Kan du det här? Geometrisk summa och linjär optimering

Save this PDF as:
 WORD  PNG  TXT  JPG

Storlek: px
Starta visningen från sidan:

Download "Kan du det här? Geometrisk summa och linjär optimering"

Transkript

1 Kan du det här? Geometrisk summa och linjär optimering o Vad menas med en geometrisk talföljd? o Vad menas med geometrisk summa? Kan du beräkna geometrisk summa? o Hur kan geometrisk talföljd tillämpas inom natur- och ekonomisamhällsvetenskap? Vad menas med nuvärde, slutvärde och annuitetslån? o Hur ritar vi system av linjära olikheter och områden i ett koordinatsystem? o Vad menas med linjär optimering? Kan du genomföra en linjär optimering? Centralt innehåll Användning av begreppet geometrisk summa samt linjär optimering i tillämpningar som är relevanta för karaktärsämnena. En uppgift eller text markerad med * betyder att uppgiften kan uppfattas som svårare. Vad menas med en geometrisk talföljd och geometrisk summa och hur du beräkna geometrisk summa? En talföljd är en följd av tal uppställda i en bestämd ordning och enligt en bestämd regel. Varje tal har ett bestämt ordningsnummer. Det kallas en geometrisk talföljd och om vi adderar alla talen som ingår i talföljden så kallas svaret en geometrisk summa. Formeln för att beräkna en geometrisk summa är: a + ak 1 + ak ak n(1 = a(kn 1) (k 1) och då är a det första talet och k kvoten Ex Vi har talföljden 4, 12, 36 a) Vilket är det femte talet? b) Beräkna talföljdens geometriska summa. Lösning: a) För att komma till nästa tal multiplicerar vi med 3, för kvoten mellan två tal är 3. fjärde talet är 36 3 = 108 och sedan femte talet är = 324 vi kan även använda oss av att a G = a k J dvs a G = 4 3 J = 324 Första talet + Andra talet + Tredje talet + Fjärde talet + Femte talet = Geometrisk summa = = 484 med hjälp av formeln blir så här: K(LM (N) (L(N) = J(OP (N) (O(N) = 484 Se sidan 202

2 Ex 1 Beräkna summan av de tio första talen i den geometrisk följden om k = 0,93 a = Ex 2 Vi har följande geometriska talföljd 6,18, 54, 162,, a) Hur många tal finns i talföljden? b) Beräkna den geometriska summan. Ex 3 Vi har följande geometriska talföljd: Tal 1: 52 Tal 2: 93,6 Tal 3:168,48 och Tal 4: 303,264 a) Vilket är det femte talet? b) Beräkna summan av de 14 första talen. JTTT(N,TO P (N) Ex 4 En viss geometrisk summa kan beräknas med (N,TO(N) a) Skriv ut termerna i den geometriska summan ovan. b) Formulera ett verkligt problem som kan formuleras med formeln ovan. Hur kan geometrisk talföljd tillämpas inom natur- och ekonomi- samhällsvetenskap? Tillämpning av geometrisk summa är användbar när du vill beräkna slutsumman när har ett värde från början som förändras med ett regelbunden ökning/minskning med ett visst antal gånger. Det kan gälla pengar som regelbundet sätts in på ett bankkonto med en viss ränta eller medicin som ges till en patient. Vi är intresserade att veta hur mycket pengar som tillslut finns på bankkontot och hur stor dos av medicinen patienten har kvar i kroppen efter ett visst antal timmar. När det gäller ekonomi så används geometrisk summa vid beräkningar på annuitetslån. Ett annuitetslån innebär att varje inbetalning är lika stor. Det betyder att summan av amortering och ränta är konstant. I början när skulden är hög, är amorteringen lägre eftersom man har högre räntekostnader men efterhand som skulden minskar ökar amorteringarna eftersom räntekostnaderna minskar. När vi gör beräkningar med annuitetslån behöver vi känna till begrepp som nuvärde och slutvärde. Nuvärdet är det belopp vi skulle betala idag av en framtida betalning/kapital när vi tar hänsyn till gällande ränta och slutvärdet är det totala belopp som skall betalas för hela lånet. Ex Mia är tio år och hennes föräldrar har lovat att ge henne 5000 kr på hennes femtonårsdag. Om de sätter in pengarna på ett konto är sparräntan 3%. a) Hur mycket skulle pengarna vara värda i dag dvs beräkna nuvärdet. b) Beräkna slutvärdet om hon inte tar ut pengarna förrän på sin 18 årsdag. Lösning a) Nuvärdet är det belopp de behöver sätta in på banken idag för att det skall växa till 5000 kr inom fem år. Använd formeln y = C a W. C 1,03 G = 5000 forts

3 C = ,03 5 C 4313 kr är det belopp de behöver sätta in. b) Använd formeln y = C a W kr 1,03 Z = 5464 kr (räknat från nuvärdet) 5000 kr 1,03 O = 5464 kr (räknat från 15-årsdagen) Ex Alfred skall låna pengar till en bil. Han har råd att betala kr varje år (annuitetslån) och vill betala av lånet inom fem år. Räntesatsen är 5%. Hur mycket har han råd att låna? Lösning: Han kommer att behöva ta ett annuitetslån där inbetalningarna är lika stora varje år. Lånets storlek är det vi skall räkna ut så det kallar vi x. Värdet av lånet är den översta pilen (dvs slutvärdet) och beräknas x 1,05 G Värdet av alla inbetalningarna är de andra pilarna känner vi igen som en geometrisk summa , ,05 J = ,055 1 Eftersom inbetalningarnas värde skall vara lika stora som lånets värde efter fem år (slutvärdet) får vi ekvationen , x 1,05 G = x = , ,05 5 x kr Svar: Alfred kommer att ha råd att låna kr.

4 Ex Max skall låna pengar till en lägenhet. Han vill låna och skall betala tillbaka dem inom tio år med en inbetalning per år. Han vill betala lika mycket varje gång. Räntesatsen är 5%. Hur mycket skall han betala varje gång? Lösning: Han kommer att behöva ta ett annuitetslån där inbetalningarna är lika stora varje år. Inbetalningens storlek är det vi skall räkna ut så det kallar vi x. Värdet av lånet är den översta pilen (dvs slutvärdet) och beräknas ,05 NT Värdet av alla inbetalningarna är de andra pilarna känner vi igen som en geometrisk summa. x + x 1, x 1,05 ] = x 1, Eftersom inbetalningarnas värde skall vara lika stort som lånets värde efter fem år (slutvärdet) får vi ekvationen W N,TG^_ (N N,TG(N = ,05 10 x = ,0510 1, x kr Svar: Max skall betala kr varje år.

5 Ex 5 Lindas hund Fido skall genomgå en penicellinkur. Han skall få en tablett 20 mg varje morogn och varje kväll i 7 dagar. Man uppskattar att 35% av penicillin bryts ner mellan varje intag. Hur stor mängd penicillin finns i blodet efter sista tabletten? Ex 6 Gustaf är skyldig Karin kr som skall betalas tillbaka om tre år. Vad bör Gustaf betala idag om han vill göra sig skuldfri? Räkna med en ränta på 5 %. Ex 7 Om fem år skall Adrian få ett engångsbelopp på kr i pension. Räntan är 7%. a) Vad är pengarna värda idag? (nuvärdet) b) Vad är pengarna värd om tio år? (slutvärdet) Ex 8 Randi har lånat pengar och har avtalat om att betala 1000 kr per år under kommande fem år med den första inbetalningen om ett år. Räntesatsen kan antas vara 4%. a) Vad är värdet/summan av inbetalningarna om fem år? b) Vad är värdet av betalningarna idag? Ex 9 Karim vill låna pengar till en bil. Han kan betala kr varje år och vill betala av hela lånet på tio år med den första betalningen efter ett år. Årsräntesatsen är 6%. Hur mycket har Karim råd att låna om han betalar ränta och amortering engågn per år? Ex 10 Alina vill låna kr med en inbetalning per år tjugo år framöver. Hon vill att varje inbetalning skall vara lika stor. Hur mycket skall hon betala per år om första inbetlaningen görs efter ett år och räntesatsen är 5%.

6 Hur ritar vi system av linjära olikheter och områden i ett koordinatsystem? Vi kan rita in en rät linje i ett koordinatsystem. Ett annat ord för koordinatsystem är xy-planet. Linjen delar in koordinatsystemet i två delar som kallas halvplan. Ett halvplan beskriver man med hjälp av en olikhet. Beroende på vilket håll olikhetstecket skrivs avgör på vilken sida av linjen som menas. Ritar vi in flera olikheter i ett koordinatsystem kommer vi med hjälp av dessa kunna avgränsa ett område. Detta område blir viktigt i linjär optimering. Det är där vi hittar största och minsta värdet. Ex a) Markera olikheten y x 2 b) och c) Beskriv med en olikhet det gröna området. c) c) Lösning a) Det gröna området motsvarar olikheten y x 2 b) c) y < 2 y > 2 3x y 2x y x Ex 11 Markera i ett koordinatsystem det område som uppfyller följande system av olikheter. a) y 3x + 5 x 0 y 0 b)* 2x y 0 x + y 3 x 2 y 1

7 Ex 12 Det markerade området i figuren kan beskrivas med hjälp av ett system av olikheter. *Bestäm systemet av olikheter. Vad menas med linjär optimering och hur vi genomför en linjär optimering? Att optimera innebär att finna den bästa, "optimala", lösningen på ett problem utifrån de förutsättningar som ges. Vi har en funktion som vi vill hitta ett maximum eller ett minimum till. Den funktionen kallas målfunktionen. Till funktionen hör olika villkor och begränsningar som vi måste ta med i beräkningarna. Vi söker alltså den optimala kombinationen av x och y för att få det största eller minsta värdet för målfunktionen. Detta hittas alltid i någon av områdets hörnpunkter. Metoden kallas linjär opitmering och kan beskrivas genom några få punkter: 1) Ställ upp målfunktionen. Var tydlig med vad som är x och vad som är y. 2) Ställ upp olikheterna i ett system 3) Skriv dessa på formen y = kx + m och rita in dem i ett koordinatsystem. Nu får du området grafiskt 4) Bestäm koordinaterna för områdets hörnpunkter, dvs där de olika linjerna skär varandra. Detta gör du genom att lösa ekvationssystem 5) Sätt in dessa koordinater i målfunktionen och beräkna uttryckets värde. Avgör vilket av dem som blir det största/minsta värdet. Ex Bestäm största och minsta värdet av funktionen m = 120x + 180y kan anta utifrån de begränsningar och villkor som ges i koordinatssytemet. Lösning m(0, 0) = = 0 (minsta värdet) m 0, 500 = = m 700, 0 = = m 400, 400 = = (största värdet)

8 Ex Ett leksaksföretag tillverkar två modeller av leksaksbilar. En liten sportbil och en lastbil. I tabellen ser vi hur tillverkningstid, monteringstid och vinst fördelar sig beroende på sort av bil. Företaget kan lägga 4800 min/vecka för tillverkning och 6000 minuter vecka för montering. Bestäm den maximala vinst de kan få. Sportbil x Vinst (kr/bil) 3 2 Tillverkningstid (tid/bil) 1 1 Monteringstid (tid/ bil) 2 1 Lastbil y Lösning 1. Bestäm målfunktionen: m = 3x + 2y och ange x och y. 2. Bestäm systemet av olikheter x + y x + y 6000 x 0 y 0 3. Skriv olikheterna på formen y = kx + m Rita in olikheterna i ett koordinatssystem y x y 2x x 0 y 0 4. Bestäm koordinaterna för områdets hörnpunkter. y = 0 x = 0 y = x x = 0 ger med insättning y = 4800 eller använd m-värdet direkt y = x (1) y = 2x (2) x = 2x x + 2x = x = 1200 insatt i (1) ger y = = 3600 y = 2x y = 0 ger med direkt instättning x = Sätt in punkterna i målfunktionen för att beräkna största vinst. m 0, 0 = = 0 (minsta värdet) m 0, 4800 = = 9600 m 1200, 3600, m = = (största värdet) m 3000, 0 = = 9000 Svar: För att opitmera sin vinst till kr bör företaget tillverka 3600 sportbilar/vecka och 1200 lastbilar/vecka.

9 Ex 13 Den totala vinsten z kr som företaget tjänar på att tillverka två olika sorters kepsar A och B kan beskrivas med målfunktionen z = 20x + 30y. Om x är antalet sålda kepsar A och y är antalet sålda kepsar B. Hur stor är företagets totala vinst om man säljer 40 st kepsar av modell A och 80 st av modell B? Ex 14 Sofie har ett enmansföretag som köper in färdiga trädetaljer i furu. Hon tillverkar enbart två produkter pallar och byråer. Hennes arbetsuppgifter består av att montera och lacka dessa. Hon kan inte göra dessa saker samtidigt. Följande data gäller för hennes produktion. Arbetstimmar (h) Arbetstimmar (h) Tillgängliga arbetstimmar per vecka (h) Pall (x) Byrå (y) Montering 0,25 0,50 15 Lackning 0,40 1,00 25 Vinst per produkt 150 kr 320 kr Antag att Sofie tillverkar x pallar och y byråer under en vecka. a) Sofie får en order på 40 pallar och 10 byråer. Hinner hon tillverka dessa på en vecka? b) Bestäm den maximala vinst Sofie kan göra på en vecka.

Uppgift Endast svar krävs. Uppgift Fullständiga lösningar krävs. 120 minuter för Del B och Del C tillsammans.

Uppgift Endast svar krävs. Uppgift Fullständiga lösningar krävs. 120 minuter för Del B och Del C tillsammans. NpMab ht 01 Del B Del C Provtid Hjälpmedel Uppgift 1-10. Endast svar krävs. Uppgift 11-16. Fullständiga lösningar krävs. 10 minuter för Del B och Del C tillsammans. Formelblad och linjal. Kravgränser Provet

Läs mer

52 = 1041. 1040 1.00096 Vi kan nu teckna hur mycket pengar han har, just när han har satt in sina 280 kr den tredje måndagen + 280 1040

52 = 1041. 1040 1.00096 Vi kan nu teckna hur mycket pengar han har, just när han har satt in sina 280 kr den tredje måndagen + 280 1040 Tillämpningar på främst geometriska, men även aritmetiska summor och talföljder. Att röka är ett fördärv. Förutom att man kan förlora hälsan går en mängd pengar upp i rök. Vi träffar Cigge, som röker 20

Läs mer

kvoten mellan två på varandra följande tal i en talföljd är konstant alltid lika stor.

kvoten mellan två på varandra följande tal i en talföljd är konstant alltid lika stor. Turen har kommit till geometriska talföljder och summan av en geometrisk talföljd. Talföljden 1,, 4, 8, 16, 3,... är ett exempel på en geometrisk talföljd. Utmärkande för en geometrisk talföljd är att

Läs mer

KOKBOKEN. Håkan Strömberg KTH STH

KOKBOKEN. Håkan Strömberg KTH STH KOKBOKEN Håkan Strömberg KTH STH Hösten 2007 Håkan Strömberg 2 KTH Syd Innehåll Genomsnittlig förändringshastighet...................... 5 Uppgift 1................................. 5 Uppgift 2.................................

Läs mer

3, 6, 9, 12, 15, 18. 1, 2, 4, 8, 16, 32 Nu är stunden inne, då vill vill summera talen i en talföljd

3, 6, 9, 12, 15, 18. 1, 2, 4, 8, 16, 32 Nu är stunden inne, då vill vill summera talen i en talföljd I föreläsning 18 bekantade vi oss med talföljder, till exempel eller 3, 6, 9, 1, 15, 18 1,, 4, 8, 16, 3 Nu är stunden inne, då vill vill summera talen i en talföljd och 3 + 6 + 9 + 1 + 15 + 18 1 + + 4

Läs mer

Planering för kurs C i Matematik

Planering för kurs C i Matematik Planering för kurs C i Matematik Läromedel: Holmström/Smedhamre, Matematik från A till E, kurs C Antal timmar: 85 (70 + 15) I nedanstående planeringsförslag tänker vi oss att C-kursen studeras på 85 klocktimmar.

Läs mer

Matematik C (MA1203)

Matematik C (MA1203) Matematik C (MA103) 100 p Betygskriterier med eempeluppgifter Värmdö Gymnasium Mål och betygskriterier Ma C (MA103) Matematik 03-08- Betygskriterier enligt Skolverket Kriterier för betyget Godkänd Eleven

Läs mer

ATT KUNNA TILL. MA1203 Matte C Vuxenutbildningen Dennis Jonsson

ATT KUNNA TILL. MA1203 Matte C Vuxenutbildningen Dennis Jonsson ATT KUNNA TILL MA1203 Matte C 2011-06-14 Vuxenutbildningen Dennis Jonsson Sida 2 av 5 Att kunna till prov C1 Kunna kvadreringsreglerna! (...utan att titta i formelsamlingen) Kunna konjugatregeln! (...utan

Läs mer

Del I: Digitala verktyg är inte tillåtna. Endast svar krävs. Skriv dina svar direkt i provhäftet.

Del I: Digitala verktyg är inte tillåtna. Endast svar krävs. Skriv dina svar direkt i provhäftet. Del I: Digitala verktyg är inte tillåtna. Endast svar krävs. Skriv dina svar direkt i provhäftet. 1) a) Bestäm ekvationen för den räta linjen i figuren. (1/0/0) b) Rita i koordinatsystemet en rät linje

Läs mer

GeoGebra i matematikundervisningen - Inspirationsdagar för gymnasielärare. Karlstads universitet 19-20 april

GeoGebra i matematikundervisningen - Inspirationsdagar för gymnasielärare. Karlstads universitet 19-20 april GeoGebra i matematikundervisningen - Inspirationsdagar för gymnasielärare Karlstads universitet 19-0 april Exempel på elevaktiviteter framtagna i skolutvecklingsprojektet IKT och lärande i matematik 1

Läs mer

Kompletterande lösningsförslag och ledningar, Matematik 3000 kurs B, kapitel 2

Kompletterande lösningsförslag och ledningar, Matematik 3000 kurs B, kapitel 2 Kapitel.1 101, 10 Exempel som löses i boken. 103 Testa genom att lägga linjalen lodrätt och föra den över grafen. Om den på något ställe skär grafen i mer än en punkt så visar grafen inte en funktion.

Läs mer

Uppföljning av diagnostiskt prov Repetition av kursmoment i TNA001-Matematisk grundkurs.

Uppföljning av diagnostiskt prov Repetition av kursmoment i TNA001-Matematisk grundkurs. Uppföljning av diagnostiskt prov 06-0- Repetition av kursmoment i TNA00-Matematisk grundkurs. Reella tal, intervall, räta linjer, cirklar Faktorsatsen, faktoriseringar, polynomekvationer Olikheter Ekvationer

Läs mer

MATEMATIK KURS A Våren 2005

MATEMATIK KURS A Våren 2005 MATEMATIK KURS A Våren 2005 1. Vilket tal pekar pilen på? 51 52 53 Svar: (1/0) 2. Skugga 8 3 av figuren. (1/0) 3. Vad är 20 % av 50 kr? Svar: kr (1/0) 4. Hur mycket vatten ryms ungefär i ett dricksglas?

Läs mer

Fler uppgifter på andragradsfunktioner

Fler uppgifter på andragradsfunktioner Fler uppgifter på andragradsfunktioner 1 I grafen nedan visas tre andragradsfunktioner. Bestäm a,b och c för p(x) = ax 2 + bx + c genom att läsa av lämpliga punkter i grafen. 10 5 1 3 5 Figur 1: 2 Vi har

Läs mer

Redovisning och Kalkylering

Redovisning och Kalkylering Redovisning och Kalkylering Föreläsning 20 Investeringsbedömning 1 Kapitel 10 ES Jonas Råsbrant jonas.rasbrant@fek.uu.se Vad är en investering? Kapitalanvändning som får betalningskonsekvenser på lång

Läs mer

Mål Likformighet, Funktioner och Algebra år 9

Mål Likformighet, Funktioner och Algebra år 9 Mål Likformighet, Funktioner och Algebra år 9 Provet omfattar s. 102-135 (kap 4) och s.183-186, 189, 191, 193, 200-215. Repetition: Repetitionsuppgifter 4, läa 13-16 (s. 255 260) samt andra övningsuppgifter

Läs mer

DISKONTERING AV KASSAFLÖDEN DISPOSITION

DISKONTERING AV KASSAFLÖDEN DISPOSITION DISKONTERING AV KASSAFLÖDEN Fredrik Wahlström U.S.B.E. - Handelshögskolan vid Umeå universitet Avdelningen för redovisning och finansiering 901 87 Umeå Fredrik.Wahlstrom@fek.umu.se 090-786 53 84 DISPOSITION

Läs mer

TANA17 Matematiska beräkningar med Matlab

TANA17 Matematiska beräkningar med Matlab TANA17 Matematiska beräkningar med Matlab Laboration 1. Linjär Algebra och Avbildningar Namn: Personnummer: Epost: Namn: Personnummer: Epost: Godkänd den: Sign: Retur: 1 Introduktion I denna övning skall

Läs mer

Matematik 5000, kurs 3b Grön lärobok. Läraranvisning Textview Verksnummer: 40029

Matematik 5000, kurs 3b Grön lärobok. Läraranvisning Textview Verksnummer: 40029 Matematik 5000, kurs 3b Grön lärobok Läraranvisning Textview Verksnummer: 40029 Läraranvisningens innehåll Läraranvisningen är till för att du som undervisande lärare ska få information om hur den pedagogiskt

Läs mer

Np MaB vt Låt k = 0 och rita upp de båda linjerna. Bestäm skärningspunkten mellan linjerna.

Np MaB vt Låt k = 0 och rita upp de båda linjerna. Bestäm skärningspunkten mellan linjerna. Vid bedömning av ditt arbete med uppgift nummer 17 kommer läraren att ta hänsyn till: Hur väl du beräknar och jämför trianglarnas areor Hur väl du motiverar dina slutsatser Hur väl du beskriver hur arean

Läs mer

Träningsprov funktioner

Träningsprov funktioner Träningsprov funktioner 1. Använd koordinatsystemet nedan a) Vilka koordinater är markerade? b) Markera följande koordinater E: 0,6, F: 3, 2, G: 1, 2 och H: ( 3,2). 2. Skriv en berättelse som överensstämmer

Läs mer

MÖNSTER OCH TALFÖLJDER

MÖNSTER OCH TALFÖLJDER MÖNSTER OCH TALFÖLJDER FÖRELÄSNINGENS INNEHÅLL OCH SYFTE Genomgång av viktiga matematiska begrepp, uttryck och symboler med anknytning till mönster och talföljder. Skälet till att välja detta innehåll

Läs mer

Matematik i Gy11. 110912 Susanne Gennow

Matematik i Gy11. 110912 Susanne Gennow Matematik i Gy11 110912 Susanne Gennow Var finns matematik? Bakgrund Nationella utredning 2003 PISA 2009 TIMSS Advanced 2008 Skolinspektionens rapporter Samband och förändring åk 1 3 Olika proportionella

Läs mer

Repetitionsuppgifter 1

Repetitionsuppgifter 1 Repetitionsuppgifter 1 1 Är talet a) 5 ett heltal b) 9 ett naturligt tal c) π ett rationellt tal d) 5 ett reellt tal 6 2 Rita av figuren och placera in talen rätt talmängd. naturliga tal hela tal rationella

Läs mer

varandra. Vi börjar med att behandla en linjes ekvation med hjälp av figur 7 och dess bildtext.

varandra. Vi börjar med att behandla en linjes ekvation med hjälp av figur 7 och dess bildtext. PASS 8 EKVATIONSSYSTEM OCH EN LINJES EKVATION 8 En linjes ekvation En linjes ekvation kan framställas i koordinatsystemet Koordinatsystemet består av x-axeln och yaxeln X-axeln är vågrät och y-axeln lodrät

Läs mer

Lathund, samband & stora tal, åk 8

Lathund, samband & stora tal, åk 8 Lathund, samband & stora tal, åk 8 Den vågräta tallinjen kallas x-axeln och den lodräta tallinjen kallas y-axeln. Punkten där tallinjerna skär varandra kallas origo (0,0). När man beskriver en punkt i

Läs mer

Algebra & Ekvationer. Svar: Sammanfattning Matematik 2

Algebra & Ekvationer. Svar: Sammanfattning Matematik 2 Algebra & Ekvationer Algebra & Ekvationer Parenteser En parentes När man multiplicerar en term med en parentes måste man multiplicera båda talen i parentesen. Förenkla uttrycket 42 9. 42 9 4 2 4 9 8 36

Läs mer

Tema Linjär optimering

Tema Linjär optimering Tema Linjär optimering Du behöver för detta tema ha goda färdigheter om Linjära ekvationer från modul Algebra (sid.37), Linjära ekvationssystem från modul Analytisk geometri (sid.13) Modell Linjära olikheter

Läs mer

En uppgift eller text markerad med * betyder att uppgiften kan uppfattas som lite svårare. ** ännu svårare.

En uppgift eller text markerad med * betyder att uppgiften kan uppfattas som lite svårare. ** ännu svårare. Matematik b, repetition Kan du det här? Primitiva funktioner och integraler o o o Vad menas med primitiv funktion? Kan du hitta en primitiv funktion? Vad menas med en integral? Kan du beräkna en integral?

Läs mer

MATEMATISK INTRODUKTION. Innehåll

MATEMATISK INTRODUKTION. Innehåll MATEMATISK INTRODUKTION Innehåll - Räkneregler för bråk - Räkneregler för potenser - Procenträkning - Ekvationer o Ekvationer och tillvätförlopp - Nuvärdesberäkningar - Funktioner o Linjära funktioner

Läs mer

NATIONELLT KURSPROV I MATEMATIK KURS C HÖSTEN 2009

NATIONELLT KURSPROV I MATEMATIK KURS C HÖSTEN 2009 Anvisningar Provtid Hjälpmedel Provmaterialet Provet Poäng och betygsgränser NATIONELLT KURSPROV I MATEMATIK KURS C HÖSTEN 2009 240 minuter för Del I och Del II tillsammans. Vi rekommenderar att du använder

Läs mer

Dagens tema är exponentialfunktioner. Egentligen inga nyheter, snarare repetition. Vi vet att alla exponentialfunktioner.

Dagens tema är exponentialfunktioner. Egentligen inga nyheter, snarare repetition. Vi vet att alla exponentialfunktioner. Dagens tema är exponentialfunktioner. Egentligen inga nyheter, snarare repetition. Vi vet att alla exponentialfunktioner f(x) = C a x kan, om man så vill, skrivas om, med basen e, till Vi vet också att

Läs mer

Optimala vinkeln av bortklippt cirkelsektor fo r maximal volym pa glasstrut

Optimala vinkeln av bortklippt cirkelsektor fo r maximal volym pa glasstrut Optimala vinkeln av bortklippt cirkelsektor fo r maximal volym pa glasstrut Frågeställning Av en cirkulär pappersskiva kan en cirkelsektor med en viss vinkel klippas bort. Med den resterande sektorn går

Läs mer

Övningsuppgifter för sf1627, matematik för ekonomer. 1. Förenkla följande uttryck så långt det går: 6. 7. 8. 9. 10. 2. Derivator 1. 2. 3. 4. 5. 6.

Övningsuppgifter för sf1627, matematik för ekonomer. 1. Förenkla följande uttryck så långt det går: 6. 7. 8. 9. 10. 2. Derivator 1. 2. 3. 4. 5. 6. KTH matematik Övningsuppgifter för sf1627, matematik för ekonomer Harald Lang 1. Förenkla följande uttryck så långt det går: 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. Svar: 1. 2. 5 3. 1 4. 5 5. 1 6. 6 7. 1 8. 0 9.

Läs mer

KOD = Frågor till kursen Ekonomiska beslutsstöd inom delmomentet Kalkyl och marknad från Peter Lohmander (Totalt 60 p) Version 130117

KOD = Frågor till kursen Ekonomiska beslutsstöd inom delmomentet Kalkyl och marknad från Peter Lohmander (Totalt 60 p) Version 130117 KOD = Frågor till kursen Ekonomiska beslutsstöd inom delmomentet Kalkyl och marknad från Peter Lohmander (Totalt 60 p) Version 130117 UPPGIFT RÄTTNINGS- KOLUMN (som endast rättande lärare får använda.)

Läs mer

TATM79: Föreläsning 2 Absolutbelopp, summor och binomialkoefficienter

TATM79: Föreläsning 2 Absolutbelopp, summor och binomialkoefficienter TATM79: Föreläsning Absolutbelopp, summor och binomialkoefficienter Johan Thim 15 augusti 015 1 Absolutbelopp Absolutbelopp Definition. För varje reellt x definieras absolutbeloppet x enligt { x, x 0 x

Läs mer

Gamla tentemensuppgifter

Gamla tentemensuppgifter Inte heller idag någon ny teori! Gamla tentemensuppgifter 1 Bestäm det andragradspolynom vars kurva skär x-axeln i x = 3 och x = 1 och y-axeln i y = 3 f(x) = (x 3)(x + 1) = x x 3 är en bra start, men vi

Läs mer

y = x x = Bestäm ekvationen för en linje där k = 2 och som går genom punkten ( 1, 3). 2/0/0

y = x x = Bestäm ekvationen för en linje där k = 2 och som går genom punkten ( 1, 3). 2/0/0 Del A: Digitala verktyg är tillåtna. Skriv dina lösningar på separat papper. 1) En TV reparatörs arbete kostar kronor, där antalet arbetstimmar. y = 200 + 150x x = a) Ange och tolka den linjära funktionens

Läs mer

1. FLACK RÄNTA Med flack ränta ska vi här mena att räntan är densamma oavsett bindningstid

1. FLACK RÄNTA Med flack ränta ska vi här mena att räntan är densamma oavsett bindningstid STOCKHOLMS UNIVERSITET MATEMATISKA INSTITUTIONEN Avd. för Matematisk statistik Thomas Höglund Version 02 10 25. RÄNTA 1. FLACK RÄNTA Med flack ränta ska vi här mena att räntan är densamma oavsett bindningstid

Läs mer

Uppgift Endast svar krävs. Uppgift Fullständiga lösningar krävs. 120 minuter för Del B och Del C tillsammans.

Uppgift Endast svar krävs. Uppgift Fullständiga lösningar krävs. 120 minuter för Del B och Del C tillsammans. Del B Del C Provtid Hjälpmedel Uppgift 1-10. Endast svar krävs. Uppgift 11-16. Fullständiga lösningar krävs. 10 minuter för Del B och Del C tillsammans. Formelblad och linjal. Kravgränser Provet består

Läs mer

Uppgift 1-9. Endast svar krävs. Uppgift 10-14. Fullständiga lösningar krävs. 120 minuter för Delprov B och Delprov C tillsammans.

Uppgift 1-9. Endast svar krävs. Uppgift 10-14. Fullständiga lösningar krävs. 120 minuter för Delprov B och Delprov C tillsammans. Delprov B Delprov C Provtid Hjälpmedel Uppgift 1-9. Endast svar krävs. Uppgift 10-14. Fullständiga lösningar krävs. 10 minuter för Delprov B och Delprov C tillsammans. Formelblad och linjal. Kravgränser

Läs mer

PRELIMINÄRPROV Kort matematik

PRELIMINÄRPROV Kort matematik PRELIMINÄRPROV Kort matematik 80 Lösningar och poängförslag Lös ekvationerna x 0 x 4 x,0 a) 0x b) c) a) Multiplikation med 0; x 00x, p 0 99 b) Division med ; : 4 9 9 x ( = =,5 ) p 4 8 8 8-99 x = 0, x 0

Läs mer

G VG MVG Programspecifika mål och kriterier

G VG MVG Programspecifika mål och kriterier Betygskriterier Matematik C MA10 100p Respektive programmål gäller över kurskriterierna MA10 är en nationell kurs oc skolverkets kurs- oc betygskriterier finns på ttp://www.skolverket.se/ Detta är vår

Läs mer

Del A: Digitala verktyg är inte tillåtna. Endast svar krävs. Skriv dina svar direkt på provpappret.

Del A: Digitala verktyg är inte tillåtna. Endast svar krävs. Skriv dina svar direkt på provpappret. NAN: KLASS: Del A: Digitala verktyg är inte tillåtna. Endast svar krävs. Skriv dina svar direkt på provpappret. 1) a) estäm ekvationen för den räta linjen i figuren. b) ita i koordinatsystemet en rät linje

Läs mer

1, 2, 3, 4, 5, 6,...

1, 2, 3, 4, 5, 6,... Dagens nyhet handlar om talföljder, ändliga och oändliga. Talföljden 1,, 3, 4, 5, 6,... är det första vi, som barn, lär oss om matematik över huvud taget. Så småningom lär vi oss att denna talföljd inte

Läs mer

Sammanfattningar Matematikboken Y

Sammanfattningar Matematikboken Y Sammanfattningar Matematikboken Y KAPitel 1 TAL OCH RÄKNING Numeriska uttryck När man beräknar ett numeriskt uttryck utförs multiplikation och division före addition och subtraktion. Om uttrycket innehåller

Läs mer

Ränteberäkning vid reglering av monopolverksamhet

Ränteberäkning vid reglering av monopolverksamhet 1 Jan Bergstrand 2009 12 04 Ränteberäkning vid reglering av monopolverksamhet Bakgrund Energimarknadsinspektionen arbetar f.n. med en utredning om reglering av intäkterna för elnätsföretag som förvaltar

Läs mer

Del I Denna del består av 8 uppgifter och är avsedd att genomföras utan miniräknare.

Del I Denna del består av 8 uppgifter och är avsedd att genomföras utan miniräknare. Del I Denna del består av 8 uppgifter och är avsedd att genomföras utan miniräknare. Dina lösningar på denna del görs på separat papper som ska lämnas in innan du får tillgång till din miniräknare. Observera

Läs mer

Arbetsblad 3:1. Tolka uttryck. 1 Kajsa är a år gammal. Para ihop varje påstående med rätt uttryck.

Arbetsblad 3:1. Tolka uttryck. 1 Kajsa är a år gammal. Para ihop varje påstående med rätt uttryck. Arbetsblad :1 sid 78, 92 Tolka uttryck 1 Kajsa är a år gammal. Para ihop varje påstående med rätt uttryck. a) Karin är tre gånger så gammal: b) Katta är år yngre: a + a c) Kristina är en tredjedel så gammal:

Läs mer

I4 övning. praktikfallsövning. I5 datorlabb. I8 övning. Investeringsbedömning: I1 F (OS) Grundmodeller och begrepp I2 F (OS)

I4 övning. praktikfallsövning. I5 datorlabb. I8 övning. Investeringsbedömning: I1 F (OS) Grundmodeller och begrepp I2 F (OS) Investeringsbedömning: I1 F (OS) I2 F (OS) I3 F (OS) Grundmodeller och begrepp Prisförändringar och inflation Skatt I4 övning I5 datorlabb praktikfallsövning I6 F (OS) I7 F (OS) Uppföljning och tolkning

Läs mer

Provet består av Del I, Del II, Del III samt en muntlig del och ger totalt 76 poäng varav 28 E-, 24 C- och 24 A-poäng.

Provet består av Del I, Del II, Del III samt en muntlig del och ger totalt 76 poäng varav 28 E-, 24 C- och 24 A-poäng. NpMac vt 01 Del I Del II Provtid Hjälpmedel Uppgift 1-10. Endast svar krävs. Uppgift 11-15. Fullständiga lösningar krävs. 10 minuter för del I och del II tillsammans. Formelblad och linjal. Kravgränser

Läs mer

Kan du det här? o o. o o o o. Derivera potensfunktioner, exponentialfunktioner och summor av funktioner. Använda dig av derivatan i problemlösning.

Kan du det här? o o. o o o o. Derivera potensfunktioner, exponentialfunktioner och summor av funktioner. Använda dig av derivatan i problemlösning. Kan du det här? o o o o o o Vad innebär det att x går mot noll? Vad händer då x går mot oändligheten? Vad betyder sekant, tangent och ändringskvot och vad har dessa begrepp med derivatan att göra? Derivera

Läs mer

Högskoleprovet. Block 5. Anvisningar. Övningsexempel. Delprovet innehåller 22 uppgifter.

Högskoleprovet. Block 5. Anvisningar. Övningsexempel. Delprovet innehåller 22 uppgifter. Block 5 2008-04-05 Högskoleprovet Svarshäfte nr. DELPROV 9 NOGf Delprovet innehåller 22 uppgifter. Anvisningar Varje uppgift innehåller en fråga markerad med fet stil. Uppgiften kan även innehålla viss

Läs mer

IEK102 Industriell ekonomi M IEK 415 Industriell ekonomi E

IEK102 Industriell ekonomi M IEK 415 Industriell ekonomi E IEK102 Industriell ekonomi M IEK 415 Industriell ekonomi E Fredagen den 23e augusti em (tre timmar) 2013 Tillåtna hjälpmedel Typgodkänd räknare, linjal, räntetabeller (sist i tentamenstesen) Presentation

Läs mer

TAOP88/TEN 1 OPTIMERING FÖR INGENJÖRER

TAOP88/TEN 1 OPTIMERING FÖR INGENJÖRER Matematiska institutionen Optimeringslära TENTAMEN TAOP/TEN OPTIMERING FÖR INGENJÖRER Datum: juni 0 Tid:.00-.00 Hjälpmedel: Miniräknare Kurslitteratur: Kaj Holmberg: Optimering Anteckningar i boken får

Läs mer

Planering Funktioner och algebra år 9

Planering Funktioner och algebra år 9 Planering Funktioner och algebra år 9 Innehåll Övergripande planering... 2 Begrepp... 3 Metoder... 4 Bedömning... 4 Kommer du ihåg dessa begrepp från årskurs 8?... 5 Facit till Diagnos... 6 Arbetsblad...

Läs mer

Repetitionsuppgifter på Höstens Matematik NV12, 2012, Origo Ma1c, kap. 1-3, 5-6

Repetitionsuppgifter på Höstens Matematik NV12, 2012, Origo Ma1c, kap. 1-3, 5-6 Repetitionsuppgifter på Höstens Matematik NV12, 2012, Origo Ma1c, kap. 1-3, 5-6 Kap.1 Tal E1. På tallinjen nedan är två tal A och B markerade med ett kryss. Ange talen. Endast svar fordras. a) b) (Nationellt

Läs mer

Matematik. Kursprov, vårterminen 2012. Elevhäfte. Del I och Del II. Elevens namn och klass/grupp

Matematik. Kursprov, vårterminen 2012. Elevhäfte. Del I och Del II. Elevens namn och klass/grupp Kursprov, vårterminen 2012 Matematik Elevhäfte Del I och Del II 1a Elevens namn och klass/grupp Prov som återanvänds omfattas av sekretess enligt 17 kap. 4 offentlighets- och sekretesslagen. Detta prov

Läs mer

Funktioner. Räta linjen

Funktioner. Räta linjen Sidor i boken 14-143, 145-147 Funktioner. Räta linjen Här följer en dialog mellan studenten Tor-Björn (hädanefter kallad TB) och hans lärare i matematik Karl-Ture Hansson (nedan kallad KTH). När vi möter

Läs mer

a) Ange ekvationen för den räta linjen L. (1/0/0)

a) Ange ekvationen för den räta linjen L. (1/0/0) Delprov B: Digitala verktyg är inte tillåtna. Endast svar krävs. Skriv dina svar direkt i provhäftet. 1. Ange det uttryck som ska stå i parentesen för att likheten ska gälla. ( ) ( x 5) = x 5 (1/0/0).

Läs mer

TATM79: Föreläsning 2 Absolutbelopp, summor och binomialkoefficienter

TATM79: Föreläsning 2 Absolutbelopp, summor och binomialkoefficienter TATM79: Föreläsning 2 Absolutbelopp, summor och binomialkoefficienter Johan Thim 2 augusti 2016 1 Absolutbelopp Absolutbelopp Definition. För varje reellt x definieras absolutbeloppet x enligt { x, x 0

Läs mer

Lokala mål i matematik

Lokala mål i matematik Lokala mål i matematik År 6 År 7 År 8 År 9 Taluppfattning (aritmetik) förstår positionssystemets uppbyggnad med decimaler ex: kan skriva givna tal adderar decimaltal ex: 15,6 + 3,87 subtraherar decimaltal

Läs mer

PROBLEMLÖSNINGSUPPGIFTER

PROBLEMLÖSNINGSUPPGIFTER PROBLEMLÖSNINGSUPPGIFTER ADDERA RÄTT 1. Bestäm vilka siffror bokstäverna A, B, C, och D bör bytas ut mot i additionen nedan för att additionen ska vara riktig. A 6 3 7 B 2 + 5 8 C D 0 4 2 2. Gör ett eget

Läs mer

Provmoment: Ladokkod: Tentamen ges för:

Provmoment: Ladokkod: Tentamen ges för: Finansiell ekonomi Provmoment: Ladokkod: Tentamen ges för: 21FE1B Nationalekonomi 1-30 hp, ordinarie tentamen 7,5 högskolepoäng Tentamensdatum: 18/3 16 Tid: 09:00 13:00 Hjälpmedel: Miniräknare, rutat papper,

Läs mer

Matematik. Kursprov, vårterminen 2012. Elevhäfte. Del I och Del II. Elevens namn och klass/grupp

Matematik. Kursprov, vårterminen 2012. Elevhäfte. Del I och Del II. Elevens namn och klass/grupp Kursprov, vårterminen 2012 Matematik Elevhäfte Del I och Del II 1b Elevens namn och klass/grupp Prov som återanvänds omfattas av sekretess enligt 17 kap. 4 offentlighets- och sekretesslagen. Detta prov

Läs mer

SF1626 Flervariabelanalys Lösningsförslag till tentamen DEL A

SF1626 Flervariabelanalys Lösningsförslag till tentamen DEL A SF626 Flervariabelanalys Lösningsförslag till tentamen 23-5-27 DEL A. Bestäm alla punkter på ytan z = x 2 + 4y 2 i vilka tangentplanet är parallellt med planet x + y + z =. 4 p) Lösning. Tangentplanet

Läs mer

PRÖVNINGSANVISNINGAR

PRÖVNINGSANVISNINGAR PRÖVNINGSANVISNINGAR Prövning i Matematik D Kurskod Ma 104 Gymnasiepoäng 100 Läromedel Prov Muntligt prov Inlämningsuppgift Kontakt med examinator Övrigt Valfri aktuell lärobok för kurs Matematik D t.ex.

Läs mer

AVSNITT 4. Spara och låna. Spara och låna Koll på cashen 1

AVSNITT 4. Spara och låna. Spara och låna Koll på cashen 1 AVSNITT 4 Spara och låna Koll på cashen 1 Ordlista Aktie en andel i ett aktiebolag. Äger du en aktie innebär det också att du är delägare i bolaget. Aktiens värde är det pris som någon är villig att betala

Läs mer

Kvalificeringstävling den 30 september 2008

Kvalificeringstävling den 30 september 2008 SKOLORNAS MATEMATIKTÄVLING Svenska Matematikersamfundet Kvalificeringstävling den 30 september 2008 Förslag till lösningar Problem 1 Tre rader med tal är skrivna på ett papper Varje rad innehåller tre

Läs mer

1. Vi har givet två impulssvar enligt nedan (pilen under sekvenserna indikerar den position där n=0) h 1 (n) = [ ]

1. Vi har givet två impulssvar enligt nedan (pilen under sekvenserna indikerar den position där n=0) h 1 (n) = [ ] TEKNISKA HÖGSKOLAN I LUND Institutionen för elektro- och informationsteknik Kurskod: ESS00 Tentamen i Digital Signalbehanding Datum: 0 5 Time period: 08.00 3.00 Bedömning: Sex uppgifter. Varje uppgift

Läs mer

HÖGSKOLAN I BORÅS. REDOVISNING OCH EKONOMI INOM OFFENTLIG VERKSAMHET 15 Högskolepoäng

HÖGSKOLAN I BORÅS. REDOVISNING OCH EKONOMI INOM OFFENTLIG VERKSAMHET 15 Högskolepoäng HÖGSKOLAN I BORÅS REDOVISNING OCH EKONOMI INOM OFFENTLIG VERKSAMHET 15 Högskolepoäng Provmoment: Tentamen Ladokkod: SRO011 Tentamen ges för: Administratör inom offentlig verksamhet Namn:.. Personnummer:..

Läs mer

Investeringskalkyl. Investeringar. Investeringar. Kap 20 Investeringskalkylering. Klassificering Materiella investeringar

Investeringskalkyl. Investeringar. Investeringar. Kap 20 Investeringskalkylering. Klassificering Materiella investeringar Investeringskalkyl Kap 20 Investeringskalkylering ME1002 IndustriellEkonomiGK 2011 Period 4 Thorolf Hedborg 1 Investeringar Klassificering Materiella investeringar Finansiella investeringar Immateriella

Läs mer

Vektorgeometri för gymnasister

Vektorgeometri för gymnasister Vektorgeometri för gymnasister Per-Anders Svensson http://homepage.lnu.se/staff/psvmsi/vektorgeometri/gymnasiet.html Fakulteten för teknik Linnéuniversitetet Räta linjens och planets ekvationer II Innehåll

Läs mer

Matematik. Kursprov, vårterminen 2012. Elevhäfte. Del I och Del II. Elevens namn och klass/grupp

Matematik. Kursprov, vårterminen 2012. Elevhäfte. Del I och Del II. Elevens namn och klass/grupp Kursprov, vårterminen 2012 Matematik Elevhäfte Del I och Del II 1c Elevens namn och klass/grupp Prov som återanvänds omfattas av sekretess enligt 17 kap. 4 offentlighets- och sekretesslagen. Detta prov

Läs mer

MA1201 Matematik A Mål som deltagarna skall ha uppnått efter avslutad kurs

MA1201 Matematik A Mål som deltagarna skall ha uppnått efter avslutad kurs MA1201 Matematik A Mål som deltagarna skall ha uppnått efter avslutad kurs Tolkning Deltagaren skall kunna formulera, analysera och lösa matematiska problem av betydelse för vardagsliv och vald studieinriktning

Läs mer

a), c), e) och g) är olikheter. Av dem har c) och g) sanningsvärdet 1.

a), c), e) och g) är olikheter. Av dem har c) och g) sanningsvärdet 1. PASS 9. OLIKHETER 9. Grundbegrepp om olikheter Vi får olikheter av ekvationer om vi byter ut likhetstecknet mot något av tecknen > (större än), (större än eller lika med), < (mindre än) eller (mindre än

Läs mer

NATIONELLT KURSPROV I MATEMATIK KURS C HÖSTEN 2009

NATIONELLT KURSPROV I MATEMATIK KURS C HÖSTEN 2009 Anvisningar Provtid Hjälpmedel Provmaterialet Provet Poäng och betygsgränser NATIONELLT KURSPROV I MATEMATIK KURS C HÖSTEN 009 40 minuter för Del I och Del II tillsammans. Vi rekommenderar att du använder

Läs mer

Lösa ekvationer på olika sätt

Lösa ekvationer på olika sätt Lösa ekvationer på olika sätt I denna aktivitet ska titta närmare på hur man kan lösa ekvationer på olika sätt. I kurserna lär du dig att lösa första- och andragradsekvationer exakt med algebraiska metoder.

Läs mer

Investeringsbedömning

Investeringsbedömning Investeringsbedömning KAPITEL 9 9.1 Investering De beslut som fattas med produktkalkyler som grund har oftast kortsiktiga effekter och rör problem med en given kapacitet. Beslut som avser kapacitetsförändringar

Läs mer

M0038M Differentialkalkyl, Lekt 15, H15

M0038M Differentialkalkyl, Lekt 15, H15 M0038M Differentialkalkyl, Lekt 15, H15 Staffan Lundberg Luleå Tekniska Universitet Staffan Lundberg M0038M H15 1/ 15 Repetition Lekt 14 Bestäm följande gränsvärden cos x tan x lim x 0 x x + ln ( e 2x

Läs mer

» Industriell ekonomi FÖ5 Investeringskalkylering. Linköping 2012-11-08 Magnus Moberg

» Industriell ekonomi FÖ5 Investeringskalkylering. Linköping 2012-11-08 Magnus Moberg » Industriell ekonomi FÖ5 Investeringskalkylering Linköping 2012-11-08 Magnus Moberg FÖ4 Investeringskalkylering» Välkommen, syfte och tidsplan» Repetition» Frågor? » Definition Vad är en investering?

Läs mer

Utvärdering av dina matematiska förmågor - Procent

Utvärdering av dina matematiska förmågor - Procent Utvärdering av dina matematiska förmågor - Procent Göra beräknar med promille och ppm 1. En person med 4,8 liter blod i kroppen har en alkoholhalt i blodet som är 0,25 promille. Hur många centiliter alkohol

Läs mer

Matematik D (MA1204)

Matematik D (MA1204) Matematik D (MA104) 100 p Betygskriterier med eempeluppgifter Värmdö Gymnasium Betygskriterier enligt Skolverket Kriterier för betyget Godkänd Eleven använder lämpliga matematiska begrepp, metoder och

Läs mer

» Industriell ekonomi FÖ7 Investeringskalkylering

» Industriell ekonomi FÖ7 Investeringskalkylering » Industriell ekonomi FÖ7 Investeringskalkylering Norrköping 2013-01-29 Magnus Moberg Magnus Moberg 1 FÖ7 Investeringskalkylering» Välkommen, syfte och tidsplan» Repetition» Frågor? Magnus Moberg 2 » Definition

Läs mer

Funktioner Exempel på uppgifter från nationella prov, Kurs A E

Funktioner Exempel på uppgifter från nationella prov, Kurs A E Funktioner Exempel på uppgifter från nationella prov, Kurs A E Uppgifter ur Nationella prov Kurs A Ur del II utan räknare: När en frysbox stängs av stiger temperaturen. Följande formel kan användas för

Läs mer

TAOP86/TEN 1 KOMBINATORISK OPTIMERING MED

TAOP86/TEN 1 KOMBINATORISK OPTIMERING MED Matematiska institutionen Optimeringslära TENTAMEN TAOP8/TEN 1 KOMBINATORISK OPTIMERING MED MILJÖTILLÄMPNINGAR Datum: 10 januari 201 Tid: 1.00-19.00 Hjälpmedel: Miniräknare Kurslitteratur: Kaj Holmberg:

Läs mer

Räta linjens ekvation & Ekvationssystem

Räta linjens ekvation & Ekvationssystem Räta linjens ekvation & Ekvationssstem Uppgift nr 1 Lös ekvationssstemet eakt = 3 + = 28 Uppgift nr 2 Lös ekvationssstemet eakt = 5-15 + = 3 Uppgift nr 8 Lös ekvationssstemet eakt 9-6 = -69 5 + 11 = -35

Läs mer

NpMa2b Muntlig del vt 2012

NpMa2b Muntlig del vt 2012 Till eleven - Information inför den muntliga provdelen Du kommer att få en uppgift som du ska lösa skriftligt och sedan ska du presentera din lösning muntligt. Om du behöver får du ta hjälp av dina klasskamrater

Läs mer

1 Förändingshastigheter och derivator

1 Förändingshastigheter och derivator Förändingsastigeter oc derivator. Dagens Teori Som en inledning till begreppet derivata, ska vi är diskutera genomsnittlig förändingsastiget. Utan att veta vad som änt mellan två givna tider t oc t 2 kan

Läs mer

MAA7 Derivatan. 2. Funktionens egenskaper. 2.1 Repetition av grundbegerepp

MAA7 Derivatan. 2. Funktionens egenskaper. 2.1 Repetition av grundbegerepp MAA7 Derivatan 2. Funktionens egenskaper 2.1 Repetition av grundbegerepp - Det finns vissa begrepp som återkommer i nästan alla kurser i matematik. Några av dessa är definitionsmängd, värdemängd, största

Läs mer

Matematik A Testa dina kunskaper!

Matematik A Testa dina kunskaper! Testa dina kunskaper! Försök i största möjliga mån att räkna utan hjälp av boken, skriv små noteringar i kanten om ni tycker att ni kan uppgifterna, att ni löste dem med hjälp av boken etc. Facit kommer

Läs mer

Godisförsäljning. 1. a) Vad blir den totala kostnaden om klassen köper in 10 kg godis? Gör beräkningen i rutan nedan.

Godisförsäljning. 1. a) Vad blir den totala kostnaden om klassen köper in 10 kg godis? Gör beräkningen i rutan nedan. Godisförsäljning För att samla in pengar till en klassresa har Klass 9b på Gotteskolan bestämt sig för att hyra ett bord och sälja godis på Torsbymarten. Det kostar 100 kr att hyra ett bord. De köper in

Läs mer

Vektorgeometri för gymnasister

Vektorgeometri för gymnasister Vektorgeometri för gymnasister Per-Anders Svensson http://homepage.lnu.se/staff/psvmsi/vektorgeometri/gymnasiet.html Fakulteten för teknik Linnéuniversitetet Räta linjens och planets ekvationer III Innehåll

Läs mer

HÖGSKOLAN I BORÅS. REDOVISNING FÖR ADMINISTRATÖRER 7,5 Högskolepoäng

HÖGSKOLAN I BORÅS. REDOVISNING FÖR ADMINISTRATÖRER 7,5 Högskolepoäng HÖGSKOLAN I BORÅS REDOVISNING FÖR ADMINISTRATÖRER 7,5 Högskolepoäng Provmoment: Tentamen Ladokkod: 21RV1A Tentamen ges för: ADM 12 Namn:.. Personnummer:.. Tentamensdatum: 2013-08-20 Tid: 09.00 13.00 Hjälpmedel:

Läs mer

Inlämningsuppgift kalkylproram

Inlämningsuppgift kalkylproram Inlämningsuppgift kalkylproram Excel 2012-11-26 Sida 1 / 6 Innehållsförteckning A1. Vilka är de fyra lägenheterna med billigast kvadratmeterpris?... 3 Vilka lägenheter har jag råd att bo i om månadskostnaden

Läs mer

Np MaB vt 2002 NATIONELLT KURSPROV I MATEMATIK KURS B VÅREN 2002

Np MaB vt 2002 NATIONELLT KURSPROV I MATEMATIK KURS B VÅREN 2002 Skolverket hänvisar generellt beträffande provmaterial till bestämmelsen om sekretess i 4 kap. 3 sekretesslagen. För detta material gäller sekretessen fram till utgången av juni 00. Anvisningar Provtid

Läs mer

MA1201 Matematik A Mål som deltagarna skall ha uppnått efter avslutad kurs

MA1201 Matematik A Mål som deltagarna skall ha uppnått efter avslutad kurs MA1201 Matematik A Mål som deltagarna skall ha uppnått efter avslutad kurs Tolkning Deltagaren skall kunna formulera, analysera och lösa matematiska problem av betydelse för vardagsliv och vald studieinriktning

Läs mer

Investeringskalkyl. Investeringar. Investeringar. Kap 20 Investeringskalkylering. Klassificering Materiella investeringar

Investeringskalkyl. Investeringar. Investeringar. Kap 20 Investeringskalkylering. Klassificering Materiella investeringar Investeringskalkyl Kap 20 Investeringskalkylering ME1003 IndustriellEkonomiGK 2011 Period 1 Thorolf Hedborg 1 Investeringar Klassificering Materiella investeringar Finansiella investeringar Immateriella

Läs mer

NATIONELLT PROV I MATEMATIK KURS C VÅREN 1996. Tidsbunden del. Anvisningar

NATIONELLT PROV I MATEMATIK KURS C VÅREN 1996. Tidsbunden del. Anvisningar NATIONELLT PROV I MATEMATIK KURS C VÅREN 1996 Tidsbunden del Anvisningar Provperiod 3 maj - 15 maj 1996. Provtid Hjälpmedel Provmaterialet 180 minuter utan rast. Miniräknare och formelsamling. Formelblad

Läs mer