Perspektiv och bildförvrängning av olika slag
|
|
- Ida Susanne Bergqvist
- för 8 år sedan
- Visningar:
Transkript
1 Perspektiv och bildförvrängning v olik slg Bkgrund Tidig vbildningr i mänsklighetens histori vr pltt i betydelsen tt llt mn ritde/målde v såg ut tt vr på smm vstånd från betrktren. Frm till och med medeltid kyrkomåleri sknde mn i västerlndet ett systemtiskt sätt tt i målningr beskriv tt föremål låg på olik vstånd. Att lik stor objekt ser mindre ut om de är vlägsn är förmodligen en stenåldersobservtion. Men hur de sk minsk i bildstorlek för tt vi v en bild sk dr rätt slutsts om ders vstånd vr länge okänt. Ett ännu värre problem vr hur mn skulle få vståndet melln en rk rd v lyktstolpr utmed en väg som går rkt ut från betrktren tt se konstnt ut (i ett tänkt medeltid konstverk med telefonstolpr). Av uppenbr skäl vr de först nstsern till lösning på problemet gjord v konstnärer, vilk vägde in de värderingr och känslor mn ville förmedl i bilden. Ett stort ntl konstnärsperspektiv (från olik åldrr) finns beskrivn: Fursteperspektivet där föremål eller främst personer vbilds större ju högre rng eller betydelse de hr. Polycentrisk perspektiv som är det mn skulle få om mn stte fler fotogrfier, tgn i olik vinkel bredvid vrndr och på olik sätt gjorde övergången melln dem kontinuerlig. Dett är bsolut inte smm sk som om mn toge ett foto med en vidvinkellins (om nu någon trodde det) vilket vi kommer tt se. Grodperspektiv, kvljersperspektiv och militärperspektiv är ndr. Tekniskt nvänds oft isometriskt perspektiv som bevrr förhållnden melln längder på ett sätt som är br i exempelvis ritningr och plttformsspel. Wikipedi (svensk) hr en br översiktrtikel över dess under rubriken perspektiv, men de är inte temt för denn lill skrift. För tt ge helt korrekt vståndskänsl i en bild sk den nturligtvis egentligen vr det vi idg kllr 3D, dvs bilden sk ge korrekt stimuli till betrktrens ög med vseende på ckommodtion, konvergens och stereoseende. Dett täcks emellertid v en nnn föreläsning (3d-seende) och vi nvänder här en enögd person med oändligt skärpedjup som utgångspunkt för tt slipp dess problem. Frm till introduktionen v hålkmern, cmer obscur, vr fältet öppet för tycknde och känslomässig tolkningr v begreppet perspektiv, men i och med denns entré på scenen fick mn ett fcit på vd som vr rätt. Mn klkerde v den bild som projicerdes inuti hålkmern och nu hde ju nturen vist hur det skulle se ut. När mn sedn kunde förse hålkmern med en lins och dessutom registrer bilden fotogrfiskt vr ju sken klr. Ett kvrstående problem vr tt vståndet till objekten spelde roll på fler sätt än det uppenbr. En bild tgen med hålkmer på c 10 m vstånd från en grupp objekt /(som ligger lite olik långt bort exvis 9, 10 och 11 m) är inte br dubbelt så stor bilden v smm objektgrupp registrerd på 0 m vstånd, och det är blnd nnt dess skillnder vi sk försök red ut.
2 Vrför känn till perspektiv Att mn behöver känn till grundern i perspektivlärn för tt bli en br (klssisk) konstnär är gnsk uppenbrt. Förlängningen därifrån till skpndet v nimerd film eller scener i dtspel är också lätt tt inse. I ett ingenjörsperspektiv är omvändningen också viktig: Hur kn mn ur en given vnlig pltt bild återskp så mycket informtion som möjligt om den tredimensionell förlgn? Mtemtiken kommer tt vis tt den bild mn får på ett gnsk intrikt sätt beror på smbnd melln fokllängden på det vbildnde systemet och objektsvståndet. I mång system kommer sedn berrtioner i optiken tt komm in. En persons ögon hr ju en given fokllängd på c 0 5 mm och för tt återskp vd denn person ser måste det optisk systemet ien (tänkt) kmer vpsss efter dett. En pinne på mrken Vi tänker oss situtionen tt vi betrktr en lång, rk väg och fixerr vår ögon eller mitten på kmerns synfält, mot vägens slut, långt bort. Vi måste då börj med tt inse tt den punkt vi tittr på är vårt vbildnde systems optisk symmetrixels skärningspunkt med vägslutet. De linjer som utgörs v trottorknter, diken och eventuell husfsders över- och underknt vid sidn v vägen konvergerr mot denn punkt som brukr klls centrlpunkt, oändlighetspunkt eller perspektivpunkt. injern brukr klls perspektivlinjer. Någon gång på högstdiet brukr mn i bildundervisningen upptäck dett och mång inser tt de fktiskt kn rit ett hus så tt det ser perspektivistiskt korrekt ut. Men vd händer om vi lägger en pinne, med känd längd Δ på vägen (jfr fig där proportionern melln och f inte är rimlig)? Pinnen börjr på vståndet från betrktren och är prllell med vägen. Till tt börj med kn vi konstter tt pinnen (om den är rk) syns i bilden och ser ut som en rk pinne (dett är vetenskp på hög nivå). Hölle mn däremot pinnen på betrktrens höjd äver mrken dvs pinnen ligger utmed den optisk xeln (röd streckd), så syns den inte i bilden. Möjligen syns pinnens ändyt om det inte är en mtemtiskt oändligt tunn pinne. Frågn är nu hur lång bilden blir v pinnen på chipet inuti kmern om h inte är noll? Om vi nvänder kmer-pproximtionen och lltså säger tt bildvståndet är f så kommer pinnens närmst punkt tt vbilds på vståndet
3 ( 1) M T ( ) h f h från bildens mittpunkt där MT är kmern trnsversell förstoring för objektsvståndet. Pinnens borterst punkt ligger också på vståndet h från symmetrixeln och vbilds på vståndet ( ) + Δ M ( + Δ) T f h + Δ Subtrherr vi dess från vrndr får vi (3) 1 1 Δ hf + Δ hfδ Den mtemtiskt väl bevndrde inser knske tt vi skulle kunnt differentier (1) och direkt få (3). Grttis i så fll. Minustecknet betyder tt pinnens borterst punkt ligger närmre bildens mittpunkt än den närmst. Vidre ser vi tt bildstorleken är proportionell mot fokllängden precis som vid vnlig objekt. En vlägsen pinne kn lltså fås tt se större ut om mn nvänder ett teleobjektiv. Det som möjligen är lite överrsknde är tt pinnens längd minskr med kvdrten på 1/vståndet. En pinne på dubbl vståndet ger lltså en bild som är en fjärdedel så stor. Hde pinnen legt tvärs över vägen hde bildstorleken minskt med 1/vståndet. Dett innebär tt förhållndet melln längd och bredd inte bevrs. ägger mn v outgrundlig nledning ut kvdrtisk plttor på vägen i rd bort ifrån betrktren kommer visserligen bredden på dem tt minsk när de ligger långt bort med längden kommer tt minsk snbbre. Avlägsn plttor kommer lltså tt se ut som brädor. Vidre ser vi ur formeln, som väntt, tt om h 0 så syns inte pinnen. Prktiskt innebär dett till exempel tt om mn fotgrferr en husrd i stdsmiljö och står intill husen syns vlägns hus dåligt. Går mn över gtn och fotogrferr längs gtn syns vlägsn hus bättre. h hr ju blivit större. Vd händer i dett vseende om mn jämför inzoomning med tt gå närmre objektet? Tänk tt vi jämför fotogrfering på 60 m vstånd med fokllängd 300 mm (motsvrr inzoomt läge i ett gnsk br zoomobjektiv) med 10 m vstånd och 50 mm fokllängd (gnsk utzoomt). Den vnlig kmerförstoringen blir ju då lik i bägge fllen dvs -1/00. Bilden v upprättstående objekt blir lltså lik stor. Men om vi tittr på den ständigt återkommnde pinnen i ovnstående exempel, får vi tt förhållndet melln bildstorlekrn blir med hjälp v ekv (3) Δ inzoomt f inut ( 4) Δ f utzoomt ut in ut in 1 6 Den inzoomde bilden hr lltså en pinne som br är en sjättedel så lång. Bortsett från vårt perverterde intresse för pinnr på mrken, innebär ju dett tt ll sträckor i djupled i bilden blir
4 kortre. Den inzoomde bilden upplevs lltså som pltt. Ett vnligt trick vid nimeringr är tt överdriv djupleds-sträckor eftersom dett v betrktren tolks som tt mn är mycket när. Resonemnget om zoomning kn nturligtvis översätts till skillnden melln tt titt på ett sceneri med kikre jämfört med tt minsk vståndet en fktor lik med kikrförstoringen. Jämför gärn bildern till höger. Den en är inzoomd x den ndr inte. Förhållndet melln längd och bredd på stenplttorn är i verkligheten lik stort överllt Stor femåringr En nnn skillnd som beror på betrktningsvstånd är reltiv trnversell storlekr. Tänk er scenen med en ppp med höjden H och ett brn med höjden h, där brnet befinner sig en sträck Δ 3 m frmför pppn. Det hel fotogrfers mer eller mindre rkt frmifrån (inte så tt brnet skymmer pppn men nästn) på vståndet 3m, från brnet. ( 5) brn h f ppp f H + Δ brn ppp h ( + Δ) Om pppn är 1,80m och femåringen 1,0m blir kvoten 1,33, dvs brnet blir 33% större än pppn. Dett upplevs möjligen som självklrt (tt föremål i förgrunden får överdriven storlek), men även i dett fll finns en skillnd melln zoomde och icke-zoomde bilder. Om mn i stället fotogrferr på 18 m vstånd och zoomr så tt bilden blir lik stor blir ovnstående kvot 0,77, dvs brnet ser 3% mindre ut än pppn. Dett närmr sig det riktig värdet på 0,67, men frågn är vilken bild vi upplever som riktigst? Svret är nog tt vår förväntde storlek på bilden v ett objekt är väldigt när knuten till vår vståndsbedömning så tt om Δ/ inte är lltför stor behöver vi oft mät med linjl i bilden för tt inse tt bilden v femåringen är större. Om det då v övrig detljer i bilden frmgår tt det är ett vstånd melln fr och dotter kommer hjärnn tt försök få ihop de motstridig synintrycken, med resulttet tt den inzoomde bilden även i dett vseende upplevs som pltt. Dett trots tt fokllängden inte ingår i slututtrycket i ekvtion 5. H
5 Vänster bild inzoomd och höger bild norml. Bildern är tgn från smm höjd. Mät med linjl storleken på pllen reltivt bordsbenen. Vilket ser mest nturligt ut, vilket är rätt och vilket ger mest djup i bilden? Observer tt vid inzoomning händer två sker: ängsgående sträckor ser kortre ut vid inzoomning och reltiv höjdskillnder minskr. Bägge påverkr emellertid synitrycket på smm sätt. Bilden ser plttre ut vid inzoomning.
6 Grodperspektiv och von Oben-perspektiv Grodperspektiv innebär tt mn från mrknivå tittr upp mot någonting stort. Von Obenperspektiv innebär det omvänd, dvs tt mn tittr ner på sitt objekt. Bägge hr identisk mtemtisk beskrivning. Vi väljer tt titt på grodperspektivet. åt vståndet utefter mrken mot det (vertikl) objektet vr och den punkt mot vilken mn tittr vr belägen H över mrken. Inför vidre en vertikl z-xel (grön) utefter objektet med nollpunkt vid mrken. Betrktr vi figuren och nvänder den vnlig förstoringsformlen h hf/ för en punkt som inte ligger i bildmitten dvs inte på höjden H över mrken, så får vi med ( 6) + H sinα ( z ) sinα ( 7) h H ( z ) ett uttryck för vr bilden i kmern hmnr i förhållnde till mittpunkten (8) ( z H ) ( z H ) sin α f + sinα ( z H ) ( H + ) + ( z H )H Det sist ledet fick vi genom tt nvänd sinα och + H H + H
7 Av dess kn vi nu dr ett ntl hlvrolig slutstser: Perspektivpunktens läge i bildplnet (i eller utnför bilden) fås ur (8) genom tt låt z gå mot oändligheten. Dett ger (9) lim z / z + ( 1 H / z) sin α f f tnα ( 1 H / z) sinα H persppunkt f Observer lltså tt perspektivpunkten inte ligger på symmetrixeln längre. Ur (6) får vi tt den trnsversell förstoringen som funktion v z blir (10) M T + f sinα ( z H ) sinα Förstoringen v sträckor utmed det vertikl objektet fås genom tt differentier h med vseende på z (11) M vert d dz ( tungt rbete) fsin α ( + ( z H ) sinα ) Det intressnt för perspektivet är nu kvoten melln trnsversell förstoring och det vi kllr vertikl förstoring (1) K M M T vert + ( z H ) sinα sinα + zh + H För given kmerplts (ges v ) och given kmerriktning (ges v H) ökr lltså kvoten melln bredd och höjd med stignde z. Om objektet vore ett höghus, skulle fönstren högt upp se förhållndevis mindre hög ut. Noter tt både bredd 1 och höjd minskr men höjd minskr snbbre. Vi gör ett numeriskt exempel med ett höghus som är 50 m högt Blått: 5 m, H 5 m Rött: 5 m, H 5 m Grönt: 5 m, H 5 m Kvot Höjd räknt utefter höghuset
8 Någr bilder Den högr bilden är tgen med en vinkel på c 45 mot husväggen (motsvrr blå kurv på förr sidn). I den vänstr bilden hr jg krupit närmre och hr en vinkel på c 0. Mn ser bl tt förhållndet längd/ bredd ändrr sig mycket mer drmtiskt i den vänstr. All fönster är lik stor. Jg hr i bildern också lgt in det mn brukr kll perspektivlinjer som konvergerr mot oändlighetspunkten, dvs den som ges v ekvtion (9). I det vänstr fllet sk den ligg f tn 0 från bildmitten och i det högr fllet f tn 45 vilket ju i ll fll ser rimligt ut. Att perspektivlinjern inte följer fönsterkntern exkt beror inte på byggslrv utn på distorsion i kmern. Jg hr nvänt en enkel mobilkmer. Dett är en berrtion.
TATA42: Föreläsning 4 Generaliserade integraler
TATA42: Föreläsning 4 Generliserde integrler John Thim 5 november 28 Vi hr stött på begreppet tidigre när vi diskutert Riemnnintegrler i föregående kurs. Denn gång kommer vi lite mer tt fokuser på frågn
Läs merTATA42: Föreläsning 4 Generaliserade integraler
TATA42: Föreläsning 4 Generliserde integrler John Thim 29 mrs 27 Vi hr stött på begreppet tidigre när vi diskutert Riemnnintegrler i föregående kurs. Denn gång kommer vi lite mer tt fokuser på frågn om
Läs merKan det vara möjligt att med endast
ORIO TORIOTO yllene snittet med origmi ed endst någr få vikningr kn mn få frm gyllene snittet och också konstruer en regelbunden femhörning. I ämnren nr 2, 2002 beskrev förfttren hur mn kn rbet med hjälp
Läs merSidor i boken
Sidor i boken -5 Vi räknr en KS För tt ni sk få en uppfttning om hur en KS kn se ut räknr vi här igenom den end KS som givits i denn kurs! Totlt kn mn få poäng. Om mn lycks skrp ihop 7 poäng eller mer
Läs merGör slag i saken! Frank Bach
Gör slg i sken! Frnk ch På kppseglingsbnn ser mn tävlnde båtr stgvänd lite då och då under kryssrn. En del v båtrn seglr för styrbords hlsr och ndr för bbords. Mn kn undr vem som gör rätt och hur mn kn
Läs merPASS 1. RÄKNEOPERATIONER MED DECIMALTAL OCH BRÅKTAL
PASS. RÄKNEOPERATIONER MED DECIMALTAL OCH BRÅKTAL. Tl, bråktl och decimltl Vd är ett tl för någonting? I de finländsk fmiljern brukr det vnligtvis finns två brn enligt Sttistikcentrlen (http://www.tilstokeskus.fi/tup/suoluk/suoluk_vesto_sv.html).
Läs merKTH Teknikvetenskap Fotografi-lab 3
KTH Teknikvetenskp Fotogrfi-lb 3 Svrtvitt kopieringsrbete, tonreproduktion Kurs: SK2380, Teknisk Fotogrfi Kjell Crlsson & Hns Järling Tillämpd Fysik, KTH, 2015 1 För tt uppnå en god förståelse och inlärning
Läs merKmerobjektiv oc elokusering Zoomobjektiv Ett kmerobjektiv sk normlt vbil ett objekt som beinner sig på någr meters vstån på en ilm i en krtig örminskning. Det innebär tt okllängen på et objektiv mn sk
Läs merTrigonometri. 2 Godtyckliga trianglar och enhetscirkeln 2. 3 Triangelsatserna Areasatsen Sinussatsen Kosinussatsen...
Trigonometri Innehåll 1 Rätvinklig tringlr 1 Godtyklig tringlr oh enhetsirkeln 3 Tringelstsern 4 3.1 restsen.............................. 4 3. Sinusstsen.............................. 5 3.3 Kosinusstsen.............................
Läs merx 12 12 = 32 12 x 11 + 11 = 26 + 11 x 20 + 20 = 45 + 20 x=3 x=5 x=6 42 = 10x x + 10 = 15 x + 10 10 = 15 10 11 + 9 = 20 x = 65 x + 36 = 46
Vilket tl sk stå i rutn så tt likheten stämmer? + Lös ekvtionen så tt likheten stämmer. = + 9 = + = + = = Det sk stå 9 i rutn. Subtrher båd leden med. r -termen sk vr kvr i vänstr ledet. Skriv rätt tl
Läs merSF1625 Envariabelanalys
SF1625 Envribelnlys Föreläsning 13 Institutionen för mtemtik KTH 27 september 2017 SF1625 Envribelnlys Anmäl er till tentn Anmäl er till tentn nu. Det görs vi min sidor. Om det inte går, mejl studentexpeditionen
Läs merVilken rät linje passar bäst till givna datapunkter?
Vilken rät linje pssr bäst till givn dtpunkter? Anders Källén MtemtikCentrum LTH nderskllen@gmil.com Smmnfttning I det här dokumentet diskuterr vi minst-kvdrtmetoden för skttning v en rät linje till dt.
Läs merSkriv tydligt! Uppgift 1 (5p)
1(1) IF1611 Ingenjörsmetodik för IT och ME, HT 1 Tentmen Gäller även studenter som är registrerde på B1116 Torsdgen den 1 okt, 1, kl. 14.-19. Skriv tydligt! Skriv nmn och personnummer på ll inlämnde ppper!
Läs merSF1625 Envariabelanalys
Modul 5: Integrler Institutionen för mtemtik KTH 30 november 4 december Integrler Integrler är vd vi sk håll på med denn veck och näst. Vi kommer tt gör följnde: En definition v vd begreppet betyder En
Läs merSfärisk trigonometri
Sfärisk trigonometri Inledning Vi vill nvänd den sfärisk trigonometrin för beräkningr på storcirkelrutter längs jordytn (för sjöfrt och luftfrt). En storcirkel är en cirkel på sfären vrs medelpunkt smmnfller
Läs merGeometrisk optik F7 Reflektion och brytning F8 Avbildning med linser och speglar. Optiska system optiska instrument. Avbildning. Parallella strålar
Optisk system optisk instrument Geometrisk optik F7 elektion oc rytning F8 Avildning med linser oc speglr Optisk system F9 Optisk instrument 1 2 Optisk system optisk instrument epetition: Avildning i särisk
Läs merFAFF30 2013-03-21. Johan Mauritsson 1. Optiska system - optiska instrument Vetenskapsteori. Våglära och optik. Optiska system - optiska instrument
Våglär oc optik Optisk system - optisk instrument Vetenskpsteori FAFF3 JOHAN MAURITSSON 2 Optisk system - optisk instrument Men örst Quiz Ögt Kmern Luppen Vinkelörstoring Mikroskopet Kikren Bländre oc
Läs merAssociativa lagen för multiplikation: (ab)c = a(bc). Kommutativa lagen för multiplikation: ab = ba.
Rtionell tl Låt oss skiss hur mn definierr de rtionell tlen utifrån heltlen. Förutom tt det ger en inblick i hur mtemtiken är uppbyggd, är dett är ett br exempel på ekvivlensreltioner och ekvivlensklsser.
Läs merGeometri. 4. Fyra kopior av en rätvinklig triangel kan alltid sättas ihop till en kvadrat med hål som i följande figur varför?
Geometri 1. Linjen är isektris till vinkeln. Sträkorn, oh är lik lång. Hur stor är vinkeln? vgör utn mätningr! 4. Fyr kopior v en rätvinklig tringel kn lltid sätts ihop till en kvdrt med hål som i följnde
Läs merByt till den tjocka linsen och bestäm dess brännvidd.
LINSER Uppgit: Mteriel: Teori: Att undersök den rytnde örmågn hos olik linser och tt veriier linsormeln Ljuskäll och linser ur Optik-Elin Med hjälp v en lmp och en ländre med ler öppningr år vi ler ljusstrålr,
Läs merTENTAMEN. Matematik för basår I. Massimiliano Colarieti-Tosti, Niclas Hjelm & Philip Köck :00-12:00
Kursnummer: Moment: Progrm: Rättnde lärre: TENTAMEN HF00 Mtemtik för bsår I TENA / TEN Tekniskt bsår Mssimilino Colrieti-Tosti, Nicls Hjelm & Philip Köck Nicls Hjelm 0-0-6 08:00-:00 Emintor: Dtum: Tid:
Läs merLösningar basuppgifter 6.1 Partikelns kinetik. Historik, grundläggande lagar och begrepp
Lösningr bsuppgifter 6.1 Prtikelns kinetik. Historik, grundläggnde lgr och begrepp B6.1 1-2) Korrekt 3) elktig (Enheten skll inte vr med här; om exempelvis m 2 = 10 kg, så är m 2 g = 98,1. Uttrycket m
Läs merGeneraliserade integraler
Generliserde integrler Mtemtik Breddning 2.5 Frm till denn punkt hr vi endst studert integrler där funktionen som skll integrers vrit begränsd. Dessutom hr det intervll över vilket vi integrerr vrit begränst
Läs merExponentiella förändringar
Eonentiell förändringr Eonentilfunktionen - llmänt Eonentilfunktionen r du tidigre stött å i åde kurs oc 2. En nyet är den eonentilfunktion som skrivs y = e. (Se fig. nedn) Tlet e, som är mycket centrlt
Läs merLösningsförslag till fråga 5
Lösningsförslg till fråg 5 Smmnfttning Följnde lceringr för unktern, som frmgår v Tbell, är de bäst vi hr funnit. Utförligre beskrivningr v ders lägen följer i texten: Fråg ), n unkter i en kvdrt n Plcering
Läs merGEOMETRISKA VEKTORER Vektorer i rummet.
GEOMETRISKA VEKTORER Vektorer i rummet. v 6 Någr v de storheter som förekommer inom nturvetenskp kn specificers genom tt ders mätetl nges med ett end reellt tl. Exempel på sådn storheter, som klls sklär
Läs merUppsala Universitet Matematiska Institutionen T Erlandsson
Uppsl Universitet Mtemtisk Institutionen T Erlndsson TENTAMEN 5--4 Anlys MN SVAR OCH ANVISNINGAR FRÅGOR... 4. 5. x-xeln 6. y = x + x + 7. y = sin x + 8. y = xe x + 9. y = e x. y = x +.. + x. x = 4. 5.
Läs merAnvändande av formler för balk på elastiskt underlag
Användnde v formler för blk på elstiskt underlg Bilg 2 Sidn 1 v 1 Formler från [ ] hr nvänts i exelberäkningr för någr geometrier och någr lstfll. Dess exempel hr också beräknts med FEM för tt kontroller
Läs merGeometrisk optik F7 Reflektion och brytning F8 Avbildning med linser och speglar. Optiska system optiska instrument. Avbildning.
Geometrisk optik F7 Relektion oc brytning F8 Avbildning med linser oc speglr F9 Optisk instrument 1 2 Avbildning i särisk ytor, tunn linser oc speglr Avbildning Linsormeln ger vbildning melln punkter på
Läs merIntegraler. 1 Inledning. 2 Beräkningsmetoder. CTH/GU LABORATION 2 MVE /2013 Matematiska vetenskaper
CTH/GU LABORATION MVE6 - / Mtemtisk vetenskper Inledning Integrler Iblnd kn mn inte bestämm integrler exkt utn mn får nöj sig med tt beräkn pproximtioner. T.ex. e x dx kn inte beräkns exkt, eftersom det
Läs merEtt förspel till Z -transformen Fibonaccitalen
Ett förspel till Z -trnsformen Fibonccitlen Leonrdo Pisno vnligen klld Leonrdo Fiboncci, den knske störste mtemtiker som Europ frmburit före renässnsen skrev år 10 en bok (Liber bci) i räknelär. J, fktiskt.
Läs merVolum av rotationskroppar. Båglängd, rotationsytor. Adams 7.1, 7.2, 7.3
Volum v rottionskroppr. Båglängd, rottionsytor. Adms 7., 7., 7.3 Volum v rottionskroppr. Båglängd, rottionsytor. Integrtion v rtionell uttryck, prtilbråksuppdelning. Exempel med invers substitutioner.
Läs merSvar till uppgifter 42 SF1602 Di. Int.
Svr till uppgifter 42 SF62 Di. Int. Svr kortuppgifter. 3: i) Om f(x) är kontinuerlig på [, ] kn mn då skriv lim k k n= f(n/k) på ett enklre sätt? k Svr: J, dett är f(x)dx. (Rit en bild med grfen v f(x)
Läs merGauss och Stokes analoga satser och fältsingulariteter: källor och virvlar Mats Persson
Föreläsning 14/9 Guss och tokes nlog stser och fältsingulriteter: källor och virvlr Mts Persson 1 tser nlog med Guss och tokes stser 1.1 tser nlog med Guss sts Det finns ett pr stser som är mycket när
Läs merNågra integraler. Kjell Elfström. x = f 1 (y) = arcsin y. . 1 y 2 Vi låter x och y byta roller och formulerar detta resultat som en sats: cos x = 1
F r å g L u n d o m m t e m t i k Mtemtikcentrum Mtemtik NF Någr integrler Kjell Elfström Invers funktioner Om f är en funktion, och ekvtionen f() = till vrje V f hr en entdigt bestämd lösning D f, så
Läs merRationella uttryck. Förlängning och förkortning
Sidor i boken 8-9, 0- Rtionell uttryck. Förlängning och förkortning Först någr begrepp. Aritmetik eller räknelär är den mest grundläggnde formen v mtemtik. Ett ritmetiskt uttryck innehåller tl, men ing
Läs merBelöningsbaserad inlärning. Reinforcement Learning. Inlärningssituationen Belöningens roll Förenklande antaganden Centrala begrepp
Belöningsbserd Inlärning Reinforcement Lerning 1 2 3 4 1 2 3 4 Belöningsbserd inlärning Reinforcement Lerning Inlärning v ett beteende utn tillgång till fcit. En belöning ger informtion om hur br det går
Läs merRÄKNEOPERATIONER MED VEKTORER. LINJÄRA KOMBINATIONER AV VEKTORER. ----------------------------------------------------------------- Låt u vr en vektor med tre koordinter u. Vi säger tt u är tredimensionell
Läs mera sin 150 sin 15 BC = BC AB 1.93 D C 39º 9.0
18 Trigonometri Övning 18.1 I tringeln är sidorn och lik lång. Tringelns störst vinkel är 10. eräkn förhållndet melln sidorn och. Svr med tre gällnde siffror. Mätning i figur godts ej. Tringeln är likbent.
Läs merIntegralen. f(x) dx exakt utan man får nöja sig med att beräkna
CTH/GU STUDIO TMVb - / Mtemtisk vetenskper Integrlen Anlys och Linjär Algebr, del B, K/Kf/Bt Inledning Mn kn inte lltid bestämm integrler f() d ekt utn mn får nöj sig med tt beräkn pproimtioner. T.e. e
Läs merFinaltävling den 20 november 2010
SKOLORNAS MATEMATIKTÄVLING Svensk Mtemtikersmfundet Finltävling den 20 november 2010 Förslg till lösningr Problem 1 Finns det en tringel vrs tre höjder hr måtten 1, 2 respektive 3 längdenheter? Lösning
Läs merUPPTÄCK OCH DEFINIERA SAMBANDET MELLAN TVÅ OMRÅDEN SOM DELAS AV GRAFEN TILL EN POTENSFUNKTION
OLIVI KVRNLÖ UPPTÄCK OCH DEINIER SMNDET MELLN TVÅ OMRÅDEN SOM DELS V GREN TILL EN POTENSUNKTION Konsultudrg rågeställning I den här ugiften sk vi undersök smbndet melln reorn i en kvdrt med sidn l.e. i
Läs merOptiska system optiska instrument. Geometrisk optik F7 Reflektion och brytning F8 Avbildning med linser och speglar. Parallella strålar.
Optisk system optisk instrument Geometrisk optik F7 elektion oc rytning F8 Avildning med linser oc speglr Optisk system F9 Optisk instrument 1 2 Optisk system optisk instrument epetition: Avildning i särisk
Läs merTillämpning av integraler
CTH/GU LABORATION 3 MVE6 - /3 Mtemtisk vetenskper Inledning Tillämpning v integrler Vi skll se på två tillämpningr v integrler. Först ren oh volymen v rottionskropp sedn omkretsen v en ellips. Rottionskroppr
Läs merMat-1.1510 Grundkurs i matematik 1, del III
Mt-.50 Grundkurs i mtemtik, del III G. Gripenberg TKK december 00 G. Gripenberg TKK) Mt-.50 Grundkurs i mtemtik, del III december 00 / 59 Vribelbyte F gx))g x) dx = d F gx)) dx dx = / b F gx)) = F gb))
Läs merKvalificeringstävling den 2 oktober 2007
SKOLORNAS MATEMATIKTÄVLING Svensk Mtemtikersmfundet Kvlifieringstävling den oktober 007 Förslg till lösningr 1 I en skol hr vr oh en v de 0 klssern ett studieråd med 5 ledmöter vrder Per är den ende v
Läs merLångtidssjukskrivna. diagnos, yrke, partiell sjukskrivning och återgång i arbete. En jämförelse mellan 2002 och 2003 REDOVISAR 2004:7.
REDOVISAR 2004:7 Långtidssjukskrivn dignos, yrke, prtiell sjukskrivning och återgång i rbete En jämförelse melln 2002 och 2003 Smmnfttning Kvinnor svrr för 65 procent v de långvrig sjukskrivningrn som
Läs merMateriens Struktur. Lösningar
Mteriens Struktur Räkneövning 1 Lösningr 1. I ntriumklorid är vrje N-jon omgiven v sex Cl-joner. Det intertomär vståndet är,8 Å. Ifll tomern br skulle växelverk med Coulombväxelverkn oh br med de närmste
Läs merORTONORMERAT KOORDINAT SYSTEM. LÄNGDEN AV EN VEKTOR. AVSTÅND MELLEN TVÅ PUNKTER. MITTPUNKT. TYNGDPUNKT. SFÄR OCH KLOT.
Armin Hlilovi: EXTRA ÖVNINGAR v Vektorer oh koordinter i D-rummet ORTONORMERAT KOORDINAT SYSTEM LÄNGDEN AV EN VEKTOR AVSTÅND MELLEN TVÅ PUNKTER MITTPUNKT TYNGDPUNKT SFÄR OCH KLOT INLEDNING För tt bild
Läs merORTONORMERADE BASER I PLAN (2D) OCH RUMMET (3D) ORTONORMERAT KOORDINAT SYSTEM
Armin Hlilovi: EXTRA ÖVNINGAR 1 v 1 Ortonormerde bser oh koordinter i 3D-rummet ORTONORMERADE BASER I PLAN D OCH RUMMET 3D ORTONORMERAT KOORDINAT SYSTEM Vi säger tt en bs i rummet e r, e r, e r z e r,
Läs mer13 Generaliserade dubbelintegraler
Nr 3, 4 pril -5, Ameli 3 Generliserde dubbelintegrler 3. Generliserde enkelintegrler Integrerbrhet är definiert för funktioner som är begränsde och definierde på ett ändligt intervll. ett kn i mång fll
Läs merNautisk matematik, LNC022, Lösningar
Nutisk mtemtik, LN022, 2012-05-21 Lösningr 1. () För vilken eller vilk vinklr v melln 0 oh 180 är sin v = 0, 25? Räknren ger oss v 14, 5, då finns okså lösningen 180 14, 5 = 165, 5 i det givn intervllet.
Läs mer1 e x2. lim. x ln(1 + x) lim. 1 (1 x 2 + O(x 4 )) = lim. x 0 x 2 /2 + O(x 3 ) x 2 + O(x 4 ) = lim. 1 + O(x 2 ) = lim = x = arctan x 1
UPPSALA UNIVERSITET Svr till tent i mtemtik Mtemtisk institutionen Anlys MN Distns Jons Elisson 7-- Skrivtid: - 5. Observer tt problemen inte står i svårighetsordning. All svr sk motivers. Det kn krävs
Läs merUttryck höjden mot c påtvåolikasätt:
Sinusstsen Beviset i PB gger å tre resultt som nog få gmnsieelever är förtrogn med. Vrje tringel hr en s.k. omskriven cirkel en cirkel som går genom ll tre hörnen : C Uttrck höjden mot c åtvåoliksätt:
Läs merLäsanvisningar för MATEMATIK I, ANALYS
Läsnvisningr för MATEMATIK I, ANALYS Läsnvisningrn är tänkt i först hnd för dig som läser kursen mtemtik I på distns, och de sk vägled dig på din res genom nlysen. Stoffet är i stort sett portionert på
Läs merGEOMETRISKA VEKTORER Vektorer i rummet.
GEOMETRISKA VEKTORER Vektorer i rummet. v Någr v de storheter som förekommer inom nturvetenskp kn specificers genom tt ders mätetl nges med ett end reellt tl. Exempel på sådn storheter, som klls sklär
Läs merTATA42: Tips inför tentan
TATA42: Tips inför tentn John Thim 25 mj 205 Syfte Tnken med dett kort dokument är tt ge lite extr studietips inför tentn. Kursinnehållet definiers så klrt fortfrnde v kursplnen och kurslitterturen så
Läs merGOLV. Norgips Golvskivor används som underlag för golv av trä, vinyl, mattor och andra beläggningar. Här de tre viktigaste konstruktionerna
GOLV Norgips Golvskivor nvänds som underlg för golv v trä, vinyl, mttor och ndr beläggningr. Här de tre viktigste konstruktionern 1. Ett lg golvskivor på träunderlg 2. Flytnde golv med två lg golvskiv
Läs merLösningar och kommentarer till uppgifter i 1.2
Lösningr och kommentrer till uppgifter i.2 202 d) t t 2 25 t (t 5)(t + 5) Med hjälp v konjugtregeln kn vi fktoriser nämnren. Eftersom nämnren inte får bli noll är ej t 5 eller t 5 tillåtn. 206 Först presenterr
Läs mer4 Signaler och system i frekvensplanet Övningar
Signler och system i frevensplnet Övningr. Bestäm fourierserieoefficientern för de periodis signlern ) 7 δ [ n ] N = b) { δ [ n ] δ [ n 6] } N = c) { δ [ n + ] δ [ n ] } N =. T frm fourierserieoefficientern
Läs merTillämpning - Ray Tracing och Bézier Ytor. TANA09 Föreläsning 3. Icke-Linjära Ekvationer. Ekvationslösning. Tillämpning.
TANA09 Föreläsning 3 Tillämpning - Ry Trcing och Bézier Ytor z = B(x, y) q o Ekvtionslösning Tillämpning Existens Itertion Konvergens Intervllhlveringsmetoden Fixpuntsitertion Newton-Rphsons metod Anlys
Läs merUppsala Universitet Matematiska Institutionen Thomas Erlandsson
Uppsl Universitet Mtemtisk Institutionen Thoms Erlndsson RÄTA LINJER, PLAN, SKALÄRPRODUKT, ORTOGONALITET MM VERSION MER OM EKVATIONSSYSTEM Linjär ekvtionssystem och den geometri mn kn härled ur dess är
Läs merCampingpolicy för Tanums kommun
1(8) Cmpingpolicy för Tnums kommun 1. Bkgrund Strömstds och Tnums kommuner diskuterde gemensmt sin syn på cmpingverksmhetern i respektive kommun år 2003 och kunde då se ett stort behov v tt en likrtd syn
Läs merMatris invers, invers linjär transformation.
Mtris invers, invers linjär trnsformtion. Påminnelse om mtris beräkningr: ddition, multipliktion med sklärer och mtrisprodukt Algebrisk egenskper hos mtrisddition och multipliktion med ett tl (Ly Sts..,
Läs merTMV151/TMV181. Fredrik Lindgren. 19 november 2013
TMV151/TMV181 Fredrik Lindgren Mtemtisk vetenskper Chlmers teknisk högskol och Göteborgs universitet 19 november 2013 F. Lindgren (Chlmers&GU) Envribelnlys 19 november 2013 1 / 24 Outline 1 Mss, moment
Läs mer6 Formella språk. Matematik för språkteknologer (5LN445) UPPSALA UNIVERSITET
UPPSALA UNIVERSITET Mtemtik för språkteknologer (5LN445) Institutionen för lingvistik och filologi VT 2014 Förfttre: Mrco Kuhlmnn 2013 (mindre revision Mts Dhllöf 2014) 6 Formell språk Det mänsklig språket
Läs merAvsnitt 3. Determinanter. Vad är en determinant? Snabbformler för små determinanter
Avsnitt Determinnter Vd är en determinnt? Snbbformler för små determinnter Kofktorutveckling Minorer Utveckling längs en rd Utveckling längs en kolumn Rd- och kolumnopertioner Rdopertioner Kolumnopertioner
Läs merIntegraler och statistik
Föreläsning 8 för TNIU Integrler och sttistik Krzysztof Mrcinik ITN, Cmpus Norrköping, krzm@itn.liu.se www.itn.liu.se/krzm ver. 4 - --8 Inledning - lite om sttistik Sttistik är en gren v tillämpd mtemtik
Läs merLINJÄR ALGEBRA II LEKTION 1
LINJÄR ALGEBRA II LEKTION JOHAN ASPLUND INNEHÅLL. VEKTORRUM OCH DELRUM Hel kursen Linjär Algebr II hndlr om vektorrum och hur vektorrum (eller linjär rum, som de iblnd klls) beter sig. Tidigre hr mn ntgligen
Läs merFöreläsning 10, Numme K2, GNM Kap 6 Integraler & GNM 8:3C Richardsonextrapolation
Föreläsning, Numme K2, 72 GNM Kp 6 Integrler & GNM 8:C Richrdsonextrpoltion yc yd y y y2 yb H c d b A = H ( ) y +y 2 = H 2 { h 2 y + } A = A +A 2 +A = 2 y 2 = h 2 y +y c +y d + 2 y b 2 (y +y c )+ h 2 (y
Läs merMA002X Bastermin - matematik VT16
MA00X Bstermin - mtemtik VT6 Något om trigonometri Mikel Hindgren februri 06 Cirkelns ekvtion Exempel Beräkn vståndet melln punktern (4, 6) och (, ). 7 6 5 4 d (, ) 4 = (4, 6) 6 = 4 4 5 6 Pythgors sts:
Läs merEn skarp version av Iliev-Sendovs hypotes
School of Mthemtics nd Systems Engineering Reports from MSI - Rpporter från MSI En skrp version v Iliev-Sendovs hypotes Elin Berggren Feb 009 MSI Report 09005 Växjö University ISSN 650-647 SE-35 95 VÄXJÖ
Läs mer24 Integraler av masstyp
Nr, mj -5, Ameli Integrler v msstyp Kurvintegrler v msstyp Vi hr hittills studert en typ v kurvintegrl, R F dr, där vi integrerr den komponent v ett vektorfält F som är tngentiell till kurvn ( dr) i punkter
Läs mer9. Bestämda integraler
77 9. Bestämd integrler Låt f vr en icke-negtiv, begränsd funktion på [,b]. Vi hr lltså 0 f(x) ll x [,b] för någon konstnt B. B för Problem: Beräkn ren A v den yt som begränss v kurvn y = f(x), x b, x-xeln
Läs mer14. MINSTAKVADRATMETODEN
4 MINTAKADRATMETODEN Nu sk vi gå igenom någr olik sätt tt lös ekvtionssystemet Ax Om A är m n mtris med m n så sägs systemet vr överestämt och det sknr då i llmänhet lösningr Istället söker mn en pproximtiv
Läs merLösningsförslag till deltentamen i IM2601 Fasta tillståndets fysik. Torsdagen den 15 mars, Teoridel
Millerindex Lösningsförslg till deltentmen i IM61 Fst tillståndets fysik Torsdgen den 15 mrs, 1 Teoridel 1. ) Millerindex för ett tompln bestäms med följnde principiell metod. i) Bestäm plnets skärningspunkter
Läs merInternetförsäljning av graviditetstester
Internetförsäljning v grviditetstester Mrkndskontrollrpport från Enheten för medicinteknik 2010-05-28 Postdress/Postl ddress: P.O. Box 26, SE-751 03 Uppsl, SWEDEN Besöksdress/Visiting ddress: Dg Hmmrskjölds
Läs merTATA42: Envariabelanalys 2 VT 2018
TATA42: Envribelnlys 2 VT 28 Föreläsningsnteckningr John Thim, MAI L =? TATA42: Föreläsning Mclurinutecklingr John Thim 4 mrs 28 Introduktion Tänk er följnde sitution. En snäll funktion f är given, men
Läs merLamellgardin. Nordic Light Luxor INSTALLATION - MANÖVRERING - RENGÖRING
INSTALLATION - MANÖVRERING - RENGÖRING Se till tt lmellgrdinen fästes i ett tillräckligt säkert underlg. Ev motor och styrutrustning skll instllers v behörig elektriker. 1 Montering Luxor monters med de
Läs merKylfrysguide [Namn] Elektroskandia Sverige AB [år-månad-dag]
Kylfrysguide [Nmn] Elektroskndi Sverige AB [år-månd-dg] Kylfrysguide Vilken kyl-frys sk du välj? Nturligtvis är det utrymmet som är det först tt t hänsyn till. Vnligst instlltionsbredd är 60 cm, men även
Läs merAnalys o 3D Linjär algebra. Lektion 16.. p.1/53
Anlys o 3D Linjär lgebr Lektion 16. p.1/53 . p.2/53 v 3D Linjär lgebr Hr betrktt vektorer v typen etc resp dvs ordnde triplr v typen. reell tl 3D Linjär lgebr Punkt-vektor dulismen En ordnd tripel v typen
Läs merTATA42: Föreläsning 11 Kurvlängd, area och volym
TATA4: Föreläsning Kurvlängd, re och volm John Thim 4 mrs 8 Kurvlängd Vi börjr med tt betrkt situtionen då en kurv i plnet ges på prmeterform: ((t), (t)). Dett innebär tt både - och -koordintern simultnt
Läs merNya regler för plåtbalkar-eurokod 3-1-5
Bernt Johnsson 008-0-5 Ny regler för plåtlkr-eurokod --5 Bkgrund Med plåtlk mens en lk som är uppyggd v smmnsvetsde plåtr på engelsk plted structure. Plåtlkr nvänds när vlsde lkr inte räcker till eller
Läs mer1.1 Sfäriska koordinater
Föreläsning 3 Mång fysiklisk problem hr någon slgs symmetri. Mest vnligt förekommnde är sfärisk cylinisk. Det visr sig tt mn kn förenkl beräkningr betydligt om mn nvänder sfärisk /eller cylinisk koordinter..
Läs merFöreläsning 7: Trigonometri
ht06 Föreläsning 7: Trigonometri Trigonometrisk identiteter En identitet är en likhet som håller för ll värden på någon vriel. Tex så gäller tt ( + ) + + för ll,. Dett skrivs ilnd som ( + ) + +, men vi
Läs mertemaunga.se EUROPEISKA UNIONEN Europeiska socialfonden
temung.se T E M AG RU P P E N U N G A I A R B E T S L I V E T n n u k k s g n u r All e d u t s r e l l e b job EUROPEISKA UNIONEN Europeisk socilfonden »GÅ UT GYMNASIET«Mång ung upplever stress och tjt
Läs merSammanfattning, Dag 9
Smmnfttning, Dg 9 Idg studerde vi begrepp sklärprudokt (eller innerprodukt), norm och ortogonlitet på ett llmänt vektorrum. Vi börjde med en kort repetition på smm begrep för vektorrummet R 3. I rummet
Läs merXIV. Elektriska strömmar
Elektromgnetismens grunder Strömmens riktning Mn definierr tt strömmen går från plus (+) till minus (-). För tt få till stånd en ström måste mn. Spänningskäll 2. Elektriskt lednde ledningr 3. Sluten krets
Läs mer1. (6p) (a) Använd delmängdskonstruktionen för att tillverka en DFA ekvivalent med nedanstående NFA. (b) Är den resulterande DFA:n minimal? A a b.
UPPSAA UNIVERSITET Mtemtisk institutionen Slling (070-6527523) PROV I MATEMATIK AUTOMATATEORI 18 okt 2012 SKRIVTID: 8-13. HJÄPMEDE: Ing. MOTIVERA AA ÖSNINGAR NOGGRANT. BETYGSGRÄNSER: För etygen 3, 4 respektive
Läs merTentamen 1 i Matematik 1, HF dec 2016, kl. 8:00-12:00
Tentmen i Mtemtik, HF9 9 dec 6, kl. 8:-: Emintor: Armin Hlilovic Undervisnde lärre: Erik Melnder, Jons Stenholm, Elis Sid För godkänt betyg krävs v m poäng. Betygsgränser: För betyg A, B, C, D, E krävs,
Läs mer19 Integralkurvor, potentialer och kurvintegraler i R 2 och R 3
Nr9,3mj-5,Ameli 9 Integrlkurvor, potentiler och kurvintegrler i R och R 3 9. Integrlkurvor En integrlkurv r(t) ((t), (t)) till ett vektorfält F(, ) är en kurv där vektorfältet är en tngent till kurvn i
Läs merGENETIK. en introduktion av Ingela Carlén 1988 och 1999
GENETIK en introduktion v Ingel Crlén 1988 och 1999 Innehållsförteckning Innehåll Sidn Förord 3 Kromosomer 4 DN 4 Muttioner 5 Gregor Mendel 5 Mendels metod 6 Mendelklyvning (monohybrid) 6 Dihybrid klyvning
Läs merMATEMATIKPROV, LÅNG LÄROKURS BESKRIVNING AV GODA SVAR
MATEMATIKPROV, LÅNG LÄROKURS 905 BESKRIVNING AV GODA SVAR De beskrivningr v svrens innehåll och poängsättningr som ges här är inte bindnde för studentexmensnämndens bedömning Censorern beslutr om de kriterier
Läs merTATA42: Föreläsning 12 Rotationsarea, tyngdpunkter och Pappos-Guldins formler
TATA4: Föreläsning 1 Rottionsre, tngdpunkter och Pppos-Guldins formler John Thim 15 november 18 1 Rottionsre När vi sk beräkn rottionsre kommer vi tt utför liknnde mnövrr som vi gjorde för rottionsvolmer,
Läs merVektorer. Avsnitt 1. Ange lägesvektorerna för de två väteatomerna på formen: r = x ˆx + y ˆx
Avsnitt 1 Vektorer 1.1 Skissen nedn visr molekylgeometrin för H 2 O, där syretomen befinner sig i origo och vätetomern lägger symmetriskt kring x-xeln. Bindningslängden är = 96 pm och bindningsvinkeln
Läs merSpelteori: En studie av hur pokerproblemet delvis lösts. Mika Gustafsson
Spelteori: En studie v hur pokerproblemet delvis lösts Mik Gustfsson Smmnfttning Spelteorin föddes 198 då von Neumnn mtemtiskt lyckdes påvis bluffens nödvändighet i spel med ofullständig informtion. Dett
Läs merAlgebra. Kapitel 5 Algebra
Algebr Kpitel Algebr Kpitlet inleds med tt elevern ges möjlighet tt tolk och skriv lgebrisk uttrck. De räknr också ut värdet v olik uttrck. Elevern får sedn rbet med mönster. De ritr mönstren smt beskriver
Läs merAppendix. De plana triangelsatserna. D c
ppendix e pln tringelstsern Pythgors sts: I en rätvinklig tringel gäller, med figurens etekningr: 2 = 2 + 2 1 2 evis: Vi utnyttjr likformigheten melln tringlrn, oh. v denn får vi, med figurens etekningr:
Läs merIE1204 Digital Design
IE1204 Digitl Design F1 F3 F2 F4 Ö1 Booles lgebr, Grindr MOS-teknologi, minimering F5 F6 Ö2 Aritmetik Ö3 KK1 LAB1 Kombintorisk kretsr F7 F8 Ö4 F9 Ö5 Multipleor KK2 LAB2 Låskretsr, vippor, FSM F10 F11 Ö6
Läs mer> VD har ordet: Frösunda satsar på anhörigfrågorna > Frösunda främjar kvinnors företagande i Indien > 5 frågor: Sofia Hägg-Jegebäck
> VD r ordet: Frösund stsr på nörigfrågorn > Frösund främjr kvinnors företgnde i Indien > 5 frågor: Sofi Hägg-Jegebäck APRIL 2015 Nyetsbld med ktuell informtion till dig som rbetr i Frösund. VD HAR ORDET
Läs mer