FÖLJA LAGAR OCH REGLER Som valutaväxlare ska du följa

Läs mer

Dagens ämnen. Repetition: kvadratiska former och andragradskurvor Andragradsytor System av differentialekvationer

Dagens ämnen. Repetition: kvadratiska former och andragradskurvor Andragradsytor System av differentialekvationer Dgens ämnen Repetition: kvdrtisk former oh ndrgrdskurvor Andrgrdsytor System v differentilekvtioner Rng, signtur oh tekenkrktär Sts 9.1.11. Låt Q: E R, dim E = n vr en kvdrtisk form. Då gäller λ min u

Läs mer

m 1 + m 2 v 2 m 1 m 2 v 1 Mekanik mk, SG1102, Problemtentamen 2013 08 20, kl 14-18 KTH Mekanik 2013 08 20

m 1 + m 2 v 2 m 1 m 2 v 1 Mekanik mk, SG1102, Problemtentamen 2013 08 20, kl 14-18 KTH Mekanik 2013 08 20 KTH Mekanik 2013 08 20 Mekanik mk, SG1102, Problemtentamen 2013 08 20, kl 14-18 Uppgift 1: En bil börjar accelerera med ẍ(0) = a 0 från stillastående. Accelerationen avtar exponentiellt och ges av ẍ(t)

Läs mer

NATIONELLA MATEMATIKTÄVLING

NATIONELLA MATEMATIKTÄVLING NATIONELLA MATEMATIKTÄVLING PRATA OM SPELS EN KURS I SANNOLIKHET 1 INLEDNING Sannolikhetskursen består av sju olika steg där det sista steget utgörs av själva tävlingsmomentet. Det är upp till pedagogen

Läs mer

Arbeta bäst där du är Dialect Unified Mi

Arbeta bäst där du är Dialect Unified Mi Arbeta bäst där du är Dialect Unified Mi [Skriv sammanfattningen av dokumentet här. Det är vanligtvis en kort sammanfattning av innehållet i dokumentet. Skriv sammanfattningen av dokumentet här. Det är

Läs mer

1 Föreläsning IX, tillämpning av integral

1 Föreläsning IX, tillämpning av integral Föreläsning IX, tillämpning v integrl. Volym v någr kroppr.. Skiv- oc sklmetodern, m.m. Vi kn tänk oss en limp (röd) som längsledes är genomorrd v eln,. Limpn skivs i n lik tjock skivor, lltså med tjocklek

Läs mer

Linjära system av differentialekvationer

Linjära system av differentialekvationer CTH/GU LABORATION MVE0-0/03 Matematiska vetenskaper Linjära system av differentialekvationer Inledning Vi har i envariabelanalysen sett på allmäna system av differentialekvationer med begynnelsevillkor

Läs mer

Möbiustransformationer.

Möbiustransformationer. 224 Om Möbiustransformationer Torbjörn Kolsrud KTH En Möbiustransformation är en komplexvärd funktion f av en komplex variabel z på formen f(z) = az + b cz + d. Här är a b c och d komplexa tal. Ofta skriver

Läs mer

Enkätresultat för elever i år 2 i Nösnäsgymnasiet 2 i Stenungsund våren 2014

Enkätresultat för elever i år 2 i Nösnäsgymnasiet 2 i Stenungsund våren 2014 Enkätresultat för elever i år 2 i Nösnäsgymnasiet 2 i Stenungsund våren 2014 Antal elever: 47 Antal svarande: 40 Svarsfrekvens: 85% Klasser: 12BAa, 12BAb, 12LL Skolenkäten Skolenkäten går ut en gång per

Läs mer

Skriva B gammalt nationellt prov

Skriva B gammalt nationellt prov Skriva B gammalt nationellt prov Skriva B.wma Då fortsätter vi skrivträningen. Detta avsnitt handlar om att anpassa sin text till en särskild situation, en speciell texttyp och särskilda läsare. Nu ska

Läs mer

ORTONORMERAT KOORDINAT SYSTEM. LÄNGDEN AV EN VEKTOR. AVSTÅND MELLEN TVÅ PUNKTER. MITTPUNKT. TYNGDPUNKT. SFÄR OCH KLOT.

ORTONORMERAT KOORDINAT SYSTEM. LÄNGDEN AV EN VEKTOR. AVSTÅND MELLEN TVÅ PUNKTER. MITTPUNKT. TYNGDPUNKT. SFÄR OCH KLOT. Armin Hlilovi: EXTRA ÖVNINGAR v Vektorer oh koordinter i D-rummet ORTONORMERAT KOORDINAT SYSTEM LÄNGDEN AV EN VEKTOR AVSTÅND MELLEN TVÅ PUNKTER MITTPUNKT TYNGDPUNKT SFÄR OCH KLOT INLEDNING För tt bild

Läs mer

Enkätresultat för elever i åk 9 i Borås Kristna Skola i Borås hösten 2012. Antal elever: 20 Antal svarande: 19 Svarsfrekvens: 95% Klasser: Klass 9

Enkätresultat för elever i åk 9 i Borås Kristna Skola i Borås hösten 2012. Antal elever: 20 Antal svarande: 19 Svarsfrekvens: 95% Klasser: Klass 9 Enkätresultat för elever i åk 9 i Borås Kristna Skola i Borås hösten 2012 Antal elever: 20 Antal svarande: 19 Svarsfrekvens: 95% Klasser: Klass 9 Skolenkäten Skolenkäten går ut en gång per termin till

Läs mer

Sammanfatta era aktiviteter och effekten av dem i rutorna under punkt 1 på arbetsbladet.

Sammanfatta era aktiviteter och effekten av dem i rutorna under punkt 1 på arbetsbladet. Guide till arbetsblad för utvecklingsarbete Arbetsbladet är ett verktyg för dig och dina medarbetare/kollegor när ni analyserar resultatet från medarbetarundersökningen. Längst bak finns en bilaga med

Läs mer

Administration Excelimport

Administration Excelimport Administration Excelimport För att importera medlemmar till registret så laddar man först ner mallen för importfil, fyller i uppgifterna och laddar sedan upp filen genom att klicka på + Importera fil.

Läs mer

Föreläsning 5: Rekursion

Föreläsning 5: Rekursion Föreläsning 5: Rekursion Vi har tidigare sett att man kan dela upp problem i mindre bitar med hjälp av underprogram, vilket är ett utmärkt sätt att lösa problem. Detta är ganska lätt att rita upp för sig

Läs mer

Facit med lösningsförslag kommer att anslås på vår hemsida www.ebersteinska.norrkoping.se. Du kan dessutom få dem via e-post, se nedan.

Facit med lösningsförslag kommer att anslås på vår hemsida www.ebersteinska.norrkoping.se. Du kan dessutom få dem via e-post, se nedan. Detta häfte innehåller uppgifter från fyra olika områden inom matematiken. Meningen är att de ska tjäna som en självtest inför gymnasiet. Klarar du dessa uppgifter så är du väl förberedd inför gymnasiestudier

Läs mer

Enkät om heltid i kommuner och landsting 2015

Enkät om heltid i kommuner och landsting 2015 Enkät om heltid i kommuner och landsting 2015 Enkät om heltid i kommuner och landsting 2015 1 Enkät om heltid i kommuner och landsting 2015 2 Innehåll Heltidsarbetet ökar... 5 Varför ska fler jobba heltid?...

Läs mer

7. SAMHÄLLSORIENTERING ÅK 5

7. SAMHÄLLSORIENTERING ÅK 5 7. SAMHÄLLSORIENTERING ÅK 5 7.2. Elevhäfte 2 7.2.1. Livsfrågor Eva och Micke går båda i 5:an. De träffas ofta efter skolan och lyssnar på musik eller gör hemläxan tillsammans. Ibland funderar de på frågor

Läs mer

Avsikt På ett lekfullt sätt färdighetsträna, utveckla elevers känsla för hur vårt talsystem är uppbyggt samt hitta mönster som uppkommer.

Avsikt På ett lekfullt sätt färdighetsträna, utveckla elevers känsla för hur vårt talsystem är uppbyggt samt hitta mönster som uppkommer. Strävorna 4A 100-rutan... förmåga att förstå, föra och använda logiska resonemang, dra slutsatser och generalisera samt muntligt och skriftligt förklara och argumentera för sitt tänkande.... grundläggande

Läs mer

Presentationsövningar

Presentationsövningar Varje möte då temadialog används bör inledas med en presentationsövning. har flera syften. Både föräldrar och ledare har nytta av att gå igenom samtliga deltagares namn och dessutom få en tydlig bild av

Läs mer

Mängder i R n. Funktioner från R n till R p

Mängder i R n. Funktioner från R n till R p Kpitel 1 Mängder i R n. Funktioner från R n till R p 1.1. Euklidisk rummet R n : geometri Som vnligt betecknr vi med R n mängden v ll reell n-tiplr = ( 1, 2,..., n ) med origo (nollvektorn) = (,,...,)

Läs mer

David Wessman, Lund, 30 oktober 2014 Statistisk Termodynamik - Kapitel 5. Sammanfattning av Gunnar Ohléns bok Statistisk Termodynamik.

David Wessman, Lund, 30 oktober 2014 Statistisk Termodynamik - Kapitel 5. Sammanfattning av Gunnar Ohléns bok Statistisk Termodynamik. Sammanfattning av Gunnar Ohléns bok Statistisk Termodynamik. 1 Jämviktsvillkor Om vi har ett stort system som består av ett litet system i kontakt med en värmereservoar. Storheter för det lilla systemet

Läs mer

Tentamen i Linjär algebra (TATA31/TEN1) 2013 08 24, 14 19.

Tentamen i Linjär algebra (TATA31/TEN1) 2013 08 24, 14 19. LINKÖPINGS UNIVERSITET Matematiska Institutionen Ulf Janfalk Kurskod: TATA Provkod: TEN Tentamen i Linjär algebra (TATA/TEN 8, 9. Inga hjälpmedel. Ej räknedosa. För godkänt räcker 9 poäng och minst uppgifter

Läs mer

Idag: Dataabstraktion

Idag: Dataabstraktion Idag: Dataabstraktion Hur använder vi det vi hittills kan om Scheme för att realisera (implementera) sammansatta data? Hur separerar man datastrukturen från resten av ett program så att ändringar i datastrukturen

Läs mer

Konferens Vem bestämmer om arkiv

Konferens Vem bestämmer om arkiv Konferens Vem bestämmer om arkiv Tid: Tisdagen den 17 november 09:00-16:30 Plats: Elite Grand Hotell, Gävle Närvarande: 66 anmälda + 14 föredragshållare och samrådsgruppen Här följer en sammanställning

Läs mer

a n = A2 n + B4 n. { 2 = A + B 6 = 2A + 4B, S(5, 2) = S(4, 1) + 2S(4, 2) = 1 + 2(S(3, 1) + 2S(3, 2)) = 3 + 4(S(2, 1) + 2S(2, 2)) = 7 + 8 = 15.

a n = A2 n + B4 n. { 2 = A + B 6 = 2A + 4B, S(5, 2) = S(4, 1) + 2S(4, 2) = 1 + 2(S(3, 1) + 2S(3, 2)) = 3 + 4(S(2, 1) + 2S(2, 2)) = 7 + 8 = 15. 1 Matematiska Institutionen KTH Lösningar till tentamensskrivning på kursen Diskret Matematik, moment A, för D och F, SF161 och SF160, den juni 008 kl 08.00-1.00. DEL I 1. (p) Lös rekursionsekvationen

Läs mer

Kommunikationspolicy i korthet för Lidingö stad

Kommunikationspolicy i korthet för Lidingö stad Kommunikationspolicy i korthet för Lidingö stad En policy ger stöd Att kommunicera är en del av vardagen för oss som arbetar i Lidingö stad. Att kommunikationen fungerar är viktigt för att vi ska kunna

Läs mer

Enkätresultat för elever i år 2 i Mega Musik gymnasium hösten 2014. Antal elever: 47 Antal svarande: 46 Svarsfrekvens: 98% Klasser: MM13

Enkätresultat för elever i år 2 i Mega Musik gymnasium hösten 2014. Antal elever: 47 Antal svarande: 46 Svarsfrekvens: 98% Klasser: MM13 Enkätresultat för elever i år 2 i Mega Musik gymnasium hösten 2014 Antal elever: 47 Antal svarande: 46 Svarsfrekvens: 98% Klasser: MM13 Skolenkäten Skolenkäten går ut en gång per termin till de skolor

Läs mer

Enkätresultat för elever i år 2 i Praktiska Skövde i Praktiska Sverige AB hösten 2014

Enkätresultat för elever i år 2 i Praktiska Skövde i Praktiska Sverige AB hösten 2014 Enkätresultat för elever i år 2 i Praktiska Skövde i Praktiska Sverige AB hösten 2014 Antal elever: 18 Antal svarande: 13 Svarsfrekvens: 72% Klasser: År 2 Skolenkäten Skolenkäten går ut en gång per termin

Läs mer

Bered en buffertlösning. Niklas Dahrén

Bered en buffertlösning. Niklas Dahrén Bered en buffertlösning Niklas Dahrén Grundprincipen vid beredning av en buffertlösning ü När vi bereder en buffertlösning blandar vi en svag syra med dess korresponderande bas (den bas som syran också

Läs mer

Efter att du har installerat ExyPlus Office med tillhörande kartpaket börjar du med att göra följande inställningar:

Efter att du har installerat ExyPlus Office med tillhörande kartpaket börjar du med att göra följande inställningar: EXYPLUS OFFICE manual Välkommen till ExyPlus Office! Efter att du har installerat ExyPlus Office med tillhörande kartpaket börjar du med att göra följande inställningar: Hämta fordon Hämta alla fordonsenheter

Läs mer

Frågor och svar för föreningar om nya ansökningsregler för aktivitetsbidrag från och med 1 januari 2017

Frågor och svar för föreningar om nya ansökningsregler för aktivitetsbidrag från och med 1 januari 2017 Frågor och svar för föreningar om nya ansökningsregler för aktivitetsbidrag från och med 1 januari 2017 Innehåll Generella frågor... 2 Vad är det som ändras 1 januari 2017?... 2 Vad behöver min förening

Läs mer

1.1 Sfäriska koordinater

1.1 Sfäriska koordinater Föreläsning 3 Mång fysiklisk problem hr någon slgs symmetri. Mest vnligt förekommnde är sfärisk cylinisk. Det visr sig tt mn kn förenkl beräkningr betydligt om mn nvänder sfärisk /eller cylinisk koordinter..

Läs mer