PROV I MATEMATIK Transformmetoder 1MA april 2011

Storlek: px
Starta visningen från sidan:

Download "PROV I MATEMATIK Transformmetoder 1MA april 2011"

Transkript

1 UPPSALA UNIVERSITET Matematiska institutionen Salling ( ) PROV I MATEMATIK Transformmetoder MA34 8 april SKRIVTID: 8-3 HJÄLPMEDEL: Formelsamling (delas ut) och miniräknare. MOTIVERA alla lösningar noggrant. För betygen 3, 4 respektive 5 krävs minst 8, 5 respektive 3 p. (5p) Lös integralekvationen Ÿ t f HuL Â Ht-uL u sinh tl, t. LÖSNING Notera att integralen är en faltning Ÿ t f HuL ght - ul u med ghtl = Â t, och att Laplacetransformen av integralen därför (se formelsamlingen) är lika med FHsL ÿ GHsL = FHsL ÿ Laplacetransformation av den givna ekvationen resulterar följdaktligen i ekvationen F s - Â s + 4 s- Â. Härav, FHsL s + Â f HtL - Â t ANM. Det är relativt enkelt att evaluera den givna integralen med ovanstående f inpluggad, och därigenom verifiera att lösningen är korrekt. (7p) (a) För vilka reella värden på a är följande differentialekvation stabil? y HtL + H - al y HtL - a yhtl xhtl, t >. (b) Bestäm impulssvaret i fallet när överföringsfunktionen har en dubbelpol. LÖSNING (a) Stabilitet råder omm överföringsfunktionens poler ligger i vänster halvplan. Vi bestämmer överföringsfunktionen genom att Laplacetransformera differentialekvationen Resultatet av transformationen blir h HtL + H - al h HtL - a hhtl dhtl med begynnelsevillkor hh -L =, h H -L =. H - al s HHsL - a HHsL + s HHsL vars lösning är överföringsfunktionen HHsL Hs + L Hs - al HHsL:s poler finns där nämnaren är noll, dvs. de är - och a. Bägge ligger i vänster halvplan omm a <. Stabilitet råder således när a <. (b) Vid dubbelpol är HHsL = Hs+L Hs+L = Hs+L, och därmed hhtl = t -t, t >.

2 8 april.nb 3 (6p) En bank (Ebberyds) lämnar hundra procents ränta på insatta pengar. Bestäm hur mycket som skall sättas in varje år, för att resultera i en viss ackumulerad penningmängd efter n år. Närmare bestämt, lös följande ekvation m.a.p. a n. LÖSNING Z -transformation ger Härav, Så här ser några inledande värden ut: n k= a k n-k = 5 n, n œ N. AHzL AHzL z - z - 5 z z- z z-5 z z z - 5 a n 5 n - µ 5 n- qhn - L I, 3, 5, M 4 (8p) (a) Bestäm den -periodiska Fourierserien till funktionen f i figuren nedanför (b) Vilket värde konvergerar Fourierserien mot i origo? Motivera ditt svar! (c) Beräkna n udda n = med hjälp av Fourierserien. 5 (d) Betrakta nu den -periodiska Fourierserien till f :s jämna utvidgning, Vilket värde konvergerar den här Fourierserien mot i origo? Och vilken serie konvergerar snabbast? Den i (a) eller den i (d)? Motivera ditt svar! LÖSNING (a) Den efterfrågade -periodiska Fourierseriens koefficienter c n ges av c n = f HtL - t t = 4 H - tl - t t = - - H-Ln + c = f HtL t = 6 8 p n Fourierserien blir således 6 + - - H-L n + n¹ 8 p n  t = 6 + n - H-L n 4 p n cosh tl + 4 sinh tl. (b) I origo konvergerar Fourierserien enligt Dirichlets sats mot medelvärdet 8 av vänster- och högergränsvärdena i origo för f :s -periodiska utvidgning. (c) Av (a) och (b) följer likheten

3 8 april.nb n - H-L n 4 p cosh L + n 4 sinh L = 8 dvs. n H-L n - 4 p n = 6, som kan förenklas till n udda n = p 8. (d) Den jämna -periodiska utvidgningen f jämn ser ut som nedan. Enligt Dirichlet sats konvergerar f jämn :s Fourierserie mot. (Detaljerna finns i grafen ovanför.) 4 Vidare, eftersom f jämn är kontinuerlig, medan f :s -periodiska utvidgning har språng, kommer f jämn :s Fourierserie att konvergera snabbare än f :s. Närmare bestämt är termerna i f jämn :s Fourierserie av storleksordning n medan de i f:s Fourierserie är av storleksordning n. 4 sin 5 (7p) (a) Härled transformparet -Â I -, HtL -, HtLM HL både med hjälp av Fouriertransformens definition och med hjälp av regler och något känt transformpar. ANM. a,b HtL = a < t < b f.ö. (b) Beräkna integralen sin Ÿ 4 HxL - x x. LÖSNING (a) Om f HtL = -Â I -, HtL -, HtLM, så följer av Fouriertransformens definition att f`hl = Ÿ Â -Â t t - Ÿ - Â -Â t t = Â -Â - -Â = -Â Â - Â -Â + - Â = I- -Â Â M = I - -Â - Â M = H - HcosH L - Â sinh LL - HcosH L + Â sinh LLL = H - cosh LL = 4 sin HL. Återstår nu att härleda f` med hjälp av känt transformpar och regler. Skalningsregeln på det kända paret -, HtL sini M resulterar i -, HtL Och t-translation en enhet till vänster resp. höger på det senare paret ger sinhl. -, HtL -Â sinhl och, HtL Â sinhl. Lineäritet ger till sist

4 4 8 april.nb -Â I -, HtL -, HtLM -Â J Â sinhl -Â I Â = J Â - -Â Â = sinhl 4 sinhl = 4 sin HL (b) Plancherels formel tillämpad på paret ger - -Â sinhl N - -Â M sinhl N 4 sinhl - Â 4 I -, HtL -, HtLM sin HL Â p I sin HL -,HtL -, HtLM t = - = - sin 4 HL, - sin 4 HxL x x = 4 p 8 = p 6 (7p) En tråd av längden befinner sig i en skål med isvatten, något som tvingar tråden att hålla temperaturen. Plötsligt och blixtsnabbt tar man upp hela tråden förutom ena änden som får LÖSNING stanna kvar i isvattnet. Den upptagna delen av tråden isoleras, förutom dess ände vilken kopplas till en värmekälla som gör att änden hålls vid konstant grader fortsättningsvis. Bestäm temperaturen i trådens olika punkter fortsättningsvis, genom att lösa problemet: u t Hx, tl = u xx Hx, tl, < x <, t >, uh, tl =, uh, tl =, t >, uhx, L =, < x <. Vi har att göra med ett s.k. inhomogent problem. (Inhomogent randvillkor.) Då är lösningsstrategin att homogenisera problemet. Dvs. att betraktar differensen mellan en partikulär lösning till PDE + RAND-villkor och det givna problemets lösning. Randvillkoren för nämnda differens blir nämligen homogena (eller hur!).

5 8 april.nb 5 Partikulärlösning Eftersom de givna RAND-villkoren är tidsoberoende, söker vi en partikulärlösning till differentialekvation + RAND-villkor som också är är tidsoberoende. Dvs. en funktion parthxl sådan att = part HxL parthl =, parthl = Det följer (eller hur!) att parthxl = x. Homogen lösning Differensen homhx, tl = uhx, tl - parthxl satisfierar PDE hom t Hx, tl hom x x Hx, tl RAND hom homh, tl, hom H, tl BEG hom homhx, L - x RAND hom leder oss till att ansätta hom som en -periodisk sinusserie På sedvanligt sätt får vi efter spektraltransformation vars lösning är ODE BEG homhx, tl = b n HtL sinhn p xl b n HtL = -Hn pl b n HtL b n HL = Ÿ H- xl sinhn p xl x = 4 H-L n b n HtL = den homogena lösningen blir Den slutgiltiga lösningen 4 H-Ln 4 H-L n homhx, tl = Av likheten homhx, tl = uhx, tl - parthxl framgår det att 4 H-L n uhx, tl = parthxl + homhx, tl = x + n p -Hn pl t. -Hn pl t sinhn p xl. -Hn pl t sinhn p xl.

PROV I MATEMATIK Transformmetoder 1MA dec 2010

PROV I MATEMATIK Transformmetoder 1MA dec 2010 UPPSALA UNIVERSITET Matematiska institutionen Södergren, Salling PROV I MATEMATIK Transformmetoder MA0 dec 00 SKRIVTID: -9 HJÄLPMEDEL: Formelsamling (delas ut) och miniräknare. MOTIVERA alla lösningar

Läs mer

I situationer där det inte råder någon oklarhet om vilken funktion f som avses, nöjer vi oss med att skriva c n istället för c n Hf L.

I situationer där det inte råder någon oklarhet om vilken funktion f som avses, nöjer vi oss med att skriva c n istället för c n Hf L. Fourierserien Fourierkoefficienter I avsnittet trigonometriska olynom har vi härlett en integralformel för koefficienterna i n c n  n W t när summan är lika med f HtL. Med integralformeln som utgångsunkt

Läs mer

Kryssproblem (redovisningsuppgifter).

Kryssproblem (redovisningsuppgifter). Uppsala Universitet Matematiska Institutionen Bo Styf Transformmetoder, 5 hp ES, gyl, Q, W 212-1-29 Kryssproblem (redovisningsuppgifter). Till var och en av de tio lektionerna hör två problem som du ska

Läs mer

Uppsala Universitet Matematiska Institutionen Bo Styf. Sammanfattning av föreläsningarna 11-14, 16/11-28/

Uppsala Universitet Matematiska Institutionen Bo Styf. Sammanfattning av föreläsningarna 11-14, 16/11-28/ Uppsala Universitet Matematiska Institutionen Bo Styf Transformmetoder, 5 hp gy, IT, W, X 2011-10-26 Sammanfattning av föreläsningarna 11-14, 16/11-28/11 2012. Här lär vi oss använda transformer för att

Läs mer

= y(0) för vilka lim y(t) är ändligt.

= y(0) för vilka lim y(t) är ändligt. Lösningsförslag till tentamensskrivning i SF633 Differentialekvationer I och SF637 Differentialekvationer och transformer III Lördagen den 4 februari, kl 4-9 Hjälpmedel: BETA, Mathematics Handbook Redovisa

Läs mer

= e 2x. Integrering ger ye 2x = e 2x /2 + C, vilket kan skrivas y = 1/2 + Ce 2x. Här är C en godtycklig konstant.

= e 2x. Integrering ger ye 2x = e 2x /2 + C, vilket kan skrivas y = 1/2 + Ce 2x. Här är C en godtycklig konstant. Lösningsförslag till Tentamen, SF1633, Differentialekvationer I den 19 december 216 kl 8: - 13: För godkänt (betyg E krävs tre godkända moduler från del I Varje moduluppgift består av tre frågor För att

Läs mer

Tentamensskrivning i Differentialekvationer I, SF1633(5B1206).

Tentamensskrivning i Differentialekvationer I, SF1633(5B1206). Tentamensskrivning i Differentialekvationer I, SF633(5B6) Torsdagen den 3 oktober 8, kl 8-3 Hjälpmedel: BETA, Mathematics Handbook Redovisa lösningarna på ett sådant sätt att beräkningar och resonemang

Läs mer

Partiella differentialekvationer och randvärdesproblem Separabla PDE Klassiska ekvationer och randvärdesproblem

Partiella differentialekvationer och randvärdesproblem Separabla PDE Klassiska ekvationer och randvärdesproblem Partiella differentialekvationer och randvärdesroblem. 12.1. Searabla PDE 12.2. Klassiska ekvationer och randvärdesroblem. 12.3. Värmeledningsekvationen. 12.4. Vågekvationen. 12.5. alace ekvation. Variabelsearation.

Läs mer

KTH Matematik Tentamensskrivning i Differentialekvationer I, SF1633.

KTH Matematik Tentamensskrivning i Differentialekvationer I, SF1633. KTH Matematik Tentamensskrivning i Differentialekvationer I, SF1633. Måndagen den 17 oktober 11, kl 8-13. Hjälpmedel: BETA, Mathematics Handbook. Redovisa lösningarna på ett sådant sätt att beräkningar

Läs mer

Lösningsförslag, Tentamen, Differentialekvationer och transformer II, del 2, för CTFYS2 och CMEDT3, SF1629, den 9 juni 2011, kl.

Lösningsförslag, Tentamen, Differentialekvationer och transformer II, del 2, för CTFYS2 och CMEDT3, SF1629, den 9 juni 2011, kl. Lösningsförslag, Tentamen, Differentialekvationer och transformer II, del 2, för CTFYS2 och CMEDT3, SF629, den 9 juni 2, kl. 8: 3: Uppgift (av 8 (5 poäng. i. sant, ii. falskt, iii. falskt, iv. sant, v.

Läs mer

uhx, 0L f HxL, u t Hx, 0L ghxl, 0 < x < a

uhx, 0L f HxL, u t Hx, 0L ghxl, 0 < x < a Vågekvaionen Vågekvaionen beskriver vågors ubredning vare sig de gäller ljudvågor, elekromagneiska vågor eller vibraioner i en sräng. Lå oss för enkelhes skull änka oss en horisonell uppspänd sräng som

Läs mer

Lösningar till tentamen i Transformmetoder okt 2007

Lösningar till tentamen i Transformmetoder okt 2007 Lösningar till tentamen i Transformmetoder okt 7. Låt Y (s beteckna Laplacetransformen till funktionen y. Laplacetransformering av den givna ekvationen ger: varav följer att. (a För s > a är Y (s + s Y

Läs mer

Prov i matematik Distans, Matematik A Analys UPPSALA UNIVERSITET Matematiska institutionen

Prov i matematik Distans, Matematik A Analys UPPSALA UNIVERSITET Matematiska institutionen UPPSALA UNIVERSITET Matematiska institutionen Anders Källström Prov i matematik Distans, Matematik A Analys 23 2 5 Skrivtid: -5. Hjälpmedel: Gymnasieformelsamling. Lösningarna skall åtföljas av förklarande

Läs mer

Välkomna till TSRT15 Reglerteknik Föreläsning 2

Välkomna till TSRT15 Reglerteknik Föreläsning 2 Välkomna till TSRT15 Reglerteknik Föreläsning 2 Sammanfattning av föreläsning 1 Lösningar till differentialekvationer Karakteristiska ekvationen Laplacetransformer Överföringsfunktioner Poler Stegsvarsspecifikationer

Läs mer

Lösningsförslag till tentamensskrivning i SF1633 Differentialekvationer I. Tisdagen den 7 januari 2014, kl

Lösningsförslag till tentamensskrivning i SF1633 Differentialekvationer I. Tisdagen den 7 januari 2014, kl Lösningsförslag till tentamensskrivning i SF1633 Differentialekvationer I Tisdagen den 7 januari 14, kl 8-13 Del 1 Modul 1 Befolkningen i en liten stad växer med en hastighet som är proportionell mot befolkningsmängden

Läs mer

dy dx = ex 2y 2x e y.

dy dx = ex 2y 2x e y. UPPSALA UNIVERSITET Matematiska institutionen Pepe Winkler tel. 018-471 3 89 Prov i matematik Civilingenjörsprogrammen Ordinära differentialekvationer, poäng 005-04-04 Skrivtid: 14 19. Hjälpmedel: Skrivdon,

Läs mer

Rita även upp grafen till Fourierseriens summa på intervallet [ 2π, 3π], samt ange summans värde i punkterna π, 0, π, 2π. (5) S(t) = c n e int,

Rita även upp grafen till Fourierseriens summa på intervallet [ 2π, 3π], samt ange summans värde i punkterna π, 0, π, 2π. (5) S(t) = c n e int, Institutionen för matematik KTH Tentamensskrivning, 003-08-5, kl. 14.00 19.00. 5B10/ Diff och Trans del, för F och T. Hjälpmedel: BETA, Mathematics Handbook. För godkänt betyg 3) krävs 18 poäng, medan

Läs mer

(y 2 xy) dx + x 2 dy = 0 y(e) = e. = 2x + y y = 2x + 3y 2e 3t, = (x 2)(y 1) y = xy 4. = x 5 y 3 y = 2x y 3.

(y 2 xy) dx + x 2 dy = 0 y(e) = e. = 2x + y y = 2x + 3y 2e 3t, = (x 2)(y 1) y = xy 4. = x 5 y 3 y = 2x y 3. UPPSALA UNIVERSITET Matematiska institutionen Pepe Winkler tel. 018-471 2 89 Prov i matematik Civilingenjörsprogrammen Ordinära differentialekvationer, 2 poäng 2005-01-10 Skrivtid: 8.00 1.00. Hjälpmedel:

Läs mer

Tentamen SF1633, Differentialekvationer I, den 23 oktober 2017 kl

Tentamen SF1633, Differentialekvationer I, den 23 oktober 2017 kl Matematiska Institutionen, KTH Tentamen SF633, Differentialekvationer I, den 23 oktober 27 kl 8.- 3.. Examinator: Pär Kurlberg OBS: Inga hjälpmedel är tillåtna på tentamensskrivningen. För full poäng krävs

Läs mer

Vi betraktar homogena partiella differentialekvationer (PDE) av andra ordningen

Vi betraktar homogena partiella differentialekvationer (PDE) av andra ordningen Produktlösningar Vi betraktar homogena partiella differentialekvationer (PDE) av andra ordningen u( u( u( u( u( A B C D E 0 (ekv 0) y y y som är definierad på ett (ändligt eller oändlig rektangulär område

Läs mer

Tentamen, Matematik påbyggnadskurs, 5B1304 fredag 20/ kl

Tentamen, Matematik påbyggnadskurs, 5B1304 fredag 20/ kl Institutionen för Matematik KTH Mattias Dahl Tentamen, Matematik påbyggnadskurs, 5B134 fredag /8 4 kl. 14. 19. Lösningar 1. Lös differentialekvationen x 3 y + x y xy + y x 3 ln x, x >. Lösning: Motsvarande

Läs mer

SF1635, Signaler och system I

SF1635, Signaler och system I SF635, Signaler och system I Tentamen tisdagen 0--, kl 4 00 9 00 Hjälpmedel: BETA Mathematics Handbook Räknedosa utan program Formelsamling i Signalbehandling (rosa), Formelsamling för Kursen SF635 (ljusgrön)

Läs mer

x + 9y Skissa sedan för t 0 de två lösningskurvor som börjar i punkterna med koordinaterna

x + 9y Skissa sedan för t 0 de två lösningskurvor som börjar i punkterna med koordinaterna MÄLARDALENS HÖGSKOLA Akademin för utbildning, kultur och kommunikation Avdelningen för tillämpad matematik Examinator: Lars-Göran Larsson TENTAMEN I MATEMATIK MAA134 Differentialekvationer och transformmetoder

Läs mer

Fourierserien. fortsättning. Ortogonalitetsrelationerna och Parsevals formel. f HtL g HtL t, där T W ã 2 p, PARSEVALS FORMEL

Fourierserien. fortsättning. Ortogonalitetsrelationerna och Parsevals formel. f HtL g HtL t, där T W ã 2 p, PARSEVALS FORMEL Fourierserie fortsättig Ortogoalitetsrelatioera och Parsevals formel Med hjälp av ortogoalitetsrelatioera Y Â m W t, Â W t ] =, m ¹, m = () där Xf, g\ = Ÿ T f HtL g HtL, där W ã p, ka ma bevisa följade

Läs mer

Tentamen i matematik. f(x) = ln(ln(x)),

Tentamen i matematik. f(x) = ln(ln(x)), Lösningsförslag Högskolan i Skövde (SK, JS) Tentamen i matematik Kurs: MA52G Matematisk Analys MA23G Matematisk analys för ingenjörer Tentamensdag: 203-05- kl 4.30-9.30 Hjälpmedel : Inga hjälpmedel utöver

Läs mer

Uppsala Universitet Matematiska Institutionen Bo Styf. Sammanfattning av föreläsningarna 15-18, 30/11-12/

Uppsala Universitet Matematiska Institutionen Bo Styf. Sammanfattning av föreläsningarna 15-18, 30/11-12/ Uppsala Universitet Matematiska Institutionen Bo Styf Transformmetoder, 5 hp ES, gyl, Q, W 0-0-9 Sammanfattning av föreläsningarna 5-8, 30/ - / 0. Z-transformen ska avslutas och sedan blir det tentaförberedelser.

Läs mer

KTH Matematik Tentamensskrivning i Differentialekvationer och transformer III, SF1637.

KTH Matematik Tentamensskrivning i Differentialekvationer och transformer III, SF1637. KTH Matematik Tentamensskrivning i Differentialekvationer och transformer III, SF637. Måndagen den 7 oktober, kl 8-3. Hjälpmedel: BETA, Mathematics Handbook. Redovisa lösningarna på ett sådant sätt att

Läs mer

Rita även grafen till Fourierserien på intervallet [ 2π, 4π]. (5) 1 + cos(2t),

Rita även grafen till Fourierserien på intervallet [ 2π, 4π]. (5) 1 + cos(2t), Institutionen för matematik KTH Tentamensskrivning, 24-1-13, kl. 14. 19.. 5B122/2 Diff och Trans 2 del 2, för F, E, T. Hjälpmedel: BETA, Mathematics Handbook. För godkänt betyg 3 krävs 18 poäng, medan

Läs mer

0 a. a -Â n 2 p n. beskriver på sedvanligt sätt en a-periodisk utvidgning av f. Nedanför ritas en partialsumma av Fourierserien.

0 a. a -Â n 2 p n. beskriver på sedvanligt sätt en a-periodisk utvidgning av f. Nedanför ritas en partialsumma av Fourierserien. Sinus- och cosinusserier I slutet v kursen där vi skll lös differentilekvtioner på ändlig intervll v typen H, L, behöver vi konstruer Fourierserier med en viss typ v uppförnde i intervllens ändpunkter.

Läs mer

Lösning till tentamen i SF1633 Differentialekvationer I för BD, M och P, , kl

Lösning till tentamen i SF1633 Differentialekvationer I för BD, M och P, , kl KTH Matematik Bengt Ek och Olle Stormark. Lösning till tentamen i SF633 Differentialekvationer I för BD, M och P, 008 0 6, kl. 4.00 9.00. Hjälpmedel: BETA. Uppgifterna 5 motsvarar kursens fem moduler.

Läs mer

Välkomna till Reglerteknik Föreläsning 2

Välkomna till Reglerteknik Föreläsning 2 Välkomna till Reglerteknik Föreläsning 2 Sammanfattning av föreläsning 1 Lösningar till differentialekvationer Karakteristiska ekvationen Laplacetransformer Överföringsfunktioner Poler Stegsvarsspecifikationer

Läs mer

Andra ordningens lineära differensekvationer

Andra ordningens lineära differensekvationer Adra ordiges lieära differesekvatioer Differese Differese f H + L - f HL mäter hur mycket f :s värde förädras då argumetet förädras med de mista ehete. Låt oss betecka ämda differes med H Df L HL. Eftersom

Läs mer

Institutionen för matematik KTH. Tentamensskrivning, , kl B1210 och 5B1230 Matematik IV, för B, M, och I.

Institutionen för matematik KTH. Tentamensskrivning, , kl B1210 och 5B1230 Matematik IV, för B, M, och I. Institutionen för matematik KTH Tentamensskrivning, 23--9, kl 4 9 5B2 och 5B23 Matematik IV, för B, M, och I Hjälpmedel: BETA, Mathematics Handbook För godkänt betyg 3 krävs 7 poäng, medan för betyg 4

Läs mer

För startpopulationer lika med de stationära lösningarna kommer populationerna att förbli konstant.

För startpopulationer lika med de stationära lösningarna kommer populationerna att förbli konstant. Lösningsförslag till tentamensskrivning i Differentialekvationer I, SF633(5B6) Tisdagen den 6 augusti, kl -9 Hjälpmedel: BETA, Mathematics Handbook Redovisa lösningarna på ett sådant sätt att beräkningar

Läs mer

Två enkla egenvärdesproblem. Två - gissningsvis välbekanta - egenvärdesproblem

Två enkla egenvärdesproblem. Två - gissningsvis välbekanta - egenvärdesproblem Partiella differetialekvatioer Trasformmetodslösigar av lieära differetialekvatioer har vi reda stött på. Me då har det - såär som på ågot udatag - hadlat om ordiära ekvatioer. Nu har ture kommit till

Läs mer

(2xy + 1) dx + (3x 2 + 2x y ) dy = 0.

(2xy + 1) dx + (3x 2 + 2x y ) dy = 0. UPPSALA UNIVERSITET Matematiska institutionen Marko Djordjevic Prov i matematik Civilingenjörsprogrammen Ordinära differentialekvationer, 2 poäng 2006-03-06 Skrivtid: 9.00 1.00. Tillåtna hjälpmedel: Skrivdon,

Läs mer

Del I. Modul 1. Betrakta differentialekvationen

Del I. Modul 1. Betrakta differentialekvationen Lösningsförslag till Tentamen, SF1633, Differentialekvationer I den 24 oktober 2016 kl 8:00-13:00 För godkänt (betyg E) krävs tre godkända moduler från del I Varje moduluppgift består av tre frågor För

Läs mer

med angivande av definitionsmängd, asymptoter och lokala extrempunkter. x 2 e x =

med angivande av definitionsmängd, asymptoter och lokala extrempunkter. x 2 e x = UPPSALA UNIVERSITET Matematiska institutionen Anders Källström Prov i matematik Distans, Matematik A Analys 2004 02 4 Skrivtid: 0-5. Hjälpmedel: Gymnasieformelsamling. Lösningarna skall åtföljas av förklarande

Läs mer

1. Talföljden {t n } n=0 24, n = 13, då den för n 2 satisfierar differensekvationen 12t n 8t n 1 + t n 2 =

1. Talföljden {t n } n=0 24, n = 13, då den för n 2 satisfierar differensekvationen 12t n 8t n 1 + t n 2 = MÄLARDALENS HÖGSKOLA Akademin för utbildning, kultur och kommunikation Avdelningen för tillämpad matematik Eaminator: Lars-Göran Larsson TENTAMEN I MATEMATIK MAA134 Differentialekvationer och transformmetoder

Läs mer

AB2.8: Laplacetransformation av derivator och integraler. Differentialekvationer

AB2.8: Laplacetransformation av derivator och integraler. Differentialekvationer AB2.8: Laplacetransformation av derivator och integraler. Differentialekvationer Laplacetransformen som an analytisk funktion SATS 1 Om Laplaceintegralen F (s) = L (f) = e st f(t)dt är konvergent för s

Läs mer

Transformmetoder. Kurslitteratur: Styf/Sollervall, Transformteori för ingenjörer, 3:e upplagan, Studentlitteratur

Transformmetoder. Kurslitteratur: Styf/Sollervall, Transformteori för ingenjörer, 3:e upplagan, Studentlitteratur UPPSALA UNIVERSITET Matematiska institutionen Transformmetoder Kurslitteratur: Styf/Sollervall, Transformteori för ingenjörer, 3:e upplagan, Studentlitteratur AB. Kontakt: Föreläsare och kursansvarig:

Läs mer

y = sin 2 (x y + 1) på formen µ(x, y) = (xy) k, där k Z. Bestäm den lösning till ekvationen som uppfyler begynnelsevillkoret y(1) = 1.

y = sin 2 (x y + 1) på formen µ(x, y) = (xy) k, där k Z. Bestäm den lösning till ekvationen som uppfyler begynnelsevillkoret y(1) = 1. UPPSALA UNIVERSITET Matematiska institutionen Pepe Winkler tel. 08-47 32 89 Prov i matematik Civilingenjörsprogrammen Ordinära differentialekvationer, 2 poäng 2005-2-4 Skrivtid: 5.00 20.00. Hjälpmedel:

Läs mer

Tentamensskrivning i Differentialekvationer I, SF1633(5B1206). Webbaserad kurs i differentialekvationer I, SF1656.

Tentamensskrivning i Differentialekvationer I, SF1633(5B1206). Webbaserad kurs i differentialekvationer I, SF1656. Tentamensskrivning i Differentialekvationer I, SF1633(5B1206) Webbaserad kurs i differentialekvationer I, SF1656 Torsdagen den 8 januari 2009, kl 1400-1900 Hjälpmedel: BETA, Mathematics Handbook Redovisa

Läs mer

Fouriers metod, egenfunktionsutvecklingar.

Fouriers metod, egenfunktionsutvecklingar. Vårterminen 2002 KONTINUERLIGA SYSTEM, några viktiga begrepp och metoder i kap 3 och H (partiellt) Fouriers metod, egenfunktionsutvecklingar Värmeledning i en begränsad stav med variabelseparation Problem:

Läs mer

= = i K = 0, K =

= = i K = 0, K = ösningsförslag till tentamensskrivning i SF1633, Differentialekvationer I Tisdagen den 14 augusti 212, kl 14-19 Hjälpmedel: BETA, Mathematics Handbook Redovisa lösningarna på ett sådant sätt att beräkningar

Läs mer

Prov i matematik Distans, Matematik A Analys UPPSALA UNIVERSITET Matematiska institutionen

Prov i matematik Distans, Matematik A Analys UPPSALA UNIVERSITET Matematiska institutionen UPPSALA UNIVERSITET Matematiska institutionen Anders Källström Prov i matematik Distans, Matematik A Analys 6 Skrivtid: -5. Hjälpmedel: Gymnasieformelsamling. Lösningarna skall åtföljas av förklarande

Läs mer

y + 1 y + x 1 = 2x 1 z 1 dy = ln z 1 = x 2 + c z 1 = e x2 +c z 1 = Ce x2 z = Ce x Bestäm den allmänna lösningen till differentialekvationen

y + 1 y + x 1 = 2x 1 z 1 dy = ln z 1 = x 2 + c z 1 = e x2 +c z 1 = Ce x2 z = Ce x Bestäm den allmänna lösningen till differentialekvationen UPPSALA UNIVERSITET Matematiska institutionen Vera Djordjevic PROV I MATEMATIK Civilingenjörsprogrammen Ordinära differentialekvationer 2007-10-12 Skrivtid: 9-14. Tillåtna hjälpmedel: Mathematics Handbook

Läs mer

DIFFERENTIALEKVATIONER. INLEDNING OCH GRUNDBEGREPP

DIFFERENTIALEKVATIONER. INLEDNING OCH GRUNDBEGREPP DIFFERENTIALEKVATIONER INLEDNING OCH GRUNDBEGREPP Differentialekvation (DE) är en ekvation som innehåller derivator av en eller flera okända funktioner ORDINÄRA DIFFERENTIAL EKVATIONER i) En differentialekvation

Läs mer

1. Rita in i det komplexa talplanet det område som definieras av följande villkor: (1p)

1. Rita in i det komplexa talplanet det område som definieras av följande villkor: (1p) TENTAMEN I MATEMATIK MED MATEMATISK STATISTIK HF TEN Datum: -- Tid: :5-7:5 Hjälpmedel: Formelblad, delas ut i salen Miniräknare (av vilken tp som hels Förbjudna hjälpmedel: Ägna formelblad, telefon, laptop

Läs mer

TEN2, ( 3 hp), betygsskala A/B/C/D/E/Fx/F. TEN2 omfattar Laplace-, Fourier- och z-transformer samt Fourierserier

TEN2, ( 3 hp), betygsskala A/B/C/D/E/Fx/F. TEN2 omfattar Laplace-, Fourier- och z-transformer samt Fourierserier Kurs-PM MATEMATIK 2 (7.5 hp) P4, HF1000, ( tidigare 6H3011) Kursansvarig: Armin Halilovic, http://www.sth.kth.se/armin E-Mail armin@sth.kth.se rum 5046, Campus Haninge KURSFORDRINGAR: Examination: Godkända

Läs mer

y(0) = e + C e 1 = 1

y(0) = e + C e 1 = 1 KTH-matematik Tentamensskrivning, 006-01-14, kl. 14.00 19.00. 5B106 Differentialekvationer I, för BDMP. Hjälpmedel: BETA, Mathematics Handbook. För godkänt betyg (3) krävs minst 17 poäng, för betyg 4 krävs

Läs mer

dx/dt x y + 2xy Ange även ekvationerna för de mot de stationära punkterna svarande linjariserade systemen.

dx/dt x y + 2xy Ange även ekvationerna för de mot de stationära punkterna svarande linjariserade systemen. MÄLARDALENS HÖGSKOLA Akademin för utbildning, kultur och kommunikation Avdelningen för tillämpad matematik Examinator: Lars-Göran Larsson TENTAMEN I MATEMATIK MAA13 Differentialekvationer och transformmetoder

Läs mer

Polynom över! Till varje polynom hör en funktion DEFINITION. Grafen till en polynomfunktion

Polynom över! Till varje polynom hör en funktion DEFINITION. Grafen till en polynomfunktion Polynom över Under baskursen bekantade du dig med polynomen över de komplexa talen. Nedanstående material är till stora delar en repetition av detta stoff. DEFINITION Ett polynom över är ett uttryck av

Läs mer

UPPSALA UNIVERSITET Matematiska institutionen Pepe Winkler tel

UPPSALA UNIVERSITET Matematiska institutionen Pepe Winkler tel UPPSALA UNIVERSITET Matematiska institutionen Pepe Winkler tel. 018-471 32 89 Prov i matematik Civilingenjörsprogrammen Ordinära differentialekvationer, 2 poäng 2005-10-10 Skrivtid: 9.00 14.00. Hjälpmedel:

Läs mer

Laplacetransformen. Från F till L. Den odiskutabla populäriteten hos Fourierintegralen. f HtL - w t t, w œ R (1)

Laplacetransformen. Från F till L. Den odiskutabla populäriteten hos Fourierintegralen. f HtL - w t t, w œ R (1) Från F ill L Laplaceransformen Den odiskuabla populärieen hos Fourierinegralen f HL - w, w œ R () har a göra med a den ger informaion om vilka frekvenser w som ingår i signalen f, och med vilken syrka.

Läs mer

(x + 1) dxdy där D är det ändliga område som begränsas av kurvorna

(x + 1) dxdy där D är det ändliga område som begränsas av kurvorna UPPSALA UNIVERSITET Matematiska institutionen Anders Källström Prov i matematik ES, W Flervariabelanalys 8 1 1 Skrivtid: 9-1. Inga hjälpmedel. Lösningarna skall åtföljas av förklarande text/figurer. Varje

Läs mer

IV, SF1636(5B1210,5B1230).

IV, SF1636(5B1210,5B1230). Lösningar till tentamensskrivning i Matematik I, F636(5B,5B3) Tisdagen den 9 augusti 8, kl 4-9 Hjälpmedel: BETA, Mathematics Handbook Redovisa lösningarna på ett sådant sätt att beräkningar och resonemang

Läs mer

Institutionen för matematik KTH. Tentamensskrivning, , kl B1202/2 Diff och Trans 2 del 2, för F och T.

Institutionen för matematik KTH. Tentamensskrivning, , kl B1202/2 Diff och Trans 2 del 2, för F och T. Institutionen för matematik KTH Tentamensskrivning, 3-5-6, kl. 14. 19.. 5B1/ Diff och Trans del, för F och T. Hjälpmedel: BETA, Mathematics Handbook. För godkänt betyg 3 krävs 18 poäng, medan för betyg

Läs mer

+ 5a 16b b 5 då a = 1 2 och b = 1 3. n = 0 där n = 1, 2, 3,. 2 + ( 1)n n

+ 5a 16b b 5 då a = 1 2 och b = 1 3. n = 0 där n = 1, 2, 3,. 2 + ( 1)n n Repetition, Matematik I.. Bestäm koefficienten vid 2 i utvecklingen av ( + 2 2 ) 5. 2. Bestäm koefficienten vid 2 i utvecklingen av ( + ) n för n =, 2,,.. Beräkna a 5 5a 2b + 5a 2b 2 5a 2 b + 5a 6b 2b

Läs mer

DIFFERENTIALEKVATIONER. INLEDNING OCH GRUNDBEGREPP

DIFFERENTIALEKVATIONER. INLEDNING OCH GRUNDBEGREPP Armin Halilovic: EXTRA ÖVNINGAR, SF676 Differentialekvationer Inledning DIFFERENTIALEKVATIONER INLEDNING OCH GRUNDBEGREPP Differentialekvation (DE) är en ekvation som innehåller derivator av en eller flera

Läs mer

Tentamen i Envariabelanalys 2

Tentamen i Envariabelanalys 2 Linköpings universitet Matematiska institutionen Kurskod: TATA42 Provkod: TEN Tentamen i Envariabelanalys 2 206 0 8, 4 9 Inga hjälpmedel. Lösningarna ska vara fullständiga, välmotiverade, ordentligt skrivna

Läs mer

k=0 kzk? (0.2) 2. Bestäm alla holomorfa funktioner f(z) = f(x + iy) = u(x, y) + iv(x, y) sådana att u(x, y) = x 2 2xy y 2. 1 t, 0 t 1, f(t) =

k=0 kzk? (0.2) 2. Bestäm alla holomorfa funktioner f(z) = f(x + iy) = u(x, y) + iv(x, y) sådana att u(x, y) = x 2 2xy y 2. 1 t, 0 t 1, f(t) = LUNDS TEKNISKA HÖGSKOLA MATEMATIK TENTAMENSSKRIVNING Funktionsteori 5 9 kl 4 9 Hjälpmedel: Bifogat formelblad. Lösningarna skall vara försedda med ordentliga motiveringar. Skriv fullständiga meningar och

Läs mer

DIFFERENTIALEKVATIONER. INLEDNING OCH GRUNDBEGREPP

DIFFERENTIALEKVATIONER. INLEDNING OCH GRUNDBEGREPP Armin Halilovic: EXTRA ÖVNINGAR DIFFERENTIALEKVATIONER. INLEDNING OCH GRUNDBEGREPP Differentialekvation (DE) är en ekvation som innehåller derivator av en eller flera okända funktioner. ORDINÄRA DIFFERENTIALEKVATIONER

Läs mer

} + t { z t -1 - z t (16-8)t t = 4. d dt. (5 + t) da dt. {(5 + t)a} = 4(5 + t) + A = 4(5 + t),

} + t { z t -1 - z t (16-8)t t = 4. d dt. (5 + t) da dt. {(5 + t)a} = 4(5 + t) + A = 4(5 + t), Tentamensskrivning i Matematik IV, 5B110 Måndagen den 1 oktober 005, kl 1400-1900 Hjälpmedel: BETA, Mathematics Handbook Redovisa lösningarna på ett sådant sätt att beräkningar och resonemang är lätta

Läs mer

ÚÚ dxdy = ( 4 - x 2 - y 2 È Î

ÚÚ dxdy = ( 4 - x 2 - y 2 È Î Lösningsförslag till tentamensskrivning i Matematik IV, 5B0 Måndagen den 0 oktober 00, kl 400-900 Hjälpmedel: BETA, Mathematics Handbook Redovisa lösningarna på ett sådant sätt att beräkningar och resonemang

Läs mer

SVAR: Det är modell 1 som är rimlig för en avsvalningsprocess. Föremålets temperatur efter lång tid är 20 grader Celsius.

SVAR: Det är modell 1 som är rimlig för en avsvalningsprocess. Föremålets temperatur efter lång tid är 20 grader Celsius. Lösningsförslag till tentamensskrivning i SF633 Differentialekvationer I Onsdagen den maj 03, kl 0800-300 Hjälpmedel: BETA, Mathematics Handbook Redovisa lösningarna på ett sådant sätt att beräkningar

Läs mer

SF1625 Envariabelanalys Lösningsförslag till tentamen DEL A

SF1625 Envariabelanalys Lösningsförslag till tentamen DEL A SF165 Envariabelanalys Lösningsförslag till tentamen 15-4-7 DEL A 1. Låt f(x) = arcsin x + 1 x. A. Bestäm definitionsmängden till funktionen f. B. Bestäm funktionens största och minsta värde. (Om du har

Läs mer

2. För vilka värden på parametrarna α och β har det linjära systemet. som satisfierar differensekvationen

2. För vilka värden på parametrarna α och β har det linjära systemet. som satisfierar differensekvationen MÄLARDALENS HÖGSKOLA Akademin för utbildning, kultur och kommunikation Avdelningen för tillämpad matematik Examinator: Lars-Göran Larsson TENTAMEN I MATEMATIK MAA13 Differentialekvationer och transformmetoder

Läs mer

Lösningsförslag till tentan i 5B1115 Matematik 1 för B, BIO, E, IT, K, M, ME, Media och T,

Lösningsförslag till tentan i 5B1115 Matematik 1 för B, BIO, E, IT, K, M, ME, Media och T, Institutionen för Matematik, KTH. Lösningsförslag till tentan i 5B5 Matematik för B, BIO, E, IT, K, M, ME, Media och T, 8.. Visa att påståendet P n : n + n < 4 n är sant för n =,, 4.... (a) P : + = 4 +

Läs mer

Tentamen i Matematisk analys, HF1905 exempel 1 Datum: xxxxxx Skrivtid: 4 timmar Examinator: Armin Halilovic

Tentamen i Matematisk analys, HF1905 exempel 1 Datum: xxxxxx Skrivtid: 4 timmar Examinator: Armin Halilovic Tentamen i Matematisk analys, HF95 exempel atum: xxxxxx Skrivtid: timmar Examinator: Armin Halilovic För godkänt betyg krävs av max poäng Betygsgränser: För betyg A, B, C,, E krävs, 9, 6, respektive poäng

Läs mer

Svar till övningar. Nanovetenskapliga tankeverktyg.

Svar till övningar. Nanovetenskapliga tankeverktyg. Svar till övningar. Nanovetenskapliga tankeverktyg. January 18, 2010 Vecka 2 Komplexa fourierserier 1. Fourierkomponenterna ges av dvs vi har fourierserien f(t) = π 2 + 1 π n 0 { π n = 0 c n = 2 ( 1) n

Läs mer

Tentamen, SF1629, Differentialekvationer och Transformer II (del 2) 10 januari 2017 kl. 14:00-19:00. a+bx e x 2 dx

Tentamen, SF1629, Differentialekvationer och Transformer II (del 2) 10 januari 2017 kl. 14:00-19:00. a+bx e x 2 dx KTH, Matematik Tentamen, SF1629, Differentialekvationer och Transformer II (del 2) 10 januari 2017 kl. 14:00-19:00 Tentamen består av åtta uppgifter där vardera uppgift ger maximalt fyra poäng. Preliminära

Läs mer

Instuderingsfrågor i Funktionsteori

Instuderingsfrågor i Funktionsteori Instuderingsfrågor i Funktionsteori Anvisningar. Avsikten med dessa instuderingsfrågor är att ge Dig möjlighet att fortlöpande kontrollera att Du någorlunda behärskar kursens teori. Om Du märker att Du

Läs mer

Program: DATA, ELEKTRO

Program: DATA, ELEKTRO Program: DATA, ELEKTRO TENTAMEN Datum: 0 aug 007 Kurser: MATEMATIK OCH MAT STATISTIK 6H3000, 6L3000, MATEMATIK 6H30 TEN (Differential ekvationer, komplea tal) Skrivtid: 3:5-7:5 Lärare: Armin Halilovic

Läs mer

b) (2p) Bestäm alla lösningar med avseende på z till ekvationen Uppgift 3. ( 4 poäng) a ) (2p) Lös följande differentialekvation ( y 4) y

b) (2p) Bestäm alla lösningar med avseende på z till ekvationen Uppgift 3. ( 4 poäng) a ) (2p) Lös följande differentialekvation ( y 4) y TENTAMEN Datum: 6 april 00 TEN: Differentialekvationer, komplea tal och Taylors formel Kurskod HF000, HF00, 6H0, 6H000, 6L000 Skrivtid: 8:5-:5 Hjälpmedel: Bifogat formelblad och miniräknare av vilken typ

Läs mer

Lösningsförslag obs. preliminärt, reservation för fel

Lösningsförslag obs. preliminärt, reservation för fel Lösningsförslag obs. preliminärt, reservation för fel v0.6, 4 april 04 Högskolan i Skövde (SK, JS) Tentamen i matematik Kurs: MA5G Matematisk Analys MA3G Matematisk analys för ingenjörer Tentamensdag:

Läs mer

Komplettering: 9 poäng på tentamen ger rätt till komplettering (betyg Fx).

Komplettering: 9 poäng på tentamen ger rätt till komplettering (betyg Fx). TENTAMEN juni 0 HF006 och HF008 Tid :-7: Moment: TEN (Analys), hp, skriftlig tentamen Kurser: Analys och linjär algebra, HF008, lärare: Fredrik Bergholm och Inge Jovik, Linjär algebra och analys, HF006,

Läs mer

= 1, fallet x > 0 behandlas pga villkoret. x:x > 1

= 1, fallet x > 0 behandlas pga villkoret. x:x > 1 Lösningsförslag till tentamensskrivning i Diff & Trans I, 5B00 Torsdagen den 0 januari 00, kl 400-900 Hjälpmedel: BETA, Mathematics Handbook Redovisa lösningarna på ett sådant sätt att beräkningar och

Läs mer

Transformer och differentialekvationer (MVE100)

Transformer och differentialekvationer (MVE100) Chalmers tekniska högskola och Göteborgs universitet Matematik 19 januari 211 Transformer och differentialekvationer (MVE1) Styckvis definierade funktioner forts. Laplacetransformen Som nämnts i inledningen

Läs mer

Studietips inför kommande tentamen TEN1 inom kursen TNIU23

Studietips inför kommande tentamen TEN1 inom kursen TNIU23 Studietips inför kommande tentamen TEN1 inom kursen TNIU23 Lämplig ordning på sammanfattande studier inom denna kurs: Inled med att grundligt studera föreläsningsanteckningarna Därefter läs tillhörande

Läs mer

1. (a) Lös ekvationen (2p) ln(x) ln(x 3 ) = ln(x 6 ). (b) Lös olikheten. x 3 + x 2 + x 1 x 1

1. (a) Lös ekvationen (2p) ln(x) ln(x 3 ) = ln(x 6 ). (b) Lös olikheten. x 3 + x 2 + x 1 x 1 Högskolan i Halmstad Tentamensskrivning 6 hp ITE/MPE-lab MA2047 Algebra och diskret matematik Mikael Hindgren Onsdagen den 26 oktober 2016 035-167220 Skrivtid: 9.00-13.00 Inga hjälpmedel. Fyll i omslaget

Läs mer

= ye xy y = xye xy. Konstruera även fasporträttet med angivande av riktningen på banorna. 5. Lös systemet x

= ye xy y = xye xy. Konstruera även fasporträttet med angivande av riktningen på banorna. 5. Lös systemet x Uppsala Universitet Matematiska institutionen Anders Källström Prov i matematik Ordinära differentialekvationer F,Q,W,IT Civilingenjörsutbildningen 1996-6-7 Skrivtid: 15. 21.. Varje problem ger högst 5

Läs mer

PROV I MATEMATIK Algoritmik 14 april 2012

PROV I MATEMATIK Algoritmik 14 april 2012 UPPSALA UNIVERSITET Matematiska institutionen Salling (070-6527523) SKRIVTID: 9-13 HJÄLPMEDEL: Inga. PROV I MATEMATIK Algoritmik 14 april 2012 Svar/lösningar skall åtföljas av förklarande text. För godkänt

Läs mer

R LÖSNINGG. Låt. (ekv1) av ordning. x),... satisfierar (ekv1) C2,..., Det kan. Ekvationen y (x) har vi. för C =4 I grafen. 3x.

R LÖSNINGG. Låt. (ekv1) av ordning. x),... satisfierar (ekv1) C2,..., Det kan. Ekvationen y (x) har vi. för C =4 I grafen. 3x. Armin Halilovic: EXTRA ÖVNINGAR, SF676 Begynnelsevärdesproblem Enkla DE ALLMÄN LÖSNING PARTIKULÄR LÖSNING SINGULÄR R LÖSNINGG BEGYNNELSEVÄRDESPROBLEM (BVP) Låt ( n) F(,,,, y ( )) vara en ordinär DE av

Läs mer

BEGREPPSMÄSSIGA PROBLEM

BEGREPPSMÄSSIGA PROBLEM BEGREPPSMÄSSIGA PROBLEM Större delen av de rekommenderade uppgifterna i boken är beräkningsuppgifter. Det är emellertid även viktigt att utveckla en begreppsmässig förståelse för materialet. Syftet med

Läs mer

Lösningsförslag till tentamen i SF1683, Differentialekvationer och Transformmetoder (del 2) 4 april < f,g >=

Lösningsförslag till tentamen i SF1683, Differentialekvationer och Transformmetoder (del 2) 4 april < f,g >= KTH, Matematik Maria Saprykina Lösningsförslag till tentamen i SF683, Differentialekvationer och Transformmetoder (del 2) 4 april 28 Tentamen består av sex uppgifter där vardera uppgift ger maximalt fyra

Läs mer

Tentamen i Beräkningsvetenskap II, 5.0 hp,

Tentamen i Beräkningsvetenskap II, 5.0 hp, Uppsala universitet Institutionen för informationsteknologi Beräkningsvetenskap Per Lötstedt, tel. 47 2986 Saleh Rezaeiravesh Tentamen i Beräkningsvetenskap II, 5.0 hp, 206-0-4 Skrivtid: 4 00 7 00 (OBS!

Läs mer

Högskolan i Skövde (SK, JS) Svensk version Tentamen i matematik Lösningsförslag till del I

Högskolan i Skövde (SK, JS) Svensk version Tentamen i matematik Lösningsförslag till del I Högskolan i Skövde (SK, JS) Svensk version Tentamen i matematik Lösningsförslag till del I Kurs: MA15G Matematisk Analys MA13G Matematisk analys för ingenjörer MA71A Matematik för lärare C, delkurs Matematisk

Läs mer

TATA42: Föreläsning 7 Differentialekvationer av första ordningen och integralekvationer

TATA42: Föreläsning 7 Differentialekvationer av första ordningen och integralekvationer TATA42: Föreläsning 7 Differentialekvationer av första ordningen och integralekvationer Johan Thim 0 januari 207 Introduktion En differentialekvation (DE) i en variabel är en ekvation som innehåller både

Läs mer

Chalmers tekniska högskola Datum: kl Telefonvakt: Milo Viviani MVE500, TKSAM-2

Chalmers tekniska högskola Datum: kl Telefonvakt: Milo Viviani MVE500, TKSAM-2 Chalmers tekniska högskola Datum: 7--8 kl. 8.. Tentamen Telefonvakt: Milo Viviani MVE5, TKSAM- Tentan rättas och bedöms anonymt. Skriv tentamenskoden tydligt på placeringlista och samtliga inlämnade papper.

Läs mer

Ansvariga lärare: Yury Shestopalov, rum 3A313, tel 054-7001856 (a) Problem 1. Använd Eulers metod II (tre steg) och lös begynnelsevärdesproblemet

Ansvariga lärare: Yury Shestopalov, rum 3A313, tel 054-7001856 (a) Problem 1. Använd Eulers metod II (tre steg) och lös begynnelsevärdesproblemet FACIT: Numeriska metoder Man måste lösa tre problem. Problemen 1 och är obligatoriska, och man kan välja Problemet 3 eller 4 som den tredje. Hjälp medel: Miniräknare (med Guidebook för miniräknare) och

Läs mer

DT1130 Spektrala transformer Tentamen

DT1130 Spektrala transformer Tentamen DT3 Spektrala transformer Tentamen 3 Tentamen består av fem uppgifter där varje uppgift maximalt ger 4 p. Normalt gäller följande betygsgränser: E: 9 p, D:.5 p, C: 4 p, B: 6 p, A: 8 p Tillåtna hjälpmedel:

Läs mer

Komplettering: 9 poäng på tentamen ger rätt till komplettering (betyg Fx).

Komplettering: 9 poäng på tentamen ger rätt till komplettering (betyg Fx). TENTAMEN 7 juni 2011 Tid: 13:15-17:15 Moment: TEN2 (Analys), 4 hp, skriftlig tentamen Kurser: Analys och linjär algebra, HF1008 (Program: Elektroteknik), lärare: Inge Jovik, Linjär algebra och analys,

Läs mer

3 differensekvationer med konstanta koefficienter.

3 differensekvationer med konstanta koefficienter. Matematiska institutionen Carl-Henrik Fant 17 november 2000 3 differensekvationer med konstanta koefficienter 31 T Med en menar vi en av rella eller komplexa tal varje heltal ges ett reellt eller komplext

Läs mer

= a - bp(t), dp dt. = ap - bp 2. = 5000P - P 2. = 5000P dt

= a - bp(t), dp dt. = ap - bp 2. = 5000P - P 2. = 5000P dt Tentamensskrivning i Matematik IV, 5B0. Onsdagen den 0 oktober 004, kl 400-900. Hjälpmedel: BETA, Mathematics Handbook. Redovisa lösningarna på ett sådant sätt att beräkningar och resonemang är lätta att

Läs mer

SF1635, Signaler och system I

SF1635, Signaler och system I SF65, Signaler och system I Tentamen tisdagen 4--4, kl 8 Hjälpmedel: BETA Mathematics Handbook. Formelsamling i Signalbehandling rosa), Formelsamling för Kursen SF65 ljusgrön). Obs : Obs : Obs : Obs 4:

Läs mer

Skrivtid: Lösningar ska åtföljas av förklarande text. Hjälpmedel: formelsamling och manuella skrivdon. 1. Lös ekvationen z 4 = 16i.

Skrivtid: Lösningar ska åtföljas av förklarande text. Hjälpmedel: formelsamling och manuella skrivdon. 1. Lös ekvationen z 4 = 16i. UPPSALA UNIVERSITET Matematiska institutionen Fredrik Strömberg och Leo Larsson Prov i matematik Fristående kurs Matematik MN 00-0-0 Skrivtid: 9.00 4.00 Lösningar ska åtföljas av förklarande text. Hjälpmedel:

Läs mer

Föreläsning 1 Reglerteknik AK

Föreläsning 1 Reglerteknik AK Föreläsning 1 Reglerteknik AK c Bo Wahlberg Avdelningen för Reglerteknik, KTH 29 augusti, 2016 2 Introduktion Example (Temperaturreglering) Hur reglerar vi temperaturen i ett hus? u Modell: Betrakta en

Läs mer

Matematiska Institutionen L osningar till v arens lektionsproblem. Uppgifter till lektion 9:

Matematiska Institutionen L osningar till v arens lektionsproblem. Uppgifter till lektion 9: Uppsala Universitet Matematiska Institutionen Inger Sigstam Envariabelanalys, hp --6 Uppgifter till lektion 9: Lösningar till vårens lektionsproblem.. Ett fönster har formen av en halvcirkel ovanpå en

Läs mer

A dt = 5 2 da dt + A 100 =

A dt = 5 2 da dt + A 100 = Tentamensskrivning i Matematik IV, F1636(5B11,5B13) Tisdagen den 13 november 7, kl 14-19 Hjälpmedel: BETA, Mathematics Handbook Redovisa lösningarna på ett sådant sätt att beräkningar och resonemang är

Läs mer