2. För ljudvågor i en gas, innesluten i ett sfärisk skal, gäller vågekvationen. u tt = c 2 u
|
|
- Kjell Bergman
- för 6 år sedan
- Visningar:
Transkript
1 KTH Fysik Tentamen i 5A3/5A35 Fysikens matematiska metoder Fredagen den 4 januari 25, kl Anteckna på varje blad: namn, utbildningslinje, årskurs och problemnummer. Notera på första tentabladet om du har hemtal tillgodo från tidigare kurs, och vilken termin kursen gick! Tillåtna hjälpmedel: ) Teoretisk fysiks formelsamling 2) BETA 3) NBS Handbook of Mathematical Functions 4) Josefsson, Formel- och tabellsamling i matematik 5) Tefyma 6) Spiegel, Mathematical Handbook Obs! Miniräknare ej tillåten. Examinator: Edwin Langmann (tel: Epost: langmann@kth.se) Resultat: Anslås på institutionens studentexpedition, Roslagstullsbacken 2 Lösningar: Kommer att finnas på kurshemsidan, Motivera utförligt! Otillräckliga motiveringar medför poängavdrag.. En plan homogen vägg uppvärms på den ena sidan av solen, medan dess andra sidan hålls vid konstant temperatur hela tiden. Uppvärmningsförloppet kan modelleras med den endimensionella värmeledningsekvationen för väggens temperatur u = u(x, t) som bara beror på tiden t och koordinaten x som motsvarar normalavståndet från den sida som solen skiner på, x L. Vi kan anta att (normalkomponenten av) värmeströmmen, j = λu x, är lika med w vid x =, u = T vid x = L, och temperaturen vid t = är konstant och lika med T ; λ och w är konstanter. Beräkna u(x, t). Ange en fysikalisk tolkning av w. Ledningar: Det finns en partikulärlösning till PDE och RV som bara beror på x. 2. För ljudvågor i en gas, innesluten i ett sfärisk skal, gäller vågekvationen u tt = c 2 u där u är skillnaden mellan trycket och jämviktstrycket, och normalderivatan av u vid skalets rand är noll; ljudhastigheten c är konstant. Beräkna u = u(r, ϕ, θ, t) för alla tider t > inom skalet där r, ϕ, θ är de sfäriska koordinaterna. Anta att u t = vid t = och u(r, ϕ, θ, ) = A cos(θ)(r 2 /2R r), där A > är en konstant och R > är skalets radie. 3. (a) Bestäm den elektriska potentialen V utanför ett klot i vakuum om potentialen på klotytan är given. Klotytan består av två identiska halvklotytor. Vid den ena halvklotytan är potentialen V = V > (konstant), och vid den andra identiskt noll. (Det räcker att beräkna endast de två första termerna i serieutvecklingen explicit och ge de andra som integraler.) (b) Definiera och ge en fysikalisk tolkning av Greenfunktionen till problemet i (a). (Du behöver inte beräkna den, det räcker om du ger alla ekvationer som bestämmer den entydigt.)
2 4. Formulera och lös en enkel linjär, tvådimensionell modell för tillväxt av en bakteriekultur i ett cylindrisk behållare. Bakterierna växer inom ett tunt skikt av näringslösning som är homogent fördelad på botten, en skiva med radie a, i behållaren. Vi är intresserade av bakteriekoncentrationen ρ, dvs. antal bakterier per area, som beror på tiden t och bottenpositionen r, ϕ i polära koordinater. Antag att bakteriekoncentrationen lyder kontinuitetsekvationen, ρ t + j = κ, med ett bakterieström j proportionell mot gradienten av ρ och ett källterm κ proportionell mot ρ. Normalkomponenten av strömmen j på randen r = a är noll. I början är en viss bakteriemängd Q homogent fördelad på en liten skiva i bottens centrum. Beräkna också tidsutvecklingen av den totala bakteriemängden Q. Ledning: Ge en fullständig matematisk formulering av modellen och beräkna ρ(r, ϕ, t). Inför och förklara själv ytterligare konstanter du behöver. 5. Beräkna funktionen u = u(x, y) som minimerar funktionalen dx dy [u x (x, y) 2 + u y (x, y) 2 ] med villkoret dx dy u(x, y) 2 =, där området är halva skivan med radie, = {x, y R 2 ; x 2 + y 2, y }, och u skall vara noll på :s rand. Ge en möjlig fysikalisk tolkning av u. Ledningar: Börja med att härleda differentialekvationen. LYCKA TILL!
3 Lösningsföreslag till FYSMAT Tentamen den 4 januari 25. Problemet lyder u t au xx = u x (, t) = w/λ u(l, t) = T u(x, ) = T (RV) (RV2) (BV) där u = u(x, t), x L, t (OBS. att j(, t) = λu x (, t) = w ger (RV)). Partikulärlösningen u P (x, t) = U(x) till och (RV,2) uppfyller U =, U(L) = T, U () = w/λ. Detta ger U(x) = T + w (x L). λ Vi gör ansatzen u(x, t) = U(x) + v(x, t) och få v t av xx = v x (, t) = v(l, ) = v(x, ) = u(x, ) U(x) = w (x L) α(x). λ (BV ) Produktansatzen v(x, t) = f(x)g(t) ger (PDE ) (RV ) f (x) + k 2 f =, f () =, f(l) = f n (x) = cos(k n x), k n = π L (n 2 ) där n =, 2,..., och f + ak 2 f = f(t) = e ak2t. Superponering ger den allmänna lösningen till (PDE ) och (RV ) v(x, t) = A n cos(k n x)e ak2 n t. n= Konstanterna bestäms med (BV ), A n cos(k n x) = α(x) A n = 2 L n= Lösningen blir då u(x, t) = T + w 2wL (x L) + λ λ n= L dx α(x) cos(k n x) = wl λ 2 (k n L). 2 (k n L) 2 cos(k nx)e ak2 n t, k n = π L (n 2 ). w > är proportionellt mot wärmeflödet från solen som absorberas av väggen. (OBS. w < därför att U(x) är temperaturen eften en lång tid, och U() = T w/λ > T och λ >.)
4 2. BV och RV är oberoende av ϕ u = u(r, θ, t). Problemet lyder u r 2 (r2 r r ) + r 2 sin(θ) θ (sin(θ) u θ ) c u 2 tt = u r (R, θ, t) = u t (r, θ, ) = u(r, θ, ) = A cos(θ)(r 2 /2R r) (RV) (BV) (BV2) där u = u(r, θ, t), r R, θ π, t. (OBS: (r 2 /2R r) ( r2 2R r).) Separationen u(r, θ, t) = f(r)g(θ)h(t) osv. ger h (t) + (kc) 2 h =, h () = h(t) = cos(kct), sin θ (sin(θ)g ) + µg = µ = l(l + ), g(θ) = P l (cos(θ)), l =,,... med Legendre polynomer P l som definierad i BETA Kap. 2.2, r 2 (r2 f ) + (k 2 l(l + ) )f =, f() <, f (R) = r 2 f(r) = j l (k l,s r), j l(k l,s R) =, s =, 2,... med j l sfäriska Besselfunktioner som definierad i BETA Kap Den allmänna lösningen till, (RV) och (BV) blir då u(r, θ, t) = l= B n,s j l (k l,s r)p l (cos(θ)) cos(ck n,s t). s= (BV2) och A cos(θ)(r 2 /2R r) = AP (cos(θ))(r 2 /2R r) ger B l,s = om l och A(r 2 /2R r) = R B s j (k s r) B s = A drr2 (r 2 /2R r)j (k s r) R s drr2 j (k s r) 2 där B s B,s och k s k,s. Obs. att Lösningen blir då j (z) = (sin(z)/z) = (sin(z) z cos(z))/z 2. u(r, θ, t) = B s j (k s r) cos(θ) cos(ck s t), k s = η s /R s= där η s är nollställerna till j : j (η s ) =, och B s ovanför. 3. Vi införa sfäriska koordinater så att potentialen på klotytan är V (r = R, θ, ϕ) = V Θ(π/2 θ) där Θ är Heaviside funktionen. RV oberoende av ϕ potentialen V = V (r, θ) är oberoende av ϕ. Problemet lyder V r 2 (r2 r r ) + r 2 sin(θ) θ (sin(θ) V θ ) = u(r, θ) = V Θ(π/2 θ) (RV)
5 där V = V (r, θ), R r < och θ π. Separation osv. ger (FYSMAT boken, Kap ) V (r, θ) = ( Al (r/r) l + B l (R/r) l+) P l (cos(θ)). l= Vakuum utansfär sfären ger V när r A l = l. (RV) ger B l P l (cos(θ)) = V Θ(π/2 θ) B l = l= π/2 dθ sin(θ)p l (cos(θ)) π dθ sin(θ)p l(cos(θ)) = 2 dx P l(x) dx P l(x) 2. P (x) = och P (x) = x ger B = V /2 och B = 3V /4. Svar: V (r, θ) = B l (R/r) l+ P l (cos(θ)) = V ( R 2r [R r ]2 + O([ R r ]3 )). l= (b) Greenfunktionen G(r, r ) till problemet är definierad genom r G(r, r ) = δ 3 (r r ) G(r, r ) r =R = G(r, r ) när r, och G(r, r ) motsvara elektiska potentialen i punkten r genererad genom en punktladdning med laddning i punkten r, där r och r befinner sig utanför sfären r R och potentialen är fixerad till på sfärytan r = R. 4. Ledningar ger j = λ ρ och κ = αρ där konstanterna λ och α karakteriserar rörelseförmågan och tillväxttakten av våra bakterier, och detta ger ρ t λ ρ αρ = där ρ = ρ(r, ϕ, t), t, r a, ϕ 2π. Ledningen ger ˆn j r =a =, dvs. ρ r (a, ϕ, t) = (RV), och ρ(r, ϕ, ) = Q Θ(b r) b 2 π (BV), där b 2 π är arean där våra bakterier är fördelad i början, b a. Modellen ges av, (RV) och (BV). (RV) och (BV) oberoende av ϕ ρ = ρ(r, t) oberoende av ϕ. Separation osv. ger ρ(r, t) = A e αt + A s J (k s r)e (α ak2 s )t där J (k s a) =, dvs., k s = η s /a och η s > är nollställarna till J = J, och A s = Q s= b drrj (k s r) b 2 π a drrj (s > ), A (k s r) 2 = Q a 2 π.
6 där a drrj (k s r) 2 = (a 2 /2)J (k s a) 2. OBS att A s Q /[a 2 πj (k s a) 2 ] när b. Totala bakeriemängden Q är därför att Q(t) = a a 2π drr dϕ ρ(r, ϕ, r) = a 2 πa e αt = Q e αt drrj (k s r) = a k s J (k s a) = a k s J (k s a) = p.g.a. (RV) (obs. att xj (x) = (xj (x)) och J (x) = J (x) enl. BETA Kap. 2.4). Anmärkning : Ett annat (och enklare) sätt att få Q(t) är att observerar Q(t) = d 2 r ρ(r, t) där är lika med skivan r a, och ger d dt Q(t) = d 2 r ρ t = d 2 r [λ ρ(r, t) + αρ(r, t)] = αq(t) p.g.a. Greens formel och (RV). Detta ger Q(t) = Q()e αt = Q e αt som ovan. Anmärkning 2: Man kan ersätta (RV) genom ρ(r, ϕ, ) = Q πr δ(r) (RV ) som motsvarar b, men det är lite knepig (OBS faktorn /πr så att a därför att a drδ(r) = (/2) a gränsvärdet b i svaret. a 2π drr dϕ ρ(r, ϕ, ) = Q, drδ(r) = /2.) Det är lättare att räkna med b > tar 5. Vi har ett variationsproblem med ett villkor. Vi kan få lösningen från δ dx dy [u 2 x + u 2 y λu 2 ] = }{{} F där λ är en konstant (Lagranges multiplikationsmetod). Euler-Lagranges differentialekvationen är F + F = F x u x y u y u, och detta ger Helmholtzekvationen, u + λu =. Våra problem därför kan lösas genom att lösa Helmholtzekvationen i området med Dirichlet randvillkor. Funktionalen blir dx dy [ u] 2 = dx dy u( u)
7 p.g.a. Greens formel och (RV), och ger dx dy [ u] 2 = λ dx dy u = λ. Vi söker därför egenfunktionen till med lägsta egenvärden λ. OBS att λ. Vi införa polära koordinater r, ϕ. Detta ger följande matematisk formulering, där r, ϕ π, och Separation u(r, ϕ) = f(r)g(ϕ) ger r (ru r) r + r 2 u ϕϕ + λu = u(, ϕ) = u(r, ) = u(r, π) =. g + m 2 g =, g() = g(π) = g(ϕ) = sin(mϕ), m =, 2, 3... r (rf ) + ( m2 r 2 k2 )f =, f() =, f() < f(r) = J m (k m,s r) där k m,s är nollsällarna till J m, och λ = k 2 m,s. Alla funktioner som extremerar funktionalen och uppfyller alla villkoren är u m,s (r, ϕ) = N m,s sin(mϕ)j m (k m,s r) där π N m,s = [ dϕ sin 2 (mϕ) drrj m (k m,s ) 2 ] /2 = [πj m(k m,s ) 2 /4] /2 och m =, 2, 3..., s =, 2,..., där J m (k m,s ) =. Funktionalen blir minimal om k 2 m,s blir minimal, dvs., om m = s =. Svar: u = u, ovan, u(r, ϕ) = [πj (k, ) 2 /4] /2 sin(ϕ)j (k, r), där k, = är minsta nollställe större än noll till J (r). Minsta värden till funktionalen är k 2,. Möjliga fysikalisk tolkningar: u ovan ger grundsvängning av en -format trumma eller: u ger grundtillstånd av ett kvantpartikel i ett område eller:... Alternativlösning: Vi införa polära koordinater, u = u(r, ϕ), och skriver funktionalen som skall extremeras som π drr dϕ r[(u r ) 2 + r (u ϕ) 2 λu 2 ], } 2 {{} G med (RV) ovan. Euler-Lagrange ekvationen blir då direkt ovan. Osv. G + r u r ϕ G = G u ϕ u,
KTH Fysik Tentamen i 5A1301/5A1304 Fysikens matematiska metoder Onsdagen den 24 augusti 2004 kl
KTH Fysik Tentamen i 5A131/5A134 Fysikens matematiska metoder Onsdagen den 24 augusti 24 kl 14. 19. Anteckna på varje blad: namn, utbildningslinje, årskurs och problemnummer. Notera på första tentabladet
1. (a) Bestäm funktionen u = u(x, y), 0 < x < a och 0 < y < a, som uppfyller u xx (x, y) + u yy (x, y) = 0
KTH Fysik Tentamen i 5A1306 Fysikens matematiska metoder: PDE-tentamen Fredagen den 8 juni 2007 kl 08.00 13.00 Anteckna på varje blad: namn, utbildningslinje, årskurs och problemnummer. Tillåtna hjälpmedel:
KTH Fysik Tentamen i 5A1301/5A1305 Fysikens matematiska metoder Tisdagen den 23 augusti 2005, kl
KTH Fysik Tentamen i 5A3/5A35 Fysikens matematiska metoder Tisdagen den 23 augusti 25, kl 4. 9. Anteckna på varje blad: namn, utbildningslinje, årskurs och problemnummer. Notera på första tentabladet om
1. (a) Bestäm lösningen u = u(x, y) till Laplaces ekvation u = 0 inom rektangeln 0 < x < a och 0 < y < b med följande randvillkor 1
KTH Teoretisk Fysik Tentamen i 5A131/5A135 Fysikens matematiska metoder Fredagen den 2 oktober 26, kl 8:-13: Anteckna på varje blad: namn, utbildningslinje, årskurs problemnummer. Notera på första tentabladet
Edwin Langmann (Epost: x u(x, t); f (x) = df(x)
KTH Teoretisk Fysik Omtentamen i Fysikens matematiska metoder SI12; SI114 Del 2; SI1143 Lördagen den 9 juni 218 kl 9. 14. Anteckna på varje blad: namn, personnummer, och problemnummer. Tillåtna hjälpmedel:
KTH Teoretisk Fysik Tentamen i 5A1304/5A1305 Fysikens matematiska metoder Onsdagen den 11 januari 2006, kl 08:00-13:00
KTH Teoretisk Fysik Tentamen i 5A304/5A305 Fysikens matematiska metoder Onsdagen den januari 006, kl 08:00-3:00 Anteckna på varje blad: namn, utbildningslinje, årskurs och problemnummer. Notera på första
Notera på första tentabladet om du har hemtal tillgodo från tidigare kurs
Fysik KTH TENTAMEN Fysikens matematiska metoder 5A1301/5A1304 Onsdag 003-03-1, kl. 08.00-13.00 Notera på första tentabladet om du har hemtal tillgodo från tidigare kurs Anteckna på varje blad: Namn, utbildningslinje,
för t > 0 och 0 x L med följande rand- och begynnelsevillkor
KTH Teoretisk Fysik Tentamen i 5A131/5A135 Fysikens matematiska metoder Tisdagen den 16 januari 27, kl 8:-13: Anteckna på varje blad: namn, utbildningslinje, årskurs och problemnummer. Notera på första
Edwin Langmann (tel: Epost: DEL 1
KTH Teoretisk Fysik Tentamen i Fysikens matematiska metoder (PDE tentamen, F variant) SI114 och SI1143 Del 2; SI1141; 5A136, 5A135 och 5A131 PDE tentamen Onsdagen 29 maj 213 kl 8. 13. OBS: Det finns två
Tentamen Fysikens Matematiska Metoder, Tilläggskurs, vt 2009, SI (a) Bestäm en reellvärd funktion f(x), 0 x 1, för vilken funktionalen
Tentamen Fysikens Matematiska Metoder, Tilläggskurs, vt 9, SI4 Måndagen den 5 maj 9 kl 9. 3. Anteckna på varje blad: namn, utbildningslinje, årskurs och problemnummer. Tillåtna hjälpmedel: BETA, Teoretisk
1. (a) Bestäm funktionen u = u(t, x), t > 0 och 0 < x < L, som uppfyller. u(t, 0) = 0, u x (t, L) = 0 u(0, x) = Ax(2L x)
KTH Fysik Tentamen i 5A1306 Fysikens matematiska metoder: PDE-tentamen Onsdagen den 28 mars 2007 kl 08.00 13.00 Anteckna på varje blad: namn, utbildningslinje, årskurs problemnummer. Tillåtna hjälpmedel:
TENTAMEN I VEKTORANALYS SI1146 och SI1140 Del 1, VT18
TENTAMEN I EKTORANALY I46 och I40 Del, T8 Torsdagen 3 maj 4:00-9:00 Anteckna på varje blad: Namn, utbildningslinje, årskurs och problemnummer. Tillåtna hjälpmedel: Formelblad som delas ut. Räknedosa ej
Edwin Langmann (tel: Epost: DEL 1 (Del 2 på andra sidan)
KTH Teoretisk Fysik Omtentamen i Fysikens matematiska metoder PDE tentamen, SI114 och SI1143 Del 2; SI1141; 5A136, 5A135 och 5A131 PDE tentamen Tisdagen 5 juni 212 kl 8. 13. OBS: Det finns två varianter
Fysikens matematiska metoder hösten 2006
Teoretisk Fysik KTH Fysikens matematiska metoder hösten 2006 Ämnesbeskrivning 5A1305 Nästan samtliga modeller av verkliga fysikaliska problem ger upphov till differentialekvationer med derivator av flera
OMTENTAMEN I VEKTORANALYS SI1146 och SI1140 Del 1, VT18
OMTENTAMEN I VEKTORANALY I46 och I40 Del, VT8 Onsdagen augusti 08:00-:00 Anteckna på varje blad: Namn, utbildningslinje, årskurs och problemnummer. Tillåtna hjälpmedel: Formelblad som delas ut. Räknedosa
Institutionen för matematik KTH. Tentamensskrivning, , kl B1202/2 Diff och Trans 2 del 2, för F och T.
Institutionen för matematik KTH Tentamensskrivning, 3-5-6, kl. 14. 19.. 5B1/ Diff och Trans del, för F och T. Hjälpmedel: BETA, Mathematics Handbook. För godkänt betyg 3 krävs 18 poäng, medan för betyg
Tentamen: Lösningsförslag
Tentamen: Lösningsförslag Onsdag 5 mars 7 8:-3: SF674 Flervariabelanalys Inga hjälpmedel är tillåtna. Max: 4 poäng. 4 poäng Avgör om följande gränsvärde existerar och beräkna gränsvärdet om det existerar:
Rita även upp grafen till Fourierseriens summa på intervallet [ 2π, 3π], samt ange summans värde i punkterna π, 0, π, 2π. (5) S(t) = c n e int,
Institutionen för matematik KTH Tentamensskrivning, 003-08-5, kl. 14.00 19.00. 5B10/ Diff och Trans del, för F och T. Hjälpmedel: BETA, Mathematics Handbook. För godkänt betyg 3) krävs 18 poäng, medan
SF1669 Matematisk och numerisk analys II Lösningsförslag till tentamen DEL A. r cos t + (r cos t) 2 + (r sin t) 2) rdrdt.
1. Beräkna integralen medelpunkt i origo. SF1669 Matematisk och numerisk analys II Lösningsförslag till tentamen 218-3-14 D DEL A (x + x 2 + y 2 ) dx dy där D är en cirkelskiva med radie a och Lösningsförslag.
Innehåll 1. Kapitel 6: Separation of Variables 1
SF629 - DIFFERENTIALEKVATIONER OCH TRANSFORMER II - ÖVNING 5 KARL JONSSON Innehåll. Kapitel 6: Separation of Variables.. Upp. 6.2: Dirichlets problem på enhetsskivan med randdata polära koordinater) u,
FFM234, Klassisk fysik och vektorfält - Föreläsningsanteckningar
FFM234, Klassisk fysik och vektorfält - Föreläsningsanteckningar Christian Forssén, Institutionen för fysik, Chalmers, Göteborg, Sverige Oct 16, 2018 9. Lösningar av Poissons ekvation Vi vet att Poissons
u av funktionen u = u(x, y, z) = xyz i punkten M o = (x o, y o, z o ) = (1, 1, 1) i riktningen mot punkten M 1 = (x 1, y 1, z 1 ) = (2, 3, 1)
ATM-Matematik Mikael Forsberg 734 41 3 31 Flervariabelanalys mag31 1669 Skrivtid: 9:-14:. Inga hjälpmedel förutom bifogad formelsamling. Lösningarna skall vara fullständiga och lätta att följa. Börja varje
ENDIMENSIONELL ANALYS A3/B kl INGA HJÄLPMEDEL. Lösningarna ska vara försedda med ordentliga motiveringar. lim
LUNDS TEKNISKA HÖGSKOLA MATEMATIK TENTAMENSSKRIVNING ENDIMENSIONELL ANALYS A3/B2 26 3 7 kl. 8 3 INGA HJÄLPMEDEL. Lösningarna ska vara försedda med ordentliga motiveringar.. Beräkna a) x+4 x 3 +4x dx.5)
SF1626 Flervariabelanalys Lösningsförslag till tentamen DEL A
SF1626 Flervariabelanalys Lösningsförslag till tentamen 213-8-22 DEL A 1. Betrakta funktionen f(x, y) ln(x 2 + xy 2 4). a) Bestäm tangentplanet till funktionsytan z f(x, y) i den punkt på ytan där x 1
Tentamen i tmv036c och tmv035c, Analys och linjär algebra C för K, Kf och Bt A =, = det(a λi) = e 2t + c 2. x(t) = c 1. = c 1.
Institutionen för matematiska vetenskaper Chalmers tekniska högskola Niklas Eriksen Tentamen i tmv6c och tmv5c, Analys och linjär algebra C för K, Kf och Bt Lösningar 9--6. Lös initialvärdesproblemet x
= 0. Båda skärningsvinklarna är således π/2 (ortogonala riktningsvektorer).
Institutionen för Matematik, KTH Torbjörn Kolsrud SF163, ifferential- och integralkalkyl II, del 2, flervariabel, för F1. Tentamen torsdag 19 augusti 21, 14. - 19. Inga hjälpmedel är tillåtna. Svar och
Tentamen TMA044 Flervariabelanalys E2
Tentamen TMA44 Flervariabelanalys E 4--3 kl. 8.3.3 Examinator: Peter Hegarty, Matematiska vetenskaper, halmers Telefonvakt: Elin Solberg, telefon: 73 88 34 Hjälpmedel: bifogat formelblad, ordlistan från
SF1626 Flervariabelanalys Lösningsförslag till tentamen DEL A
SF626 Flervariabelanalys Lösningsförslag till tentamen 23-- DEL A. Bestäm en ekvation för tangentplanet i punkten (,, 2 till ellipsoiden 2x 2 +3y 2 +z 2 = 9. (4 p Lösning. Vi uppfattar ytan som nivåytan
SF1626 Flervariabelanalys Tentamen Tisdagen den 10 januari 2017
Institutionen för matematik SF626 Flervariabelanalys Tentamen Tisdagen den januari 27 Skrivtid: 8:-3: Tillåtna hjälpmedel: inga Examinator: Mats Boij Tentamen består av nio uppgifter som vardera ger maximalt
Poissons ekvation och potentialteori Mats Persson
1 ärmeledning Föreläsning 21/9 Poissons ekvation och potentialteori Mats Persson i vet att värme strömmar från varmare till kallare. Det innebär att vi har ett flöde av värmeenergi i en riktning som är
Lösningsskiss för tentamen Vektorfält och klassisk fysik (FFM234 och FFM232)
Lösningsskiss för tentamen Vektorfält och klassisk fysik (FFM23 och FFM232) Tid och plats: Måndagen den 29 oktober 208 klockan 00-800, Maskinsalar Lösningsskiss: Christian Forssén Detta är enbart en skiss
SF1626 Flervariabelanalys Lösningsförslag till tentamen DEL A
SF1626 Flervariabelanalys Lösningsförslag till tentamen 215-3-16 DEL A 1. Låt f(x, y) = 1 x 2 y 2. (a) Skissa nivåkurvorna f(x, y) = c till f för c =, c = 1 och c = 2. (1 p) (b) Beräkna gradf(x, y) i de
SF1626 Flervariabelanalys Lösningsförslag till tentamen DEL A
SF626 Flervariabelanalys Lösningsförslag till tentamen 24-8-2 DEL A. Bestäm och skissera definitionsmängden till funktionen fx, y) = x 2 + y 2 + 2x 4y + + x. Är definitionsmängden kompakt? 4 p) Lösning.
SF1626 Flervariabelanalys Tentamen Måndagen den 16 mars 2015
Institutionen för matematik SF1626 Flervariabelanalys Tentamen Måndagen den 16 mars 215 Skrivtid: 8:-13: Tillåtna hjälpmedel: inga Examinator: Mats Boij Tentamen består av nio uppgifter som vardera ger
SF1626 Flervariabelanalys Lösningsförslag till tentamen DEL A
SF626 Flervariabelanalys Lösningsförslag till tentamen 23-5-27 DEL A. Bestäm alla punkter på ytan z = x 2 + 4y 2 i vilka tangentplanet är parallellt med planet x + y + z =. 4 p) Lösning. Tangentplanet
x (t) = 2 1 u = Beräkna riktnings derivatan av f i punkten a i riktningen u, dvs.
MATEMATIK Chalmers tekniska högskola Tentamen -8-8, kl. 4.-8. TMV6 Analys och linjär algebra K Kf Bt, del C Telefonvakt: Adam Andersson, telefon: 7-884 Hjälpmedel: Inga, bara papper och penna. För full
Formelsamling. Elektromagnetisk fältteori för F och Pi ETE055 & ETEF01
Formelsamling Elektromagnetisk fältteori för F och Pi ETE055 & ETEF01 Institutionen för elektro- och informationsteknik Lunds tekniska högskola Juni 014 Innehåll 1 Elstatik 1 Likström 4 3 Magnetostatik
Rita även grafen till Fourierserien på intervallet [ 2π, 4π]. (5) 1 + cos(2t),
Institutionen för matematik KTH Tentamensskrivning, 24-1-13, kl. 14. 19.. 5B122/2 Diff och Trans 2 del 2, för F, E, T. Hjälpmedel: BETA, Mathematics Handbook. För godkänt betyg 3 krävs 18 poäng, medan
Lösningsförslag till tentamen Tisdagen den 10 januari 2017 DEL A
Institutionen för matematik SF66 Flervariabelanalys Lösningsförslag till tentamen Tisdagen den januari 7 DEL A. En partikel rör sig så att positionen efter starten ges av (x, y, z (t cos t, t sin t, t
6. Räkna ut integralen. z dx dy dz,
Institutionen för Matematik, TH Flervariabelanalys SF626. Tentamen den 23 november 29 kl. 8-3 Tillåtet hjälpmedel är Beta Mathematics Handbook. Tydliga lösningar med fullständiga meningar och utförliga
Lösningsförslag till tentamen i SF1629, Differentialekvationer och Transformer II (del 2) 8 januari 2018
KTH, Matematik Maria Saprykina Lösningsförslag till tentamen i SF169, Differentialekvationer och Transformer II (del ) 8 januari 18 Tentamen består av sex uppgifter där vardera uppgift ger maximalt fyra
Skriftlig tentamen i Elektromagnetisk fältteori för π3 (ETEF01) och F3 (ETE055)
Skriftlig tentamen i Elektromagnetisk fältteori för π (ETEF01 och F (ETE055 1 Tid och plats: 6 oktober, 016, kl. 14.00 19.00, lokal: Gasquesalen. Kursansvarig lärare: Anders Karlsson, tel. 40 89 och 07-5958.
Lösningsskiss för tentamen Vektorfält och klassisk fysik (FFM232)
Lösningsskiss för tentamen Vektorfält och klassisk fysik (FFM232) Tid och plats: Lösningsskiss: Tisdagen den 20 december 2016 klockan 0830-1230 i M-huset Christian Forssén Detta är enbart en skiss av den
Kvantfysik SI1151 för F3 Tisdag kl
TEORETISK FYSIK KTH Kvantfysik SI5 för F3 Tisdag 3008 kl. 8.00-3.00 Skriv på varje sida Namn och problemnummer Motivera noga Otillräckliga motiveringar leder till poängavdrag Hjälpmedel Teoretisk fysiks
Lösning till kontrollskrivning 1A
KTH Matematik Olle Stormark Lösning till kontrollskrivning 1A i SF1626 Flervariabelanalys för E, vt 28. Varje uppgift ger maximalt 3 poäng. För godkänt krävs minst 5 poäng sammanlagt. 1. Funktionen f(x,
KTH Matematik Tentamensskrivning i Differentialekvationer I, SF1633.
KTH Matematik Tentamensskrivning i Differentialekvationer I, SF1633. Måndagen den 17 oktober 11, kl 8-13. Hjälpmedel: BETA, Mathematics Handbook. Redovisa lösningarna på ett sådant sätt att beräkningar
Lösningsskiss för tentamen Vektorfält och klassisk fysik (FFM232)
ösningsskiss för tentamen Vektorfält och klassisk fysik FFM232) Tid och plats: ösningsskiss: Måndagen den 24 oktober 2016 klockan 14.00-18.00 i M-huset. Christian Forssén och Tobias Wenger Detta är enbart
SF1649, Vektoranalys och komplexa funktioner Tentamen, måndagen den 19 december Lösningsförslag. F n ds,
Institutionen för matematik, KTH Serguei Shimorin SF1649, Vektoranalys och komplexa funktioner Tentamen, måndagen den 19 december 211. Lösningsförslag 1. Räkna ut flödesintegral F n ds, där F = (x e y,
SF1626 Flervariabelanalys Tentamen Torsdagen den 20 augusti 2015
Institutionen för matematik SF1626 Flervariabelanalys Tentamen Torsdagen den 2 augusti 215 Skrivtid: 8:-1: Tillåtna hjälpmedel: inga Examinator: Mats Boij Tentamen består av nio uppgifter som vardera ger
Lösning till tentamen i SF1633 Differentialekvationer I för BD, M och P, , kl
KTH Matematik Bengt Ek och Olle Stormark. Lösning till tentamen i SF633 Differentialekvationer I för BD, M och P, 008 0 6, kl. 4.00 9.00. Hjälpmedel: BETA. Uppgifterna 5 motsvarar kursens fem moduler.
Institutionen för matematik SF1626 Flervariabelanalys. Lösningsförslag till tentamen Måndagen den 5 juni 2017 DEL A
Institutionen för matematik SF66 Flervariabelanalys Lösningsförslag till tentamen Måndagen den 5 juni 7 DEL A. En kulles höjd ges av z 6,x,y där enheten är meter på alla tre koordinataxlar. (a) I vilken
SF1626 Flervariabelanalys Lösningsförslag till tentamen DEL A
SF66 Flervariabelanalys Lösningsförslag till tentamen 4-3-7 EL A. Betrakta funktionen f, y y. a Beräkna riktningsderivatan av f i punkten, i den riktning som ges av vektorn 4, 3. p b Finns det någon riktning
Svar till övningar. Nanovetenskapliga tankeverktyg.
Svar till övningar. Nanovetenskapliga tankeverktyg. January 18, 2010 Vecka 2 Komplexa fourierserier 1. Fourierkomponenterna ges av dvs vi har fourierserien f(t) = π 2 + 1 π n 0 { π n = 0 c n = 2 ( 1) n
= ye xy y = xye xy. Konstruera även fasporträttet med angivande av riktningen på banorna. 5. Lös systemet x
Uppsala Universitet Matematiska institutionen Anders Källström Prov i matematik Ordinära differentialekvationer F,Q,W,IT Civilingenjörsutbildningen 1996-6-7 Skrivtid: 15. 21.. Varje problem ger högst 5
ENDIMENSIONELL ANALYS DELKURS A3/B kl HJÄLPMEDEL. Lösningarna skall vara försedda med ordentliga motiveringar.
LUNDS TEKNISKA HÖGSKOLA MATEMATIK TENTAMENSSKRIVNING ENDIMENSIONELL ANALYS DELKURS A/B 5 6 5 kl 8 INGA HJÄLPMEDEL. Lösningarna skall vara försedda med ordentliga motiveringar.. a) Bestäm Maclaurinpolynomet
Lösningsförslag till tentamen TMA043 Flervariabelanalys E2
Lösningsförslag till tentamen TMA3 Flervariabelanalys E2 23--6 kl. 8.3 2.3 Examinator: Johan Jonasson, Matematiska vetenskaper, Chalmers Telefonvakt: Adam Andersson, telefon: 73 88 3 Hjälpmedel: bifogat
x ( f u 2y + f v 2x) xy = 24 och C = f
Institutionen för Matematik, KTH Torbjörn Kolsrud SF160, Differential- och integralkalkyl II, del 2, flervariabel, för F1. Tentamen onsdag 0 maj 2012, 8.00-1.00 Förslag till lösningar 1. Bestäm tangentplanet
Bestäm ekvationen för det plan som går genom punkten (1,1, 2 ) på kurvan och som spänns
UPPSALA UNIVERSITET Matematiska institutionen Anders Källström Prov i matematik Q Flervariabelanalys 8--1 Skrivtid: 8-1. Inga hjälpmedel. Lösningarna skall åtföljas av förklarande text/figurer. Tentand
Tentamen i Matematisk analys, HF1905 exempel 1 Datum: xxxxxx Skrivtid: 4 timmar Examinator: Armin Halilovic
Tentamen i Matematisk analys, HF95 exempel atum: xxxxxx Skrivtid: timmar Examinator: Armin Halilovic För godkänt betyg krävs av max poäng Betygsgränser: För betyg A, B, C,, E krävs, 9, 6, respektive poäng
SF1626 Flervariabelanalys Lösningsförslag till tentamen DEL A. 1. En svängningsrörelse beskrivs av
SF166 Flervariabelanalys Lösningsförslag till tentamen 13-3-1 DEL A 1. En svängningsrörelse beskrivs av ( πx ) u(x, t) = A cos λ πft där amplituden A, våglängden λ och frekvensen f är givna konstanter.
Fouriers metod, egenfunktionsutvecklingar.
Vårterminen 2002 KONTINUERLIGA SYSTEM, några viktiga begrepp och metoder i kap 3 och H (partiellt) Fouriers metod, egenfunktionsutvecklingar Värmeledning i en begränsad stav med variabelseparation Problem:
Figur 1: Postföretagets rektangulära låda, definitioner.
ATM-Matematik Mikael Forsberg 734-41 3 31 För distans och campus Flervariabelanalys ma1b 14 8 13 Skrivtid: 9:-14:. Inga hjälpmedel, förutom den bifogade formelsamlingen. Lösningarna skall vara fullständiga
KTH Matematik Tentamensskrivning i Differentialekvationer och transformer III, SF1637.
KTH Matematik Tentamensskrivning i Differentialekvationer och transformer III, SF637. Måndagen den 7 oktober, kl 8-3. Hjälpmedel: BETA, Mathematics Handbook. Redovisa lösningarna på ett sådant sätt att
Tentamen, Matematik påbyggnadskurs, 5B1304 fredag 20/ kl
Institutionen för Matematik KTH Mattias Dahl Tentamen, Matematik påbyggnadskurs, 5B134 fredag /8 4 kl. 14. 19. Lösningar 1. Lös differentialekvationen x 3 y + x y xy + y x 3 ln x, x >. Lösning: Motsvarande
Tentamen i : Vågor,plasmor och antenner. Totala antalet uppgifter: 6 Datum:
Tentamen i : Vågor,plasmor och antenner Kurs: MTF108 Totala antalet uppgifter: 6 Datum: 2006-05-27 Examinator/Tfn: Hans Åkerstedt/491280/Åke Wisten070/5597072 Skrivtid: 9.00-15.00 Jourhavande lärare/tfn:
6. Temperaturen u(x) i positionen x av en stav uppfyller värmeledningsekvationen. u (x) + u(x) = f(x), 0 x 2, u(0) = 0 u(2) = 1,
Institutionen för Matematik, KTH Tentamen del 2 Analytiska och numeriska metoder för differentialekvationer SF1523 8.-11. 18/8 217 Formelsamlingen BETA är tillåtet hjälpmedel men ej miniräknare. Råd för
SF1626 Flervariabelanalys Tentamen Tisdagen den 7 juni 2016
Institutionen för matematik SF1626 Flervariabelanalys Tentamen Tisdagen den 7 juni 216 Skrivtid: 8:-13: Tillåtna hjälpmedel: inga Examinator: Mats Boij Tentamen består av nio uppgifter som vardera ger
Tentamen, SF1629, Differentialekvationer och Transformer II (del 2) 10 januari 2017 kl. 14:00-19:00. a+bx e x 2 dx
KTH, Matematik Tentamen, SF1629, Differentialekvationer och Transformer II (del 2) 10 januari 2017 kl. 14:00-19:00 Tentamen består av åtta uppgifter där vardera uppgift ger maximalt fyra poäng. Preliminära
SF1626 Flervariabelanalys Lösningsförslag till tentamen DEL A
SF66 Flervariabelanals Lösningsförslag till tentamen --9 EL A. En kulle beskrivs approximativt av funktionen 5 hx, ) + 3x + i lämpliga enheter där hx, ) är höjden. Om du befinner dig i punkten,, ) på kullen,
SF1626 Flervariabelanalys Tentamen Tisdagen den 12 januari 2016
Institutionen för matematik SF626 Flervariabelanalys Tentamen Tisdagen den 2 januari 26 Skrivtid: 8:-3: Tillåtna hjälpmedel: inga Examinator: Mats Boij Tentamen består av nio uppgifter som vardera ger
Institutionen för Matematik, KTH Torbjörn Kolsrud
Institutionen för Matematik, KTH Torbjörn Kolsrud B 7, ifferential- och integralkalkyl II, del, flervariabel, för F. Tentamen tisdag 8 augusti 7, 4.-9. Förslag till lösningar.. Om F (x, y, z) x y + y z
TMV036 Analys och linjär algebra K Kf Bt, del C
MATEMATIK Chalmers tekniska högskola Tentamen 20-0-, kl. 4.00-8.00 TMV036 Analys och linjär algebra K Kf Bt, del C Telefonvakt: Richard Lärkäng, telefon: 0703-088304 Hjälpmedel: Inga, bara papper och penna.
Dubbelintegraler och volymberäkning
ubbelintegraler och volymberäkning Volym och dubbelintegraler över en rektangel Alla funktioner nedan antas vara kontinuerliga. Om f (x) i intervallet [a, b], så är arean av mängden {(x, y) : y f (x),
LUNDS TEKNISKA HÖGSKOLA MATEMATIK. LÖSNINGAR FLERDIMENSIONELL ANALYS, FMA kl 8 13
LUNS TEKNISKA HÖGSKOLA MATEMATIK LÖSNINGAR FLERIMENSIONELL ANALYS, FMA40 04-0- kl 8. Vi börjar med att rita triangelskivan. Linjen genom, och, har ekvationen y x+, linjen genom, och, har ekvationen y 4
Tentamen i matematik. f(x) = ln(ln(x)),
Lösningsförslag Högskolan i Skövde (SK, JS) Tentamen i matematik Kurs: MA52G Matematisk Analys MA23G Matematisk analys för ingenjörer Tentamensdag: 203-05- kl 4.30-9.30 Hjälpmedel : Inga hjälpmedel utöver
SF1626 Flervariabelanalys Lösningsförslag till tentamen DEL A
Institutionen för matematik SF66 Flervariabelanalys Lösningsförslag till tentamen 4-9-6 DEL A. Betrakta följande tre områden i planet: D = {(x, y): x y < 4}, D = {(x, y): x + y }, D 3 = {(x, y): 4x + 3y
SF1625 Envariabelanalys Tentamen Lördagen den 11 januari, 2014
SF65 Envariabelanalys Tentamen Lördagen den januari, 04 Skrivtid: 9:00-4:00 Tillåtna hjälpmedel: inga Examinator: Bengt Ek, Maria Saprykina Tentamen består av nio uppgifter som vardera ger maximalt fyra
GÖTEBORGS UNIVERSITET Institutionen för fysik LÖSNINGAR TILL TENTAMEN I MEKANIK B För FYP100, Fysikprogrammet termin 2
GÖTEBORGS UNIVERSITET Institutionen för fysik LÖSNINGAR TILL TENTAMEN I MEKANIK B För FYP100, Fysikprogrammet termin Tid: Plats: Ansvarig: Hjälpmedel: Tisdag juni 009, kl 8 30 13 30 V-huset Lennart Sjögren,
Tentamen TMA044 Flervariabelanalys E2
Tentamen TMA44 Flervariabelanalys E 5-- kl. 8.3.3 Examinator: Peter Hegarty, Matematiska vetenskaper, Chalmers Telefonvakt: Gustav Kettil, telefon: 73 88 34 Hjälpmedel: bifogat formelblad, ordlistan från
a) Bestäm samtliga asymptoter (lodräta/vågräta/sneda). b) Bestäm samtliga stationära punkter och deras karaktär (min/max/terrass). c) Rita grafen.
TENTAMEN Kurs: HF9 Matematik, moment TEN (analys) atum: okt 8 Skrivtid 4:-8: Eaminator: Armin Halilovic För godkänt betyg krävs av ma 4 poäng Betygsgränser: För betyg A, B, C,, E krävs, 9, 6, respektive
1. (a) Beräkna gränsvärdet (2p) e x + ln(1 x) 1 lim. (b) Beräkna integralen. 4 4 x 2 dx. x 3 (x 1) 2. f(x) = 3. Lös begynnelsevärdesproblemet (5p)
Högskolan i Halmstad Tentamensskrivning ITE/MPE-lab MA2 Envariabelanalys 6 hp Mikael Hindgren Fredagen den 3 januari 27 35-6722 Skrivtid: 5.-2. Inga hjälpmedel. Fyll i omslaget fullständigt och skriv namn
Del I. Modul 1. Betrakta differentialekvationen
Lösningsförslag till Tentamen, SF1633, Differentialekvationer I den 24 oktober 2016 kl 8:00-13:00 För godkänt (betyg E) krävs tre godkända moduler från del I Varje moduluppgift består av tre frågor För
Institutionen för Matematik, KTH Torbjörn Kolsrud
Institutionen för Matematik, KTH Torbjörn Kolsrud 5B 7, ifferential- och integralkalkyl II, del 2, flervariabel, för F. Tentamen fredag 25 maj 27, 8.-3. Förslag till lösningar (ändrat 28/5-7, 29/5-7).
Övning 6, FMM-Vektoranalys, SI1140
Övning 6, FMM-ektoranalys, I114 ˆ 6. Beräkna integralen där A dr A x 2 ay + z) ) e x + y 2 az ) e y + z 2 ax + y) ) e z och är den kurva som utgör skärningslinjen mellan cylindern { x a) 2 + y 2 a 2 och
Tentamen SF1633, Differentialekvationer I, den 23 oktober 2017 kl
Matematiska Institutionen, KTH Tentamen SF633, Differentialekvationer I, den 23 oktober 27 kl 8.- 3.. Examinator: Pär Kurlberg OBS: Inga hjälpmedel är tillåtna på tentamensskrivningen. För full poäng krävs
Hjälpmedel: Det för kursen ociella formelbladet samt TeFyMa. 0 x < 0
LÖSNINGAR TILL Deltentamen i kvantformalism, atom och kärnfysik med tillämpningar för F3 9-1-15 Tid: kl 8.-1. (MA9A. Hjälpmedel: Det för kursen ociella formelbladet samt TeFyMa. Poäng: Vid varje uppgift
MVE500, TKSAM Avgör om talserierna är konvergenta eller divergenta (fullständig motivering krävs). (6p) 2 n. n n (a) n 2.
MATEMATIK Hjälpmedel: inga Chalmers tekniska högskola Datum: 07-08-4 kl. 4.00 8.00 Tentamen MVE500, TKSAM- Telefonvakt: Anders Hildeman 03 77 535 Tentan rättas och bedöms anonymt. Skriv tentamenskoden
FFM234, Klassisk fysik och vektorfält - Föreläsningsanteckningar
FFM234, Klassisk fysik och vektorfält - Föreläsningsanteckningar Christian Forssén, Institutionen för fysik, Chalmers, Göteborg, Sverige Oct 2, 2017 10. Värmeledning, diffusionsekvation Betrakta ett temperaturfält
Lösningsförslag v1.1. Högskolan i Skövde (SK) Svensk version Tentamen i matematik
Lösningsförslag v1.1 Högskolan i Skövde (SK) Svensk version Tentamen i matematik Kurs: MA15G Matematisk Analys MA13G Matematisk analys för ingenjörer Tentamensdag: 1-8-8 kl 8.3-13.3 Hjälpmedel : Inga hjälpmedel
Tentamen MVE085 Flervariabelanalys
Tentamen MVE85 Flervariabelanalys 5--5 kl. 4. - 8. Examinator: Dennis Eriksson, Matematiska vetenskaper, Chalmers Telefonvakt: Dawan Mustafa, telefon: 73 88 34 Hjälpmedel: bifogat formelblad, ordlistan
av envariabelfunktionen g(t) och flervariabelfunktionen t = h(x, y) = x 2 + e y.)
Lösningsskisser till TATA69 Flervariabelanalys 16-1- 1 Stationära punkter ges av f (4x 3 + 4x, 3y + 6z, z + 6y (,,, dvs (x, y, z (,, eller (x, y, z (, 6, 18 Ur andraderivatorna fås de kvadratiska formerna
Lösningar till seminarieuppgifter
Lösningar till seminarieuppgifter 2018-09-26 Uppgift 1 z ρ P z = 0 ρ Introducera ett koordinatsystem så att det jordade planet sammanfaller med planet z = 0, oc skivans centrum med punkten (0,0,). a) Problemet
SF1626 Flervariabelanalys Lösningsförslag till tentamen DEL A
SF626 Flervariabelanals Lösningsförslag till tentamen 24-5-26 DEL A. Skissera definitionsmängden till funktionen f (,) 2 ln(2 ). Är definitionsmängden kompakt? (4 p) Lösning. Termen 2 är definierad när
SF1626 Flervariabelanalys Lösningsförslag till tentamen DEL A
SF166 Flervariabelanalys Lösningsförslag till tentamen 15-8- EL A 1. Betrakta funktionen f som är definierad i området där x + y genom f(x, y, z) x z x + y. (a) Beräkna gradienten f(x, y, z). (1 p) (b)
Tentamen SF1626, Analys i flera variabler, Svar och lösningsförslag. 2. en punkt på randkurvan förutom hörnen, eller
Tentamen SF66, Analys i flera variabler, --8 Svar och lösningsförslag. Låt fx, y) = ye x y. Bestäm största och minsta värde till f på den slutna kvadraten med hörn i, ),, ),, ) och, ). Lösning. f är kontinuerlig
SF1626 Flervariabelanalys Tentamen Torsdagen den 18 augusti 2016
Institutionen för matematik SF166 Flervariabelanalys Tentamen Torsdagen den 18 augusti 16 Skrivtid: 8:-1: Tillåtna jälpmedel: inga Examinator: Mats Boij Tentamen består av nio uppgifter som vardera ger
Elektrodynamik. Elektrostatik. 4πε. eller. F q. ekv
1 Elektrodynamik I det allmänna fallet finns det tidsberoende källor för fälten, dvs. laddningar i rörelse och tidsberoende strömmar. Fälten blir då i allmänhet tidsberoende. Vi ser då att de elektriska
Tentamen Modellering och simulering inom fältteori, 8 januari, 2007
1 Institutionen för elektrovetenskap Tentamen Modellering och simulering inom fältteori, 8 januari, 2007 Tillåtna hjälpmedel: Formelsamling i Elektromagnetisk fältteori arje uppgift ger 10 poäng. Delbetyget
Lösningsförslag envariabelanalys
Lösningsförslag envariabelanalys 09-06-05. Ekvationen är linjär och har det karakteristiska polynomet pr) = r 4 + r 3 + 5r = r r + r + 5) = r r + i)r + + i). Således ges lösningarna till den homogena ekvationen
Tentamen, SF1629, Differentialekvationer och Transformer II (del 2) 11 april 2017 kl. 8:00-13:00
KTH, Matematik Tentamen, SF1629, Differentialekvationer och Transformer II (del 2) 11 april 2017 kl. 8:00-13:00 Tentamen består av åtta uppgifter där vardera uppgift ger maximalt fyra poäng. Preliminära