Edwin Langmann (tel: Epost: DEL 1
|
|
- Alexandra Lindgren
- för 6 år sedan
- Visningar:
Transkript
1 KTH Teoretisk Fysik Tentamen i Fysikens matematiska metoder (PDE tentamen, F variant) SI114 och SI1143 Del 2; SI1141; 5A136, 5A135 och 5A131 PDE tentamen Onsdagen 29 maj 213 kl OBS: Det finns två varianter av tentamen: F och CL. F-tentamen skall göras av F-studenter (SI114 Del 2). Alla andra (SI1141, SI1143, 5A135, 5A136, 5A131) skall göra CL-tentamen! Om du har fel tentamen: Vänd! Anteckna på varje blad: namn, utbildningslinje, årskurs och problemnummer. Tillåtna hjälpmedel: bara formelsamlingen som delas ut Obs! Miniräknare ej tillåten. Examinator: Lösningar: Motivera utförligt! Edwin Langmann (tel: Epost: langmann@kth.se) Kommer att finnas på kurshemsidan, Otillräckliga motiveringar kan medföra poängavdrag. Inför och förklara konstanter och symboler du behöver! DEL 1 1. Bestäm funktionen u(x, y), x π och y 1, som uppfyller u xx (x, y) + u yy (x, y) = ( < x < π, < y < 1) u(, y) = u x (π, y) = ( < y < 1) u y (x, ) =, u(x, 1) = sin(3x/2) 2 sin(7x/2) ( < x < π). Svaret skall ges utan integraler. (u x u x osv.) (3p) 2. En bred, hög och homogen vägg med tjocklek L har från början samma temperatur T som omgivningen. Från tiden t = börjar värme produceras med källtätheten q, likformigt över hela väggen och oberoende av tiden för t >. Vid begränsningsytorna är värmeövergångskoefficienterna α respektive α 1. Ange en matematisk modell som bestämmer väggens temperatur för tider t > entydigt. Du behöver inte lösa modellen. (3p) 3. Bestäm en funktion f(y, t), y 1 och t, som uppfyller f tt (y, t) f yy (y, t) = ( < y < 1, t > ) f(, t) =, f(1, t) = sin(t) (t > ). Är lösningen f(y, t) till problemet ovan entydig? Varför? (3p) 4. (a) Bestäm funktionen f(x), x 2, som uppfyller f (x) = δ(x 1), f() =, och f (2) = 1. (1.5p) (b) Anta att k = k 1 och k = k 2 är olika reella lösningar till sin(k) + k cos(k) =. Visa att sin(k 1x) sin(k 2 x)dx =. Ledning: OBS att sin(k 1 x) och sin(k 2 x) är lösningar till problemet f (x) + λf(x) =, f() = f(1) + f (1) =. (1.5p)
2 DEL 2 5. Mark (som är två år) leker med pappas gitarr som ligger på golvet. Med pekfingret tar han en av strängarna i mitten och drar ut den en bra bit från viloläget. Vid tiden t = släpper han strängen. Beräkna tidsutvecklingen av strängens form för t >. Du kan anta att strängen inte påverkas för t > (strax efter t = lyfte pappa bort Mark från gitarren). (6p) 6. Ett kvadratiskt och ett cirkulärt membran med samma area, förspänning och densitet, är båda plant inspända. Bestäm förhållandet mellan deras grundfrekvenser. (6p) 7. En ideal inkompressibel vätska strömmer inom området x <, < y <. Strömmningen genereras av en källa med styrkan k i punkten (x, y) = (a, ), a >, dvs., hastighetsfältet v(x, y) uppfyller v(x, y) = kδ(x a)δ(y). Hastighetsfältet har en potential Φ, dvs., v = Φ. Obs. att vätskan inte kan strömma igenom randen vid x =. Beräkna vätskans hastighet v = v 2 vid randen x = som funktion av y. Ledningar: Obs att = (, ) och v = (v x y 1, v 2 ). Lösningen till problemet f (x) k 2 f(x) = δ(x), lim x f(x) =, är f(x) = exp( k x )/(2 k ) (det finns ett enklare sätt att lösa uppgiften där detta inte behövs). (6p) 8. Marillenknödel är en österrikisk maträtt där en deg av potatis formas runt en aprikos så att det ser ut som en rund boll och sedan kokas i vatten. En marillenknödel tas från frysen (där den varit en lång tid) och läggs i kokande vatten vid tiden t =. Beräkna temperaturutvecklingen i marillenknödelns potatisdeg för tider t > som är tillräckligt liten så att aprikosens temperatur inte ändras. Ledning: Anta att potatisdegen är homogen och begränsas av två sfärytor r = R > och r = 2R som har konstant temperatur lika med frysens temperatur och vattnets temperatur för t >. (6p) LYCKA TILL!
3 Suggested solution of the FYSMAT exam (May 29, 213) NOTE THAT I TYPED THIS IN QUICKLY, and typos are therefore likely. Please let me know my if you find any mistake. Note that I sometimes only give a sketch of the solution (indicating some essential steps) this is not pedagogicial material, and to prepare for some exam I recommend that you rather do other problems suggested on the course homepage. 1. Ansatsen u(x, y) = f(x)g(x) ger och f (x) + λf(x) =, f(x) = f (x) = g (y) λg(y) =. f-problemet har bara lösningar om λ = k 2 > : f n (x) = sin(k n x), k n = (n 1/2), λ n = k 2 n, n = 1, 2,..., och motsvarande lösning till g-problemet är med godtyckliga konstanter a n, b n. Superposition ger Svar: u(x, 1) = u(x, y) = g n (y) = a n cosh(k n y) + b n sinh(k n y) [a n cosh(k n y) + b n sinh(k n y)] sin(k n x). u y (x, ) = b n k n sin(k n x) = b n =. a n cosh(k n ) sin(k n x) = sin(3x/2) 2 sin(7x/2) a n u(x, y) = sin(3x/2) cosh(3y/2)/ cosh(3/2) 2 sin(7x/2) cosh(7x/2)/ cosh(7/2) 2. T (x, t)=temperatur vid tiden t och i avståndet x från randytan vid x = ( x L). j(x, t) = λt x (x, t)= x-komponenten av värmeströmmen (Fouriers lag) Kontinuitetsekvationen Q t (x, t) + j x (x, t) = q med värmetätheten Q så att Q t = cρt t ρct t λt xx = q Newton s avkylningslag ger n j(, t) = j x (, t) = α (T (, t) T ), n j(l, t) = j x (L, t) = α 1 (T (L, t) T ) (p.g.a. n = e x och +e x i x = och x = L). För t = : T (x, ) = T
4 Svar: T t at xx = aq/λ ( < x < L, t > ) λt x (, t) + α T (, t) = α T, λt x (L, t) + α 1 T (L, t) = α 1 T (t > ) där a = λ/(ρc). 3. Ansatsen f(y, t) = F (y) sin(t) ger F (y) + F (y) =, F () =, F (1) = 1 T (x, ) = T ( < x < L) som har lösningen F (y) = sin(y)/ sin(1). Detta ger en partikulärlösning f(y, t) = sin(t) sin(y)/ sin(1). Lösningen är inte entydigt p.g.a. att inga begynnelsevillkor ges. Problemet blir entydig med begynnelsevillkor f(y, ) = F (y), f t (y, ) = G(y) med givna funktioner F och G. 4. (a) f (x) = δ(x 1) f (x) = θ(x 1) + c 1 f(x) = (x 1)θ(x 1) + c 1 x + c 2. f() = c 2 =, f (2) = 1 + c 1 = 1 c 1 = c 2 =. Svar: f(x) = (x 1)θ(x 1) med Heavisidefunktionen θ. (b) Ett sätt att svara: Enligt Sturm-Liuvillesatsen har problemet f (x) + λf(x) =, f() =, f(1) + f (1) = lösningar f n (x) och λ n, n = 1, 2,..., och Problemet ovan har lösningar f n (x)f m (x)dx = om λ n λ m. f(x) = sin(kx) där sin(k) + k cos(k) = och λ = k 2. Funktionerna sin(k 1 x) och sin(k 2 x) är därför lösningar till problemet med olika värden av λ, och f n(x)f m (x)dx = ger det som skall visas. Alternativsvar: (k 2 1 k 2 2) sin(k 1 x) sin(k 2 x)dx = och k 1 k 2 ger resultatet. (sin(k 1 x)(sin(k 2 x)) ((sin(k 1 x)) sin(k 2 x))dx = d dx ( (sin(k 1x)) sin(k 2 x) + sin(k 1 x)(sin(k 2 x) )dx = k 1 cos(k 1 ) sin(k 2 ) + k 2 sin(k 1 ) cos(k 2 ) =
5 5. u(x, t)=form av gitarrsträngen vid tiden t (där u(x, t) =, x L, motsvarar viloläget) (PDE): u tt c 2 u xx =, c = S/ρ ( x < L, t > ) med strängens massdensitet ρ, spännkraft S, och längd L. (RV): u(, t) = u(l, t) = (t > ) (fast inspänt i randpunkterna) { 2Ax/L ( < x < L/2) (BV1) u(x, ) = U(x) = 2A(L x)/l (L/2 < x < L) med amplituden A >, och (BV2) u t (x, ) =. Separation, PDE, RV, och superposition ger allmänna lösningen till PDE och RV u(x, t) = [A n cos(k n ct) + B n sin(k n ct)] sin(k n x), k n = nπ/l med godtyckliga konstanter A n och B n. BV1 ger BV2 ger B n =. U(x) = A n sin(k n x) A n = 2 L L sin(k n x)u(x)dx. 6. Låt Ω vara området x a, y a (kvadrat med sidolängd a) i fall (i), och x 2 + y 2 R (skiva med radie R) i fall (ii). I båda fallen är modellen u tt c 2 u = i Ω, u = på randen Ω till Ω. Grundfrekvensen ω G är minsta värdet av ω > där det finns en icketrivial lösning u(r, t) = A sin(ωt + α )f(r). Fall (i) u = u(x, y, t), x a och y a. Fall (ii) u = u(r, ϕ, t), r R och ϕ 2π (i polära koordinater). Produktlösningar i fall (i) är u(x, y, t) = A sin(ω n,m t+α ) sin(nπx/a) sin(mπy/a), ω n,m = c (nπ/a) 2 + (mπ/a) 2 där n, m = 1, 2,.... Grundfrekvensen motsvarar minsta värdet av ω n,m, dvs. Produktlösningar i fall (ii) är ω G,(i) = ω 1,1 = cπ 2/a. u(r, ϕ, t) = A sin( ω m,s t + α )e imϕ J m (k m,s r), ω m,s = ck m,s där m =, ±1, ±2,... och k m,s = α m,s /R med nollställarna α m,s > till Besselfunktionen J m (z). Grundfrekvensen motsvara m =, s = 1: Enligt formelsamlingen, α, ω G,(ii) = ω,1 = cα,1 /R. Samma area a 2 = R 2 π och (G.f.=grundfrekvens) (G.f. för kvadratiskt membran) (G.f. för cylindriskt membran) = ω G,(i) = cπ 2 ω G,(ii) a a πcα,1 2π
6 7. Modellen är och lim x 2 +y 2 Φ(x, y) <. Spegling ger Φ xx + Φ yy = kδ(x a)δ(y) (x >, y R) Φ x (, y) = (y R) Φ(x, y) = k(k(x a, y) + K(x + a, y)) där K(x, y) = 1/(2π) log x 2 + y 2 är fundamentallösningen till tvådimensionella Poissonekvationen. Detta ger och v 1 (, y) = k(k x (a, y) + K x ( a, y)) = ky v 2 (, y) = k(k y (a, y) + K y ( a, y)) = π(a 2 + y 2 ) Svar: v(, y) = k y /[π(a 2 + y 2 )]. 8. T (r, t) = T + u(r, t)=temperaturen vid avståndet r från Marillenknödelns centrum (beror bara på r p.g.a. rotationssymmetri) PDE: u t (r, t) a u(r, t) = (R < r < 2R, t > ) RV: u(r, t) =, u(2r, t) = T 1 T (t > ) BV: u(r, t) = där T är frysens temperatur och T 1 vattens temperatur. En partikulärlösning u(r, t) = U(r) uppfyller och U(R) =, U(2R) = T 1 T 2, dvs., 1 r 2 (r2 U (r)) = U(r) = c 1 + c 2 r U(r) = 2(T 1 T )(1 R/r). Ansatsen u(r, t) = U(r) + v(r, t) ger problemet v t (r, t) a v(r, t) =, v(r, t) = v(2r, t) =, v(r, ) = U(r). Allmäna lösningen till PDE och RV är där f n (r) är lösningar till v(r, t) = e ak2 n t f n (r) ( f)(r) = 1 r 2 (r2 f (r)) = λf(r), f(r) = f(2r) =, dvs. f n (r) = A n j (k n r) + B n y (k n r) med A n, B n och k n så att f n (R) = f n (2R) =. Sfäriska Besselfunktionerna j, y ges av j (z) = sin(z)/z och y (z) = cos(z)/z, och därför kan f n (r) kan skrivas som C n sin(k n r + α n ). RV ger sin(k n (r R)) f n (r) = C n, k n = nπ/r. k n r
7 Konstanterna C n bestäms av BV: U(r) = C n fn (r), fn (r) sin(k n(r R)) k n r C n = 2R R 2R R f n (r)u(r)r 2 dr f n (r) 2 r 2 dr Svar: T (r, t) = T + U(r) + sin(k n (r R)) C n e ak2 n t, k n r k n = nπ/r med C n och U(r) ovan.
Edwin Langmann (Epost: x u(x, t); f (x) = df(x)
KTH Teoretisk Fysik Omtentamen i Fysikens matematiska metoder SI12; SI114 Del 2; SI1143 Lördagen den 9 juni 218 kl 9. 14. Anteckna på varje blad: namn, personnummer, och problemnummer. Tillåtna hjälpmedel:
1. (a) Bestäm funktionen u = u(x, y), 0 < x < a och 0 < y < a, som uppfyller u xx (x, y) + u yy (x, y) = 0
KTH Fysik Tentamen i 5A1306 Fysikens matematiska metoder: PDE-tentamen Fredagen den 8 juni 2007 kl 08.00 13.00 Anteckna på varje blad: namn, utbildningslinje, årskurs och problemnummer. Tillåtna hjälpmedel:
Edwin Langmann (tel: Epost: DEL 1 (Del 2 på andra sidan)
KTH Teoretisk Fysik Omtentamen i Fysikens matematiska metoder PDE tentamen, SI114 och SI1143 Del 2; SI1141; 5A136, 5A135 och 5A131 PDE tentamen Tisdagen 5 juni 212 kl 8. 13. OBS: Det finns två varianter
Notera på första tentabladet om du har hemtal tillgodo från tidigare kurs
Fysik KTH TENTAMEN Fysikens matematiska metoder 5A1301/5A1304 Onsdag 003-03-1, kl. 08.00-13.00 Notera på första tentabladet om du har hemtal tillgodo från tidigare kurs Anteckna på varje blad: Namn, utbildningslinje,
1. (a) Bestäm lösningen u = u(x, y) till Laplaces ekvation u = 0 inom rektangeln 0 < x < a och 0 < y < b med följande randvillkor 1
KTH Teoretisk Fysik Tentamen i 5A131/5A135 Fysikens matematiska metoder Fredagen den 2 oktober 26, kl 8:-13: Anteckna på varje blad: namn, utbildningslinje, årskurs problemnummer. Notera på första tentabladet
KTH Fysik Tentamen i 5A1301/5A1304 Fysikens matematiska metoder Onsdagen den 24 augusti 2004 kl
KTH Fysik Tentamen i 5A131/5A134 Fysikens matematiska metoder Onsdagen den 24 augusti 24 kl 14. 19. Anteckna på varje blad: namn, utbildningslinje, årskurs och problemnummer. Notera på första tentabladet
2. För ljudvågor i en gas, innesluten i ett sfärisk skal, gäller vågekvationen. u tt = c 2 u
KTH Fysik Tentamen i 5A3/5A35 Fysikens matematiska metoder Fredagen den 4 januari 25, kl 4. 9. Anteckna på varje blad: namn, utbildningslinje, årskurs och problemnummer. Notera på första tentabladet om
KTH Fysik Tentamen i 5A1301/5A1305 Fysikens matematiska metoder Tisdagen den 23 augusti 2005, kl
KTH Fysik Tentamen i 5A3/5A35 Fysikens matematiska metoder Tisdagen den 23 augusti 25, kl 4. 9. Anteckna på varje blad: namn, utbildningslinje, årskurs och problemnummer. Notera på första tentabladet om
KTH Teoretisk Fysik Tentamen i 5A1304/5A1305 Fysikens matematiska metoder Onsdagen den 11 januari 2006, kl 08:00-13:00
KTH Teoretisk Fysik Tentamen i 5A304/5A305 Fysikens matematiska metoder Onsdagen den januari 006, kl 08:00-3:00 Anteckna på varje blad: namn, utbildningslinje, årskurs och problemnummer. Notera på första
OMTENTAMEN I VEKTORANALYS SI1146 och SI1140 Del 1, VT18
OMTENTAMEN I VEKTORANALY I46 och I40 Del, VT8 Onsdagen augusti 08:00-:00 Anteckna på varje blad: Namn, utbildningslinje, årskurs och problemnummer. Tillåtna hjälpmedel: Formelblad som delas ut. Räknedosa
för t > 0 och 0 x L med följande rand- och begynnelsevillkor
KTH Teoretisk Fysik Tentamen i 5A131/5A135 Fysikens matematiska metoder Tisdagen den 16 januari 27, kl 8:-13: Anteckna på varje blad: namn, utbildningslinje, årskurs och problemnummer. Notera på första
1. (a) Bestäm funktionen u = u(t, x), t > 0 och 0 < x < L, som uppfyller. u(t, 0) = 0, u x (t, L) = 0 u(0, x) = Ax(2L x)
KTH Fysik Tentamen i 5A1306 Fysikens matematiska metoder: PDE-tentamen Onsdagen den 28 mars 2007 kl 08.00 13.00 Anteckna på varje blad: namn, utbildningslinje, årskurs problemnummer. Tillåtna hjälpmedel:
Tentamen Fysikens Matematiska Metoder, Tilläggskurs, vt 2009, SI (a) Bestäm en reellvärd funktion f(x), 0 x 1, för vilken funktionalen
Tentamen Fysikens Matematiska Metoder, Tilläggskurs, vt 9, SI4 Måndagen den 5 maj 9 kl 9. 3. Anteckna på varje blad: namn, utbildningslinje, årskurs och problemnummer. Tillåtna hjälpmedel: BETA, Teoretisk
Del I. Modul 1. Betrakta differentialekvationen
Lösningsförslag till Tentamen, SF1633, Differentialekvationer I den 24 oktober 2016 kl 8:00-13:00 För godkänt (betyg E) krävs tre godkända moduler från del I Varje moduluppgift består av tre frågor För
Lösningsskiss för tentamen Vektorfält och klassisk fysik (FFM232)
Lösningsskiss för tentamen Vektorfält och klassisk fysik (FFM232) Tid och plats: Lösningsskiss: Tisdagen den 20 december 2016 klockan 0830-1230 i M-huset Christian Forssén Detta är enbart en skiss av den
TENTAMEN I VEKTORANALYS SI1146 och SI1140 Del 1, VT18
TENTAMEN I EKTORANALY I46 och I40 Del, T8 Torsdagen 3 maj 4:00-9:00 Anteckna på varje blad: Namn, utbildningslinje, årskurs och problemnummer. Tillåtna hjälpmedel: Formelblad som delas ut. Räknedosa ej
SF1669 Matematisk och numerisk analys II Lösningsförslag till tentamen DEL A. r cos t + (r cos t) 2 + (r sin t) 2) rdrdt.
1. Beräkna integralen medelpunkt i origo. SF1669 Matematisk och numerisk analys II Lösningsförslag till tentamen 218-3-14 D DEL A (x + x 2 + y 2 ) dx dy där D är en cirkelskiva med radie a och Lösningsförslag.
Tentamen: Lösningsförslag
Tentamen: Lösningsförslag Onsdag 5 mars 7 8:-3: SF674 Flervariabelanalys Inga hjälpmedel är tillåtna. Max: 4 poäng. 4 poäng Avgör om följande gränsvärde existerar och beräkna gränsvärdet om det existerar:
SF1626 Flervariabelanalys Lösningsförslag till tentamen DEL A. 1. En svängningsrörelse beskrivs av
SF166 Flervariabelanalys Lösningsförslag till tentamen 13-3-1 DEL A 1. En svängningsrörelse beskrivs av ( πx ) u(x, t) = A cos λ πft där amplituden A, våglängden λ och frekvensen f är givna konstanter.
MVE500, TKSAM Avgör om talserierna är konvergenta eller divergenta (fullständig motivering krävs). (6p) 2 n. n n (a) n 2.
MATEMATIK Hjälpmedel: inga Chalmers tekniska högskola Datum: 07-08-4 kl. 4.00 8.00 Tentamen MVE500, TKSAM- Telefonvakt: Anders Hildeman 03 77 535 Tentan rättas och bedöms anonymt. Skriv tentamenskoden
SF1626 Flervariabelanalys Tentamen Tisdagen den 7 juni 2016
Institutionen för matematik SF1626 Flervariabelanalys Tentamen Tisdagen den 7 juni 216 Skrivtid: 8:-13: Tillåtna hjälpmedel: inga Examinator: Mats Boij Tentamen består av nio uppgifter som vardera ger
Tentamen SF1633, Differentialekvationer I, den 23 oktober 2017 kl
Matematiska Institutionen, KTH Tentamen SF633, Differentialekvationer I, den 23 oktober 27 kl 8.- 3.. Examinator: Pär Kurlberg OBS: Inga hjälpmedel är tillåtna på tentamensskrivningen. För full poäng krävs
SF1626 Flervariabelanalys Lösningsförslag till tentamen DEL A
SF1626 Flervariabelanalys Lösningsförslag till tentamen 216-6-7 DEL A 1. Låt S vara ellipsoiden som ges av ekvationen x 2 + 2y 2 + 3z 2 = 5. (a) Bestäm en normalvektor till S i en punkt (x, y, z ) på S.
Tentamen, SF1629, Differentialekvationer och Transformer II (del 2) 11 april 2017 kl. 8:00-13:00
KTH, Matematik Tentamen, SF1629, Differentialekvationer och Transformer II (del 2) 11 april 2017 kl. 8:00-13:00 Tentamen består av åtta uppgifter där vardera uppgift ger maximalt fyra poäng. Preliminära
Tentamen i Matematisk analys, HF1905 exempel 1 Datum: xxxxxx Skrivtid: 4 timmar Examinator: Armin Halilovic
Tentamen i Matematisk analys, HF95 exempel atum: xxxxxx Skrivtid: timmar Examinator: Armin Halilovic För godkänt betyg krävs av max poäng Betygsgränser: För betyg A, B, C,, E krävs, 9, 6, respektive poäng
, för 0 < x < θ; Uppgift 2
TAMS17/TEN1 STATISTISK TEORI FK TENTAMEN FREDAG 1/4 2016 KL 08.00-12.00. Examinator och jourhavande lärare: Torkel Erhardsson, tel. 28 14 78. Tillåtna hjälpmedel: Formelsamling i matematisk statistik utgiven
Institutionen för matematik KTH. Tentamensskrivning, , kl B1202/2 Diff och Trans 2 del 2, för F och T.
Institutionen för matematik KTH Tentamensskrivning, 3-5-6, kl. 14. 19.. 5B1/ Diff och Trans del, för F och T. Hjälpmedel: BETA, Mathematics Handbook. För godkänt betyg 3 krävs 18 poäng, medan för betyg
SF1625 Envariabelanalys Tentamen Lördagen den 11 januari, 2014
SF65 Envariabelanalys Tentamen Lördagen den januari, 04 Skrivtid: 9:00-4:00 Tillåtna hjälpmedel: inga Examinator: Bengt Ek, Maria Saprykina Tentamen består av nio uppgifter som vardera ger maximalt fyra
SF1626 Flervariabelanalys Tentamen Måndagen den 16 mars 2015
Institutionen för matematik SF1626 Flervariabelanalys Tentamen Måndagen den 16 mars 215 Skrivtid: 8:-13: Tillåtna hjälpmedel: inga Examinator: Mats Boij Tentamen består av nio uppgifter som vardera ger
6. Temperaturen u(x) i positionen x av en stav uppfyller värmeledningsekvationen. u (x) + u(x) = f(x), 0 x 2, u(0) = 0 u(2) = 1,
Institutionen för Matematik, KTH Tentamen del 2 Analytiska och numeriska metoder för differentialekvationer SF1523 8.-11. 18/8 217 Formelsamlingen BETA är tillåtet hjälpmedel men ej miniräknare. Råd för
Tentamen i Flervariabelanalys, MVE , π, kl
Tentamen i Flervariabelanalys, MVE35 216-3-14, π, kl. 14.-18. Hjälpmedel: Inga, ej räknedosa. Telefon: anknytning 5325 Telefonvakt: Raad Salman För godkänt krävs minst 2 poäng. Betyg 3: 2-29 poäng, betyg
ÖVN 11 & 12 DEL B - DIFFTRANS - DEL2 - SF Nyckelord och innehåll
ÖVN 11 & 12 DEL B - DIFFTRANS - DEL2 - SF1683 HTTP://KARLJODIFFTRANS.WORDPRESS.COM KARL JONSSON Nyckelord och innehåll Partiella differentialekvationer Separation av variabler Operatorer A definierade
12.6 Heat equation, Wave equation
12.6 Heat equation, 12.2-3 Wave equation Eugenia Malinnikova, NTNU September 26, 2017 1 Heat equation in higher dimensions The heat equation in higher dimensions (two or three) is u t ( = c 2 2 ) u x 2
Rita även upp grafen till Fourierseriens summa på intervallet [ 2π, 3π], samt ange summans värde i punkterna π, 0, π, 2π. (5) S(t) = c n e int,
Institutionen för matematik KTH Tentamensskrivning, 003-08-5, kl. 14.00 19.00. 5B10/ Diff och Trans del, för F och T. Hjälpmedel: BETA, Mathematics Handbook. För godkänt betyg 3) krävs 18 poäng, medan
x (t) = 2 1 u = Beräkna riktnings derivatan av f i punkten a i riktningen u, dvs.
MATEMATIK Chalmers tekniska högskola Tentamen -8-8, kl. 4.-8. TMV6 Analys och linjär algebra K Kf Bt, del C Telefonvakt: Adam Andersson, telefon: 7-884 Hjälpmedel: Inga, bara papper och penna. För full
5B1134 Matematik och modeller
KTH Matematik 1 5B1134 Matematik och modeller 2006-09-11 2 Andra veckan Trigonometri Veckans begrepp enhetscirkeln, trigonometriska ettan trigonometrisk funktion, sinuskurva period, fasförskjutning, vinkelhastighet
Tentamen MVE085 Flervariabelanalys
Tentamen MVE85 Flervariabelanalys 5--5 kl. 4. - 8. Examinator: Dennis Eriksson, Matematiska vetenskaper, Chalmers Telefonvakt: Dawan Mustafa, telefon: 73 88 34 Hjälpmedel: bifogat formelblad, ordlistan
Kvantfysik SI1151 för F3 Tisdag kl
TEORETISK FYSIK KTH Kvantfysik SI5 för F3 Tisdag 3008 kl. 8.00-3.00 Skriv på varje sida Namn och problemnummer Motivera noga Otillräckliga motiveringar leder till poängavdrag Hjälpmedel Teoretisk fysiks
SF1626 Flervariabelanalys Lösningsförslag till tentamen DEL A
SF626 Flervariabelanalys Lösningsförslag till tentamen 23-5-27 DEL A. Bestäm alla punkter på ytan z = x 2 + 4y 2 i vilka tangentplanet är parallellt med planet x + y + z =. 4 p) Lösning. Tangentplanet
Lösningsförslag till tentamen Torsdag augusti 16, 2018 DEL A
Institutionen för matematik SF1626 Flervariabelanalys Torsdag augusti 16, 2018 DEL A 1. Givet funktionen f(x, y) = ln(x 2 y 2 ). a) Bestäm definitionsmängden D för f. Rita även en bild av D. (2 p) b) Bestäm
Rita även grafen till Fourierserien på intervallet [ 2π, 4π]. (5) 1 + cos(2t),
Institutionen för matematik KTH Tentamensskrivning, 24-1-13, kl. 14. 19.. 5B122/2 Diff och Trans 2 del 2, för F, E, T. Hjälpmedel: BETA, Mathematics Handbook. För godkänt betyg 3 krävs 18 poäng, medan
SF1626 Flervariabelanalys Tentamen Tisdagen den 12 januari 2016
Institutionen för matematik SF626 Flervariabelanalys Tentamen Tisdagen den 2 januari 26 Skrivtid: 8:-3: Tillåtna hjälpmedel: inga Examinator: Mats Boij Tentamen består av nio uppgifter som vardera ger
SF1626 Flervariabelanalys Lösningsförslag till tentamen DEL A
SF1626 Flervariabelanalys Lösningsförslag till tentamen 215-3-16 DEL A 1. Låt f(x, y) = 1 x 2 y 2. (a) Skissa nivåkurvorna f(x, y) = c till f för c =, c = 1 och c = 2. (1 p) (b) Beräkna gradf(x, y) i de
y(0) = e + C e 1 = 1
KTH-matematik Tentamensskrivning, 006-01-14, kl. 14.00 19.00. 5B106 Differentialekvationer I, för BDMP. Hjälpmedel: BETA, Mathematics Handbook. För godkänt betyg (3) krävs minst 17 poäng, för betyg 4 krävs
LINKÖPINGS UNIVERSITET EXAM TAMS 27 / TEN 2
LINKÖPINGS UNIVERSITET Matematiska institutionen EXAM TAMS 27 / TEN 2 augusti 218, klockan 8.-12. Examinator: Jörg-Uwe Löbus (Tel: 79-62827) Tillåtna hjälpmedel är en räknare, formelsamling i matematisk
= e 2x. Integrering ger ye 2x = e 2x /2 + C, vilket kan skrivas y = 1/2 + Ce 2x. Här är C en godtycklig konstant.
Lösningsförslag till Tentamen, SF1633, Differentialekvationer I den 19 december 216 kl 8: - 13: För godkänt (betyg E krävs tre godkända moduler från del I Varje moduluppgift består av tre frågor För att
1. En kortlek består av 52 kort, med fyra färger och 13 valörer i varje färg.
Tentamenskrivning för TMS63, Matematisk Statistik. Onsdag fm den 1 juni, 16, Eklandagatan 86. Examinator: Marina Axelson-Fisk. Tel: 7-88113. Tillåtna hjälpmedel: typgodkänd miniräknare, tabell- och formelhäfte
Tentamen i matematik. f(x) = ln(ln(x)),
Lösningsförslag Högskolan i Skövde (SK, JS) Tentamen i matematik Kurs: MA52G Matematisk Analys MA23G Matematisk analys för ingenjörer Tentamensdag: 203-05- kl 4.30-9.30 Hjälpmedel : Inga hjälpmedel utöver
SF1658 Trigonometri och funktioner Lösningsförslag till tentamen den 19 oktober 2009
KTH Matematik SF1658 Trigonometri och funktioner Lösningsförslag till tentamen den 19 oktober 9 1. a) Visa att sin(6 ) = /. () b) En triangel har sidor av längd 5 och 7, och en vinkel är 6 grader. Bestäm
Innehåll 1. Kapitel 6: Separation of Variables 1
SF629 - DIFFERENTIALEKVATIONER OCH TRANSFORMER II - ÖVNING 5 KARL JONSSON Innehåll. Kapitel 6: Separation of Variables.. Upp. 6.2: Dirichlets problem på enhetsskivan med randdata polära koordinater) u,
Lösning till tentamen i SF1633 Differentialekvationer I för BD, M och P, , kl
KTH Matematik Bengt Ek och Olle Stormark. Lösning till tentamen i SF633 Differentialekvationer I för BD, M och P, 008 0 6, kl. 4.00 9.00. Hjälpmedel: BETA. Uppgifterna 5 motsvarar kursens fem moduler.
SF1625 Envariabelanalys Lösningsförslag till tentamen DEL A
SF1625 Envariabelanalys Lösningsförslag till tentamen 2012-10-17 DEL A 1. Visa att ekvationen x 3 12x + 1 = 0 har tre lösningar i intervallet 4 x 4. Motivera ordentligt! (4 p) Lösningsförslag. Vi skall
SF1626 Flervariabelanalys Lösningsförslag till tentamen DEL A
SF626 Flervariabelanalys Lösningsförslag till tentamen 23-- DEL A. Bestäm en ekvation för tangentplanet i punkten (,, 2 till ellipsoiden 2x 2 +3y 2 +z 2 = 9. (4 p Lösning. Vi uppfattar ytan som nivåytan
SF1625 Envariabelanalys Lösningsförslag till tentamen DEL A
SF165 Envariabelanalys Lösningsförslag till tentamen 01-1-10 DEL A 1. Låt funktionen f ha definitionsmängden D f =]0, [ och ges av f(x) = e x 1 x. (a) Finn f:s invers f 1. ( p) (b) Finn inversens värdemängd
8. Euklidiska rum 94 8 EUKLIDISKA RUM
94 8 EUKLIDISKA RUM 8. Euklidiska rum Definition 8.. En skalärprodukt på vektorrummet V är en funktion som till varje par av element u och v i V ordnar ett reellt tal u v eller u v med följande egenskaper:.
Lösningsskiss för tentamen Vektorfält och klassisk fysik (FFM234 och FFM232)
Lösningsskiss för tentamen Vektorfält och klassisk fysik (FFM23 och FFM232) Tid och plats: Måndagen den 29 oktober 208 klockan 00-800, Maskinsalar Lösningsskiss: Christian Forssén Detta är enbart en skiss
SF1625 Envariabelanalys Tentamen Onsdagen den 5 juni, 2013
SF625 Envariabelanalys Tentamen Onsdagen den 5 juni, 23 Skrivtid: 8:-3: Tillåtna hjälpmedel: inga Examinator: Bengt Ek, Maria Saprykina Tentamen består av nio uppgifter som vardera ger maximalt fyra poäng.
Fouriers metod, egenfunktionsutvecklingar.
Vårterminen 2002 KONTINUERLIGA SYSTEM, några viktiga begrepp och metoder i kap 3 och H (partiellt) Fouriers metod, egenfunktionsutvecklingar Värmeledning i en begränsad stav med variabelseparation Problem:
Lösningsförslag v1.1. Högskolan i Skövde (SK) Svensk version Tentamen i matematik
Lösningsförslag v1.1 Högskolan i Skövde (SK) Svensk version Tentamen i matematik Kurs: MA15G Matematisk Analys MA13G Matematisk analys för ingenjörer Tentamensdag: 1-8-8 kl 8.3-13.3 Hjälpmedel : Inga hjälpmedel
SF1626 Flervariabelanalys Lösningsförslag till tentamen DEL A
SF626 Flervariabelanalys Lösningsförslag till tentamen 24-8-2 DEL A. Bestäm och skissera definitionsmängden till funktionen fx, y) = x 2 + y 2 + 2x 4y + + x. Är definitionsmängden kompakt? 4 p) Lösning.
Introduktion till Sturm-Liouvilleteori och generaliserade Fourierserier
KAPITEL 5 Introduktion till Sturm-Liouvilleteori och generaliserade Fourierserier Vi inleder med några förberedande exempel. 5.. Cauchys ekvation Den homogena Euler-Cauchys ekvation (Leonhard Euler och
Institutionen för matematik SF1626 Flervariabelanalys. Lösningsförslag till tentamen Måndagen den 5 juni 2017 DEL A
Institutionen för matematik SF66 Flervariabelanalys Lösningsförslag till tentamen Måndagen den 5 juni 7 DEL A. En kulles höjd ges av z 6,x,y där enheten är meter på alla tre koordinataxlar. (a) I vilken
Tentamen Modellering och simulering inom fältteori, 21 oktober, 2006
Institutionen för elektrovetenskap Tentamen Modellering och simulering inom fältteori, oktober, 006 Tillåtna hjälpmedel: Formelsamling i Elektromagnetisk fältteori Varje uppgift ger 0 poäng. Delbetyget
Tentamen i tmv036c och tmv035c, Analys och linjär algebra C för K, Kf och Bt A =, = det(a λi) = e 2t + c 2. x(t) = c 1. = c 1.
Institutionen för matematiska vetenskaper Chalmers tekniska högskola Niklas Eriksen Tentamen i tmv6c och tmv5c, Analys och linjär algebra C för K, Kf och Bt Lösningar 9--6. Lös initialvärdesproblemet x
Uppsala Universitet Matematiska Institutionen Bo Styf. Sammanfattning av föreläsningarna 11-14, 16/11-28/
Uppsala Universitet Matematiska Institutionen Bo Styf Transformmetoder, 5 hp gy, IT, W, X 2011-10-26 Sammanfattning av föreläsningarna 11-14, 16/11-28/11 2012. Här lär vi oss använda transformer för att
SF1626 Flervariabelanalys Tentamen Tisdagen den 10 januari 2017
Institutionen för matematik SF626 Flervariabelanalys Tentamen Tisdagen den januari 27 Skrivtid: 8:-3: Tillåtna hjälpmedel: inga Examinator: Mats Boij Tentamen består av nio uppgifter som vardera ger maximalt
Tentamen TMA044 Flervariabelanalys E2
Tentamen TMA044 Flervariabelanalys E2 205-0-05 kl. 4.00-8.00 Examinator: Peter Hegarty, Matematiska vetenskaper, Chalmers Telefonvakt: Dawan Mustafa, telefon: 0703 088 304 Hjälpmedel: bifogat formelblad,
SF1626 Flervariabelanalys Tentamen Måndagen den 16 mars 2015
Institutionen för matematik SF1626 Flervariabelanalys Tentamen Måndagen den 16 mars 2015 Skrivtid: 08:00-13:00 Tillåtna hjälpmedel: inga Examinator: Mats Boij Tentamen består av nio uppgifter som vardera
SF1626 Flervariabelanalys Tentamen Torsdagen den 20 augusti 2015
Institutionen för matematik SF1626 Flervariabelanalys Tentamen Torsdagen den 2 augusti 215 Skrivtid: 8:-1: Tillåtna hjälpmedel: inga Examinator: Mats Boij Tentamen består av nio uppgifter som vardera ger
Tentamen TMA044 Flervariabelanalys E2
Tentamen TMA44 Flervariabelanalys E 4--3 kl. 8.3.3 Examinator: Peter Hegarty, Matematiska vetenskaper, halmers Telefonvakt: Elin Solberg, telefon: 73 88 34 Hjälpmedel: bifogat formelblad, ordlistan från
FFM234, Klassisk fysik och vektorfält - Föreläsningsanteckningar
FFM234, Klassisk fysik och vektorfält - Föreläsningsanteckningar Christian Forssén, Institutionen för fysik, Chalmers, Göteborg, Sverige Oct 2, 2017 10. Värmeledning, diffusionsekvation Betrakta ett temperaturfält
SF1669 Matematisk och numerisk analys II Lösningsförslag till tentamen DEL A
SF669 Matematisk och numerisk anals II Lösningsförslag till tentamen 7-3-5 DEL A. I nedanstående rätvinkliga koordinatsstem är varje ruta en enhet lång. (a) Bestäm de rmdpolära (sfäriska) koordinaterna
Lösningsförslag till tentamen TMA043 Flervariabelanalys E2
Lösningsförslag till tentamen TMA3 Flervariabelanalys E2 23--6 kl. 8.3 2.3 Examinator: Johan Jonasson, Matematiska vetenskaper, Chalmers Telefonvakt: Adam Andersson, telefon: 73 88 3 Hjälpmedel: bifogat
SF1626 Flervariabelanalys Tentamen Måndagen den 21 mars 2016
Institutionen för matematik SF626 Flervariabelanalys Tentamen Måndagen den 2 mars 26 Skrivtid: 8:-3: Tillåtna hjälpmedel: inga Examinator: Mats Boij Tentamen består av nio uppgifter som vardera ger maximalt
Tentamen i Analys B för KB/TB (TATA09/TEN1) kl 8 13
LINKÖPINGS UNIVERSITET Matematiska Institutionen Joakim Arnlind Tentamen i Analys B för KB/TB TATA9/TEN1 14--1 kl 8 13 Inga hjälpmedel är tillåtna. Varje uppgift kan ge maximalt 3 poäng. Betygsgränser:
= 0. Båda skärningsvinklarna är således π/2 (ortogonala riktningsvektorer).
Institutionen för Matematik, KTH Torbjörn Kolsrud SF163, ifferential- och integralkalkyl II, del 2, flervariabel, för F1. Tentamen torsdag 19 augusti 21, 14. - 19. Inga hjälpmedel är tillåtna. Svar och
Lösningsförslag till tentamen i SF1629, Differentialekvationer och Transformer II (del 2) 8 januari 2018
KTH, Matematik Maria Saprykina Lösningsförslag till tentamen i SF169, Differentialekvationer och Transformer II (del ) 8 januari 18 Tentamen består av sex uppgifter där vardera uppgift ger maximalt fyra
MVE500, TKSAM Avgör om följande serier är divergenta eller konvergenta. Om konvergent, beräkna summan. (6p) ( 1) n x 2n+1 (a)
Chalmers tekniska högskola Datum: 7--9 kl. 8.3.3 Tentamen Telefonvakt: Milo Viviani MVE5, TKSAM- Tentan rättas och bedöms anonymt. Skriv tentamenskoden tydligt på placeringlista och samtliga inlämnade
TFEI02: Vågfysik. Tentamen : Lösningsförslag
160530: TFEI0 1 Uppgift 1 TFEI0: Vågfysik Tentamen 016-05-30: Lösningsförslag a) Ljudintensiteten, I, är ett mått på hur stor effekt, P eff, som transporteras per area. Om vi vet amplituden på vågen kan
Lösningsförslag, preliminär version 0.1, 23 januari 2018
Lösningsförslag, preinär version 0., 3 januari 08 Högskolan i Skövde Tentamen i matematik Kurs: MA5G Matematisk analys MA3G Matematisk analys för ingenjörer Tentamensdag: 08-0-03 kl 4:30-9:30 Hjälpmedel
0 om x < 0, F X (x) = c x. 1 om x 2.
Avd. Matematisk statistik TENTAMEN I SF193 SANNOLIKHETSLÄRA OCH STATISTIK FÖR 3-ÅRIG Media TIMEH MÅNDAGEN DEN 16 AUGUSTI 1 KL 8. 13.. Examinator: Gunnar Englund, tel. 7974 16. Tillåtna hjälpmedel: Läroboken.
ÖVN 2 - DIFFERENTIALEKVATIONER OCH TRANSFORMMETODER - SF1683. Inofficiella mål
ÖVN 2 - DIFFERENTIALEKVATIONER OCH TRANSFORMMETODER - SF1683 KARL JONSSON Nyckelord och innehåll Andra ordningens linjära differentialekvationer Homogena ekvationen Fundamental lösningsmängd, y 1 (t),
(a) på hur många sätt kan man permutera ordet OSANNOLIK? (b) hur många unika 3-bokstavskombinationer kan man bilda av OSANNO-
Tentamenskrivning för TMS6, Matematisk Statistik. Onsdag fm den 1 maj, 217. Examinator: Marina Axelson-Fisk. Tel: 1-7724996 Tillåtna hjälpmedel: typgodkänd miniräknare, tabell- och formelhäfte (bifogas).
TENTAMEN I GRUNDKURS I NUMERISKA METODER - DEL 2
Numerisk Analys - Institutionen för Matematik KTH - Royal institute of technology 218-5-28, kl 8-11 SF1547 TENTAMEN I GRUNDKURS I NUMERISKA METODER - DEL 2 Rättas endast om del 1 är godkänd. Betygsgräns
Tentamen i Matematik 2: M0030M.
Tentamen i Matematik 2: M0030M. Datum: 2010-01-12 Skrivtid: 09:00 14:00 Antal uppgifter: 6 ( 30 poäng ). Jourhavande lärare: Norbert Euler Telefon: 0920-492878 Tillåtna hjälpmedel: Inga Till alla uppgifterna
Institutionen för Matematik, KTH Torbjörn Kolsrud
Institutionen för Matematik, KTH Torbjörn Kolsrud B 7, ifferential- och integralkalkyl II, del, flervariabel, för F. Tentamen tisdag 8 augusti 7, 4.-9. Förslag till lösningar.. Om F (x, y, z) x y + y z
Högskolan i Skövde (SK, JS) Svensk version Tentamen i matematik Lösningsförslag till del I
Högskolan i Skövde (SK, JS) Svensk version Tentamen i matematik Lösningsförslag till del I Kurs: MA15G Matematisk Analys MA13G Matematisk analys för ingenjörer MA71A Matematik för lärare C, delkurs Matematisk
KTH Matematik Tentamensskrivning i Differentialekvationer I, SF1633.
KTH Matematik Tentamensskrivning i Differentialekvationer I, SF1633. Måndagen den 17 oktober 11, kl 8-13. Hjälpmedel: BETA, Mathematics Handbook. Redovisa lösningarna på ett sådant sätt att beräkningar
KTH Matematik Tentamensskrivning i Differentialekvationer och transformer III, SF1637.
KTH Matematik Tentamensskrivning i Differentialekvationer och transformer III, SF637. Måndagen den 7 oktober, kl 8-3. Hjälpmedel: BETA, Mathematics Handbook. Redovisa lösningarna på ett sådant sätt att
Lösningsskiss för tentamen Vektorfält och klassisk fysik (FFM232)
ösningsskiss för tentamen Vektorfält och klassisk fysik FFM232) Tid och plats: ösningsskiss: Måndagen den 24 oktober 2016 klockan 14.00-18.00 i M-huset. Christian Forssén och Tobias Wenger Detta är enbart
Tentamen MVE301 Sannolikhet, statistik och risk
Tentamen MVE30 Sannolikhet, statistik och risk 207-06-0 kl. 8:30-3:30 Examinator: Johan Jonasson, Matematiska vetenskaper, Chalmers Telefonvakt: Ivar Simonsson, telefon: 03-7725348 Hjälpmedel: Valfri miniräknare.
SF1626 Flervariabelanalys Tentamen Torsdagen den 18 augusti 2016
Institutionen för matematik SF166 Flervariabelanalys Tentamen Torsdagen den 18 augusti 16 Skrivtid: 8:-1: Tillåtna jälpmedel: inga Examinator: Mats Boij Tentamen består av nio uppgifter som vardera ger
x ( f u 2y + f v 2x) xy = 24 och C = f
Institutionen för Matematik, KTH Torbjörn Kolsrud SF160, Differential- och integralkalkyl II, del 2, flervariabel, för F1. Tentamen onsdag 0 maj 2012, 8.00-1.00 Förslag till lösningar 1. Bestäm tangentplanet
Lösningsförslag till tentamen i SF1683, Differentialekvationer och Transformmetoder (del 2) 4 april < f,g >=
KTH, Matematik Maria Saprykina Lösningsförslag till tentamen i SF683, Differentialekvationer och Transformmetoder (del 2) 4 april 28 Tentamen består av sex uppgifter där vardera uppgift ger maximalt fyra
Lösningsförslag till tentamen TMA043 Flervariabelanalys E2
Lösningsförslag till tentamen TMA43 Flervariabelanalys E 4-8-3 kl. 8.3.3 Examinator: Peter Hegarty, Matematiska vetenskaper, Chalmers Telefonvakt: Åse Fahlander, telefon: 73 88 34 Hjälpmedel: bifogat formelblad,
(x 3 + y)dxdy. D. x y = x + y. + y2. x 2 z z
UPPAA UNIVERITET Matematiska institutionen Abrahamsson, 4715, 7-57 (tyf, 47119, 77-517) Prov i matematik IT, K, X, W, EI, MI, NVP samt fristående kurs. Flerdimensionell analys och Analys MN 5-1-9 krivtid:
Lösningsförslag till tentamen Tisdagen den 10 januari 2017 DEL A
Institutionen för matematik SF66 Flervariabelanalys Lösningsförslag till tentamen Tisdagen den januari 7 DEL A. En partikel rör sig så att positionen efter starten ges av (x, y, z (t cos t, t sin t, t
Tentamen, SF1629, Differentialekvationer och Transformer II (del 2) 10 januari 2017 kl. 14:00-19:00. a+bx e x 2 dx
KTH, Matematik Tentamen, SF1629, Differentialekvationer och Transformer II (del 2) 10 januari 2017 kl. 14:00-19:00 Tentamen består av åtta uppgifter där vardera uppgift ger maximalt fyra poäng. Preliminära
SF1626 Flervariabelanalys Lösningsförslag till tentamen DEL A
SF66 Flervariabelanalys Lösningsförslag till tentamen 4-3-7 EL A. Betrakta funktionen f, y y. a Beräkna riktningsderivatan av f i punkten, i den riktning som ges av vektorn 4, 3. p b Finns det någon riktning
Kursinformation i Partikeldynamik för M (TMME08)
Kursinformation i Partikeldynamik för M (TMME08) 18h föreläsningar, 6h lektioner och h datorlaboration i period VT, 009. Kurshemsida www.mechanics.iei.liu.se/edu ug/tmme08/ Föreläsare och examinator Jonas