TEN2, ( 3 hp), betygsskala A/B/C/D/E/Fx/F. TEN2 omfattar Laplace-, Fourier- och z-transformer samt Fourierserier

Save this PDF as:
 WORD  PNG  TXT  JPG

Storlek: px
Starta visningen från sidan:

Download "TEN2, ( 3 hp), betygsskala A/B/C/D/E/Fx/F. TEN2 omfattar Laplace-, Fourier- och z-transformer samt Fourierserier"

Transkript

1 Kurs-PM MATEMATIK 2 (7.5 hp) P4, HF1000, ( tidigare 6H3011) Kursansvarig: Armin Halilovic, rum 5046, Campus Haninge KURSFORDRINGAR: Examination: Godkända tentamina: TEN1, ( 3 hp), betygsskala A/B/C/D/E/Fx/F. TEN1 omfattar differential ekvationer, komplexa tal och Taylors formel : TEN2, ( 3 hp), betygsskala A/B/C/D/E/Fx/F. TEN2 omfattar Laplace-, Fourier- och z-transformer samt Fourierserier Godkända inlämningsuppgifter (LAB1, 1,5 hp), betygsskala underkänd, godkänd Slutbetyget grundas på samtliga moment. Slutbetygsskala A/B/C/D/E/Fx/F TENTAMINA Poängfördelning och betygsgränser: Tentamen ger maximalt 32 poäng. Betygsgränser: För betyg A, B, C, D, E krävs 30, 24, 20, 16 respektive 12 poäng. Komplettering: 11 poäng på tentamen ger rätt till komplettering (betyg Fx). Vem som har rätt till komplettering framgår av betyget Fx på MINA SIDOR. Komplettering sker c:a två veckor efter att tentamen är rättad. Om komplettering är godkänd rapporteras betyg E, annars rapporteras F. LABORATIONSUPPGIFTER (Lab1) Kontakta läraren angående dina labbuppgifter. LITTERATUR: Del 1: Litteratur: Modern Engineering Mathematics, 4th Edition, Glyn James ( Alternativ för del 1 Matematik för ingenjörer, S Rodhe; H Solervall ) Del 2: Transformteori för ingenjörer; författare: H. Sollervall, B Styf, (tredje upplagan) förlag: Studentlitteratur Alternativ för del 2: Transformer - från jω till wavelets ; författare: Lars Bengtsson & Bill Karlström, förlag: Studentlitteratur Kursuppläggning: Differentialekvationer: (TEN1 2p i mitten av P1 ) Transformmetoder: (TEN2 2p) (LAB1 1p, betygsskala U, G) FÖRELÄSNINGAR: 28x 2h = 56 timmar ÖVNINGAR I DATASAL: 8x2h=16 h

2 ALTERNARIV 1. Kurslitteratur: Modern Engineering Mathematics 4th EditionGlyn James Kurslitteratur: Modern Engineering Mathematics 4th EditionGlyn James Kursinformation. Komplexa tal: Inledning. Den imaginära enheten. Komplexa tal på formen a+bi (rektangulär form). Det komplexa talplanet. (Arganddiagram) Räkneregler. Addition, subtraktion, multiplikation, division. Realdel, imaginärdel, konjugat till ett komplext tal. Absolutbelopp (modulus) och argument. Komplexa tal på polär form (trigonometrisk form och potensform). Räkneregler. Eulers formel. De Moivres sats. Binomiska ekvationer. Roten ur ett komplext tal. Avsnitt i boken Algebraiska ekvationer Differentialekvationer: Inledning. Klassifikation. Allmän och partikulär lösning. Viktiga exempel Chapter Chapter , , stenciler Chapter 3 31, 34, 38a, b, c Chapter 10 1, a,b,e,g,h Separabla differentialekvationer Chapter Linjära differentialekvationer av första ordningen Chapter 10 31, 32, Homogena linjära differentialekvationer med konstanta koefficienter Inhomogena linjära differentialekvationer av högre ordningen med konstanta koefficienter och tillämpningar. Tillämpningar. Differential ekvationer som matematiska modeller (radioaktivt sönderfall, elektriska kretsar, Newtons avkylningslag, volymförändring...). Taylors formel, Maclaurins formel L Hospitals regel 33 a-d Chapter 10 55, Chapter , 63 a , , Chapter 10 Gamla tentor Chapter 9 15, 19a,b,c

3 ALTERNARIV 2. Kursboken: Matematik för ingenjörer, S Rodhe, H Sollervall, femte upplagan Avsnitt i läroboken Beskrivning Testproblem 3.1 Komplexa tal: Inledning. Algebraiska ekvationer Det komplexa talplanet. 5, 6, Komplexa tal i polär form. De Moivres formel , 3.10, Komplexa tal i potensform.eulers formel , Binomiska ekvationer Taylors formel, Maclaurins formel 15.1, 15.2, 12, , , 14.2 Differentialekvationer: Inledning. Allmän och 1-5 partikulär lösning. Differential ekvationer som matematiska modeller (radioaktivt sönderfall, elektriska kretsar, Newtons avkylningslag, volymförändring...). 14.3, 14.4 Olika typer av diff ekvationer. Separabla differentialekvationer Tillämpningar Linjära differentialekvationer av första ordningen 9, , 14.8 Homogena linjära differentialekvationer med konstanta koefficienter 11, , Inhomogena linjära differentialekvationer av högre ordningen med konstanta koefficienter och tillämpningar , 14.31

4 ALTERNARIV 3. Kursboken:: Calculus (A Complete Course); författare: Adams, Robert A; fifth/sixth edition Moment i boken: Calculus (A Complete Course); författare: Adams, Robert A; fifth/sixth edition Komplexa tal: Grundläggande definitioner och räkneregler. Det komplexa talplanet. Absolutbelopp, argument,konjugat. Komplexa tal i polär form och potensform. Avsnitt i boken A1 (Appendix 1 ) Viktiga exempel E (endast udda tal) A De Moivres formel. Euler formel. A1 E 5, Binomiska ekvationer. Algebraiska A1 E7, ekvationer. Taylors formel, Maclaurins formel 4.8 E1,2 1,3,5 Differentialekvationer: Inledning E3,4 27,29 Allmän och partikulär lösning. Uppl(6) 17.1 E1,2 1,3,5,7 Uppl(5) AppendixIV 1,3,5,7 Separabla differentialekvationer. 7.9 E Tillämpningar 7.9 E4 stenciler Linjära differentialekvationer av första 7.9 E ordningen Övning i en datasal Homogena linjära differentialekvationer med konstanta koefficienter 3.7 E1-E ,25 Inhomogena linjära differentialekvationer av högre ordningen med konstanta koefficienter: Resonans fall Tillämpningar och repetition Uppl (6): 17.6 Uppl (5): 3.7 E1,2,3 E7,E8 1,3,5,7, stenciler

5 Del2 (moment Ten2, 3p ): Transformmetoder Litteratur: Transformteori för ingenjörer. H. Sollervall (tredje upplagan) Den första lektionen i Transformmetoder: Tis 27/4 Tid: 13:15-15:15 Lokal: 5093F Föreläsningar: Transformmetoder Avsnitt i boken Rekomm. uppgifter: Testproblem Övningar Laplacetransformen. Kapitel 1 Definition och egenskaper. Inverstransformen ,8 Transformering av derivator. Räkneregler. Dämpningen och fördröjningen 1.2, Differential ekvationer ,7,14 Heaviside-,impuls- och rampfunktion. 1.4, A,B,C ,17a,b 19a,b Överföringsfunktion, impulssvar och stabilitet a,b, 21a,b 1.5a,-1.6a Integral ekvationer. Faltning , 23, 25, System av linjära differentialekvationer. 5.1 Gamla tentor Z-transformen. Kapitel 2 Definition och egenskaper. Inverstransformering Räkneregler för z-transformer 2.2 4, 5a,b,c Differensekvationer 2.2 3, Överföringsfunktion, impulssvar, poler till 2.3 8c,d överföringsfunktion och stabilitet. Fourierserier. Kapitel 3 Periodiska funktioner. Trigonometriska funktioner. 3.1, 3.2, 1a, 4 De trigonometriska basfunktionerna. Fourierserier på trigonometrisk form 3.3, Udda och jämna funktioner. Sinusserier, Gamla tentor cosinusserier Amplitud- fasvinkelform. Komplex form 3.4, , 23, 24 Gamla tentor Något om Fouriertransformen. Kapitel 4 Definition av Fourietransformen. Invertering av Fourietransformen. Frekvensfunktionen F(ω) , 4.2, 4.3

Transformmetoder. Kurslitteratur: Styf/Sollervall, Transformteori för ingenjörer, 3:e upplagan, Studentlitteratur

Transformmetoder. Kurslitteratur: Styf/Sollervall, Transformteori för ingenjörer, 3:e upplagan, Studentlitteratur UPPSALA UNIVERSITET Matematiska institutionen Transformmetoder Kurslitteratur: Styf/Sollervall, Transformteori för ingenjörer, 3:e upplagan, Studentlitteratur AB. Kontakt: Föreläsare och kursansvarig:

Läs mer

LINJÄR ALGEBRA OCH DIFFERENTIALEKVATIONER, M0031M VT-16

LINJÄR ALGEBRA OCH DIFFERENTIALEKVATIONER, M0031M VT-16 LINJÄR ALGEBRA OCH DIFFERENTIALEKVATIONER, M0031M VT-16 Denna kurs innehåller fyra olika delar: komplexa tal, linjär algebra, differentialekvationer och en laboration i Matlab. Vi börjar med en introduktion

Läs mer

KURSPROGRAM TILL KURSEN DIFFERENTIAL- OCH INTEGRALKALKYL II: 5B1106, DEL 1, FÖR F, HT 2001

KURSPROGRAM TILL KURSEN DIFFERENTIAL- OCH INTEGRALKALKYL II: 5B1106, DEL 1, FÖR F, HT 2001 INSTITUTIONEN FÖR MATEMATIK Per Sjölin KURSPROGRAM TILL KURSEN DIFFERENTIAL- OCH INTEGRALKALKYL II: 5B1106, DEL 1, FÖR F, HT 2001 Kursledare: Per Sjölin, rum 3632, Lindstedtsvägen 25, tel 790 7204, pers@math.kth.se.

Läs mer

Matematik 4 för basår, 8 högskolepoäng Föreläsnings- och lektionsplanering

Matematik 4 för basår, 8 högskolepoäng Föreläsnings- och lektionsplanering Matematik 4 för basår, 8 högskolepoäng Föreläsnings- och lektionsplanering Kursboken innehåller uppgifter på tre nivåer, a,b och c, i stigande svårighetsgrad. Efter varje kapitel finns en bra sammanfattning,

Läs mer

Planering Analys 1, höstterminen 2011

Planering Analys 1, höstterminen 2011 Nr 1 Matematikcentrum Matematik NF Planering Analys 1, höstterminen 2011 Program Anders Olofsson Kurslitteratur: Adams RA, Essex C, Calculus a complete course, sjunde upplagan, 2010 (A). Gamla tentor delas

Läs mer

Matematik och statistik NV1, 10 poäng

Matematik och statistik NV1, 10 poäng UPPSALA UNIVERSITET Matematiska institutionen Höstterminen 2006 Matematik och statistik NV1, 10 poäng Välkommen till Matematiska institutionen och kursen Matematik och statistik NV1, 10p. Kursen består

Läs mer

91MA11/7, 92MA11/7 Matematik 1 - Delkurs: Algebra, 7,5 hp Kurs-PM vt 2015

91MA11/7, 92MA11/7 Matematik 1 - Delkurs: Algebra, 7,5 hp Kurs-PM vt 2015 91MA11/7, 92MA11/7 Matematik 1 - Delkurs: Algebra, 7,5 hp Kurs-PM vt 2015 Johan Thim All kursinformation finns också på www.liu.se/utbildning/program/amneslarare-gy/student/termin-2/matematik-91ma11 www.liu.se/utbildning/program/amneslarare7-9/student/termin-2/matematik-91ma17

Läs mer

TATM79 Matematisk grundkurs, 6hp Kurs-PM ht 2015

TATM79 Matematisk grundkurs, 6hp Kurs-PM ht 2015 TATM79 Matematisk grundkurs, 6hp Kurs-PM ht 2015 Fredrik Andersson Mikael Langer Johan Thim All kursinformation finns också på courses.mai.liu.se/gu/tatm79 Innehåll 1 Kursinnehåll 2 1.1 Reella och komplexa

Läs mer

TATA79 Inledande matematisk analys (6hp)

TATA79 Inledande matematisk analys (6hp) Inledande matematisk analys (6hp) Kursinformation HT 2016 Examinator: David Rule Innehåll 1 Kursinnehåll 2 1.1 Grundlägande koncept och verktyg........................ 2 1.2 Geometri och reela tal...............................

Läs mer

Kursinformation, TNIU19 Matematisk grundkurs fo r byggnadsingenjo rer, 6 hp

Kursinformation, TNIU19 Matematisk grundkurs fo r byggnadsingenjo rer, 6 hp Kursinformation, TNIU19 Matematisk grundkurs fo r byggnadsingenjo rer, 6 hp Grundläggande matematik för ingenjörsstudenter vid Byggnadsteknisk utbildning en förberedande matematikkurs inför kursen Envariabelanalys

Läs mer

Lektioner Datum Lokal Grupp 1 Grupp 2 Grupp 3 Grupp 4 Avsnitt

Lektioner Datum Lokal Grupp 1 Grupp 2 Grupp 3 Grupp 4 Avsnitt Föreläsning 8.15-10.00 Lektioner 10.15-12.00 Datum Lokal Grupp 1 Grupp 2 Grupp 3 Grupp 4 Avsnitt ons-3-dec Hörsal G C: 5.1-5.2 tor-4-dec Hörsal G N210 A302 A303 MC413 C: 5.3-5.4 fre-5-dec Hörsal G C: 2.10,

Läs mer

SF1624 Algebra och geometri

SF1624 Algebra och geometri SF1624 Algebra och geometri Första föreläsningen Mats Boij Institutionen för matematik KTH 26 oktober, 2009 Översikt Kurspresentation Komplexa tal Kursmålen Efter genomgången kurs ska studenten vara förtrogen

Läs mer

Övningshäfte 2: Komplexa tal

Övningshäfte 2: Komplexa tal LMA100 VT007 ARITMETIK OCH ALGEBRA DEL Övningshäfte : Komplexa tal Övningens syfte är att bekanta sig med komplexa tal. De komplexa talen, som är en utvidgning av de reella talen, kom till på 1400 talet

Läs mer

Komplexa tal: Begrepp och definitioner

Komplexa tal: Begrepp och definitioner UPPSALA UNIVERSITET Baskurs i matematik, 5hp Matematiska institutionen Höstterminen 007 Erik Darpö Martin Herschend Komplexa tal: Begrepp och definitioner Komplexa tal uppstod ur det faktum att vissa andragradsekvationer,

Läs mer

Matematik 4 Kap 4 Komplexa tal

Matematik 4 Kap 4 Komplexa tal Matematik 4 Kap 4 Komplexa tal Konkretisering av ämnesplan (länk) http://www.ioprog.se/public_html/ämnesplan_matematik/struktur_ämnesp lan_matematik/struktur_ämnesplan_matematik.html Inledande aktivitet

Läs mer

Övningshäfte 2: Komplexa tal (och negativa tal)

Övningshäfte 2: Komplexa tal (och negativa tal) LMA110 VT008 ARITMETIK OCH ALGEBRA DEL Övningshäfte : Komplexa tal (och negativa tal) Övningens syfte är att bekanta sig med komplexa tal och att fundera på några begreppsliga svårigheter som negativa

Läs mer

= e 2x. Integrering ger ye 2x = e 2x /2 + C, vilket kan skrivas y = 1/2 + Ce 2x. Här är C en godtycklig konstant.

= e 2x. Integrering ger ye 2x = e 2x /2 + C, vilket kan skrivas y = 1/2 + Ce 2x. Här är C en godtycklig konstant. Lösningsförslag till Tentamen, SF1633, Differentialekvationer I den 19 december 216 kl 8: - 13: För godkänt (betyg E krävs tre godkända moduler från del I Varje moduluppgift består av tre frågor För att

Läs mer

Förord. Stockholm i juni Luciano Triguero

Förord. Stockholm i juni Luciano Triguero Förord Behovet av ett praktiskt inriktat läromedel i matematik med möjlighet att använda datorbaserad beräkningsteknik har varit ledstjärnan vid tillkomsten av denna bok. Boken kombinerar matematikens

Läs mer

Introduktion till Komplexa tal

Introduktion till Komplexa tal October 8, 2014 Introduktion till Komplexa tal HT 2014 CTH Lindholmen 2 Index 1 Komplexa tal 5 1.1 Definition och jämförelse med R 2................ 5 1.1.1 Likheter mellan R 2 och C................ 5

Läs mer

KURSPLAN Matematik för gymnasielärare, 61-90 hp, 30 högskolepoäng

KURSPLAN Matematik för gymnasielärare, 61-90 hp, 30 högskolepoäng 1(5) KURSPLAN Matematik för gymnasielärare, 61-90 hp, 30 högskolepoäng Mathematics för Teachers, 61-90 credits, 30 credits Kurskod: LMGN12 Fastställd av: Utbildningsledare 2012-06-15 Gäller fr.o.m.: HT

Läs mer

Complex numbers. William Sandqvist

Complex numbers. William Sandqvist Complex numbers Hur många lösningar har en andragradsekvation? y = x 2 1 = 0 Två lösningar! Kommer Du ihåg konjugatregeln? Svaret kan ju lika gärna skrivas: x 1 = 1 x2 = + 1 Hur många lösningar har den

Läs mer

Studiehandledning till. MMA121 Matematisk grundkurs. Version 2012-09-03

Studiehandledning till. MMA121 Matematisk grundkurs. Version 2012-09-03 Studiehandledning till MMA Matematisk grundkurs läsåret 0/ Version 0-09-0 Kursinformation för MMA Mål Avsikten med kursen MMA Matematisk grundkurs är att ge grundläggande kunskaper i matematik, av betydelse

Läs mer

1. Rita in i det komplexa talplanet det område som definieras av följande villkor: (1p)

1. Rita in i det komplexa talplanet det område som definieras av följande villkor: (1p) TENTAMEN I MATEMATIK MED MATEMATISK STATISTIK HF TEN Datum: -- Tid: :5-7:5 Hjälpmedel: Formelblad, delas ut i salen Miniräknare (av vilken tp som hels Förbjudna hjälpmedel: Ägna formelblad, telefon, laptop

Läs mer

ED1110 VEKTORANALYS 4,5 hp

ED1110 VEKTORANALYS 4,5 hp Fusionplasmafysik Skolan för Elektro- och Systemteknik KTH, Teknikringen 31 Lorenzo Frassinetti - Jan Scheffel KURS-PM HT 2011 ED1110 VEKTORANALYS 4,5 hp (utgör även delmoment 1) i kursen SI1143 Matematisk

Läs mer

Referens :: Komplexa tal

Referens :: Komplexa tal Referens :: Komplexa tal Detta dokument sammanställer och sammanfattar de mest grundläggande egenskaperna för komplexa tal. Definition av komplexa tal Definition 1. Ett komplext tal z är ett tal på formen

Läs mer

Rekursionsformler. Komplexa tal (repetition) Uppsala Universitet Matematiska institutionen Isac Hedén isac

Rekursionsformler. Komplexa tal (repetition) Uppsala Universitet Matematiska institutionen Isac Hedén isac Uppsala Universitet Matematiska institutionen Isac Hedén isac distans@math.uu.se Algebra I, 5 hp Vecka 21. Vi nämner något kort om rekursionsformler för att avsluta [Vre06, kap 4], sedan börjar vi med

Läs mer

Betygskriterier Matematik E MA1205 50p. Respektive programmål gäller över kurskriterierna

Betygskriterier Matematik E MA1205 50p. Respektive programmål gäller över kurskriterierna Betygskriterier Matematik E MA105 50p Respektive programmål gäller över kurskriterierna MA105 är en nationell kurs och skolverkets kurs- och betygskriterier finns på http://www3.skolverket.se/ Detta är

Läs mer

SF1658 Trigonometri och funktioner, 7.5 högskolepoäng, ht Kurs-PM SF1658

SF1658 Trigonometri och funktioner, 7.5 högskolepoäng, ht Kurs-PM SF1658 SF1658 Trigonometri och funktioner, 7.5 högskolepoäng, ht 2008 Kurs-PM Kursens syfte Att överbrygga mellan gymnasiekursen Matematik C och de första kurser i matematik som ges på KTHs civilingenjörsprogram,

Läs mer

Uppföljning av diagnostiskt prov Repetition av kursmoment i TNA001-Matematisk grundkurs.

Uppföljning av diagnostiskt prov Repetition av kursmoment i TNA001-Matematisk grundkurs. Uppföljning av diagnostiskt prov 06-0- Repetition av kursmoment i TNA00-Matematisk grundkurs. Reella tal, intervall, räta linjer, cirklar Faktorsatsen, faktoriseringar, polynomekvationer Olikheter Ekvationer

Läs mer

Kursplan MD2022. Matematik III 30 högskolepoäng, Grundnivå 2

Kursplan MD2022. Matematik III 30 högskolepoäng, Grundnivå 2 Sida 1(6) Kursplan Matematik III 30 högskolepoäng, Grundnivå 2 Mathematics III 30 Credits*, First Cycle Level 2 Lärandemål Det övergripande målet för kursen är att den studerande ska vidga och fördjupa

Läs mer

Kursstart. Kursen startar tisdagen den 10 oktober kl i sal MA236 i MIT-huset. Schemat kan erhållas från matematiska institutionens hemsida.

Kursstart. Kursen startar tisdagen den 10 oktober kl i sal MA236 i MIT-huset. Schemat kan erhållas från matematiska institutionens hemsida. Kursinformation för Komplex analys, 3p, ht 2006. Civ.ing. (Teknisk Fysik) Ingår som ett moment i kursen Fysikens matematiska metoder, 10p. Ulf Backlund Kursstart Kursen startar tisdagen den 10 oktober

Läs mer

Kursinformation och studiehandledning, M0038M Matematik I Differentialkalkyl, Lp I 2012.

Kursinformation och studiehandledning, M0038M Matematik I Differentialkalkyl, Lp I 2012. Kursinformation och studiehandledning, M0038M Matematik I Differentialkalkyl, Lp I 2012. Kursansvarig och examinator: Staffan Lundberg, TVM. Telefon: 0920-49 18 69. Rum: E 882. E-post: lund@ltu.se Lärare

Läs mer

PRÖVNINGSANVISNINGAR

PRÖVNINGSANVISNINGAR Prövning i Matematik 4 PRÖVNINGSANVISNINGAR Kurskod MATMAT04 Gymnasiepoäng 100 Läromedel Valfri aktuell lärobok för kurs Matematik 4 Skriftligt prov (4h) Muntligt prov Bifogas Provet består av två delar.

Läs mer

Kursinformation och lektionsplanering BML402

Kursinformation och lektionsplanering BML402 Kursinformation och lektionsplanering Matematik specialisering för basår, 7 hp. Syfte och organisation Kursen är valbar och bygger vidare på tidigare matematikkurser på basåret. Syftet är att ge en god

Läs mer

Tentamen ssy080 Transformer, Signaler och System, D3

Tentamen ssy080 Transformer, Signaler och System, D3 Tentamen ssy080 Transformer, Signaler och System, D3 Examinator: Ants R. Silberberg oktober 009 kl. 4.00-8.00 lokal: Johanneberg Förfrågningar: Ants Silberberg, tel. 808 Lösningar: Anslås torsdag okt.

Läs mer

SF1646, Analys i era variabler, 6 hp, för I1, läsåret 2007.2008.

SF1646, Analys i era variabler, 6 hp, för I1, läsåret 2007.2008. SF1646, Analys i era variabler, 6 hp, för I1, läsåret 2007.2008. Anders Karlsson, Inst för Matematik, KTH January 22, 2008 Kursinnehåll: Grundläggande kurs i di erential- och integralkalkyl i era variabler.

Läs mer

ÄMAD01, Matematik med ämnesdidaktik 1, 30 högskolepoäng Mathematics with Didactics 1, 30 credits Grundnivå / First Cycle

ÄMAD01, Matematik med ämnesdidaktik 1, 30 högskolepoäng Mathematics with Didactics 1, 30 credits Grundnivå / First Cycle Humanistiska och teologiska fakulteterna ÄMAD01, Matematik med ämnesdidaktik 1, 30 högskolepoäng Mathematics with Didactics 1, 30 credits Grundnivå / First Cycle Fastställande Kursplanen är fastställd

Läs mer

Kursinformation och studiehandledning, M0038M Matematik I Differentialkalkyl, Lp I 2013.

Kursinformation och studiehandledning, M0038M Matematik I Differentialkalkyl, Lp I 2013. Kursinformation och studiehandledning, M0038M Matematik I Differentialkalkyl, Lp I 2013. Kursansvarig och examinator: Staffan Lundberg, TVM. Telefon: 0920-49 18 69. Rum: E 882. E-post: lund@ltu.se Lärare

Läs mer

BML131, Matematik I för tekniskt/naturvetenskapligt basår

BML131, Matematik I för tekniskt/naturvetenskapligt basår BML131 ht 2013 1 BML131, Matematik I för tekniskt/naturvetenskapligt basår Syfte och organisation Matematiken på basåret läses i två obligatoriska kurser; under första halvan av hösten BML131 (Matematik

Läs mer

Komplexa tal. i 2 = 1, i 3 = i, i 4 = i 2 = 1, i 5 = i,...

Komplexa tal. i 2 = 1, i 3 = i, i 4 = i 2 = 1, i 5 = i,... Komplexa tal Vi inleder med att repetera hur man räknar med komplexa tal, till att börja med utan att bekymra oss om frågor som vad ett komplext tal är och hur vi kan veta att komplexa tal finns. Dessa

Läs mer

Kursinformation, ETE499 8 hp MATEMATIK H Högskoleförberedande matematik

Kursinformation, ETE499 8 hp MATEMATIK H Högskoleförberedande matematik Kursinformation, ETE499 8 hp MATEMATIK H Högskoleförberedande matematik Fristående matematikkurs vid ITN (Institutionen för Teknik och Naturvetenskap i Norrköping) en förberedande matematikkurs inför kurser

Läs mer

Impulssvaret Betecknas h(t) respektive h(n). Impulssvaret beskriver hur ett system reagerar

Impulssvaret Betecknas h(t) respektive h(n). Impulssvaret beskriver hur ett system reagerar 6 Sjätte lektionen 6.1 Transformvärlden 6.1.1 Repetera Rita upp en tankekarta över följande begrepp där du anger hur de hänger ihop och hur de betecknas. Vad beskriver de? Impulssvaret Amplitudsvaret (frekvensgången)

Läs mer

TATM79: Föreläsning 7 Komplexa exponentialfunktionen och binomiska ekvationer

TATM79: Föreläsning 7 Komplexa exponentialfunktionen och binomiska ekvationer TATM79: Föreläsning 7 Komplexa exponentialfunktionen och binomiska ekvationer Johan Thim 9 september 05 Komplexa tal på polär form Ett komplex tal z = a+bi kan som bekant betraktas som en punkt i komplexa

Läs mer

Elteknik. Komplexa tal

Elteknik. Komplexa tal Sven-Bertil Kronkvist Elteknik Komplexa tal Revma utbildning KOMPLEXA TAL Komplexa eller imaginära tal kan användas för algebraiska växelströmsberäkningar på samma sätt som i likströmsläran. Den läsare

Läs mer

SF1646, Analys i flera variabler, 6 hp, för CBIOT1 och CKEMV1, VT 2009.

SF1646, Analys i flera variabler, 6 hp, för CBIOT1 och CKEMV1, VT 2009. SF1646, Analys i flera variabler, 6 hp, för CBIOT1 och CKEMV1, VT 2009. Kurt Johansson, Inst för Matematik, KTH 2 mars 2009 Kursinnehåll: Grundläggande kurs i differential- och integralkalkyl i flera variabler.

Läs mer

SF1624 ALGEBRA OCH GEOMETRI FÖR CINTE OCH CMIEL KURS-PM HT09

SF1624 ALGEBRA OCH GEOMETRI FÖR CINTE OCH CMIEL KURS-PM HT09 SF1624 ALGEBRA OCH GEOMETRI FÖR CINTE OCH CMIEL KURS-PM HT09 1. KURSPLAN 1.1. Kursens mål. Efter genomgången kurs ska studenten vara förtrogen med grundläggande algebra och linjär algebra. Det innebär

Läs mer

den reella delen på den horisontella axeln, se Figur (1). 1

den reella delen på den horisontella axeln, se Figur (1). 1 ANTECKNINGAR TILL RÄKNEÖVNING 1 & - KOMPLEXA TAL Det nns era olika talmängder; de positiva heltalen (0, 1,,... kallas de naturliga talen N, tal som kan skrivas som kvoter av andra tal kallas rationella

Läs mer

Studiehandledning M0038M Matematik I Differentialkalkyl Lp 1, 2016

Studiehandledning M0038M Matematik I Differentialkalkyl Lp 1, 2016 Studiehandledning M0038M Matematik I Differentialkalkyl Lp 1, 2016 Kursansvarig/Examinator: Staffan Lundberg, TVM Telefon: 0920-49 18 69 Rum: E882 E-post: Lärare i Skellefteå: Eva Lövf, tfn. 0910-58 53

Läs mer

Hållfasthetslära Z2, MME175 lp 3, 2005

Hållfasthetslära Z2, MME175 lp 3, 2005 Hållfasthetslära Z2, MME175 lp 3, 2005 Examinator: Magnus Ekh (mekh@am.chalmers.se), tele: 7723479 Kurspoäng: 3 Kurslitteratur: "Grundläggande hållfasthetslära", Hans Lundh, KTH, Stockholm. "Exempelsamling

Läs mer

Kursbeskrivning för Statistisk teori med tillämpningar, Moment 1, 7,5 hp

Kursbeskrivning för Statistisk teori med tillämpningar, Moment 1, 7,5 hp Statistiska institutionen VT2011 Kursbeskrivning för Statistisk teori med tillämpningar, Moment 1, 7,5 hp MOMENTETS INNEHÅLL Momentet ger studenten kunskap om ett antal olika statistiska modeller och hur

Läs mer

TI-Nspire CAS. Exempel på flera moment för Ma 4 och Ma 5. Your Expertise. Our technology. Student Success.

TI-Nspire CAS. Exempel på flera moment för Ma 4 och Ma 5. Your Expertise. Our technology. Student Success. TI-Nspire CAS Exempel på flera moment för Ma 4 och Ma 5 Your Expertise. Our technology. Student Success. TI Nspire CAS Exempel på flera moment för Ma 4 och Ma 5 Här är ett material som visar hur man kan

Läs mer

Matematiska och systemtekniska institutionen Dnr 2008/214-514 KURSPLAN

Matematiska och systemtekniska institutionen Dnr 2008/214-514 KURSPLAN Matematiska och systemtekniska institutionen Dnr 2008/214-514 KURSPLAN Matematik/matematikdidaktik för de senare skolåren och gymnasiet Mathematics/ Mathematical Didactics in Later School Years and Upper

Läs mer

TATM79: Matematisk grundkurs

TATM79: Matematisk grundkurs TATM79: Matematisk grundkurs TATM79 Matematisk grundkurs, 4 poäng /Foundation Course in Mathematics/ För: D1, C2, I1, Ii1, M1, TB1, Y1 Utbildningsområde: Naturvetenskap Ämnesgrupp: Matematik Fördjupningsnivå:

Läs mer

Np MaE ht Provmaterialet inlämnas tillsammans med dina lösningar.

Np MaE ht Provmaterialet inlämnas tillsammans med dina lösningar. Skolverket hänvisar generellt beträffande provmaterial till bestämmelsen om sekretess i 4 kap. 3 sekretesslagen. För detta material gäller sekretessen till och med utgången av december 009. Anvisningar

Läs mer

MATEMATIK Chalmers tekniska högskola Tentamen , kl och v 4 =

MATEMATIK Chalmers tekniska högskola Tentamen , kl och v 4 = MATEMATIK Chalmers tekniska högskola Tentamen 9--7, kl. 8.3 -.3 TMV36 Analys och linjär algebra K Kf Bt, del B Telefonvakt: Richard Lärkäng, telefon: 73-8834 Inga hjälpmedel. Kalkylator ej tillåten. Uppgifterna

Läs mer

dy dx = ex 2y 2x e y.

dy dx = ex 2y 2x e y. UPPSALA UNIVERSITET Matematiska institutionen Pepe Winkler tel. 018-471 3 89 Prov i matematik Civilingenjörsprogrammen Ordinära differentialekvationer, poäng 005-04-04 Skrivtid: 14 19. Hjälpmedel: Skrivdon,

Läs mer

1. Ange samtliga uppsättningar av heltal x, y, z som uppfyller båda ekvationerna. x + 2y + 24z = 13 och x 11y + 17z = 8.

1. Ange samtliga uppsättningar av heltal x, y, z som uppfyller båda ekvationerna. x + 2y + 24z = 13 och x 11y + 17z = 8. Tentamenskrivning MATA15 Algebra: delprov 1, 6hp Lördagen den mars 014 Matematikcentrum Matematik NF LÖSNINGSFÖRSLAG 1. Ange samtliga uppsättningar av heltal x, y, z som uppfyller båda ekvationerna x +

Läs mer

IF1611 Ingenjörsmetodik (Engineering Fundamentals)

IF1611 Ingenjörsmetodik (Engineering Fundamentals) IF1611 Ingenjörsmetodik (Engineering Fundamentals) 7.5 hp HT 2007 KursPM Kursens hemsida http://www.kth.se/student/program-kurser/kurshemsidor/ict/map/if1611/ HT07-1 Mål, Krav, Innehåll och Schemaunderlag

Läs mer

(y 2 xy) dx + x 2 dy = 0 y(e) = e. = 2x + y y = 2x + 3y 2e 3t, = (x 2)(y 1) y = xy 4. = x 5 y 3 y = 2x y 3.

(y 2 xy) dx + x 2 dy = 0 y(e) = e. = 2x + y y = 2x + 3y 2e 3t, = (x 2)(y 1) y = xy 4. = x 5 y 3 y = 2x y 3. UPPSALA UNIVERSITET Matematiska institutionen Pepe Winkler tel. 018-471 2 89 Prov i matematik Civilingenjörsprogrammen Ordinära differentialekvationer, 2 poäng 2005-01-10 Skrivtid: 8.00 1.00. Hjälpmedel:

Läs mer

Kursmanual för SG1102 Mekanik, mindre kurs (6 hp)

Kursmanual för SG1102 Mekanik, mindre kurs (6 hp) Version: 2016-12-19 Kursmanual för SG1102 Mekanik, mindre kurs (6 hp) Innehåll 1. Anmälningstider (tentor & KS:ar) 2. Lärandemål 3. Kurslitteratur 4. Föreläsningar 5. Övningar 6. Inlämningsuppgifter 7.

Läs mer

LUNDS UNIVERSITET MATEMATISKA INSTITUTIONEN Magnus Aspenberg ENDIMENSIONELL ANALYS FÖR I OCH L HT 2012, DELKURS B1, 8 HP

LUNDS UNIVERSITET MATEMATISKA INSTITUTIONEN Magnus Aspenberg ENDIMENSIONELL ANALYS FÖR I OCH L HT 2012, DELKURS B1, 8 HP LUNDS UNIVERSITET MATEMATISKA INSTITUTIONEN Magnus Aspenberg ENDIMENSIONELL ANALYS FÖR I OCH L HT 2012, DELKURS B1, 8 HP Kurskod: FMAA05 Kurschef: Magnus Aspenberg, rum 343 Matematiska Institutionen. Tel.

Läs mer

Signal- och bildbehandling TSBB14

Signal- och bildbehandling TSBB14 Tentamen i Signal- och bildbehandling TSBB4 Tid: -5-8 Lokaler: TER3 Ansvarig lärare: Maria Magnusson besöker lokalen kl. 8.45 och.45 tel 8336, 73-84 38 67 Hjälpmedel: Räknedosa, medskickad formelsamling,

Läs mer

STOCKHOLMS UNIVERSITET HT 2007 Statistiska institutionen Tatjana Nahtman Karin Dahmström

STOCKHOLMS UNIVERSITET HT 2007 Statistiska institutionen Tatjana Nahtman Karin Dahmström STOCKHOLMS UNIVERSITET HT 2007 Statistiska institutionen Tatjana Nahtman Karin Dahmström KURSBESKRIVNING FÖR REGRESSIONSANALYS OCH UNDERSÖKNINGS-METODIK, 15 HÖGSKOLEPOÄNG. KURSEN BESTÅR AV FYRA MOMENT:

Läs mer

Kursprogram Strukturmekanik FME602

Kursprogram Strukturmekanik FME602 Kursprogram Strukturmekanik FME602 Allmänt Kursen Strukturmekanik omfattar 6 hp och ges under läsperiod 2. Kursen syftar till att ge en introduktion till byggnadsmekanik tillämpad på konstruktionstyper

Läs mer

Experimentversion av Endimensionell analys 1

Experimentversion av Endimensionell analys 1 Matematikcentrum Matematik Eperimentversion av Endimensionell anals Alternativ eamination Under lp 999 kommer för Bi 99, L 99 och V 99 att ges en något modifierad kurs i Endimensionell anals. Kursen avviker

Läs mer

Inledande matematik M+TD

Inledande matematik M+TD Introduktionsföreläsning p. 1/13 Introduktionsföreläsning Inledande matematik M+TD Stig Larsson http://www.math.chalmers.se/ stig Matematiska vetenskaper Chalmers tekniska högskola Göteborgs universitet

Läs mer

Institutionen för Fysik

Institutionen för Fysik Institutionen för Fysik KURS-PM KURS: Elektronik 1: Ellära FYD101 LÄSÅR: 16/17 HT16 FÖR: Datorstödd Fysikalisk Mätteknik (samt fristående kurs) EXAMINATOR: Vitali Zhaunerchyk 031-786 9150 KURSANSVARIG:

Läs mer

Tentamen ssy080 Transformer, Signaler och System, D3

Tentamen ssy080 Transformer, Signaler och System, D3 Tentamen ssy080 Transformer, Signaler och System, D3 Examinator: Ants R. Silberberg 19 oktober 2011 kl. 08.30-12.30 sal: Hörsalsvägen Förfrågningar: Ants Silberberg, tel. 1808 Lösningar: Anslås torsdag

Läs mer

Kursbeskrivning för Statistisk teori med tillämpningar, 15 hp

Kursbeskrivning för Statistisk teori med tillämpningar, 15 hp Statistiska institutionen HT 2014 Kursbeskrivning för Statistisk teori med tillämpningar, 15 hp Kursen består av fyra moment: 1. Statistisk teori med tillämpningar I, tentamen, 6 hp 2. Inlämningsuppgift

Läs mer

Kursen ingår i civilekonomprogrammet samt kandidatprogrammet i företagsekonomi.

Kursen ingår i civilekonomprogrammet samt kandidatprogrammet i företagsekonomi. VT 14 Statistiska institutionen KURSBESKRIVNING FÖR GRUNDLÄGGANDE STATISTIK FÖR EKONOMER, 15 HÖGSKOLEPOÄNG. KURSEN BESTÅR AV FYRA MOMENT: Beslutsunderlag, inlämningsuppgift, 1.5 hp. Marknadsundersökningar,

Läs mer

29 Det enda heltalet n som satisfierar båda dessa villkor är n = 55. För detta värde på n får vi x = 5, y = 5.

29 Det enda heltalet n som satisfierar båda dessa villkor är n = 55. För detta värde på n får vi x = 5, y = 5. Tentamenskrivning MATA15 Algebra: delprov 1, 6hp Lördagen den 3 november 01 Matematikcentrum Matematik NF LÖSNINGSFÖRSLAG 1 a) Lös den diofantiska ekvationen 9x + 11y 00 b) Ange alla lösningar x, y) sådana

Läs mer

ENVARIABELANALYS, ht 2003 (version 17 nov) Kursansvarig: tel ,

ENVARIABELANALYS, ht 2003 (version 17 nov) Kursansvarig: tel , ENVARIABELANALYS, ht 2003 (version 17 nov) Kursansvarig: Georgi.Tchilikov@ide.hh.se, tel.035-167124, http://www.hh.se/staff/getc Ett försök till "strukturering" av innehållet (skrivet i första hand med

Läs mer

STOCKHOLMS UNIVERSITET HT 2012 Statistiska institutionen Göran Rundqvist

STOCKHOLMS UNIVERSITET HT 2012 Statistiska institutionen Göran Rundqvist STOCKHOLMS UNIVERSITET HT 2012 Statistiska institutionen Göran Rundqvist KURSBESKRIVNING FÖR GRUNDLÄGGANDE STATISTIK FÖR EKONOMER, 15 HÖGSKOLEPOÄNG. KURSEN BESTÅR AV FYRA MOMENT: Beslutsunderlag, inlämningsuppgift,

Läs mer

MVKF20 Transportfenomen i människokroppen. Kursinformation 2014

MVKF20 Transportfenomen i människokroppen. Kursinformation 2014 MVKF20 Transportfenomen i människokroppen Kursinformation 2014 Syfte Kursen avser att ge studenterna grundläggande kunskaper om utvalda transportfenomen och hur dessa styr människokroppens funktion. Mål

Läs mer

Undervisningsplanering i Matematik Kurs E (Poäng 50)

Undervisningsplanering i Matematik Kurs E (Poäng 50) Undervisningsplanering i Matematik Kurs E (Poäng 50) Kurskod: MA1205 Styrdokument: Kursplan i matematik med betygskriterier. Läromedel: Matematik 3000 N&K. Lån för studerande upp till 20 år De studerande

Läs mer

MVKF20 Transportfenomen i människokroppen. Kursinformation 2015

MVKF20 Transportfenomen i människokroppen. Kursinformation 2015 MVKF20 Transportfenomen i människokroppen Kursinformation 2015 Syfte Kursen avser att ge studenterna grundläggande kunskaper om utvalda transportfenomen och hur dessa styr människokroppens funktion. Mål

Läs mer

1 Tal, mängder och funktioner

1 Tal, mängder och funktioner 1 Tal, mängder och funktioner 1.1 Komplexa tal Här skall vi snabbt repetera de grundläggande egenskaperna hos komplexa tal. För en mera utförlig framställning hänvisar vi till litteraturen i Matematisk

Läs mer

Signal- och bildbehandling TSBB03, TSBB14

Signal- och bildbehandling TSBB03, TSBB14 Tentamen i Signal- och bildbehandling TSBB03, TSBB4 Tid: 00-0- Lokaler: G33 Ansvarig lärare: Maria Magnusson besöker lokalen kl. 4.50 och 6.50 tel 073-804 38 67 Hjälpmedel: Räknedosa, medskickad formelsamling,

Läs mer

KURSPLAN. Matematik/matematikdidaktik för de senare skolåren och gymnasiet

KURSPLAN. Matematik/matematikdidaktik för de senare skolåren och gymnasiet Dnr: MSI 06/07:61 Matematiska och systemtekniska institutionen (MSI) KURSPLAN Matematik/matematikdidaktik för de senare skolåren och gymnasiet Mathematics/ Mathematical Didactics in Later School Years

Läs mer

ENDIMENSIONELL ANALYS FÖR C, D OCH BI HT 2015, DELKURS B1, 8 HP

ENDIMENSIONELL ANALYS FÖR C, D OCH BI HT 2015, DELKURS B1, 8 HP LUNDS UNIVERSITET MATEMATISKA INSTITUTIONEN ENDIMENSIONELL ANALYS FÖR C, D OCH BI HT 2015, DELKURS B1, 8 HP Kurskod: FMAA05 Kurschef:, rum 545 Matematiska Institutionen. Tel. 046-222 0553. Email: magnusa@maths.lth.se

Läs mer

Institutionen för data- och elektroteknik 2004-03-22 Tillämpad digital signalbehandling Veckoplanering för signalbehandlingsteorin

Institutionen för data- och elektroteknik 2004-03-22 Tillämpad digital signalbehandling Veckoplanering för signalbehandlingsteorin Institutionen för data- och elektroteknik 2004-03-22 Veckoplanering för signalbehandlingsteorin Allmänt Erfarenheten från tidigare år säger att kursen upplevs som svår. Detta tror jag beror, inte på att

Läs mer

Kursinformation. Statistik och geometri, 7 hp. inom kursen 973G10, 15 hp för Lärare i årskurs 4-6

Kursinformation. Statistik och geometri, 7 hp. inom kursen 973G10, 15 hp för Lärare i årskurs 4-6 Kursinformation Statistik och geometri, 7 hp inom kursen 973G10, 15 hp för Lärare i årskurs 4-6 Kursen startar vecka 15 den 7 april 2014 Kursperiod Vecka 15-20 (7 april 17 maj) 2014 Lärare (kursansvarig

Läs mer

NATIONELLT KURSPROV I MATEMATIK KURS E VÅREN Tidsbunden del

NATIONELLT KURSPROV I MATEMATIK KURS E VÅREN Tidsbunden del Skolverket hänvisar generellt beträffande provmaterial till bestämmelsen om sekretess i 4 kap. sekretesslagen. För detta material gäller sekretessen till och med utgången av november 1998. Anvisningar

Läs mer

Tekniskt basår Pre-University Course in Technical Sciences

Tekniskt basår Pre-University Course in Technical Sciences Kursplan för Tekniskt basår Pre-University Course in Technical Sciences TBAA01, 60 högskolepoäng, G1 (Grundnivå) Gäller för: Läsåret 2016/17 Beslutad av: Utbildningsnämnd D Beslutsdatum: 2016-04-08 Allmänna

Läs mer

ENDIMENSIONELL ANALYS FÖR C OCH D HT 2016, DELKURS B1, 8 HP

ENDIMENSIONELL ANALYS FÖR C OCH D HT 2016, DELKURS B1, 8 HP LUNDS UNIVERSITET MATEMATISKA INSTITUTIONEN Magnus Aspenberg ENDIMENSIONELL ANALYS FÖR C OCH D HT 2016, DELKURS B1, 8 HP Kurskod: FMAA05 Kurschef: Magnus Aspenberg, rum 545 Matematiska Institutionen. Tel.

Läs mer

2. För vilka värden på parametrarna α och β har det linjära systemet. som satisfierar differensekvationen

2. För vilka värden på parametrarna α och β har det linjära systemet. som satisfierar differensekvationen MÄLARDALENS HÖGSKOLA Akademin för utbildning, kultur och kommunikation Avdelningen för tillämpad matematik Examinator: Lars-Göran Larsson TENTAMEN I MATEMATIK MAA13 Differentialekvationer och transformmetoder

Läs mer

TENTAMEN HF1006 och HF1008

TENTAMEN HF1006 och HF1008 TENTAMEN HF006 och HF008 Datum TEN 6 mars 06 Tid 8:-: Analys och linjär algebra, HF008 (Medicinsk teknik), lärare: Inge Jovik Analys och linjär algebra, HF008 (Elektroteknik), lärare: Marina Arakelyan

Läs mer

2. Förklara vad ekvationen 4x(x + 1) = 8y + 11 beskriver, och gör en skiss av detta.

2. Förklara vad ekvationen 4x(x + 1) = 8y + 11 beskriver, och gör en skiss av detta. MMA Matematisk grundkurs TEN Datum: 4 mars 00 Skrivtid: timmar Hjälpmedel: Penna, linjal och radermedel Denna tentamen TEN består av nio stycken om varannat slumpmässigt ordnade uppgifter som vardera kan

Läs mer

Linjär algebra och geometri 1

Linjär algebra och geometri 1 UPPSALA UNIVERSITET MATEMATISKA INSTITUTIONEN Ryszard Rubinsztein Oswald Fogelklou Linjär algebra och geometri 1 för K1, W1, KandKe1 Höstterminen 2008 Kurslitteratur H.Anton, C.Rorres, Elementary Linear

Läs mer

Inriktnings- och fördjupningskurser Produktionsteknik

Inriktnings- och fördjupningskurser Produktionsteknik Inriktnings- och fördjupningskurser Produktionsteknik TE - Berzeliusskolan Centralt innehåll för inriktnings- och fördjupningskurser för Produktionsteknik på Berzeliusskolan Mer utförlig information -

Läs mer

Signal- och bildbehandling TSBB14

Signal- och bildbehandling TSBB14 Tentamen i Signal- och bildbehandling TSBB Tid: --, kl. - Lokaler: U, U, U Ansvarig lärare: Maria Magnusson besöker lokalen kl.. och. tel. Hjälpmedel: Räknedosa, medskickad formelsamling, OH-film, sa och

Läs mer

Komplexa tal. z 2 = a

Komplexa tal. z 2 = a Moment 3., 3.2.-3.2.4, 3.2.6-3.2.7, 3.3. Viktiga exempel 3.-3.8, 3.9,3.20 Handräkning 3.-3.0, 3.5a-e, 3.7, 3.8, 3.25, 3.29ab Datorräkning Komplexa tal Inledning Vi skall i följande föreläsning utvidga

Läs mer

2D1210, Numeriska Metoder, GK I för V 2.

2D1210, Numeriska Metoder, GK I för V 2. Kursöversikt Numme för V, 2003. 1 Beatrice Frock NADA, KTH 030612 ANADA 2D1210, Numeriska Metoder, GK I för V 2. Kursprogram. Läsanvisningar. Om WWW: I World Wide Web på Internet finns aktuell information

Läs mer

Innehåll. Innehåll. sida i

Innehåll. Innehåll. sida i 1 Introduktion... 1.1 1.1 Kompendiestruktur... 1.1 1.2 Inledning... 1.1 1.3 Analogt/digitalt eller tidskontinuerligt/tidsdiskret... 1.2 1.4 Konventioner... 1.3 1.5 Varför digital signalbehandling?... 1.4

Läs mer

NATIONELLT PROV I MATEMATIK KURS E VÅREN Tidsbunden del

NATIONELLT PROV I MATEMATIK KURS E VÅREN Tidsbunden del Skolverket hänvisar generellt beträffande provmaterial till bestämmelsen om sekretess i 4 kap. 3 sekretesslagen. För detta material gäller sekretessen till och med utgången av november 1997. NATIONELLT

Läs mer

forts. Kapitel A: Komplexa tal

forts. Kapitel A: Komplexa tal forts. Kapitel A: Komplexa tal c 005 Eric Järpe Högskolan i Halmstad Andragradsekvationer Obs! i är antingen 1 1 + i) eller 1 1 + i), dvs i = 1 1 + i). Obs! Se upp med roten ur negativa tal: regeln ab

Läs mer

En Guide till hur man Pluggar för Tentan. 1 Hur man Läser Matte.

En Guide till hur man Pluggar för Tentan. 1 Hur man Läser Matte. En Guide till hur man Pluggar för Tentan. 1 Hur man Läser Matte. Att läsa matte är en väldigt aktiv process. Det handlar inte om att bara skumma texten. Att läsa matte är att aktivt återskapa och internalisera

Läs mer

Andelar och procent Fractions and Percentage

Andelar och procent Fractions and Percentage Sida 1 av 20 Kursplan Uttagen: Inrättad: 2010-09-03 Andelar och procent Fractions and Percentage Högskolepoäng: 1.0 Kurskod: 5MA098 Ansvarig enhet: Matematik och Matematisk statistik SCB-ämne: Matematik

Läs mer

Studiehandledning till. MAA123 Grundläggande vektoralgebra

Studiehandledning till. MAA123 Grundläggande vektoralgebra Studiehandledning till MAA13 Grundläggande vektoralgebra vid kurstillfället i period 4 läsåret 013/14 Version 014-05- Information om kursen MAA13 Avsikt Avsikten med kursen MAA13 Grundläggande vektoralgebra

Läs mer

Välkomna till Numme och MATLAB, 9 hp, för Materialdesign och Energi&Miljö, årskurs 2

Välkomna till Numme och MATLAB, 9 hp, för Materialdesign och Energi&Miljö, årskurs 2 Välkomna till Numme och MATLAB, 9 hp, för Materialdesign och Energi&Miljö, årskurs 2 Kursen avses ge dig kunskap om numeriska metoder, hur man kan använda dessa genom elementär programmering i MATLAB samt

Läs mer