Tentamen Fysikens Matematiska Metoder, Tilläggskurs, vt 2009, SI (a) Bestäm en reellvärd funktion f(x), 0 x 1, för vilken funktionalen

Storlek: px
Starta visningen från sidan:

Download "Tentamen Fysikens Matematiska Metoder, Tilläggskurs, vt 2009, SI (a) Bestäm en reellvärd funktion f(x), 0 x 1, för vilken funktionalen"

Transkript

1 Tentamen Fysikens Matematiska Metoder, Tilläggskurs, vt 9, SI4 Måndagen den 5 maj 9 kl Anteckna på varje blad: namn, utbildningslinje, årskurs och problemnummer. Tillåtna hjälpmedel: BETA, Teoretisk fysiks formelsamling Examinator: Edwin Langmann (tel: Epost: langmann@kth.se) Lösningar: Kommer att finnas på kurshemsidan, Motivera utförligt! Otillräckliga motiveringar kan medföra poängavdrag.. (a) Bestäm en reellvärd funktion f(x), x, för vilken funktionalen I[f] = dx( f (x) + ) f (x) + f(x) med villkoren f() = f () = antar ett extremvärde. (5p) (b) Paraboliska koordinater (u, v, ϕ) i R 3 definieras genom avbildningen r = (x, y, z) = (uv cos(ϕ), uv sin(ϕ), (u v )/) där u <, v <, och ϕ < π ((x, y, z) är kartesiska koordinater). Använd variationsprincipen ( d 3 r ( f) ) k f är extremal ( + k )f = V för att härleda Helmholtz ekvation ( + k )f = i paraboliska koordinater; f = f(r) är funktioner V R där V R 3, och k är en konstant. Ledning: f = e u (/h u ) u f + e v (/h v ) v f + e ϕ (/h ϕ ) ϕ f och ds = dx + dy + dz = (u + v )(du + dv ) + (uv) dϕ. (5p). (a) Bestäm Greenfunktionen till problemet y (x) + y(x) = e x, < x < Lös problemet! (5p) (b) Lös följande problem y() =, lim y(x) =. x u xx (x, y) + u yy (x, y) = < x <, < y < u(, y) = δ(y y ) < y <, lim u(x, y) = x +y med y R. Ange Greenfunktionen G(x, y, x, y ) till problemet. (5p) v.g.v.

2 3. Då vattnet i en rak cirkulär cylinder med radie a och cylinderaxeln parallell med gravitationskraften roterar med vinkelhastigheten ω runt cylinderaxeln former sig vattenytan så att den potentiella energien U i det roterande systemet blir minimal. Bestäm vattenytans höjd över botten h(r), om den totala vattenvolymen antas vara a 3 π. (p) Ledning: Bidraget till U från volymelementet dv är du = ρ(gz ω r )dv med tyngdaccelerationen g och cylinderkoordinater (r, ϕ, z). 4. (a) Visa att lösningen till problemet är c u tt(r, t) u(r, t) = ρ(r, t) t >, r R 3 u(r, ) = f(r), u t (r, ) = g(r) r R 3 u(r, t) = dt R 3 d 3 r G(r, t, r, t )ρ(r, t )+ R 3 d 3 r [G(r, t, r, )g(r ) + G t (r, t, r, )f(r )] där G(r, t, r, t ) är Greenfunktionen till problemet; c > är en konstant, och f, g och ρ är godtyckliga (test)funktioner. (3p) (b) Visa att Greenfunktionen till problemet i (a) är G(r, t, r, t ) = K(r r, t t ) där K(r, t) = δ(t r /c). 4π r (3p) (c) Lös problemet c u tt(r, t) u(r, t) = Ae at e b r u(r, ) =, u t (r, ) = Be b r t >, r R 3 r R 3 där A >, B >, a >, och b > är konstanter. Lösningsformeln får innehålla integraluttryck. (3p) Ledningar: (a) Använd Fouriertransform. Problemet my tt (t) + ky(t) = f(t), y() = A, y t () = B där A, B, m >, k > är konstanter, har lösningen y(t) = där G(t) = mθ(t) sin(ωt)/ω, ω = k/m. (b) Du kan använda eller beräkna en integral. G(t t )f(t )dt + BG(t, ) + AG t (t, ) 4π r = δ3 (r) LYCKA TILL!

3 Lösningsförslag till FYSMAT tentamen 955. (a) Euler-Lagrange ekvationen lyder och har allmäna lösningen f (x) f(x) = f(x) = + c e x + c e x med integrationskonstanter c,. Villkoren ger c + c = och c = c, dvs. c = c = /. Svar: f(x) = cosh(x). (b) Ledningen ger h u = h v = u + v och h ϕ = uv och [( f) k f ] = dudvdϕ h u h v h ϕ [(/h V u)fu+(/h v)fv +(/h ϕ)h ϕ k f ] = dudvdϕ(u + v )uv[(fu + fv )/(u + v ) + f ϕ/(uv) k f ] dudvdϕl L = ( (uv)(f u + fv ) + (u + v )fϕ/(uv) k (u + v )uvf ). Euler-Lagrange ekvationen till variationsprinsipen är och ger oss d L + d L + d du f u dv f v dϕ L L f ϕ f = [uvf u ] u + [uvf v ] v + [(u + v )f ϕ /(uv)] ϕ + k (u + v )uvf = som är Helmholtz ekvation i paraboliska koordinater. Svar: ( (u + v ) u [uf u] u + ) v [vf v] v + (uv) f ϕϕ + k f =.. (a) Greenfunktionen G(x, x ) till problemet uppfyller ODE ger G xx (x, x ) + G(x, x ) = δ(x x ) G(, x ) =, lim G(x, x x ) =. { G(x, x Ae ) = x + Be x x < x Ce x + De x x < x < Villkoren G(, x ) = och lim x G(x, x ) = ger A + B = och C =. Greenfunktionen ska vara kontinuerligt vid x = x, dvs. Ae x Ae x = De x. Detta ger { G(x, x c sinh(x)e x x < x ) = c sinh(x )e x x < x <

4 med c = Ae x. Konstanten c kan bestämmas ur dvs. lim ɛ x +ɛ x ɛ dx[ G xx (x, x ) + G(x, x ) δ(x x )] = lim[ G x (x +ɛ, x )+G x (x ɛ, x ) ] = c sinh(x )e x +c cosh(x )e x = c =. ɛ Svar : OBS att G(x, y) = G(y, x)! Lösningen till problemet { G(x, x sinh(x)e x x < x ) = sinh(x )e x x < x < y (x) + y(x) = f(x), y() = A, lim x y(x) = är y(x) = G(x, x )f(x )dx + AG x (x, ). [ Detta kan visas med ( ) u(α)[ v (α) + v(α)] v(α)[ u (α) + u(α)] dx = u()v () u ()v() } {{ } = [uv vu ] som ger med v(α) = G(α, x) = G(x, α) och u(α) = y(α) dvs. v.s.v. ] Detta ger x [y(α)δ(α x) G(x, α)f(α)]dα = y()g α (x, ) y(x) = y(x) = sinh(x)e 3x dx + x G(x, α)f(α)dα + AG α (x, ). G(x, x )e x dx + G x (x, ) = sinh(x )e x x dx + e x = 3 e x 3 e x + e x. [Detta kan också tas fram direkt: Allmänna lösningen till y (x) + y(x) = e x är y(x) = 3 e x + c e x + c e x med konstanter c,. Villkoren ger, som ovan, c = och /3 + c =, dvs. c = 4/3. Detta ger också full poäng.] Svar : y(x) = 3 e x e x.

5 (b) Svar : u(x, y) = π x x + (y y ) [enligt kursboken [KS] Kap. 5.: Fouriertransformation û(x, k) = dy u(x, y)e iky ger som har lösningen och ger u(x, y) = ] Svar : R û xx (x, k) k û(x, k) =, û(k, ) = e iky, lim û(x, k) = x π û(k, x) = e iky k x dk R π eik(y y ) k x = π ( x i(y y ) + x + i(y y ) dk(e ik(y y ) kx + e ik(y y ) kx ) = ) = x π[x + (y y ) ]. G(x, y, x, y ) = ( (x + x 4π ln ) + (y y ) ) (x x ) + (y y ) [enligt kursboken [KS] Kap. 5.5: Greenfunktionen till ett halvplan är G(r, r ) = K(r r ) K(r r ) där r = (x, y), r = (x, y ), och r = ( x, y) är spegelpunkten. Fundamentallösningen till Poisson ekvationen i R är K(r) = ln( r )/(π) Svar.] 3. Vi beräknar med dv = drdzdϕr U = och a drr h(r) a 3 π = π dz dϕ ρ(gz ω r /) = πρ a drr h(r) π dz dϕ = π a a drr (gh(r) ω r ) U[h] drrh(r) V [h]. Vi ska minimera funktionalen U[h] med villkoret V [h] = a 3 π, dvs. funktionalen U[h] λv [h] = π a dr[ ρg rh(r) ω h(r)r3 λh(r)r] ska minimeras där λ är en Lagrangemultiplikator. Euler-Lagrange ekvationen är a drl dvs. L h = ρgrh(r) ρω r 3 λr = h(r) = c + ω r /g

6 med konstanten c = λ/(ρg) så att V [h] = a 3 π, dvs. Svar: om c. πa 3 = π a Anmärkning: Om c < så är med Heavisidefunktionen θ. drr(c + ω r /g) = π(ca + ω a 4 /(g)). h(r) = c + ω r /g c = a( ω a/(g)) h(r) = θ(c + ω r /g)(c + ω r /g) 4. (Problemet handlar om att härleda Greenfunktionslösningen till vågekvationen med källterm i R 3 ; jfm. Kap. 7.8 i kursboken.) (a) Fouriertransformen ger û(k, t) = d 3 r u(r, t)e ik r R 3 c ûtt(k, t) + k û(k, t) = ˆρ(k, t) û(k, ) = ˆf(k), som enligt ledningen har lösningen där û(k, t) = û t (k, ) = ĝ(k) dt ˆK(k, t t )ˆρ(k, t ) + ˆK(k, t)ĝ(k) + ˆK t (k, t) ˆf(k) ˆK(k, t) = θ(t) c k sin( k ct). Invers Fouriertransformering med faltningssatsen ger formeln med G(r, t, r, t ) = K(r r, t t ) och d 3 k c K(r, t) = θ(t) sin( k ct)e ik r (π) 3. () k R 3 Greenfunktionen till problemet definieras som lösning till problemet om ρ(r, t) = δ 3 (r r )δ(t t ) och f(r) = g(r) =. Detta visar att G(r, t, r, t ) är Greenfunktionen till problemet. (b) Vi beräknar integralen i () i sfäriska koordinater (k, θ, ϕ) så att k = k och k r = kr cos(θ) med r = r. Detta ger, med u = cos(θ), c θ(t) (π) r K(r, t) = θ(t) (π) 3 dk sin(kr) sin(kct) π dkk dϕ }{{} =π }{{} = R dk i (eikr e ikr ) i (eickt e ickt ) du e ikru }{{} = kr sin(kr) c = θ(t) (π) r c k sin(ckt) = π 8 [δ(r+ct) δ(r ct)]

7 p.g.a dk eikx = πδ(x). Resultet följer med θ(t)δ(r + ct) = (p.g.a. δ(x) = om x > ) och cδ(r ct) = δ(t r/c). v.s.v. [Alternativlösning: Fundamentallösningen K(r, t) till problemet definieras genom c K tt(r, t) K(r, t) = δ 3 (r)δ(t) och K(r, t) = om t <. Set sista villkoret är uppfylld för K(r, t) = δ(t r/c)/(4πr), r = r, p.g.a. δ(x) = för x <. För att visa det första beräknar vi c K tt(r, t) K(r, t) = ( ) + ( ) där ( ) = δ(t r/c) 4πr = δ(t r/c)δ3 (r) = δ(t)δ 3 (r) enligt ledningen, och ( ) = c δ (t r/c) 4πr δ(t r/c) [ δ(t r/c)] [ 4πr 4πr ]. Vi ska alltså visa att ( ) =. Vi beräkna där e r = r/r, och Detta ger δ(t r/c) = c δ (t r/c) r = c δ (t r/c)e r 4πr = 4πr e r, δ(t r/c) = c δ (t r/c)e r = c δ (t r/c) c δ (t r/c) e r. ( ) = 4πr c δ (t r/c) e r 4πr c δ (t r/c) = p.g.a. e r = (r/r) = 3/r + r (/r) = /r. v.s.v.] (c) Enligt (a) och (b), u(r, t) = dt d R 3 r δ(t t r r b r /c) 3 4π r r Ae at + d 3 r δ(t r r /c) R 3 4π r r Be b r = d 3 u ( ) Aθ(t u /c)e a(t u /c) + Bδ(t u /c) e b r u R 3 4π u där u = r r, p.g.a. δ(t t a)f(t ) = θ(t a)f(t a).

Edwin Langmann (Epost: x u(x, t); f (x) = df(x)

Edwin Langmann (Epost:   x u(x, t); f (x) = df(x) KTH Teoretisk Fysik Omtentamen i Fysikens matematiska metoder SI12; SI114 Del 2; SI1143 Lördagen den 9 juni 218 kl 9. 14. Anteckna på varje blad: namn, personnummer, och problemnummer. Tillåtna hjälpmedel:

Läs mer

KTH Fysik Tentamen i 5A1301/5A1304 Fysikens matematiska metoder Onsdagen den 24 augusti 2004 kl

KTH Fysik Tentamen i 5A1301/5A1304 Fysikens matematiska metoder Onsdagen den 24 augusti 2004 kl KTH Fysik Tentamen i 5A131/5A134 Fysikens matematiska metoder Onsdagen den 24 augusti 24 kl 14. 19. Anteckna på varje blad: namn, utbildningslinje, årskurs och problemnummer. Notera på första tentabladet

Läs mer

OMTENTAMEN I VEKTORANALYS SI1146 och SI1140 Del 1, VT18

OMTENTAMEN I VEKTORANALYS SI1146 och SI1140 Del 1, VT18 OMTENTAMEN I VEKTORANALY I46 och I40 Del, VT8 Onsdagen augusti 08:00-:00 Anteckna på varje blad: Namn, utbildningslinje, årskurs och problemnummer. Tillåtna hjälpmedel: Formelblad som delas ut. Räknedosa

Läs mer

2. För ljudvågor i en gas, innesluten i ett sfärisk skal, gäller vågekvationen. u tt = c 2 u

2. För ljudvågor i en gas, innesluten i ett sfärisk skal, gäller vågekvationen. u tt = c 2 u KTH Fysik Tentamen i 5A3/5A35 Fysikens matematiska metoder Fredagen den 4 januari 25, kl 4. 9. Anteckna på varje blad: namn, utbildningslinje, årskurs och problemnummer. Notera på första tentabladet om

Läs mer

1. (a) Bestäm lösningen u = u(x, y) till Laplaces ekvation u = 0 inom rektangeln 0 < x < a och 0 < y < b med följande randvillkor 1

1. (a) Bestäm lösningen u = u(x, y) till Laplaces ekvation u = 0 inom rektangeln 0 < x < a och 0 < y < b med följande randvillkor 1 KTH Teoretisk Fysik Tentamen i 5A131/5A135 Fysikens matematiska metoder Fredagen den 2 oktober 26, kl 8:-13: Anteckna på varje blad: namn, utbildningslinje, årskurs problemnummer. Notera på första tentabladet

Läs mer

Edwin Langmann (tel: Epost: DEL 1 (Del 2 på andra sidan)

Edwin Langmann (tel: Epost:  DEL 1 (Del 2 på andra sidan) KTH Teoretisk Fysik Omtentamen i Fysikens matematiska metoder PDE tentamen, SI114 och SI1143 Del 2; SI1141; 5A136, 5A135 och 5A131 PDE tentamen Tisdagen 5 juni 212 kl 8. 13. OBS: Det finns två varianter

Läs mer

1. (a) Bestäm funktionen u = u(x, y), 0 < x < a och 0 < y < a, som uppfyller u xx (x, y) + u yy (x, y) = 0

1. (a) Bestäm funktionen u = u(x, y), 0 < x < a och 0 < y < a, som uppfyller u xx (x, y) + u yy (x, y) = 0 KTH Fysik Tentamen i 5A1306 Fysikens matematiska metoder: PDE-tentamen Fredagen den 8 juni 2007 kl 08.00 13.00 Anteckna på varje blad: namn, utbildningslinje, årskurs och problemnummer. Tillåtna hjälpmedel:

Läs mer

SF1669 Matematisk och numerisk analys II Lösningsförslag till tentamen DEL A. r cos t + (r cos t) 2 + (r sin t) 2) rdrdt.

SF1669 Matematisk och numerisk analys II Lösningsförslag till tentamen DEL A. r cos t + (r cos t) 2 + (r sin t) 2) rdrdt. 1. Beräkna integralen medelpunkt i origo. SF1669 Matematisk och numerisk analys II Lösningsförslag till tentamen 218-3-14 D DEL A (x + x 2 + y 2 ) dx dy där D är en cirkelskiva med radie a och Lösningsförslag.

Läs mer

KTH Fysik Tentamen i 5A1301/5A1305 Fysikens matematiska metoder Tisdagen den 23 augusti 2005, kl

KTH Fysik Tentamen i 5A1301/5A1305 Fysikens matematiska metoder Tisdagen den 23 augusti 2005, kl KTH Fysik Tentamen i 5A3/5A35 Fysikens matematiska metoder Tisdagen den 23 augusti 25, kl 4. 9. Anteckna på varje blad: namn, utbildningslinje, årskurs och problemnummer. Notera på första tentabladet om

Läs mer

Notera på första tentabladet om du har hemtal tillgodo från tidigare kurs

Notera på första tentabladet om du har hemtal tillgodo från tidigare kurs Fysik KTH TENTAMEN Fysikens matematiska metoder 5A1301/5A1304 Onsdag 003-03-1, kl. 08.00-13.00 Notera på första tentabladet om du har hemtal tillgodo från tidigare kurs Anteckna på varje blad: Namn, utbildningslinje,

Läs mer

SF1626 Flervariabelanalys Tentamen Måndagen den 16 mars 2015

SF1626 Flervariabelanalys Tentamen Måndagen den 16 mars 2015 Institutionen för matematik SF1626 Flervariabelanalys Tentamen Måndagen den 16 mars 215 Skrivtid: 8:-13: Tillåtna hjälpmedel: inga Examinator: Mats Boij Tentamen består av nio uppgifter som vardera ger

Läs mer

SF1626 Flervariabelanalys Lösningsförslag till tentamen DEL A

SF1626 Flervariabelanalys Lösningsförslag till tentamen DEL A SF1626 Flervariabelanalys Lösningsförslag till tentamen 215-3-16 DEL A 1. Låt f(x, y) = 1 x 2 y 2. (a) Skissa nivåkurvorna f(x, y) = c till f för c =, c = 1 och c = 2. (1 p) (b) Beräkna gradf(x, y) i de

Läs mer

TENTAMEN I VEKTORANALYS SI1146 och SI1140 Del 1, VT18

TENTAMEN I VEKTORANALYS SI1146 och SI1140 Del 1, VT18 TENTAMEN I EKTORANALY I46 och I40 Del, T8 Torsdagen 3 maj 4:00-9:00 Anteckna på varje blad: Namn, utbildningslinje, årskurs och problemnummer. Tillåtna hjälpmedel: Formelblad som delas ut. Räknedosa ej

Läs mer

Edwin Langmann (tel: Epost: DEL 1

Edwin Langmann (tel: Epost:   DEL 1 KTH Teoretisk Fysik Tentamen i Fysikens matematiska metoder (PDE tentamen, F variant) SI114 och SI1143 Del 2; SI1141; 5A136, 5A135 och 5A131 PDE tentamen Onsdagen 29 maj 213 kl 8. 13. OBS: Det finns två

Läs mer

SF1625 Envariabelanalys Lösningsförslag till tentamen DEL A

SF1625 Envariabelanalys Lösningsförslag till tentamen DEL A SF165 Envariabelanalys Lösningsförslag till tentamen 01-1-10 DEL A 1. Låt funktionen f ha definitionsmängden D f =]0, [ och ges av f(x) = e x 1 x. (a) Finn f:s invers f 1. ( p) (b) Finn inversens värdemängd

Läs mer

KTH Teoretisk Fysik Tentamen i 5A1304/5A1305 Fysikens matematiska metoder Onsdagen den 11 januari 2006, kl 08:00-13:00

KTH Teoretisk Fysik Tentamen i 5A1304/5A1305 Fysikens matematiska metoder Onsdagen den 11 januari 2006, kl 08:00-13:00 KTH Teoretisk Fysik Tentamen i 5A304/5A305 Fysikens matematiska metoder Onsdagen den januari 006, kl 08:00-3:00 Anteckna på varje blad: namn, utbildningslinje, årskurs och problemnummer. Notera på första

Läs mer

1. (a) Bestäm funktionen u = u(t, x), t > 0 och 0 < x < L, som uppfyller. u(t, 0) = 0, u x (t, L) = 0 u(0, x) = Ax(2L x)

1. (a) Bestäm funktionen u = u(t, x), t > 0 och 0 < x < L, som uppfyller. u(t, 0) = 0, u x (t, L) = 0 u(0, x) = Ax(2L x) KTH Fysik Tentamen i 5A1306 Fysikens matematiska metoder: PDE-tentamen Onsdagen den 28 mars 2007 kl 08.00 13.00 Anteckna på varje blad: namn, utbildningslinje, årskurs problemnummer. Tillåtna hjälpmedel:

Läs mer

Institutionen för Matematik, KTH Torbjörn Kolsrud

Institutionen för Matematik, KTH Torbjörn Kolsrud Institutionen för Matematik, KTH Torbjörn Kolsrud B 7, ifferential- och integralkalkyl II, del, flervariabel, för F. Tentamen tisdag 8 augusti 7, 4.-9. Förslag till lösningar.. Om F (x, y, z) x y + y z

Läs mer

6. Räkna ut integralen. z dx dy dz,

6. Räkna ut integralen. z dx dy dz, Institutionen för Matematik, TH Flervariabelanalys SF626. Tentamen den 23 november 29 kl. 8-3 Tillåtet hjälpmedel är Beta Mathematics Handbook. Tydliga lösningar med fullständiga meningar och utförliga

Läs mer

Tentamen: Lösningsförslag

Tentamen: Lösningsförslag Tentamen: Lösningsförslag Onsdag 5 mars 7 8:-3: SF674 Flervariabelanalys Inga hjälpmedel är tillåtna. Max: 4 poäng. 4 poäng Avgör om följande gränsvärde existerar och beräkna gränsvärdet om det existerar:

Läs mer

SF1649, Vektoranalys och komplexa funktioner Tentamen, måndagen den 19 december Lösningsförslag. F n ds,

SF1649, Vektoranalys och komplexa funktioner Tentamen, måndagen den 19 december Lösningsförslag. F n ds, Institutionen för matematik, KTH Serguei Shimorin SF1649, Vektoranalys och komplexa funktioner Tentamen, måndagen den 19 december 211. Lösningsförslag 1. Räkna ut flödesintegral F n ds, där F = (x e y,

Läs mer

Tentamen i matematik. f(x) = ln(ln(x)),

Tentamen i matematik. f(x) = ln(ln(x)), Lösningsförslag Högskolan i Skövde (SK, JS) Tentamen i matematik Kurs: MA52G Matematisk Analys MA23G Matematisk analys för ingenjörer Tentamensdag: 203-05- kl 4.30-9.30 Hjälpmedel : Inga hjälpmedel utöver

Läs mer

Formelsamling. Elektromagnetisk fältteori för F och Pi ETE055 & ETEF01

Formelsamling. Elektromagnetisk fältteori för F och Pi ETE055 & ETEF01 Formelsamling Elektromagnetisk fältteori för F och Pi ETE055 & ETEF01 Institutionen för elektro- och informationsteknik Lunds tekniska högskola Juni 014 Innehåll 1 Elstatik 1 Likström 4 3 Magnetostatik

Läs mer

SF1626 Flervariabelanalys Lösningsförslag till tentamen DEL A

SF1626 Flervariabelanalys Lösningsförslag till tentamen DEL A SF626 Flervariabelanalys Lösningsförslag till tentamen 23-5-27 DEL A. Bestäm alla punkter på ytan z = x 2 + 4y 2 i vilka tangentplanet är parallellt med planet x + y + z =. 4 p) Lösning. Tangentplanet

Läs mer

SF1626 Flervariabelanalys Lösningsförslag till tentamen DEL A

SF1626 Flervariabelanalys Lösningsförslag till tentamen DEL A SF626 Flervariabelanalys Lösningsförslag till tentamen 23-- DEL A. Bestäm en ekvation för tangentplanet i punkten (,, 2 till ellipsoiden 2x 2 +3y 2 +z 2 = 9. (4 p Lösning. Vi uppfattar ytan som nivåytan

Läs mer

Tentamen i tmv036c och tmv035c, Analys och linjär algebra C för K, Kf och Bt A =, = det(a λi) = e 2t + c 2. x(t) = c 1. = c 1.

Tentamen i tmv036c och tmv035c, Analys och linjär algebra C för K, Kf och Bt A =, = det(a λi) = e 2t + c 2. x(t) = c 1. = c 1. Institutionen för matematiska vetenskaper Chalmers tekniska högskola Niklas Eriksen Tentamen i tmv6c och tmv5c, Analys och linjär algebra C för K, Kf och Bt Lösningar 9--6. Lös initialvärdesproblemet x

Läs mer

Lösningsförslag v1.1. Högskolan i Skövde (SK) Svensk version Tentamen i matematik

Lösningsförslag v1.1. Högskolan i Skövde (SK) Svensk version Tentamen i matematik Lösningsförslag v1.1 Högskolan i Skövde (SK) Svensk version Tentamen i matematik Kurs: MA15G Matematisk Analys MA13G Matematisk analys för ingenjörer Tentamensdag: 1-8-8 kl 8.3-13.3 Hjälpmedel : Inga hjälpmedel

Läs mer

x ( f u 2y + f v 2x) xy = 24 och C = f

x ( f u 2y + f v 2x) xy = 24 och C = f Institutionen för Matematik, KTH Torbjörn Kolsrud SF160, Differential- och integralkalkyl II, del 2, flervariabel, för F1. Tentamen onsdag 0 maj 2012, 8.00-1.00 Förslag till lösningar 1. Bestäm tangentplanet

Läs mer

SF1626 Flervariabelanalys Lösningsförslag till tentamen DEL A. 1. En svängningsrörelse beskrivs av

SF1626 Flervariabelanalys Lösningsförslag till tentamen DEL A. 1. En svängningsrörelse beskrivs av SF166 Flervariabelanalys Lösningsförslag till tentamen 13-3-1 DEL A 1. En svängningsrörelse beskrivs av ( πx ) u(x, t) = A cos λ πft där amplituden A, våglängden λ och frekvensen f är givna konstanter.

Läs mer

Lösning till kontrollskrivning 1A

Lösning till kontrollskrivning 1A KTH Matematik Olle Stormark Lösning till kontrollskrivning 1A i SF1626 Flervariabelanalys för E, vt 28. Varje uppgift ger maximalt 3 poäng. För godkänt krävs minst 5 poäng sammanlagt. 1. Funktionen f(x,

Läs mer

LUNDS TEKNISKA HÖGSKOLA MATEMATIK. LÖSNINGAR FLERDIMENSIONELL ANALYS, FMA kl 8 13

LUNDS TEKNISKA HÖGSKOLA MATEMATIK. LÖSNINGAR FLERDIMENSIONELL ANALYS, FMA kl 8 13 LUNS TEKNISKA HÖGSKOLA MATEMATIK LÖSNINGAR FLERIMENSIONELL ANALYS, FMA40 04-0- kl 8. Vi börjar med att rita triangelskivan. Linjen genom, och, har ekvationen y x+, linjen genom, och, har ekvationen y 4

Läs mer

1. (4p) Para ihop följande ekvationer med deras riktingsfält. 1. y = 2 + x y 2. y = 2y + x 2 e 2x 3. y = e x + 2y 4. y = 2 sin(x) y

1. (4p) Para ihop följande ekvationer med deras riktingsfält. 1. y = 2 + x y 2. y = 2y + x 2 e 2x 3. y = e x + 2y 4. y = 2 sin(x) y 1 Matematiska Institutionen, KTH Tentamen SF1633, Differentialekvationer I, den 18 december 2017 kl 08.00-13.00. Examinator: Pär Kurlberg. Betygsgränser: A: 85%. B: 75%. C: 65%. D: 55%. E: 45%. Fx: 42%.

Läs mer

Institutionen för Matematik, KTH Torbjörn Kolsrud

Institutionen för Matematik, KTH Torbjörn Kolsrud Institutionen för Matematik, KTH Torbjörn Kolsrud 5B 7, ifferential- och integralkalkyl II, del 2, flervariabel, för F. Tentamen fredag 25 maj 27, 8.-3. Förslag till lösningar (ändrat 28/5-7, 29/5-7).

Läs mer

Tentamen MVE085 Flervariabelanalys

Tentamen MVE085 Flervariabelanalys Tentamen MVE85 Flervariabelanalys 5--5 kl. 4. - 8. Examinator: Dennis Eriksson, Matematiska vetenskaper, Chalmers Telefonvakt: Dawan Mustafa, telefon: 73 88 34 Hjälpmedel: bifogat formelblad, ordlistan

Läs mer

Institutionen för matematik SF1626 Flervariabelanalys. Lösningsförslag till tentamen Måndagen den 5 juni 2017 DEL A

Institutionen för matematik SF1626 Flervariabelanalys. Lösningsförslag till tentamen Måndagen den 5 juni 2017 DEL A Institutionen för matematik SF66 Flervariabelanalys Lösningsförslag till tentamen Måndagen den 5 juni 7 DEL A. En kulles höjd ges av z 6,x,y där enheten är meter på alla tre koordinataxlar. (a) I vilken

Läs mer

för t > 0 och 0 x L med följande rand- och begynnelsevillkor

för t > 0 och 0 x L med följande rand- och begynnelsevillkor KTH Teoretisk Fysik Tentamen i 5A131/5A135 Fysikens matematiska metoder Tisdagen den 16 januari 27, kl 8:-13: Anteckna på varje blad: namn, utbildningslinje, årskurs och problemnummer. Notera på första

Läs mer

SF1626 Flervariabelanalys Lösningsförslag till tentamen DEL A

SF1626 Flervariabelanalys Lösningsförslag till tentamen DEL A SF1626 Flervariabelanalys Lösningsförslag till tentamen 213-8-22 DEL A 1. Betrakta funktionen f(x, y) ln(x 2 + xy 2 4). a) Bestäm tangentplanet till funktionsytan z f(x, y) i den punkt på ytan där x 1

Läs mer

Lösningsförslag till tentamen TMA043 Flervariabelanalys E2

Lösningsförslag till tentamen TMA043 Flervariabelanalys E2 Lösningsförslag till tentamen TMA3 Flervariabelanalys E2 23--6 kl. 8.3 2.3 Examinator: Johan Jonasson, Matematiska vetenskaper, Chalmers Telefonvakt: Adam Andersson, telefon: 73 88 3 Hjälpmedel: bifogat

Läs mer

Exempel variationsräkning 1, SI1142 Fysikens matematiska metoder, vt08.

Exempel variationsräkning 1, SI1142 Fysikens matematiska metoder, vt08. Fysik KTH Exempel variationsräkning 1, SI1142 Fysikens matematiska metoder, vt8. Sorry for the mixture of Swedish and English I hope I have used the same language at least within the same problem:-) Problems

Läs mer

SF1626 Flervariabelanalys Tentamen Tisdagen den 12 januari 2016

SF1626 Flervariabelanalys Tentamen Tisdagen den 12 januari 2016 Institutionen för matematik SF626 Flervariabelanalys Tentamen Tisdagen den 2 januari 26 Skrivtid: 8:-3: Tillåtna hjälpmedel: inga Examinator: Mats Boij Tentamen består av nio uppgifter som vardera ger

Läs mer

Tentamen TMA044 Flervariabelanalys E2

Tentamen TMA044 Flervariabelanalys E2 Tentamen TMA44 Flervariabelanalys E 4--3 kl. 8.3.3 Examinator: Peter Hegarty, Matematiska vetenskaper, halmers Telefonvakt: Elin Solberg, telefon: 73 88 34 Hjälpmedel: bifogat formelblad, ordlistan från

Läs mer

Tentamen i Matematisk analys, HF1905 exempel 1 Datum: xxxxxx Skrivtid: 4 timmar Examinator: Armin Halilovic

Tentamen i Matematisk analys, HF1905 exempel 1 Datum: xxxxxx Skrivtid: 4 timmar Examinator: Armin Halilovic Tentamen i Matematisk analys, HF95 exempel atum: xxxxxx Skrivtid: timmar Examinator: Armin Halilovic För godkänt betyg krävs av max poäng Betygsgränser: För betyg A, B, C,, E krävs, 9, 6, respektive poäng

Läs mer

= ye xy y = xye xy. Konstruera även fasporträttet med angivande av riktningen på banorna. 5. Lös systemet x

= ye xy y = xye xy. Konstruera även fasporträttet med angivande av riktningen på banorna. 5. Lös systemet x Uppsala Universitet Matematiska institutionen Anders Källström Prov i matematik Ordinära differentialekvationer F,Q,W,IT Civilingenjörsutbildningen 1996-6-7 Skrivtid: 15. 21.. Varje problem ger högst 5

Läs mer

x 2 = lim x 2 x 2 x 2 x 2 x x+2 (x + 3)(x + x + 2) = lim x 2 (x + 1)

x 2 = lim x 2 x 2 x 2 x 2 x x+2 (x + 3)(x + x + 2) = lim x 2 (x + 1) Matematik Hjälpmedel: Inga Chalmers Tekniska Högskola Tentamen 5--7 kl. 4: 8: Telefonvakt: Samuel Bengmark ankn.: 7-87644 Betygsgränser :a poäng, 4:a poäng, 5:a 4 poäng, max: 5 poäng Tentamensgranskning

Läs mer

SF1626 Flervariabelanalys Lösningsförslag till tentamen DEL A

SF1626 Flervariabelanalys Lösningsförslag till tentamen DEL A SF66 Flervariabelanalys Lösningsförslag till tentamen 4-3-7 EL A. Betrakta funktionen f, y y. a Beräkna riktningsderivatan av f i punkten, i den riktning som ges av vektorn 4, 3. p b Finns det någon riktning

Läs mer

Tentamen i Analys B för KB/TB (TATA09/TEN1) kl 8 13

Tentamen i Analys B för KB/TB (TATA09/TEN1) kl 8 13 LINKÖPINGS UNIVERSITET Matematiska Institutionen Joakim Arnlind Tentamen i Analys B för KB/TB TATA9/TEN1 14--1 kl 8 13 Inga hjälpmedel är tillåtna. Varje uppgift kan ge maximalt 3 poäng. Betygsgränser:

Läs mer

Lösningsförslag till tentamen i SF1629, Differentialekvationer och Transformer II (del 2) 8 januari 2018

Lösningsförslag till tentamen i SF1629, Differentialekvationer och Transformer II (del 2) 8 januari 2018 KTH, Matematik Maria Saprykina Lösningsförslag till tentamen i SF169, Differentialekvationer och Transformer II (del ) 8 januari 18 Tentamen består av sex uppgifter där vardera uppgift ger maximalt fyra

Läs mer

= 1, fallet x > 0 behandlas pga villkoret. x:x > 1

= 1, fallet x > 0 behandlas pga villkoret. x:x > 1 Lösningsförslag till tentamensskrivning i Diff & Trans I, 5B00 Torsdagen den 0 januari 00, kl 400-900 Hjälpmedel: BETA, Mathematics Handbook Redovisa lösningarna på ett sådant sätt att beräkningar och

Läs mer

TENTAMEN. Ten2, Matematik 1 Kurskod HF1903 Skrivtid 13:15-17:15 Fredagen 25 oktober 2013 Tentamen består av 4 sidor

TENTAMEN. Ten2, Matematik 1 Kurskod HF1903 Skrivtid 13:15-17:15 Fredagen 25 oktober 2013 Tentamen består av 4 sidor TENTAMEN Ten, Matematik Kurskod HF93 Skrivtid 3:5-7:5 Fredagen 5 oktober 3 Tentamen består av sidor Hjälpmedel: Utdelat formelblad. Räknedosa ej tillåten. Tentamen består av uppgifter som totalt kan ge

Läs mer

Tentamen i Envariabelanalys 2

Tentamen i Envariabelanalys 2 Linköpings universitet Matematiska institutionen Kurskod: TATA42 Provkod: TEN Tentamen i Envariabelanalys 2 206 0 8, 4 9 Inga hjälpmedel. Lösningarna ska vara fullständiga, välmotiverade, ordentligt skrivna

Läs mer

= 0. Båda skärningsvinklarna är således π/2 (ortogonala riktningsvektorer).

= 0. Båda skärningsvinklarna är således π/2 (ortogonala riktningsvektorer). Institutionen för Matematik, KTH Torbjörn Kolsrud SF163, ifferential- och integralkalkyl II, del 2, flervariabel, för F1. Tentamen torsdag 19 augusti 21, 14. - 19. Inga hjälpmedel är tillåtna. Svar och

Läs mer

SF1626 Flervariabelanalys Tentamen Torsdagen den 18 augusti 2016

SF1626 Flervariabelanalys Tentamen Torsdagen den 18 augusti 2016 Institutionen för matematik SF166 Flervariabelanalys Tentamen Torsdagen den 18 augusti 16 Skrivtid: 8:-1: Tillåtna jälpmedel: inga Examinator: Mats Boij Tentamen består av nio uppgifter som vardera ger

Läs mer

SF1626 Flervariabelanalys Tentamen Måndagen den 16 mars 2015

SF1626 Flervariabelanalys Tentamen Måndagen den 16 mars 2015 Institutionen för matematik SF1626 Flervariabelanalys Tentamen Måndagen den 16 mars 2015 Skrivtid: 08:00-13:00 Tillåtna hjälpmedel: inga Examinator: Mats Boij Tentamen består av nio uppgifter som vardera

Läs mer

GÖTEBORGS UNIVERSITET Institutionen för fysik LÖSNINGAR TILL TENTAMEN I MEKANIK B För FYP100, Fysikprogrammet termin 2

GÖTEBORGS UNIVERSITET Institutionen för fysik LÖSNINGAR TILL TENTAMEN I MEKANIK B För FYP100, Fysikprogrammet termin 2 GÖTEBORGS UNIVERSITET Institutionen för fysik LÖSNINGAR TILL TENTAMEN I MEKANIK B För FYP100, Fysikprogrammet termin Tid: Plats: Ansvarig: Hjälpmedel: Tisdag juni 009, kl 8 30 13 30 V-huset Lennart Sjögren,

Läs mer

Högskolan i Skövde (SK, YW) Svensk version Tentamen i matematik

Högskolan i Skövde (SK, YW) Svensk version Tentamen i matematik Högskolan i Skövde (SK, YW) Svensk version Tentamen i matematik Kurs: MA52G Matematisk Analys MA23G Matematisk analys för ingenjörer Tentamensdag: 2-5-5 kl 8.3-3.3 Hjälpmedel : Inga hjälpmedel utöver bifogat

Läs mer

Tentamen SF1626, Analys i flera variabler, Svar och lösningsförslag. 2. en punkt på randkurvan förutom hörnen, eller

Tentamen SF1626, Analys i flera variabler, Svar och lösningsförslag. 2. en punkt på randkurvan förutom hörnen, eller Tentamen SF66, Analys i flera variabler, --8 Svar och lösningsförslag. Låt fx, y) = ye x y. Bestäm största och minsta värde till f på den slutna kvadraten med hörn i, ),, ),, ) och, ). Lösning. f är kontinuerlig

Läs mer

SF1626 Flervariabelanalys Lösningsförslag till tentamen DEL A

SF1626 Flervariabelanalys Lösningsförslag till tentamen DEL A SF166 Flervariabelanalys Lösningsförslag till tentamen 16-8-18 DEL A 1 Låt D vara det område ovanför x-axeln i xy-planet som begränsas av cirkeln x + y = 1 samt linjerna y = x oc y = x Beräkna x-koordinaten

Läs mer

4x 2 dx = [polynomdivision] 2x x + 1 dx. (sin 2 (x) ) 2. = cos 2 (x) ) 2. t = cos(x),

4x 2 dx = [polynomdivision] 2x x + 1 dx. (sin 2 (x) ) 2. = cos 2 (x) ) 2. t = cos(x), Lunds Tekniska Högskola Matematik Helsingborg Lösningar Analys, FMAA5 9-8-9. a) e sinx) cosx) dx e sinx) + C. b) 4x dx polynomdivision] x + x + x + dx x x + ] ln x + + ) ln) + ) ln) ln). c) Trigonometriska

Läs mer

SF1626 Flervariabelanalys Tentamen Måndagen den 21 mars 2016

SF1626 Flervariabelanalys Tentamen Måndagen den 21 mars 2016 Institutionen för matematik SF626 Flervariabelanalys Tentamen Måndagen den 2 mars 26 Skrivtid: 8:-3: Tillåtna hjälpmedel: inga Examinator: Mats Boij Tentamen består av nio uppgifter som vardera ger maximalt

Läs mer

Chalmers tekniska högskola Datum: kl Telefonvakt: Christoffer Standard LMA515 Matematik KI, del B.

Chalmers tekniska högskola Datum: kl Telefonvakt: Christoffer Standard LMA515 Matematik KI, del B. MATEMATIK Hjälpmedel: inga Chalmers tekniska högskola Datum: 343 kl. 8.3.3 Tentamen Telefonvakt: Christoffer Standard 73 88 34 LMA55 Matematik KI, del B Tentan rättas och bedöms anonymt. Skriv tentamenskoden

Läs mer

Chalmers tekniska högskola Datum: kl Telefonvakt: Carl Lundholm MVE475 Inledande Matematisk Analys

Chalmers tekniska högskola Datum: kl Telefonvakt: Carl Lundholm MVE475 Inledande Matematisk Analys MATEMATIK Hjälpmedel: inga Chalmers tekniska högskola Datum: 6825 kl. 8.3 2.3 Tentamen Telefonvakt: Carl Lundholm 5325 MVE475 Inledande Matematisk Analys Tentan rättas och bedöms anonymt. Skriv tentamenskoden

Läs mer

SF1625 Envariabelanalys Tentamen Måndagen den 12 januari 2015

SF1625 Envariabelanalys Tentamen Måndagen den 12 januari 2015 SF1625 Envariabelanalys Tentamen Måndagen den 12 januari 2015 Skrivtid: 08:00-13:00 Tillåtna hjälpmedel: inga Examinator: Lars Filipsson Tentamen består av nio uppgifter som vardera ger maximalt fyra poäng.

Läs mer

SF1625 Envariabelanalys Lösningsförslag till tentamen DEL A. e 50k = k = ln 1 2. k = ln = ln 2

SF1625 Envariabelanalys Lösningsförslag till tentamen DEL A. e 50k = k = ln 1 2. k = ln = ln 2 SF625 Envariabelanalys Lösningsförslag till tentamen 23--24 DEL A. Den :a januari 26 låstes kg av ett visst radioaktivt ämne in i en källare. Ämnet sönderfaller i en takt som är direkt proportionell mot

Läs mer

SF1626 Flervariabelanalys Lösningsförslag till tentamen DEL A

SF1626 Flervariabelanalys Lösningsförslag till tentamen DEL A SF626 Flervariabelanalys Lösningsförslag till tentamen 24-8-2 DEL A. Bestäm och skissera definitionsmängden till funktionen fx, y) = x 2 + y 2 + 2x 4y + + x. Är definitionsmängden kompakt? 4 p) Lösning.

Läs mer

SF1626 Flervariabelanalys Tentamen Torsdagen den 20 augusti 2015

SF1626 Flervariabelanalys Tentamen Torsdagen den 20 augusti 2015 Institutionen för matematik SF1626 Flervariabelanalys Tentamen Torsdagen den 2 augusti 215 Skrivtid: 8:-1: Tillåtna hjälpmedel: inga Examinator: Mats Boij Tentamen består av nio uppgifter som vardera ger

Läs mer

3. Analytiska funktioner.

3. Analytiska funktioner. 33 Fysikens matematiska metoder : Studievecka 3. 3. Analytiska funktioner. Varför komplexa tal? Syfte : Att ur vissa funktioners uppträdande utanför reella axeln ( Nollställen poler m.m) kunna sluta sig

Läs mer

Tentamen i matematik. f(x) = 1 + e x.

Tentamen i matematik. f(x) = 1 + e x. Lösningsförslag Högskolan i Skövde (SK, JS) Tentamen i matematik Kurs: MA52G Matematisk Analys MA23G Matematisk analys för ingenjörer Tentamensdag: 202-03-23 kl 4.30-9.30 Hjälpmedel : Inga hjälpmedel utöver

Läs mer

MA2001 Envariabelanalys 6 hp Mikael Hindgren Tisdagen den 9 januari Skrivtid:

MA2001 Envariabelanalys 6 hp Mikael Hindgren Tisdagen den 9 januari Skrivtid: HÖGSKOLAN I HALMSTAD Tentamensskrivning Akademin för informationsteknologi MA00 Envariabelanalys 6 p Mikael Hindgren Tisdagen den 9 januari 08 05-670 Skrivtid: 9.00-.00 Inga jälpmedel. Fyll i omslaget

Läs mer

Tentamen, Matematik påbyggnadskurs, 5B1304 fredag 20/ kl

Tentamen, Matematik påbyggnadskurs, 5B1304 fredag 20/ kl Institutionen för Matematik KTH Mattias Dahl Tentamen, Matematik påbyggnadskurs, 5B134 fredag /8 4 kl. 14. 19. Lösningar 1. Lös differentialekvationen x 3 y + x y xy + y x 3 ln x, x >. Lösning: Motsvarande

Läs mer

Del I. Modul 1. Betrakta differentialekvationen

Del I. Modul 1. Betrakta differentialekvationen Lösningsförslag till Tentamen, SF1633, Differentialekvationer I den 24 oktober 2016 kl 8:00-13:00 För godkänt (betyg E) krävs tre godkända moduler från del I Varje moduluppgift består av tre frågor För

Läs mer

SF1626 Flervariabelanalys Tentamen Tisdagen den 7 juni 2016

SF1626 Flervariabelanalys Tentamen Tisdagen den 7 juni 2016 Institutionen för matematik SF1626 Flervariabelanalys Tentamen Tisdagen den 7 juni 216 Skrivtid: 8:-13: Tillåtna hjälpmedel: inga Examinator: Mats Boij Tentamen består av nio uppgifter som vardera ger

Läs mer

1 x. SF1626 Flervariabelanalys Lösningsförslag till tentamen DEL A

1 x. SF1626 Flervariabelanalys Lösningsförslag till tentamen DEL A SF626 Flervariabelanalys Lösningsförslag till tentamen 26-3-2 DEL A. Låt D vara fyrhörningen med hörn i punkterna, ), 6, ),, 5) och 4, 5). a) Skissera fyrhörningen D och beräkna dess area. p) b) Bestäm

Läs mer

Lösningsskiss för tentamen Vektorfält och klassisk fysik (FFM234 och FFM232)

Lösningsskiss för tentamen Vektorfält och klassisk fysik (FFM234 och FFM232) Lösningsskiss för tentamen Vektorfält och klassisk fysik (FFM23 och FFM232) Tid och plats: Måndagen den 29 oktober 208 klockan 00-800, Maskinsalar Lösningsskiss: Christian Forssén Detta är enbart en skiss

Läs mer

Tentamen TMA044 Flervariabelanalys E2

Tentamen TMA044 Flervariabelanalys E2 Tentamen TMA44 Flervariabelanalys E 5-- kl. 8.3.3 Examinator: Peter Hegarty, Matematiska vetenskaper, Chalmers Telefonvakt: Gustav Kettil, telefon: 73 88 34 Hjälpmedel: bifogat formelblad, ordlistan från

Läs mer

Tentamen i: Matematisk fysik Ämneskod M0014M. Tentamensdatum Totala antalet uppgifter: 6 Skrivtid Lärare: Thomas Strömberg

Tentamen i: Matematisk fysik Ämneskod M0014M. Tentamensdatum Totala antalet uppgifter: 6 Skrivtid Lärare: Thomas Strömberg Tentamen i: Matematisk fysik Ämneskod M004M Tentamensdatum 200-03-24 Totala antalet uppgifter: 6 Skrivtid 09.00-4.00 Lärare: Thomas Strömberg Jourhavande lärare: Thomas Strömberg Tel: 0920-49944 Resultatet

Läs mer

Lösningsförslag, preliminär version 0.1, 23 januari 2018

Lösningsförslag, preliminär version 0.1, 23 januari 2018 Lösningsförslag, preinär version 0., 3 januari 08 Högskolan i Skövde Tentamen i matematik Kurs: MA5G Matematisk analys MA3G Matematisk analys för ingenjörer Tentamensdag: 08-0-03 kl 4:30-9:30 Hjälpmedel

Läs mer

har ekvation (2, 3, 4) (x 1, y 1, z 1) = 0, eller 2x + 3y + 4z = 9. b) Vi söker P 1 = F (1, 1, 1) + F (1, 1, 1) (x 1, y 1, z 1) = 2x + 3y + 4z.

har ekvation (2, 3, 4) (x 1, y 1, z 1) = 0, eller 2x + 3y + 4z = 9. b) Vi söker P 1 = F (1, 1, 1) + F (1, 1, 1) (x 1, y 1, z 1) = 2x + 3y + 4z. Institutionen för Matematik, KTH Torbjörn Kolsrud SF163, ifferential- och integralkalkyl II, del, flervariabel, för F1. Tentamen onsdag 7 maj 9, 1.-19. 1. Låt F (x, y, z) sin(x + y z) + x + y + 6z. a)

Läs mer

(x 3 + y)dxdy. D. x y = x + y. + y2. x 2 z z

(x 3 + y)dxdy. D. x y = x + y. + y2. x 2 z z UPPAA UNIVERITET Matematiska institutionen Abrahamsson, 4715, 7-57 (tyf, 47119, 77-517) Prov i matematik IT, K, X, W, EI, MI, NVP samt fristående kurs. Flerdimensionell analys och Analys MN 5-1-9 krivtid:

Läs mer

Tentamen i Flervariabelanalys F/TM, MVE , kl

Tentamen i Flervariabelanalys F/TM, MVE , kl Tentamen i Flervariabelanalys F/TM, MVE35 26-4-2, kl. 4-8 Hjälpmedel: Inga, ej räknedosa. Telefon: anknytning 5325 Telefonvakt: Edvin Wedin För godkänt krävs minst 2 poäng. Betyg 3: 2-29.5 poäng, betyg

Läs mer

Rita även upp grafen till Fourierseriens summa på intervallet [ 2π, 3π], samt ange summans värde i punkterna π, 0, π, 2π. (5) S(t) = c n e int,

Rita även upp grafen till Fourierseriens summa på intervallet [ 2π, 3π], samt ange summans värde i punkterna π, 0, π, 2π. (5) S(t) = c n e int, Institutionen för matematik KTH Tentamensskrivning, 003-08-5, kl. 14.00 19.00. 5B10/ Diff och Trans del, för F och T. Hjälpmedel: BETA, Mathematics Handbook. För godkänt betyg 3) krävs 18 poäng, medan

Läs mer

Övningar till Matematisk analys III Erik Svensson

Övningar till Matematisk analys III Erik Svensson MATEMATISKA INSTITUTIONEN STOCKHOLMS UNIVERSITET Avd. Matematik -8-8 Övningar till Matematisk analys III Erik Svensson. För varje gränsvärde nedan bestäm gränsvärdet eller visa att gränsvärdet inte existerar.

Läs mer

ENDIMENSIONELL ANALYS A3/B kl INGA HJÄLPMEDEL. Lösningarna ska vara försedda med ordentliga motiveringar. lim

ENDIMENSIONELL ANALYS A3/B kl INGA HJÄLPMEDEL. Lösningarna ska vara försedda med ordentliga motiveringar. lim LUNDS TEKNISKA HÖGSKOLA MATEMATIK TENTAMENSSKRIVNING ENDIMENSIONELL ANALYS A3/B2 26 3 7 kl. 8 3 INGA HJÄLPMEDEL. Lösningarna ska vara försedda med ordentliga motiveringar.. Beräkna a) x+4 x 3 +4x dx.5)

Läs mer

Lösningsförslag till tentamen i SF1683, Differentialekvationer och Transformmetoder (del 2) 4 april < f,g >=

Lösningsförslag till tentamen i SF1683, Differentialekvationer och Transformmetoder (del 2) 4 april < f,g >= KTH, Matematik Maria Saprykina Lösningsförslag till tentamen i SF683, Differentialekvationer och Transformmetoder (del 2) 4 april 28 Tentamen består av sex uppgifter där vardera uppgift ger maximalt fyra

Läs mer

Lösningsförslag till tentamen Torsdag augusti 16, 2018 DEL A

Lösningsförslag till tentamen Torsdag augusti 16, 2018 DEL A Institutionen för matematik SF1626 Flervariabelanalys Torsdag augusti 16, 2018 DEL A 1. Givet funktionen f(x, y) = ln(x 2 y 2 ). a) Bestäm definitionsmängden D för f. Rita även en bild av D. (2 p) b) Bestäm

Läs mer

Högskolan i Skövde (SK, JS) Svensk version Tentamen i matematik Lösningsförslag till del I

Högskolan i Skövde (SK, JS) Svensk version Tentamen i matematik Lösningsförslag till del I Högskolan i Skövde (SK, JS) Svensk version Tentamen i matematik Lösningsförslag till del I Kurs: MA15G Matematisk Analys MA13G Matematisk analys för ingenjörer MA71A Matematik för lärare C, delkurs Matematisk

Läs mer

SF1625 Envariabelanalys Tentamen Måndagen den 11 januari 2016

SF1625 Envariabelanalys Tentamen Måndagen den 11 januari 2016 SF625 Envariabelanalys Tentamen Måndagen den januari 206 Skrivtid: 08:00-3:00 Tillåtna hjälpmedel: inga Examinator: Lars Filipsson Tentamen består av nio uppgifter som vardera ger maximalt fyra poäng.

Läs mer

SF1646 Analys i flera variabler Tentamen 18 augusti 2011, Svar och lösningsförslag

SF1646 Analys i flera variabler Tentamen 18 augusti 2011, Svar och lösningsförslag SF1646 Analys i flera variabler Tentamen 18 augusti 11, 14. - 19. Svar och lösningsförslag (1) Låt f(x, y) = xy ln(x + y ). I vilken riktning är riktningsderivatan till f i punkten (1, ) som störst, och

Läs mer

SF1625 Envariabelanalys Lösningsförslag till tentamen DEL A

SF1625 Envariabelanalys Lösningsförslag till tentamen DEL A SF1625 Envariabelanalys Lösningsförslag till tentamen 211-1-18 DEL A 1. Låt x och y vara två tal vars summa är 6. Ange det minimala värdet som uttrycket 2x 2 + y 2 kan anta. Lösningsförslag. Eftersom vi

Läs mer

SF1633, Differentialekvationer I Tentamen, torsdagen den 7 januari Lösningsförslag. Del I

SF1633, Differentialekvationer I Tentamen, torsdagen den 7 januari Lösningsförslag. Del I Institutionen för matematik, KTH Serguei Shimorin SF6, Differentialekvationer I Tentamen, torsdagen den 7 januari 26 Lösningsförslag Del I Moduluppgift En liter av lösningen som innehåller 2 gram av kemiska

Läs mer

SF1626 Flervariabelanalys Tentamen Måndagen den 26 maj, 2014

SF1626 Flervariabelanalys Tentamen Måndagen den 26 maj, 2014 SF1626 Flervariabelanals Tentamen Måndagen den 26 maj, 214 Skrivtid: 14:-19: Tillåtna hjälpmedel: inga Eaminator: Mattias Dahl Tentamen består av nio uppgifter som vardera ger maimalt fra poäng. Del A

Läs mer

Tentamen, SF1629, Differentialekvationer och Transformer II (del 2) 10 januari 2017 kl. 14:00-19:00. a+bx e x 2 dx

Tentamen, SF1629, Differentialekvationer och Transformer II (del 2) 10 januari 2017 kl. 14:00-19:00. a+bx e x 2 dx KTH, Matematik Tentamen, SF1629, Differentialekvationer och Transformer II (del 2) 10 januari 2017 kl. 14:00-19:00 Tentamen består av åtta uppgifter där vardera uppgift ger maximalt fyra poäng. Preliminära

Läs mer

TMV036 Analys och linjär algebra K Kf Bt, del C

TMV036 Analys och linjär algebra K Kf Bt, del C MATEMATIK Chalmers tekniska högskola Tentamen 20-0-, kl. 4.00-8.00 TMV036 Analys och linjär algebra K Kf Bt, del C Telefonvakt: Richard Lärkäng, telefon: 0703-088304 Hjälpmedel: Inga, bara papper och penna.

Läs mer

SF1625 Envariabelanalys Lösningsförslag till tentamen DEL A

SF1625 Envariabelanalys Lösningsförslag till tentamen DEL A SF1625 Envariabelanalys Lösningsförslag till tentamen 2015-01-12 DEL A 1. Betrakta funktionen f som ges av f(x) = xe 1/x. A. Bestäm definitionsmängden till f. B. Beräkna de fyra gränsvärdena lim x ± f(x)

Läs mer

Rita även grafen till Fourierserien på intervallet [ 2π, 4π]. (5) 1 + cos(2t),

Rita även grafen till Fourierserien på intervallet [ 2π, 4π]. (5) 1 + cos(2t), Institutionen för matematik KTH Tentamensskrivning, 24-1-13, kl. 14. 19.. 5B122/2 Diff och Trans 2 del 2, för F, E, T. Hjälpmedel: BETA, Mathematics Handbook. För godkänt betyg 3 krävs 18 poäng, medan

Läs mer

av envariabelfunktionen g(t) och flervariabelfunktionen t = h(x, y) = x 2 + e y.)

av envariabelfunktionen g(t) och flervariabelfunktionen t = h(x, y) = x 2 + e y.) Lösningsskisser till TATA69 Flervariabelanalys 16-1- 1 Stationära punkter ges av f (4x 3 + 4x, 3y + 6z, z + 6y (,,, dvs (x, y, z (,, eller (x, y, z (, 6, 18 Ur andraderivatorna fås de kvadratiska formerna

Läs mer

Tentamensskrivning i Differentialekvationer I, SF1633(5B1206).

Tentamensskrivning i Differentialekvationer I, SF1633(5B1206). Tentamensskrivning i Differentialekvationer I, SF633(5B6) Torsdagen den 3 oktober 8, kl 8-3 Hjälpmedel: BETA, Mathematics Handbook Redovisa lösningarna på ett sådant sätt att beräkningar och resonemang

Läs mer

Tid läge och accelera.on

Tid läge och accelera.on Tid läge och accelera.on Tid t Läge x = x(t) Hastighet v(t) = dx dt x(t) = Acceleration a(t) = dv dt v(t) = t t0 v(t)dt t t 0 a(t)dt Eq 1 Eq 2 Eq 3 MEN KOM IHÅG: 1. För a> de>a skall vara användbart måste.dsberoendet

Läs mer

Mer om generaliserad integral

Mer om generaliserad integral Föreläsning XI Mer om generaliserad integral Ex 64: Givet h(x) = ( x 2 5x + 2 ) e x/2. (a) Bestäm en p.f. till h(x). (b) Beräkna h(x)dx. (a) Vi har här en integrand som är en produkt av ett polynom av

Läs mer

Lösningsskiss för tentamen Vektorfält och klassisk fysik (FFM232)

Lösningsskiss för tentamen Vektorfält och klassisk fysik (FFM232) Lösningsskiss för tentamen Vektorfält och klassisk fysik (FFM232) Tid och plats: Lösningsskiss: Tisdagen den 20 december 2016 klockan 0830-1230 i M-huset Christian Forssén Detta är enbart en skiss av den

Läs mer

Veckans teman. Repetition av ordinära differentialekvationer ZC 1, 2.1-3, 4.1-6, 7.4-6, 8.1-3

Veckans teman. Repetition av ordinära differentialekvationer ZC 1, 2.1-3, 4.1-6, 7.4-6, 8.1-3 Veckans teman Repetition av ordinära differentialekvationer ZC 1, 2.1-3, 4.1-6, 7.4-6, 8.1-3 Ekvationstyper Första ordningen Separabla Högre ordning System Autonoma Linjära med konstanta koefficienter

Läs mer