Kan du det här? Geometrisk summa och linjär optimering

Storlek: px
Starta visningen från sidan:

Download "Kan du det här? Geometrisk summa och linjär optimering"

Transkript

1 Kan du det här? Geometrisk summa och linjär optimering o Vad menas med en geometrisk talföljd? o Vad menas med geometrisk summa? Kan du beräkna geometrisk summa? o Hur kan geometrisk talföljd tillämpas inom natur- och ekonomisamhällsvetenskap? Vad menas med nuvärde, slutvärde och annuitetslån? o Hur ritar vi system av linjära olikheter och områden i ett koordinatsystem? o Vad menas med linjär optimering? Kan du genomföra en linjär optimering? Centralt innehåll Användning av begreppet geometrisk summa samt linjär optimering i tillämpningar som är relevanta för karaktärsämnena. En uppgift eller text markerad med * betyder att uppgiften kan uppfattas som svårare. Vad menas med en geometrisk talföljd och geometrisk summa och hur du beräkna geometrisk summa? En talföljd är en följd av tal uppställda i en bestämd ordning och enligt en bestämd regel. Varje tal har ett bestämt ordningsnummer. Det kallas en geometrisk talföljd och om vi adderar alla talen som ingår i talföljden så kallas svaret en geometrisk summa. Formeln för att beräkna en geometrisk summa är: a + ak 1 + ak ak n(1 = a(kn 1) (k 1) och då är a det första talet och k kvoten Ex Vi har talföljden 4, 12, 36 a) Vilket är det femte talet? b) Beräkna talföljdens geometriska summa. Lösning: a) För att komma till nästa tal multiplicerar vi med 3, för kvoten mellan två tal är 3. fjärde talet är 36 3 = 108 och sedan femte talet är = 324 vi kan även använda oss av att a G = a k J dvs a G = 4 3 J = 324 Första talet + Andra talet + Tredje talet + Fjärde talet + Femte talet = Geometrisk summa = = 484 med hjälp av formeln blir så här: K(LM (N) (L(N) = J(OP (N) (O(N) = 484 Se sidan 202

2 Ex 1 Beräkna summan av de tio första talen i den geometrisk följden om k = 0,93 a = Ex 2 Vi har följande geometriska talföljd 6,18, 54, 162,, a) Hur många tal finns i talföljden? b) Beräkna den geometriska summan. Ex 3 Vi har följande geometriska talföljd: Tal 1: 52 Tal 2: 93,6 Tal 3:168,48 och Tal 4: 303,264 a) Vilket är det femte talet? b) Beräkna summan av de 14 första talen. JTTT(N,TO P (N) Ex 4 En viss geometrisk summa kan beräknas med (N,TO(N) a) Skriv ut termerna i den geometriska summan ovan. b) Formulera ett verkligt problem som kan formuleras med formeln ovan. Hur kan geometrisk talföljd tillämpas inom natur- och ekonomi- samhällsvetenskap? Tillämpning av geometrisk summa är användbar när du vill beräkna slutsumman när har ett värde från början som förändras med ett regelbunden ökning/minskning med ett visst antal gånger. Det kan gälla pengar som regelbundet sätts in på ett bankkonto med en viss ränta eller medicin som ges till en patient. Vi är intresserade att veta hur mycket pengar som tillslut finns på bankkontot och hur stor dos av medicinen patienten har kvar i kroppen efter ett visst antal timmar. När det gäller ekonomi så används geometrisk summa vid beräkningar på annuitetslån. Ett annuitetslån innebär att varje inbetalning är lika stor. Det betyder att summan av amortering och ränta är konstant. I början när skulden är hög, är amorteringen lägre eftersom man har högre räntekostnader men efterhand som skulden minskar ökar amorteringarna eftersom räntekostnaderna minskar. När vi gör beräkningar med annuitetslån behöver vi känna till begrepp som nuvärde och slutvärde. Nuvärdet är det belopp vi skulle betala idag av en framtida betalning/kapital när vi tar hänsyn till gällande ränta och slutvärdet är det totala belopp som skall betalas för hela lånet. Ex Mia är tio år och hennes föräldrar har lovat att ge henne 5000 kr på hennes femtonårsdag. Om de sätter in pengarna på ett konto är sparräntan 3%. a) Hur mycket skulle pengarna vara värda i dag dvs beräkna nuvärdet. b) Beräkna slutvärdet om hon inte tar ut pengarna förrän på sin 18 årsdag. Lösning a) Nuvärdet är det belopp de behöver sätta in på banken idag för att det skall växa till 5000 kr inom fem år. Använd formeln y = C a W. C 1,03 G = 5000 forts

3 C = ,03 5 C 4313 kr är det belopp de behöver sätta in. b) Använd formeln y = C a W kr 1,03 Z = 5464 kr (räknat från nuvärdet) 5000 kr 1,03 O = 5464 kr (räknat från 15-årsdagen) Ex Alfred skall låna pengar till en bil. Han har råd att betala kr varje år (annuitetslån) och vill betala av lånet inom fem år. Räntesatsen är 5%. Hur mycket har han råd att låna? Lösning: Han kommer att behöva ta ett annuitetslån där inbetalningarna är lika stora varje år. Lånets storlek är det vi skall räkna ut så det kallar vi x. Värdet av lånet är den översta pilen (dvs slutvärdet) och beräknas x 1,05 G Värdet av alla inbetalningarna är de andra pilarna känner vi igen som en geometrisk summa , ,05 J = ,055 1 Eftersom inbetalningarnas värde skall vara lika stora som lånets värde efter fem år (slutvärdet) får vi ekvationen , x 1,05 G = x = , ,05 5 x kr Svar: Alfred kommer att ha råd att låna kr.

4 Ex Max skall låna pengar till en lägenhet. Han vill låna och skall betala tillbaka dem inom tio år med en inbetalning per år. Han vill betala lika mycket varje gång. Räntesatsen är 5%. Hur mycket skall han betala varje gång? Lösning: Han kommer att behöva ta ett annuitetslån där inbetalningarna är lika stora varje år. Inbetalningens storlek är det vi skall räkna ut så det kallar vi x. Värdet av lånet är den översta pilen (dvs slutvärdet) och beräknas ,05 NT Värdet av alla inbetalningarna är de andra pilarna känner vi igen som en geometrisk summa. x + x 1, x 1,05 ] = x 1, Eftersom inbetalningarnas värde skall vara lika stort som lånets värde efter fem år (slutvärdet) får vi ekvationen W N,TG^_ (N N,TG(N = ,05 10 x = ,0510 1, x kr Svar: Max skall betala kr varje år.

5 Ex 5 Lindas hund Fido skall genomgå en penicellinkur. Han skall få en tablett 20 mg varje morogn och varje kväll i 7 dagar. Man uppskattar att 35% av penicillin bryts ner mellan varje intag. Hur stor mängd penicillin finns i blodet efter sista tabletten? Ex 6 Gustaf är skyldig Karin kr som skall betalas tillbaka om tre år. Vad bör Gustaf betala idag om han vill göra sig skuldfri? Räkna med en ränta på 5 %. Ex 7 Om fem år skall Adrian få ett engångsbelopp på kr i pension. Räntan är 7%. a) Vad är pengarna värda idag? (nuvärdet) b) Vad är pengarna värd om tio år? (slutvärdet) Ex 8 Randi har lånat pengar och har avtalat om att betala 1000 kr per år under kommande fem år med den första inbetalningen om ett år. Räntesatsen kan antas vara 4%. a) Vad är värdet/summan av inbetalningarna om fem år? b) Vad är värdet av betalningarna idag? Ex 9 Karim vill låna pengar till en bil. Han kan betala kr varje år och vill betala av hela lånet på tio år med den första betalningen efter ett år. Årsräntesatsen är 6%. Hur mycket har Karim råd att låna om han betalar ränta och amortering engågn per år? Ex 10 Alina vill låna kr med en inbetalning per år tjugo år framöver. Hon vill att varje inbetalning skall vara lika stor. Hur mycket skall hon betala per år om första inbetlaningen görs efter ett år och räntesatsen är 5%.

6 Hur ritar vi system av linjära olikheter och områden i ett koordinatsystem? Vi kan rita in en rät linje i ett koordinatsystem. Ett annat ord för koordinatsystem är xy-planet. Linjen delar in koordinatsystemet i två delar som kallas halvplan. Ett halvplan beskriver man med hjälp av en olikhet. Beroende på vilket håll olikhetstecket skrivs avgör på vilken sida av linjen som menas. Ritar vi in flera olikheter i ett koordinatsystem kommer vi med hjälp av dessa kunna avgränsa ett område. Detta område blir viktigt i linjär optimering. Det är där vi hittar största och minsta värdet. Ex a) Markera olikheten y x 2 b) och c) Beskriv med en olikhet det gröna området. c) c) Lösning a) Det gröna området motsvarar olikheten y x 2 b) c) y < 2 y > 2 3x y 2x y x Ex 11 Markera i ett koordinatsystem det område som uppfyller följande system av olikheter. a) y 3x + 5 x 0 y 0 b)* 2x y 0 x + y 3 x 2 y 1

7 Ex 12 Det markerade området i figuren kan beskrivas med hjälp av ett system av olikheter. *Bestäm systemet av olikheter. Vad menas med linjär optimering och hur vi genomför en linjär optimering? Att optimera innebär att finna den bästa, "optimala", lösningen på ett problem utifrån de förutsättningar som ges. Vi har en funktion som vi vill hitta ett maximum eller ett minimum till. Den funktionen kallas målfunktionen. Till funktionen hör olika villkor och begränsningar som vi måste ta med i beräkningarna. Vi söker alltså den optimala kombinationen av x och y för att få det största eller minsta värdet för målfunktionen. Detta hittas alltid i någon av områdets hörnpunkter. Metoden kallas linjär opitmering och kan beskrivas genom några få punkter: 1) Ställ upp målfunktionen. Var tydlig med vad som är x och vad som är y. 2) Ställ upp olikheterna i ett system 3) Skriv dessa på formen y = kx + m och rita in dem i ett koordinatsystem. Nu får du området grafiskt 4) Bestäm koordinaterna för områdets hörnpunkter, dvs där de olika linjerna skär varandra. Detta gör du genom att lösa ekvationssystem 5) Sätt in dessa koordinater i målfunktionen och beräkna uttryckets värde. Avgör vilket av dem som blir det största/minsta värdet. Ex Bestäm största och minsta värdet av funktionen m = 120x + 180y kan anta utifrån de begränsningar och villkor som ges i koordinatssytemet. Lösning m(0, 0) = = 0 (minsta värdet) m 0, 500 = = m 700, 0 = = m 400, 400 = = (största värdet)

8 Ex Ett leksaksföretag tillverkar två modeller av leksaksbilar. En liten sportbil och en lastbil. I tabellen ser vi hur tillverkningstid, monteringstid och vinst fördelar sig beroende på sort av bil. Företaget kan lägga 4800 min/vecka för tillverkning och 6000 minuter vecka för montering. Bestäm den maximala vinst de kan få. Sportbil x Vinst (kr/bil) 3 2 Tillverkningstid (tid/bil) 1 1 Monteringstid (tid/ bil) 2 1 Lastbil y Lösning 1. Bestäm målfunktionen: m = 3x + 2y och ange x och y. 2. Bestäm systemet av olikheter x + y x + y 6000 x 0 y 0 3. Skriv olikheterna på formen y = kx + m Rita in olikheterna i ett koordinatssystem y x y 2x x 0 y 0 4. Bestäm koordinaterna för områdets hörnpunkter. y = 0 x = 0 y = x x = 0 ger med insättning y = 4800 eller använd m-värdet direkt y = x (1) y = 2x (2) x = 2x x + 2x = x = 1200 insatt i (1) ger y = = 3600 y = 2x y = 0 ger med direkt instättning x = Sätt in punkterna i målfunktionen för att beräkna största vinst. m 0, 0 = = 0 (minsta värdet) m 0, 4800 = = 9600 m 1200, 3600, m = = (största värdet) m 3000, 0 = = 9000 Svar: För att opitmera sin vinst till kr bör företaget tillverka 3600 sportbilar/vecka och 1200 lastbilar/vecka.

9 Ex 13 Den totala vinsten z kr som företaget tjänar på att tillverka två olika sorters kepsar A och B kan beskrivas med målfunktionen z = 20x + 30y. Om x är antalet sålda kepsar A och y är antalet sålda kepsar B. Hur stor är företagets totala vinst om man säljer 40 st kepsar av modell A och 80 st av modell B? Ex 14 Sofie har ett enmansföretag som köper in färdiga trädetaljer i furu. Hon tillverkar enbart två produkter pallar och byråer. Hennes arbetsuppgifter består av att montera och lacka dessa. Hon kan inte göra dessa saker samtidigt. Följande data gäller för hennes produktion. Arbetstimmar (h) Arbetstimmar (h) Tillgängliga arbetstimmar per vecka (h) Pall (x) Byrå (y) Montering 0,25 0,50 15 Lackning 0,40 1,00 25 Vinst per produkt 150 kr 320 kr Antag att Sofie tillverkar x pallar och y byråer under en vecka. a) Sofie får en order på 40 pallar och 10 byråer. Hinner hon tillverka dessa på en vecka? b) Bestäm den maximala vinst Sofie kan göra på en vecka.

Uppgift Endast svar krävs. Uppgift Fullständiga lösningar krävs. 120 minuter för Del B och Del C tillsammans.

Uppgift Endast svar krävs. Uppgift Fullständiga lösningar krävs. 120 minuter för Del B och Del C tillsammans. NpMab ht 01 Del B Del C Provtid Hjälpmedel Uppgift 1-10. Endast svar krävs. Uppgift 11-16. Fullständiga lösningar krävs. 10 minuter för Del B och Del C tillsammans. Formelblad och linjal. Kravgränser Provet

Läs mer

52 = 1041. 1040 1.00096 Vi kan nu teckna hur mycket pengar han har, just när han har satt in sina 280 kr den tredje måndagen + 280 1040

52 = 1041. 1040 1.00096 Vi kan nu teckna hur mycket pengar han har, just när han har satt in sina 280 kr den tredje måndagen + 280 1040 Tillämpningar på främst geometriska, men även aritmetiska summor och talföljder. Att röka är ett fördärv. Förutom att man kan förlora hälsan går en mängd pengar upp i rök. Vi träffar Cigge, som röker 20

Läs mer

kvoten mellan två på varandra följande tal i en talföljd är konstant alltid lika stor.

kvoten mellan två på varandra följande tal i en talföljd är konstant alltid lika stor. Turen har kommit till geometriska talföljder och summan av en geometrisk talföljd. Talföljden 1,, 4, 8, 16, 3,... är ett exempel på en geometrisk talföljd. Utmärkande för en geometrisk talföljd är att

Läs mer

y = 3x 5 Repetitionsuppgifter; Grafer och funktioner Vilken av följande funktioner är en exponentialfunktion? Vilken värdemängd har funktionen?

y = 3x 5 Repetitionsuppgifter; Grafer och funktioner Vilken av följande funktioner är en exponentialfunktion? Vilken värdemängd har funktionen? Repetitionsuppgifter; Grafer och funktioner 1) Vilken av följande funktioner är en exponentialfunktion? A y = 3x 5 y = x 2 4 C y = 30 1, 4 x 1/0/0 2) Vilken värdemängd har funktionen? 1/0/0 3) Ange ekvationen

Läs mer

Räta linjer. Ekvationssystem. Att hitta räta linjens ekvation ifrån olika förutsättningar. 1.1 Hitta en rät linjes ekvation utifrån en ritad graf.

Räta linjer. Ekvationssystem. Att hitta räta linjens ekvation ifrån olika förutsättningar. 1.1 Hitta en rät linjes ekvation utifrån en ritad graf. Översikt inför provet om räta linjer och ekvationssystem Denna finns digitalt med tillhörande länkar på http://www.thelberg.com/ma2b/prov1 eller via QR-koden nedan: Räta linjer Att hitta räta linjens ekvation

Läs mer

Planering för kurs C i Matematik

Planering för kurs C i Matematik Planering för kurs C i Matematik Läromedel: Holmström/Smedhamre, Matematik från A till E, kurs C Antal timmar: 85 (70 + 15) I nedanstående planeringsförslag tänker vi oss att C-kursen studeras på 85 klocktimmar.

Läs mer

KOKBOKEN. Håkan Strömberg KTH STH

KOKBOKEN. Håkan Strömberg KTH STH KOKBOKEN Håkan Strömberg KTH STH Hösten 2007 Håkan Strömberg 2 KTH Syd Innehåll Genomsnittlig förändringshastighet...................... 5 Uppgift 1................................. 5 Uppgift 2.................................

Läs mer

3, 6, 9, 12, 15, 18. 1, 2, 4, 8, 16, 32 Nu är stunden inne, då vill vill summera talen i en talföljd

3, 6, 9, 12, 15, 18. 1, 2, 4, 8, 16, 32 Nu är stunden inne, då vill vill summera talen i en talföljd I föreläsning 18 bekantade vi oss med talföljder, till exempel eller 3, 6, 9, 1, 15, 18 1,, 4, 8, 16, 3 Nu är stunden inne, då vill vill summera talen i en talföljd och 3 + 6 + 9 + 1 + 15 + 18 1 + + 4

Läs mer

20 Gamla tentamensuppgifter

20 Gamla tentamensuppgifter 20 Gamla tentamensuppgifter 20.1 Lätta avdelningen Övning 20.1 Beräkna f 0 ( 3) för f(x) = 3x2 2x + 1 med jälp av derivatans definition. Lösning: Här är det allmänna uttrycket för derivatans definition

Läs mer

Matematik C (MA1203)

Matematik C (MA1203) Matematik C (MA103) 100 p Betygskriterier med eempeluppgifter Värmdö Gymnasium Mål och betygskriterier Ma C (MA103) Matematik 03-08- Betygskriterier enligt Skolverket Kriterier för betyget Godkänd Eleven

Läs mer

ATT KUNNA TILL. MA1203 Matte C Vuxenutbildningen Dennis Jonsson

ATT KUNNA TILL. MA1203 Matte C Vuxenutbildningen Dennis Jonsson ATT KUNNA TILL MA1203 Matte C 2011-06-14 Vuxenutbildningen Dennis Jonsson Sida 2 av 5 Att kunna till prov C1 Kunna kvadreringsreglerna! (...utan att titta i formelsamlingen) Kunna konjugatregeln! (...utan

Läs mer

Sidor i boken f(x) = a x 2 +b x+c

Sidor i boken f(x) = a x 2 +b x+c Sidor i boken 18-151 Andragradsfunktioner Här ska vi studera andragradsfunktionen som skrivs f(x) = ax +bx+c där a, b, c är konstanter (reella tal) och där a 0. Grafen (kurvan) till f(x), y = ax + bx +

Läs mer

Uppföljning av diagnostiskt prov Repetition av kursmoment i TNA001-Matematisk grundkurs.

Uppföljning av diagnostiskt prov Repetition av kursmoment i TNA001-Matematisk grundkurs. Uppföljning av diagnostiskt prov 06-0- Repetition av kursmoment i TNA00-Matematisk grundkurs. Reella tal, intervall, räta linjer, cirklar Faktorsatsen, faktoriseringar, polynomekvationer Olikheter Ekvationer

Läs mer

Del I: Digitala verktyg är inte tillåtna. Endast svar krävs. Skriv dina svar direkt i provhäftet.

Del I: Digitala verktyg är inte tillåtna. Endast svar krävs. Skriv dina svar direkt i provhäftet. Del I: Digitala verktyg är inte tillåtna. Endast svar krävs. Skriv dina svar direkt i provhäftet. 1) a) Bestäm ekvationen för den räta linjen i figuren. (1/0/0) b) Rita i koordinatsystemet en rät linje

Läs mer

Kompletterande lösningsförslag och ledningar, Matematik 3000 kurs B, kapitel 2

Kompletterande lösningsförslag och ledningar, Matematik 3000 kurs B, kapitel 2 Kapitel.1 101, 10 Exempel som löses i boken. 103 Testa genom att lägga linjalen lodrätt och föra den över grafen. Om den på något ställe skär grafen i mer än en punkt så visar grafen inte en funktion.

Läs mer

MATEMATIK KURS A Våren 2005

MATEMATIK KURS A Våren 2005 MATEMATIK KURS A Våren 2005 1. Vilket tal pekar pilen på? 51 52 53 Svar: (1/0) 2. Skugga 8 3 av figuren. (1/0) 3. Vad är 20 % av 50 kr? Svar: kr (1/0) 4. Hur mycket vatten ryms ungefär i ett dricksglas?

Läs mer

Fler uppgifter på andragradsfunktioner

Fler uppgifter på andragradsfunktioner Fler uppgifter på andragradsfunktioner 1 I grafen nedan visas tre andragradsfunktioner. Bestäm a,b och c för p(x) = ax 2 + bx + c genom att läsa av lämpliga punkter i grafen. 10 5 1 3 5 Figur 1: 2 Vi har

Läs mer

Bedömningsanvisningar

Bedömningsanvisningar Bedömningsanvisningar Exempel på ett godtagbart svar anges inom parentes. Till en del uppgifter är bedömda elevlösningar bifogade för att ange nivån på bedömningen. Om bedömda elevlösningar finns i materialet

Läs mer

Optimering av olika slag används inom så vitt skilda områden som produktionsplanering,

Optimering av olika slag används inom så vitt skilda områden som produktionsplanering, Anders Johansson Linjär optimering Exempel på användning av analoga och digitala verktyg i undervisningen Kursavsnittet linjär optimering i Matematik 3b kan introduceras med såväl analoga som digitala

Läs mer

Redovisning och Kalkylering

Redovisning och Kalkylering Redovisning och Kalkylering Föreläsning 20 Investeringsbedömning 1 Kapitel 10 ES Jonas Råsbrant jonas.rasbrant@fek.uu.se Vad är en investering? Kapitalanvändning som får betalningskonsekvenser på lång

Läs mer

DISKONTERING AV KASSAFLÖDEN DISPOSITION

DISKONTERING AV KASSAFLÖDEN DISPOSITION DISKONTERING AV KASSAFLÖDEN Fredrik Wahlström U.S.B.E. - Handelshögskolan vid Umeå universitet Avdelningen för redovisning och finansiering 901 87 Umeå Fredrik.Wahlstrom@fek.umu.se 090-786 53 84 DISPOSITION

Läs mer

2x ex dx. 0 = ln3 e

2x ex dx. 0 = ln3 e Institutionen för Matematik Lösningsförslag till tentamen i SF627, Matematik för ekonomer, del 2, 6 hp. 26..7. Räkna inte denna uppgift om du är godkänd på lappskrivning 3 Visa att funktionen f (x) = x

Läs mer

Matematik 5000, kurs 3b Grön lärobok. Läraranvisning Textview Verksnummer: 40029

Matematik 5000, kurs 3b Grön lärobok. Läraranvisning Textview Verksnummer: 40029 Matematik 5000, kurs 3b Grön lärobok Läraranvisning Textview Verksnummer: 40029 Läraranvisningens innehåll Läraranvisningen är till för att du som undervisande lärare ska få information om hur den pedagogiskt

Läs mer

Mål Likformighet, Funktioner och Algebra år 9

Mål Likformighet, Funktioner och Algebra år 9 Mål Likformighet, Funktioner och Algebra år 9 Provet omfattar s. 102-135 (kap 4) och s.183-186, 189, 191, 193, 200-215. Repetition: Repetitionsuppgifter 4, läa 13-16 (s. 255 260) samt andra övningsuppgifter

Läs mer

TANA17 Matematiska beräkningar med Matlab

TANA17 Matematiska beräkningar med Matlab TANA17 Matematiska beräkningar med Matlab Laboration 1. Linjär Algebra och Avbildningar Namn: Personnummer: Epost: Namn: Personnummer: Epost: Godkänd den: Sign: Retur: 1 Introduktion I denna övning skall

Läs mer

Vi ska titta närmare på några potensfunktioner och skaffa oss en idé om hur deras kurvor ser ut. Vi har tidigare sett grafen till f(x) = 1 x.

Vi ska titta närmare på några potensfunktioner och skaffa oss en idé om hur deras kurvor ser ut. Vi har tidigare sett grafen till f(x) = 1 x. Vi ska titta närmare på några potensfunktioner och skaffa oss en idé om hur deras kurvor ser ut. Vi har tidigare sett grafen till f(x) = x 8 6 4 2-3 -2-2 3-2 -4-6 -8 Figur : Vi konstaterar följande: Då

Läs mer

13 Potensfunktioner. Vi ska titta närmare på några potensfunktioner och skaffa oss en idé om hur deras kurvor ser ut. Vi har tidigare sett grafen till

13 Potensfunktioner. Vi ska titta närmare på några potensfunktioner och skaffa oss en idé om hur deras kurvor ser ut. Vi har tidigare sett grafen till 3 Potensfunktioner 3. Dagens teori Vi ska titta närmare på några potensfunktioner och skaffa oss en idé om hur deras kurvor ser ut. Vi har tidigare sett grafen till f(x) = x 8 6 4 2-3 -2-2 3-2 -4-6 -8

Läs mer

Träningsprov funktioner

Träningsprov funktioner Träningsprov funktioner 1. Använd koordinatsystemet nedan a) Vilka koordinater är markerade? b) Markera följande koordinater E: 0,6, F: 3, 2, G: 1, 2 och H: ( 3,2). 2. Skriv en berättelse som överensstämmer

Läs mer

Kartläggningsmaterial för nyanlända elever SVENSKA. Algebra Matematik. 1 2 Steg 3

Kartläggningsmaterial för nyanlända elever SVENSKA. Algebra Matematik. 1 2 Steg 3 Kartläggningsmaterial för nyanlända elever Algebra Matematik 1 2 Steg 3 SVENSKA Kartläggningsmaterial för nyanlända elever Algebra åk 3 MA 1. Fortsätt att rita mönstret a) b) 2. Figurerna blir större och

Läs mer

MÖNSTER OCH TALFÖLJDER

MÖNSTER OCH TALFÖLJDER MÖNSTER OCH TALFÖLJDER FÖRELÄSNINGENS INNEHÅLL OCH SYFTE Genomgång av viktiga matematiska begrepp, uttryck och symboler med anknytning till mönster och talföljder. Skälet till att välja detta innehåll

Läs mer

Tentamen IX1304 Matematik, Analys , lösningsidéer

Tentamen IX1304 Matematik, Analys , lösningsidéer Tentamen IX0 Matematik, Analys 0-05-0, lösningsidéer. Gör en linjär approximation till kurvan y x, kring den punkt på kurvan där lutningen är. Bestäm sedan för vilka x som det relativa felet för approximationen

Läs mer

Matematik i Gy11. 110912 Susanne Gennow

Matematik i Gy11. 110912 Susanne Gennow Matematik i Gy11 110912 Susanne Gennow Var finns matematik? Bakgrund Nationella utredning 2003 PISA 2009 TIMSS Advanced 2008 Skolinspektionens rapporter Samband och förändring åk 1 3 Olika proportionella

Läs mer

Tema Linjär optimering

Tema Linjär optimering Tema Linjär optimering Du behöver för detta tema ha goda färdigheter om Linjära ekvationer från modul Algebra (sid.37), Linjära ekvationssystem från modul Analytisk geometri (sid.13) Modell Linjära olikheter

Läs mer

Np MaB vt Låt k = 0 och rita upp de båda linjerna. Bestäm skärningspunkten mellan linjerna.

Np MaB vt Låt k = 0 och rita upp de båda linjerna. Bestäm skärningspunkten mellan linjerna. Vid bedömning av ditt arbete med uppgift nummer 17 kommer läraren att ta hänsyn till: Hur väl du beräknar och jämför trianglarnas areor Hur väl du motiverar dina slutsatser Hur väl du beskriver hur arean

Läs mer

Uppgift Endast svar krävs. Uppgift Fullständiga lösningar krävs. 120 minuter för Del B och Del C tillsammans. Formelblad och linjal.

Uppgift Endast svar krävs. Uppgift Fullständiga lösningar krävs. 120 minuter för Del B och Del C tillsammans. Formelblad och linjal. Del B Del C Provtid Hjälpmedel Uppgift 1-11. Endast svar krävs. Uppgift 1-16. Fullständiga lösningar krävs. 10 minuter för Del B och Del C tillsammans. Formelblad och linjal. Kravgränser Provet består

Läs mer

GeoGebra i matematikundervisningen - Inspirationsdagar för gymnasielärare. Karlstads universitet 19-20 april

GeoGebra i matematikundervisningen - Inspirationsdagar för gymnasielärare. Karlstads universitet 19-20 april GeoGebra i matematikundervisningen - Inspirationsdagar för gymnasielärare Karlstads universitet 19-0 april Exempel på elevaktiviteter framtagna i skolutvecklingsprojektet IKT och lärande i matematik 1

Läs mer

Uppsala Universitet Matematiska Institutionen Thomas Erlandsson

Uppsala Universitet Matematiska Institutionen Thomas Erlandsson Uppsala Universitet Matematiska Institutionen Thomas Erlandsson MATRISER MED MERA VEKTORRUM DEFINITION Ett vektorrum V är en mängd av symboler u som vi kan addera samt multiplicera med reella tal c så

Läs mer

TATM79: Föreläsning 2 Absolutbelopp, summor och binomialkoefficienter

TATM79: Föreläsning 2 Absolutbelopp, summor och binomialkoefficienter TATM79: Föreläsning Absolutbelopp, summor och binomialkoefficienter Johan Thim 15 augusti 015 1 Absolutbelopp Absolutbelopp Definition. För varje reellt x definieras absolutbeloppet x enligt { x, x 0 x

Läs mer

Bedömningsanvisningar

Bedömningsanvisningar Bedömningsanvisningar Exempel på ett godtagbart svar anges inom parentes. Till en del uppgifter är bedömda elevlösningar bifogade för att ange nivån på bedömningen. Om bedömda elevlösningar finns i materialet

Läs mer

Inledande kurs i matematik, avsnitt P.2. Linjens ekvation kan vi skriva som. Varje icke-lodrät linje i planet kan skrivas i formen.

Inledande kurs i matematik, avsnitt P.2. Linjens ekvation kan vi skriva som. Varje icke-lodrät linje i planet kan skrivas i formen. Inledande kurs i matematik, avsnitt P. P..15 Bestäm en ekvation för den linje som går genom punkten P = ( 1, 1) och har riktningskoefficient k = 1. P..17 Bestäm en ekvation för den linje som går genom

Läs mer

Lektionsplanering för matematik årskurs 9C Funktioner och Algebra

Lektionsplanering för matematik årskurs 9C Funktioner och Algebra Lektionsplanering för matematik årskurs 9C Funktioner och Algebra Datum Genomgång Elevaktivitet Vecka 41 10/10 Introduktion kapitel 2 Funktioner och Algebra 11/10 Funktioner Arbetar med sidorna 44 45 Filmklipp

Läs mer

varandra. Vi börjar med att behandla en linjes ekvation med hjälp av figur 7 och dess bildtext.

varandra. Vi börjar med att behandla en linjes ekvation med hjälp av figur 7 och dess bildtext. PASS 8 EKVATIONSSYSTEM OCH EN LINJES EKVATION 8 En linjes ekvation En linjes ekvation kan framställas i koordinatsystemet Koordinatsystemet består av x-axeln och yaxeln X-axeln är vågrät och y-axeln lodrät

Läs mer

Repetitionsuppgifter 1

Repetitionsuppgifter 1 Repetitionsuppgifter 1 1 Är talet a) 5 ett heltal b) 9 ett naturligt tal c) π ett rationellt tal d) 5 ett reellt tal 6 2 Rita av figuren och placera in talen rätt talmängd. naturliga tal hela tal rationella

Läs mer

Bedömningsanvisningar

Bedömningsanvisningar Bedömningsanvisningar Exempel på ett godtagbart svar anges inom parentes. Till en del uppgifter är bedömda elevlösningar bifogade för att ange nivån på bedömningen. Om bedömda elevlösningar finns i materialet

Läs mer

Lathund, samband & stora tal, åk 8

Lathund, samband & stora tal, åk 8 Lathund, samband & stora tal, åk 8 Den vågräta tallinjen kallas x-axeln och den lodräta tallinjen kallas y-axeln. Punkten där tallinjerna skär varandra kallas origo (0,0). När man beskriver en punkt i

Läs mer

NATIONELLT KURSPROV I MATEMATIK KURS C HÖSTEN 2009

NATIONELLT KURSPROV I MATEMATIK KURS C HÖSTEN 2009 Anvisningar Provtid Hjälpmedel Provmaterialet Provet Poäng och betygsgränser NATIONELLT KURSPROV I MATEMATIK KURS C HÖSTEN 2009 240 minuter för Del I och Del II tillsammans. Vi rekommenderar att du använder

Läs mer

En uppgift eller text markerad med * betyder att uppgiften kan uppfattas som lite svårare. ** ännu svårare.

En uppgift eller text markerad med * betyder att uppgiften kan uppfattas som lite svårare. ** ännu svårare. Matematik b, repetition Kan du det här? Primitiva funktioner och integraler o o o Vad menas med primitiv funktion? Kan du hitta en primitiv funktion? Vad menas med en integral? Kan du beräkna en integral?

Läs mer

Matematik CD för TB. x + 2y 6 = 0. Figur 1:

Matematik CD för TB. x + 2y 6 = 0. Figur 1: Kontroll 8 1 Bestäm ekvationen för den linje som går genom punkterna P 1 (,4) och P 2 (9, 2). 2 Bestäm riktningskoefficienten för linjen x + 4y 6 = 0 Bestäm ekvationen för en linje som går genom punkten

Läs mer

Övningsprov 3 inför lilla nationella Ma1 NA18 ht18

Övningsprov 3 inför lilla nationella Ma1 NA18 ht18 Övningsprov 3 inför lilla nationella Ma1 NA18 ht18 Del A Utan räknare Endast svar krävs 1. Beräkna: a) 3 4 2 3 b) 12 10 13 6 10 2 4 10 c) f ( 4) om f ( x) = 3x 4 d) 15% av 60 kr 2. Bestäm vinklarna u och

Läs mer

markera med kryss vilka uppgifter du gjort Avsnitt: sidor ETT ETT TVÅ TVÅ TRE TRE FYRA FYRA klart

markera med kryss vilka uppgifter du gjort Avsnitt: sidor ETT ETT TVÅ TVÅ TRE TRE FYRA FYRA klart PLANERING MATEMATIK - ÅR 9 Bok: Z (fjärde upplagan) Kapitel : 3 Geometri Kapitel : 4 Samband och förändring Elevens namn: markera med kryss vilka uppgifter du gjort Avsnitt: sidor ETT ETT TVÅ TVÅ TRE TRE

Läs mer

Dagens tema är exponentialfunktioner. Egentligen inga nyheter, snarare repetition. Vi vet att alla exponentialfunktioner.

Dagens tema är exponentialfunktioner. Egentligen inga nyheter, snarare repetition. Vi vet att alla exponentialfunktioner. Dagens tema är exponentialfunktioner. Egentligen inga nyheter, snarare repetition. Vi vet att alla exponentialfunktioner f(x) = C a x kan, om man så vill, skrivas om, med basen e, till Vi vet också att

Läs mer

Optimala vinkeln av bortklippt cirkelsektor fo r maximal volym pa glasstrut

Optimala vinkeln av bortklippt cirkelsektor fo r maximal volym pa glasstrut Optimala vinkeln av bortklippt cirkelsektor fo r maximal volym pa glasstrut Frågeställning Av en cirkulär pappersskiva kan en cirkelsektor med en viss vinkel klippas bort. Med den resterande sektorn går

Läs mer

Övningsuppgifter för sf1627, matematik för ekonomer. 1. Förenkla följande uttryck så långt det går: 6. 7. 8. 9. 10. 2. Derivator 1. 2. 3. 4. 5. 6.

Övningsuppgifter för sf1627, matematik för ekonomer. 1. Förenkla följande uttryck så långt det går: 6. 7. 8. 9. 10. 2. Derivator 1. 2. 3. 4. 5. 6. KTH matematik Övningsuppgifter för sf1627, matematik för ekonomer Harald Lang 1. Förenkla följande uttryck så långt det går: 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. Svar: 1. 2. 5 3. 1 4. 5 5. 1 6. 6 7. 1 8. 0 9.

Läs mer

Provet består av Del I, Del II, Del III samt en muntlig del och ger totalt 76 poäng varav 28 E-, 24 C- och 24 A-poäng.

Provet består av Del I, Del II, Del III samt en muntlig del och ger totalt 76 poäng varav 28 E-, 24 C- och 24 A-poäng. Del I Del II Provtid Hjälpmedel Uppgift 1-10. Endast svar krävs. Uppgift 11-15. Fullständiga lösningar krävs. 10 minuter för del I och del II tillsammans. Formelblad och linjal. Kravgränser Provet består

Läs mer

KOD = Frågor till kursen Ekonomiska beslutsstöd inom delmomentet Kalkyl och marknad från Peter Lohmander (Totalt 60 p) Version 130117

KOD = Frågor till kursen Ekonomiska beslutsstöd inom delmomentet Kalkyl och marknad från Peter Lohmander (Totalt 60 p) Version 130117 KOD = Frågor till kursen Ekonomiska beslutsstöd inom delmomentet Kalkyl och marknad från Peter Lohmander (Totalt 60 p) Version 130117 UPPGIFT RÄTTNINGS- KOLUMN (som endast rättande lärare får använda.)

Läs mer

Bedömningsanvisningar

Bedömningsanvisningar Bedömningsanvisningar NpMab ht 01 Eempel på ett godtagbart svar anges inom parentes. Till en del uppgifter är bedömda elevlösningar bifogade för att ange nivån på bedömningen. Om bedömda elevlösningar

Läs mer

Gamla tentemensuppgifter

Gamla tentemensuppgifter Inte heller idag någon ny teori! Gamla tentemensuppgifter 1 Bestäm det andragradspolynom vars kurva skär x-axeln i x = 3 och x = 1 och y-axeln i y = 3 f(x) = (x 3)(x + 1) = x x 3 är en bra start, men vi

Läs mer

3 Deriveringsregler. Vi ska nu bestämma derivatan för dessa fyra funktioner med hjälp av derivatans definition

3 Deriveringsregler. Vi ska nu bestämma derivatan för dessa fyra funktioner med hjälp av derivatans definition 3 Deriveringsregler 3.1 Dagens Teori Vi ar lärt oss derivera en funktion, främst polynom, med jälp av derivatans definition. Vi ar funnit denna teknik ganska krävande. 3.1.1 Vi är på jakt efter ett mönster

Läs mer

1. FLACK RÄNTA Med flack ränta ska vi här mena att räntan är densamma oavsett bindningstid

1. FLACK RÄNTA Med flack ränta ska vi här mena att räntan är densamma oavsett bindningstid STOCKHOLMS UNIVERSITET MATEMATISKA INSTITUTIONEN Avd. för Matematisk statistik Thomas Höglund Version 02 10 25. RÄNTA 1. FLACK RÄNTA Med flack ränta ska vi här mena att räntan är densamma oavsett bindningstid

Läs mer

Uppgift Endast svar krävs. Uppgift Fullständiga lösningar krävs. 120 minuter för Del B och Del C tillsammans.

Uppgift Endast svar krävs. Uppgift Fullständiga lösningar krävs. 120 minuter för Del B och Del C tillsammans. Del B Del C Provtid Hjälpmedel Uppgift 1-10. Endast svar krävs. Uppgift 11-16. Fullständiga lösningar krävs. 10 minuter för Del B och Del C tillsammans. Formelblad och linjal. Kravgränser Provet består

Läs mer

NpMa2c vt Provet består av tre skriftliga delprov (Delprov B, C och D). Tillsammans kan de ge 57 poäng varav 20 E-, 20 C- och 17 A-poäng.

NpMa2c vt Provet består av tre skriftliga delprov (Delprov B, C och D). Tillsammans kan de ge 57 poäng varav 20 E-, 20 C- och 17 A-poäng. NpMac vt 015 Delprov B Delprov C Provtid Hjälpmedel Uppgift 1-9. Endast svar krävs. Uppgift 10-17. Fullständiga lösningar krävs. 10 minuter för Delprov B och Delprov C tillsammans. Formelblad och linjal.

Läs mer

y = x x = Bestäm ekvationen för en linje där k = 2 och som går genom punkten ( 1, 3). 2/0/0

y = x x = Bestäm ekvationen för en linje där k = 2 och som går genom punkten ( 1, 3). 2/0/0 Del A: Digitala verktyg är tillåtna. Skriv dina lösningar på separat papper. 1) En TV reparatörs arbete kostar kronor, där antalet arbetstimmar. y = 200 + 150x x = a) Ange och tolka den linjära funktionens

Läs mer

Övningsuppgifter, sid 1 [25] investeringskalkylering - facit, nivå E

Övningsuppgifter, sid 1 [25] investeringskalkylering - facit, nivå E Övningsuppgifter, sid 1 [25] go green & keep on screen tänk smart bli jordklok För att spara på vår miljö har vi valt att hålla våra facit on screen. Klicka på länkarna här nedan för att ta dig till rätt

Läs mer

Ekvationer och system av ekvationer

Ekvationer och system av ekvationer Modul: Undervisa matematik utifrån problemlösning Del 4. Strategier Ekvationer och system av ekvationer Paul Vaderlind, Stockholms universitet Ekvationslösning är ett av de viktiga målen i skolmatematiken.

Läs mer

MATEMATISK INTRODUKTION. Innehåll

MATEMATISK INTRODUKTION. Innehåll MATEMATISK INTRODUKTION Innehåll - Räkneregler för bråk - Räkneregler för potenser - Procenträkning - Ekvationer o Ekvationer och tillvätförlopp - Nuvärdesberäkningar - Funktioner o Linjära funktioner

Läs mer

HÖGSKOLAN I BORÅS. EKONOMISTYRNING (OPUS) 7,5 Högskolepoäng

HÖGSKOLAN I BORÅS. EKONOMISTYRNING (OPUS) 7,5 Högskolepoäng HÖGSKOLAN I BORÅS EKONOMISTYRNING (OPUS) 7,5 Högskolepoäng Provmoment: Tentamen Ladokkod: B1OE01 Tentamen ges för: OPUS Kod:.. Tentamensdatum: 2017-06-02 Tid: 09:00 13.00 Hjälpmedel: Miniräknare. Totalt

Läs mer

Uppgift 1-9. Endast svar krävs. Uppgift 10-14. Fullständiga lösningar krävs. 120 minuter för Delprov B och Delprov C tillsammans.

Uppgift 1-9. Endast svar krävs. Uppgift 10-14. Fullständiga lösningar krävs. 120 minuter för Delprov B och Delprov C tillsammans. Delprov B Delprov C Provtid Hjälpmedel Uppgift 1-9. Endast svar krävs. Uppgift 10-14. Fullständiga lösningar krävs. 10 minuter för Delprov B och Delprov C tillsammans. Formelblad och linjal. Kravgränser

Läs mer

PRELIMINÄRPROV Kort matematik

PRELIMINÄRPROV Kort matematik PRELIMINÄRPROV Kort matematik 80 Lösningar och poängförslag Lös ekvationerna x 0 x 4 x,0 a) 0x b) c) a) Multiplikation med 0; x 00x, p 0 99 b) Division med ; : 4 9 9 x ( = =,5 ) p 4 8 8 8-99 x = 0, x 0

Läs mer

Vektorgeometri för gymnasister

Vektorgeometri för gymnasister Vektorgeometri för gymnasister Per-Anders Svensson http://w3.msi.vxu.se/users/pa/vektorgeometri/gymnasiet.html Institutionen för datavetenskap, fysik och matematik Linnéuniversitetet Vektorer i planet

Läs mer

G VG MVG Programspecifika mål och kriterier

G VG MVG Programspecifika mål och kriterier Betygskriterier Matematik C MA10 100p Respektive programmål gäller över kurskriterierna MA10 är en nationell kurs oc skolverkets kurs- oc betygskriterier finns på ttp://www.skolverket.se/ Detta är vår

Läs mer

Del A: Digitala verktyg är inte tillåtna. Endast svar krävs. Skriv dina svar direkt på provpappret.

Del A: Digitala verktyg är inte tillåtna. Endast svar krävs. Skriv dina svar direkt på provpappret. NAN: KLASS: Del A: Digitala verktyg är inte tillåtna. Endast svar krävs. Skriv dina svar direkt på provpappret. 1) a) estäm ekvationen för den räta linjen i figuren. b) ita i koordinatsystemet en rät linje

Läs mer

TATM79: Föreläsning 2 Absolutbelopp, summor och binomialkoefficienter

TATM79: Föreläsning 2 Absolutbelopp, summor och binomialkoefficienter TATM79: Föreläsning 2 Absolutbelopp, summor och binomialkoefficienter Johan Thim 2 augusti 2016 1 Absolutbelopp Absolutbelopp Definition. För varje reellt x definieras absolutbeloppet x enligt { x, x 0

Läs mer

2 Derivator. 2.1 Dagens Teori. Figur 2.1: I figuren ser vi grafen till funktionen. f(x) = x

2 Derivator. 2.1 Dagens Teori. Figur 2.1: I figuren ser vi grafen till funktionen. f(x) = x Derivator.1 Dagens Teori Figur.1: I figuren ser vi grafen till funktionen f(x) = x 3 + Inritad finns dels en sekant, som skär kurvan i punkterna ( 1, 7 3 finns en tangent som tangerar kurvan i (, 10 3

Läs mer

1, 2, 3, 4, 5, 6,...

1, 2, 3, 4, 5, 6,... Dagens nyhet handlar om talföljder, ändliga och oändliga. Talföljden 1,, 3, 4, 5, 6,... är det första vi, som barn, lär oss om matematik över huvud taget. Så småningom lär vi oss att denna talföljd inte

Läs mer

Sammanfattningar Matematikboken Y

Sammanfattningar Matematikboken Y Sammanfattningar Matematikboken Y KAPitel 1 TAL OCH RÄKNING Numeriska uttryck När man beräknar ett numeriskt uttryck utförs multiplikation och division före addition och subtraktion. Om uttrycket innehåller

Läs mer

LYCKA TILL! kl 8 13

LYCKA TILL! kl 8 13 LUNDS TEKNISK HÖGSKOL MTEMTIK TENTMENSSKRIVNING Linjär algebra 0 0 kl 8 3 ING HJÄLPMEDEL Förklara dina beteckningar och motivera lösningarna väl Om inget annat anges är koordinatsystemen ortonormerade

Läs mer

Matematik 2b (Typ) E-uppgifter på hela kursen

Matematik 2b (Typ) E-uppgifter på hela kursen Matematik 2b (Typ) E-uppgifter på hela kursen I Räta linjens ekvation och linjära modeller (1 6) II Ekvationssystem (7 11) III Algebra (12 14) IV Andragradsfunktioner ( inklusive funktioner med komplexa

Läs mer

Några problemlösnings och modelleringsuppgifter med räta linjer

Några problemlösnings och modelleringsuppgifter med räta linjer Några problemlösnings och modelleringsuppgifter med räta linjer Dessa uppgifter är indelade i två delar utan miniräknare och med miniräknare. Försök gärna lösa någon av varje del istället för alla på en

Läs mer

Studieplanering till Kurs 2b Grön lärobok

Studieplanering till Kurs 2b Grön lärobok Studieplanering till Kurs 2b Grön lärobok Den här studieplaneringen hjälper dig att hänga med i kursen. Planeringen följer lärobokens uppdelning i kapitel och avsnitt. Ibland får du tips på en inspelad

Läs mer

Övningsblad 4.5 C. Koordinatsystem och tolka grafer. 1 Markera följande punkter i koordinatsystemet.

Övningsblad 4.5 C. Koordinatsystem och tolka grafer. 1 Markera följande punkter i koordinatsystemet. Övningsblad. C Koordinatsystem och tolka grafer Koordinatsystem Eempel Vilka koordinater har punkterna A, B och C i koordinatsystemet? B y A C Lösning A = (, ), B = (, ) och C = (, ) Skriv -koordinaten

Läs mer

Del I Denna del består av 8 uppgifter och är avsedd att genomföras utan miniräknare.

Del I Denna del består av 8 uppgifter och är avsedd att genomföras utan miniräknare. Del I Denna del består av 8 uppgifter och är avsedd att genomföras utan miniräknare. Dina lösningar på denna del görs på separat papper som ska lämnas in innan du får tillgång till din miniräknare. Observera

Läs mer

NpMa2a ht Max 0/0/3

NpMa2a ht Max 0/0/3 14. Max 0/0/3 Godtagbar ansats, t.ex. sätter ut lämpliga beteckningar och tecknar någon ekvation som krävs för bestämning av a +1 A PL med i övrigt godtagbar lösning med korrekt svar ( a = 12 ) +1 A PL

Läs mer

Ränteberäkning vid reglering av monopolverksamhet

Ränteberäkning vid reglering av monopolverksamhet 1 Jan Bergstrand 2009 12 04 Ränteberäkning vid reglering av monopolverksamhet Bakgrund Energimarknadsinspektionen arbetar f.n. med en utredning om reglering av intäkterna för elnätsföretag som förvaltar

Läs mer

Kan du det här? o o. o o o o. Derivera potensfunktioner, exponentialfunktioner och summor av funktioner. Använda dig av derivatan i problemlösning.

Kan du det här? o o. o o o o. Derivera potensfunktioner, exponentialfunktioner och summor av funktioner. Använda dig av derivatan i problemlösning. Kan du det här? o o o o o o Vad innebär det att x går mot noll? Vad händer då x går mot oändligheten? Vad betyder sekant, tangent och ändringskvot och vad har dessa begrepp med derivatan att göra? Derivera

Läs mer

Kravgränser. Provet består av Del B, Del C, Del D samt en muntlig del och ger totalt 63 poäng varav 24 E-, 21 C- och 18 A-poäng.

Kravgränser. Provet består av Del B, Del C, Del D samt en muntlig del och ger totalt 63 poäng varav 24 E-, 21 C- och 18 A-poäng. Kravgränser Provet består av Del B, Del C, Del D samt en muntlig del och ger totalt 63 poäng varav 24 E-, 21 C- och 18 A-poäng. Kravgräns för provbetyget E: 17 poäng D: 25 poäng varav 7 poäng på minst

Läs mer

Provet består av Del I, Del II, Del III samt en muntlig del och ger totalt 76 poäng varav 28 E-, 24 C- och 24 A-poäng.

Provet består av Del I, Del II, Del III samt en muntlig del och ger totalt 76 poäng varav 28 E-, 24 C- och 24 A-poäng. NpMac vt 01 Del I Del II Provtid Hjälpmedel Uppgift 1-10. Endast svar krävs. Uppgift 11-15. Fullständiga lösningar krävs. 10 minuter för del I och del II tillsammans. Formelblad och linjal. Kravgränser

Läs mer

IEK102 Industriell ekonomi M IEK 415 Industriell ekonomi E

IEK102 Industriell ekonomi M IEK 415 Industriell ekonomi E IEK102 Industriell ekonomi M IEK 415 Industriell ekonomi E Fredagen den 23e augusti em (tre timmar) 2013 Tillåtna hjälpmedel Typgodkänd räknare, linjal, räntetabeller (sist i tentamenstesen) Presentation

Läs mer

HF0021 TEN2. Program: Strömberg. Examinator: Datum: Tid: :15-12:15. , linjal, gradskiva. Lycka till! Poäng

HF0021 TEN2. Program: Strömberg. Examinator: Datum: Tid: :15-12:15. , linjal, gradskiva. Lycka till! Poäng Kursnummer: Moment: Program: Rättande lärare: Examinator: Datum: Tid: Hjälpmedel: Omfattning och betygsgränser: TENTAMEN HF0021 Matematik för basår I TEN2 Tekniskt basår Marina Arakelyan, Jonass Stenholm

Läs mer

I4 övning. praktikfallsövning. I5 datorlabb. I8 övning. Investeringsbedömning: I1 F (OS) Grundmodeller och begrepp I2 F (OS)

I4 övning. praktikfallsövning. I5 datorlabb. I8 övning. Investeringsbedömning: I1 F (OS) Grundmodeller och begrepp I2 F (OS) Investeringsbedömning: I1 F (OS) I2 F (OS) I3 F (OS) Grundmodeller och begrepp Prisförändringar och inflation Skatt I4 övning I5 datorlabb praktikfallsövning I6 F (OS) I7 F (OS) Uppföljning och tolkning

Läs mer

Arbetsblad 3:1. Tolka uttryck. 1 Kajsa är a år gammal. Para ihop varje påstående med rätt uttryck.

Arbetsblad 3:1. Tolka uttryck. 1 Kajsa är a år gammal. Para ihop varje påstående med rätt uttryck. Arbetsblad :1 sid 78, 92 Tolka uttryck 1 Kajsa är a år gammal. Para ihop varje påstående med rätt uttryck. a) Karin är tre gånger så gammal: b) Katta är år yngre: a + a c) Kristina är en tredjedel så gammal:

Läs mer

SF1624 Algebra och geometri Lösningsförslag till tentamen Lördagen den 5 juni, 2010 DEL A

SF1624 Algebra och geometri Lösningsförslag till tentamen Lördagen den 5 juni, 2010 DEL A SF624 Algebra och geometri Lösningsförslag till tentamen Lördagen den 5 juni, 200 DEL A ( Betrakta det komplexa talet w = i. (a Skriv potenserna w n på rektangulär form, för n = 2,, 0,, 2. ( (b Bestäm

Läs mer

Ma B - Bianca Övning lektion 1. Uppgift nr 10. Uppgift nr 1 Givet funktionen f(x) = 4x + 9 Beräkna f(6) Rita grafen till ekvationen.

Ma B - Bianca Övning lektion 1. Uppgift nr 10. Uppgift nr 1 Givet funktionen f(x) = 4x + 9 Beräkna f(6) Rita grafen till ekvationen. Ma - ianca 2011 Uppgift nr 1 Givet funktionen f() = + 9 eräkna f(6) Uppgift nr 2 Givet funktionen f() = 5 + 3 eräkna f(7) Uppgift nr 3 Givet funktionen f() = -5 + 5 eräkna f(-3) Uppgift nr 10 Rita grafen

Läs mer

Högskoleprovet. Block 5. Anvisningar. Övningsexempel. Delprovet innehåller 22 uppgifter.

Högskoleprovet. Block 5. Anvisningar. Övningsexempel. Delprovet innehåller 22 uppgifter. Block 5 2008-04-05 Högskoleprovet Svarshäfte nr. DELPROV 9 NOGf Delprovet innehåller 22 uppgifter. Anvisningar Varje uppgift innehåller en fråga markerad med fet stil. Uppgiften kan även innehålla viss

Läs mer

TAOP88/TEN 1 OPTIMERING FÖR INGENJÖRER

TAOP88/TEN 1 OPTIMERING FÖR INGENJÖRER Matematiska institutionen Optimeringslära TENTAMEN TAOP/TEN OPTIMERING FÖR INGENJÖRER Datum: juni 0 Tid:.00-.00 Hjälpmedel: Miniräknare Kurslitteratur: Kaj Holmberg: Optimering Anteckningar i boken får

Läs mer

SF1626 Flervariabelanalys Lösningsförslag till tentamen DEL A. 1. En svängningsrörelse beskrivs av

SF1626 Flervariabelanalys Lösningsförslag till tentamen DEL A. 1. En svängningsrörelse beskrivs av SF166 Flervariabelanalys Lösningsförslag till tentamen 13-3-1 DEL A 1. En svängningsrörelse beskrivs av ( πx ) u(x, t) = A cos λ πft där amplituden A, våglängden λ och frekvensen f är givna konstanter.

Läs mer

Lektion Kapitel Uppgift Lösning med programmering

Lektion Kapitel Uppgift Lösning med programmering 1 Print 1 Tal, Prioriteringsregler 3 Procent, Procentuella förändringar 2 Variabler Teckna och tolka uttryck Ekvationslösningens grunder 1236 Beräkna utan räknare. a) 6 + 4 3 b) 9 4 12 3 c) 7 (3 + 12)

Läs mer

NpMa3c vt Kravgränser

NpMa3c vt Kravgränser Kravgränser Provet består av ett muntligt delprov (Del A) och tre skriftliga delprov (Del B, Del C och Del D). Tillsammans kan de ge 66 poäng varav 25 E-, 24 C- och 17 A-poäng. Observera att kravgränserna

Läs mer

Provmoment: Ladokkod: Tentamen ges för:

Provmoment: Ladokkod: Tentamen ges för: Finansiell ekonomi Provmoment: Ladokkod: Tentamen ges för: 21FE1B Nationalekonomi 1-30 hp, ordinarie tentamen 7,5 högskolepoäng Tentamensdatum: 18/3 16 Tid: 09:00 13:00 Hjälpmedel: Miniräknare, rutat papper,

Läs mer