t

Storlek: px
Starta visningen från sidan:

Download "t"

Transkript

1 ÝÒÑ ËÝ ØÑ À̼ ÃÓÑÔÐØØÖÒ ÖÒÚÒÒÖ ØÐÐ ÓÑÔÒØ

2 ÊÒÚÒÒÖ ØÐÐ ÔØÐ ÓÑÔÒØ º Á Ø ÒÔÙØ ØÓ ÖØÒ Ý ØÑ ÙÒØ ØÔ ØÒ Ø ÓÙØÔÙØ ÛÐÐ ÓÖÒ ØÓ ÙÖ º Ý Øµ ¼ ¼ Ø ÙÖ ËØÔ Ö ÔÓÒ ÓÖ º ÙÑ ØØ Ø ÒÔÙØ Ò Ø Ò ÑÔÙÐ º ÏØ ÛÐÐ Ø ÓÙØÔÙØ Ø ØÑ Ø º ÂÙ ØÝº

3 º ÓÒ Ö Ø ÑÔÐ ÑÓÐ Ó Ø ÖÓÐÐÖ ÔØ Ò ÙÖ º ËÖÛ ÊÓÐÐÖ Ù Ä ÈÐØ ÙÖ ÈØÙÖ Ó Ø Ý ØÑ Ò º ÌÓ ÓØÒ ÑÔÐ ÑÓÐ Û Ö Ø ÖÐØÓÒ Ô ØÛÒ Ø ÔÓ ØÓÒ Ó Ø ÖÛ Ò Ø ØÒ Ó Ø Ø ÖØÐÝ ØÖ Ø ÖÓÐÐÖ Ö Ø ÓÖÖ ØÖÒ Ö ÙÒØÓÒ Ú µ Ì ÌÓ ØÖÑÒ Ø ÓÒ ØÒØ Ò Ì Û Ö ØÖ Ø Ø Ó ÙÒ Ò Ò Ø ÔÓ ØÓÒ Ó Ø ÖÛº ÐÙÐØ Ò ÙØÐ ÙÒØ Ø Ò Ò ÚÛ ÙÒØ ØÔº ÁÒ Ø ÙÖ Ø Ö ÙÐØÒ ØÒ ÔÖÓРص ÓÛÒº d1(t) t ÙÖ ËØÔ Ö ÔÓÒ ÓÖ Ø Ý ØÑº ÁÒ ÔÖÓÙØÓÒ Ø ØÒ ÒÒÓØ Ñ ÙÖ ÖØÐÝ Ò Ø ÖÓÐÐÖ ÓÖ ÔÖØÐ Ö ÓÒ Ò Ò Ø Ø ØÒ ص Ñ ÙÖ Ä ÐÒØ ÙÒØ ØÖ Ø ÖÓÐÐÖ º Ò Ø ØÖÒ Ö ÙÒØÓÒ ÖÓÑ Ø ÔÓ ØÓÒ Ó Ø ÖÛ ØÓ Ø ØÒ º Ì Ø ÑÓÚ ÛØ Ô Î º

4 º ÓÙÖ ØÔ Ö ÔÓÒ Ö ÓÛÒ ÐÓÛº ÓÑÒ Ø ØÔ Ö ÔÓÒ ÛØ Ø ÓÖÖØ ØÖÒ Ö ÙÒØÓÒ ÑÓÒ Ø ÐØÖÒØÚ ÐÓÛº ÂÙ ØÝ µ µ ¼¼ µ ¼¼ ¼ ¼¼ ¼¼¼ ¼µ ¼ ¼¼µ ¼¼ ¼ ¼¼ µ µ µ ¼¼ ¼ ¼¼ ¼¼ ¼ ¼¼ a b c d ÙÖ ËØÔ Ö ÔÓÒ ÓÖ º º Ý ØÑ Ø ØÖÒ Ö ÙÒØÓÒ µ µ ÏØ Ø ÓÙØÔÙØ ØÖ ØÖÒ ÒØ µ ÛÒ Ø ÒÔÙØ Ò Ø µ

5 º ÁÒ ÙÖ º ØÔ Ö ÔÓÒ ÓÖ Ø ÓÐÐÓÛÒ Ý ØÑ Ö ÔÐÓØØº ÓÑÒ Ø Ý ØÑ Ò Ø ØÔ Ö ÔÓÒ º ÂÙ ØÝ ÝÓÙÖ Ò ÛÖ µ µ µ ¼ µ 2.5 A 2 B C D ÙÖ ËØÔ Ö ÔÓÒ ÓÖ º

6 º ÓÒ Ö Ø Ý ØÑ Ò µ µ ¼ µ µ Ì ØÔ Ö ÔÓÒ Ó Ø ØÖ Ý ØÑ Ö ÚÒ Ò ÙÖ ºº Ò Ø Ö ØØµ Ø Ò ÚÒÒÒ Øµ Ò Å ÖÐØÚ ÚÖ ÐÒµ ÓÖ Ø ØÖ ØÔ Ö ÔÓÒ º µ ÓÑÔÙØ Ø ÔÓÐ Ó Ø Ý ØÑ µ µ Ò µ Ö ÔØÚÐݺ µ ÀÓÛ Ø ÐÓØÓÒ Ó Ø ÔÓÐ ÖÐØ ØÓ Ø ÔÖÓÔÖØ Ó Ø ØÔ Ö ÔÓÒ 1 A 2 B y(t) t y(t) t 1 C.8.6 y(t) t ÙÖ ËØÔ Ö ÔÓÒ ÓÖ º

7 º ÑÖÙÖÝ ØÖÑÓÑØÖ Ò Ö ÛØ ÙÖÝ Ö Ø ÓÖÖ ÐÒÖ ØÑ ÒÚÖÒØ ÝÒÑ Ý ØÑº Ì ÒÔÙØ Ø ÖÐ ØÑÔÖØÙÖ Ò Ø ÓÙØÔÙØ Ø ØÖÑÓÑØÖ ÖÒº ÁÒ ÓÖÖ ØÓ Ø ØÖÒ Ö ÙÒØÓÒ Ò ØÖÑÓÑØÖ Ø ÔÐ Ò ÐÕÙ ÛÖ Ø ØÑÔÖØÙÖ ÚÖ ÒÙ Óº Ì ÓØÒ Ö ÙÐØ ÓÛÒ Ò ÙÖ º Period =.314 min min Thermometer reading Bath temperature Transient Stationary state ÙÖ ËÒÙ ÓÐ Ö ÔÓÒ ÓÖ º Ò Ø ØÖÒ Ö ÙÒØÓÒ Ó Ø ØÖÑÓÑØÖº º ÓÒ Ö Ø ÓÐÐÓÛÒ Ý ØÑ µ µ µ µ µ µ ÄØ Ø ÒÔÙØ ٠ص Ò Øº ÓÑÔÙØ Ò Ø ÛÖ Ø ÑÒÒÙÐ Ø ÓÙØÔÙØ ÛÒ Ø ØÖÒ ÒØ Ú ÔÔÖº

8 º Á ÙÖ Ö ÓÖÑÑØ Ö ØØ Ý ØÑ ØØ ÙÔÔ Ú ÑØÒÒÖ ÂѺ Ò Ò ÔÖÓ ÐÒµº µ ÒØ ØØ Ò ÒÐÒ ØÐÐ Ý ØÑØ Ö Ò ÓÒ ØÒØ Ù ¼ º Î ÐÖ ÙØ ÒÐÒ ØØÓ¹ ÒÖØ Î Ö Ý ØÑØ ØØ Ö ØÖÒÒ µ ÒØ ÒÙ ØØ Ý ØÑØ ÔÚÖ Ú Ò ÔÖÓ ØÖÒÒ ÓÑ Ò Òк ÒÒ ØÖÒÒ Ò ÖÚ Ù Øµ Ò Ø µ Ò Øº Î ÐÖ ÙØ ÒÐÒ ÖÒ Ý ØÑØ G(iω) ω.5 arg(g(iω)) [rad] ω ÙÖ ÓÖÑ Ö º

9 º¼ ÒØ ØØ Ú ÚÐÐ ØÙÖ ÑÔÙÐ ÚÖ Ó Ø ÚÖ Ö Ý ØÑÒ Ñ ÚÖÖÒ ÙÒ¹ ØÓÒÖ ÚÒ ÒÒ µ µ µ µ Þ µ Þ ¼Þ ¼ µ Ö Ö ÔØÚ Ý ØÑ ÝÑÔØÓØ Ø ØÐØ ØÐØ ÐÐÖ Ò ØÐØ µ Î ÐÖ ÙØ ÒÐÒ Ö Ö ÔØÚ Ý ØÑ Ó Ò ÒÐ ØØÓÒÖØ Ú Ø µ µ ÀÙÖ ØÖ ÙØ ÒÐÒ ÖÒ Ö ÔØÚ Ý ØÑ ÖÒ Ú Ø ÚÖ ÖÐÓÔÔØ Ú Ø ¼ µ

10 ÊÒÚÒÒÖ ØÐÐ ÔØÐ ÓÑÔÒØ º ËÖÚ Ý ØÑÒ ÒÒ Ô ØÐÐ ØÒ ÓÖѺ ÒØ ØØ Ù Ö Ò ÒÐ Ó Ý ÙØ Òк µ µ ĐÝ Øµ Ý Øµ ٠ص ĐÝ Øµ Ý Øµ ٠ص ¼ µ Ú Øµ Ú Øµ ٠ص Ý Øµ Ý Øµ Ú Øµ µ Ú Øµ Ú Øµ ٠ص ĐÝ Øµ Ý Øµ Ý Øµ Ú Øµ µ Ý µ ĐÝ Øµ Ý Øµ Ý Øµ ٠ص º ÊÔÖ ÒØÖ Ý ØÑ ÚÖ ÚÖÖÒ ÙÒØÓÒÖ Ö ÚÒ ÒÒ Ô ØÐÐ ØÒ ÓÖÑ Ñ ÐÔ Ú ÓÒÐÓÖÑÒº µ µ µ µ µ µ

11 º Ò Ú Ö Ø ÓÖÒÒÒ ÔÖÓ ÓÑ ÖÚÖ ÚØØÒ ÒÓÑ Ò ÚÒØÐ Ò ¹ ÖÚ Ñ Ò ÒÐ»ÙØ ÒÐ ÑÒØ µ µ Ö Ý Øµ Ö ÚØØÒØ ÒÓÑ ÚÒØÐÒ Ó Þ Øµ Ö ÚÒØÐÒ ÔÔÒÒ Öº ÎÒØÐÒ ÔÔÒÒ Ö Ò Ò ØÙÖ Ó ÖÔÖ ÒØÖ ÓÑ Ò Ö Ø ÓÖÒÒÒ ÔÖÓ Ö ÚÐÒ Ø ÐÐÖ ØØ µ ¼ Í µ Ö Ù Øµ Ö ÔÒÒÒÒ ØÐÐ Ò ÑÓØÓÖ ÓÑ ÔÔÒÖ Ó ØÒÖ ÚÒØÐÒº º µ Î Ö ÚÖÖÒ ÙÒØÓÒÒ ÑÐÐÒ ÔÒÒÒÒ ØÐÐ ÑÓØÓÖÒ Ó ÚØØÒØ ÒÓÑ ÚÒØÐÒ µ ËØÐÐ ÙÔÔ Ò ØÐÐ ØÒ ÑÓÐÐ Ö Ý Ð ÑÓÐÐ ØÓÖØÖÒ Ö ØÐÐ ØÒ Ù Ò ÒÐ Ó Ý ÙØ Òеº µ ËØÐÐ ÙÔÔ Ò ØÐÐ ØÒ ÑÓÐÐ Ö Ò ØÐÐ ØÒ ÑÓÐÐ Ô ÓÒÐÓÖÑ Ù Ò ÒÐ Ó Ý ÙØ Òеº ØØ Ý ØÑ Ô ØÐÐ ØÒ ÓÖÑ Ö ÚØ Ü ¼ Ü Ù Ý Ì ÖÑ ÚÖÖÒ ÙÒØÓÒÒ ÑÐÐÒ Ù Ó Ýº º ÖÒ ÔÓÐÖ Ó ÒÓÐÐ ØÐÐÒ ØÐÐ Ý ØÑØ º Ü Ý Ü µü Ü ¼ ÐÒ ÓÔÔÐ ÖÒØÐÚØÓÒÖ ÖÚÖ ØØ ÝÒÑ Ø Ý ØÑ Ü Øµ Ü Øµ ٠ص Ý Øµ Ý Øµ Ü Øµ ٠ص µ ÓÖÑÙÐÖ Ò ØÐÐ ØÒ ÑÓÐÐ Ñ Ù ÓÑ Ò ÒÐ Ó Ý ÓÑ ÙØ Òк Ì ÖÑ ÚÖÖÒ ÙÒØÓÒÒ ÖÒ Ù ØÐРݺ µ ÒÐÝ Ö Ý ØÑØ ØÐØØ Ð ÙØÖÒ ØÐÐ ØÒ ÑÓÐÐÒ Ó Ð ÖÒ ÚÖ¹ ÖÒ ÙÒØÓÒÒº Ö ÖÐÖ ÐÐÒÒ Ö ÙÐØØÒº Ù ¼

12 º ØØ ÒÖ ÓÖÒÒÒ Ý ØÑ Ô ØÐÐ ØÒ ÓÖÑ Ò ÖÚ Ô ÒÐØ Ü Øµ Ü Øµ ٠ص Ý Øµ Ü Øµ ÅÒ ÚØ ØØ Ý ØÑØ ÑÔÙÐ ÚÖ Ö Ý Øµ Ò Øº ÎÖ ÐÐÖ ØØ Ü Øµ Ü Øµº ØÑ Ò ÑÒ Ø Ö ÑÐØµ ÑØÖ ÖÒ Ó º º Ò ØÐÐ ØÒÖÔÖ ÒØØÓÒ Ú Ý ØÑØ Ú µ µí µ Ü ¼ ¼ Ü Í µ Ù Ý ¼µÜ µ ÖÒ Ü Øµ Ü Øµ Ó Ý Øµ ÓÑ Ü ¼µ ¼ Ó Ù Øµ ¼ Ø ¼ Ø ¼ µ Ö Ý ØÑØ ÓÑ ÖÔÖ ÒØÖ Ô ØÐÐ ØÒ ÓÖÑ ÝÑÔØÓØ Ø ØÐØ Å ÒÖ ÓÖ Ö ØÐÐ ØÒÒ ÑÓØ ¼ Ù ¼ ØØ Ö Ú Ñ ÙÒÖ Ö ÒÓÑ ØØ ØØØ Ô Ø Á µ¼µ Ö Ý ØÑØ Ò¹ÙØ ÒÐ ØÐØ ÒØ ÒÚÒ Ø Ü Ö ÙÐØØØ µ ÐØÖÒØÚØ Ø ÖÑ ÚÖÖÒ ÙÒØÓÒÒ ÖÒ Ù ØÐРݵ

13 ÊÒÚÒÒÖ ØÐÐ ÔØÐ ÓÑÔÒØ º ÚØ Ò ÓÐÒÖ ÖÒØÐÚØÓÒÒ ĐÝ ¼ Ý µ Ý Ý ¼ ÄØ ØÐÐ ØÒ ÚÖÐÖÒ ÚÖ Ü Ý Ó Ü Ýº ËØÐÐ ÙÔÔ ØÐØØ ÚÐÐÓÖÒ Ö Ý ØÑØ ÒÓÐÐ ÒÒº ÈÖÚ ÓÑ ÄÝÔÙÒÓÚÙÒØÓÒ Î Ü Ü µ º ØÖØ Ý ØÑØ ÃÒ ÙÒØÓÒÒ Ü Ò Ü Ü Ü Ü Ü Î Ü Ü µ Ü Ü ÒÚÒ ÓÑ ÄÝÔÙÒÓÚÙÒØÓÒ Ö ØØ Ú ØÐØØ Ó ØØ Ý ØÑ ÅÓØÚÖ º ÚØ ÖÒØÐÚØÓÒÒ ĐÜ ¼ ¼ Ü µ Ü Ü Ü ¼ ØÑ ØØÓÒÖ ÔÙÒØÖÒ Ó Ö ÖØÖº º ØÖØ Ý ØÑØ Ë ÔÐÒØ Ö Ù ¼º Ü Ü Ù Ü

14 º Ò Ð ÝÒÑ Ò Ú ÆÛØÓÒ Ð ÖÚ Ñ ÖÒØÐÚØÓÒÒ Ñ Ú Øµ ص Ú Øµ Ö Ú Ö ÐÒ ØØ Ö Ò ÖÖØ ÑÓØÓÖÒ Ö Ò ÒÐÒµ Ó Ú Øµ Ö Ò ÑÓØÖØ ÓÑ ÒÖÖ Ú ÐÙØÑÓØ ØÒØ Ö Ö Ò ÔÖÓÔÓÖØÓÒÐØØ ÓÒ ØÒصº µ ÄÒÖ Ö Ý ØÑØ ÖÙÒØ Ò ÓØÝÐ ØØÓÒÖ ÔÙÒØ ¼ Ú ¼ µ ÒØ ØØ Ò ÓÒ ØÒØ ØØÓÒÖµ Ò ÒÐÒ Ö ¼ º Ì Ñ ÐÔ Ú Ö ÙÐØØØ µ ÖÑ ÚÖÖÒ ÙÒØÓÒÒ ÑÐÐÒ ÚÚÐ Ò ÖÒ Ò ÒÐÒ Ñ¹ ÚØ Ð Ó ÚÚÐ Ò ÖÒ ÙØ ÒÐÒ ØØÒ µ ÑÚØ к ÍÒÖ Úй Ò ÖÙØ ØØÒÒ Ö Ý ØÑØ ØÐØ ÒÖ ÑÚØ ÔÙÒØÒ ÃÒ ÑÒ ÖÚÒØ ØØ ØØ ÖÚ Ö ÙÔÔÝÐÐØ º Á Ò Ò ÔÖÓ ÐÒ ØØØ Ò Ô ÙÐØÒÔÖÓ Òº Á ÔÖÒÔ Ò ØØ Ý ØÑ Ú ÓÐÒÖ ÖÒØÐÚØÓÒÖ ÓÑ ÖÚÖ ÚØ ÖÒ ØÒÖÒ ÖÚ ÓÑ Øµ ص Ô Øµ ÃÈ Ù Øµ Ô Ô Øµ ص Ö Ö ÚØ Ò ÚÖ ØÒÒ Ö ÚØ Ò ÙÒÖ ØÒÒ Ù Øµ Ö ÔÒÒÒÒ Ô Ò ÐÐÐ ÑÓØÓÖ ÓÑ ÔÙÑÔÖ ÚØØÒ ØÐÐ ÚÖ ØÒÒº ÚÖ ÚÖÐÖ Ö ÓÒ ØÒØÖ Ö ÚÓØÒ ÑÐÐÒ ÓØØÒÐØ Ö Ó ØÒÒ ØÚÖ ÒØØ Ö ÓÑ Ú ÒØÖ ÚÖ ÑÑ Ö ØÒÖÒµ Ã È Ñ»»Î Ö ÖÐÐÒØ ÑÐÐÒ Ò ÑÓØÓÖÓÒ ØÒØ Ó ØÒÖÒ Ó Ö ØÝÒÐÖØÓÒÒ Ñ» º Á ØØ й ÜÔÖÑÒØ Ö Ú ÖÐÐØ ¼º¼ Ó Ã È ¼ºº ËØØÖ ÑÒ Ò ÚÖÒ ÑÓÐÐÒ ÓÚÒ Ö ÑÒ Øµ ¼¼Ô ص ¼Ù ص ص ¼¼Ô ص ¼¼Ô ص µ ÒØ ÒÙ ØØ ØÐÐ ØÒ Ú ÚÐÖ Ö ÚØ ÖÒ Ö ÔØÚ ØÒº Ì ÖÑ Ò ÐÒÖ ÑÓÐÐ ÓÑ ÖÚÖ Ý ØÑØ ÚÚÐ Ò ÖÒ ÑÚºÔÙÒØÒ Ü Ü ¼ µ ØØ ÓÑÖ ÖÙÒØ Ò ØØÓÒÖ ÔÙÒØ ÓÑ Ò ÒÐÒ Ù Øµ Ö ÓÒ ØÒØ Î Ú Ù Ù ¼ º µ ÒØ ÒÙ ØØ Ò ÙØ ÒÐ Ú ÚÐÐ ØÙÖ Ö ÚØ ÒÚÒ ÚÚÐ ÖÒ Ñ¹ ÚØ ÐØ Ò ÙÒÖ ØÒÒ Ý Ý ¼ µº Ì ÖÑ ÚÖÖÒ ÙÒØÓÒÒ ÖÒ Ò ÒÐÒ ÚÚÐ ÖÒ ÑÚØ ÔÙÒØÒ Ù Ù ¼ µ ØÐÐ Ý Ý ¼ º Ö Ý ØÑØ ØÐØ

15 º Ò ÓÐÒÖ ØÐÐ ØÒ ÑÓÐÐ Ú Ô Ü Øµ Ü Øµ Ü Øµ Ü Øµ Ü ØµÙ Øµ Ü Øµ Ý Øµ Ü Øµ ٠ص ÓÒ ØÒØ ¼ Ö Ý ØÑØ Ò ÑÚØ ÔÙÒØ Ü ¼ Ó Ü ¼ º ÎÖÖ ØØ Ó Ø Ò ÖÑ Ò ÐÒÖ ÑÓÐÐ ÓÑ ÖÚÖ Ý ØÑØ ØØ ÓÑÖ ÒÖ ÑÚØ ÔÙÒØÒº ÃÒ ÑÒ ÙØÖÒ ÒÒ Ö ÒÖ ÐÙØ Ø Ö ÓÑ ÙÖ Ð ÒÒÖÒ ÓÑÑÖ ØØ ÙØ ÒÖ ÑÚØ ÔÙÒØÒ Ú ÚÐÒ ØÝÔ Ú ÑÚØ ÔÙÒØ Ø ÓÐÒÖ Ý ØÑØ Ö

16 Ä ÒÒÖ» ÚÖ ØÐÐ ÖÒÚÒÒÖ ØÐÐ ÔØÐ Óѹ ÔÒØ º Ì ÄÔÐ ØÖÒ ÓÖÑ Ó Ø ØÔ Ö ÔÓÒ ÚÒ Ý µ µ ÛÖ µ Ø Ý ØÑ ØÖÒ Ö ÙÒØÓÒº Ì ÑÔÙÐ Ö ÔÓÒ Øµ Ø ÒÚÖ ÄÔÐ ØÖÒ ÓÖÑ Ó Ø ØÖÒ Ö ÙÒØÓÒ Û ÑÔРص Ä µ Ä µ Ý Øµ ºº Ø ÑÔÙÐ Ö ÔÓÒ Ø ÖÚØÚ Ó Ø ØÔ Ö ÔÓÒ º Ì ÙÖ ÓÛ ØØ Ø ÖÚØÚ Ó Ø ØÔ Ö ÔÓÒ ÞÖÓ Ø Ø º Ò ÛÖ Ì ÑÔÙÐ Ö ÔÓÒ ÞÖÓ Ø Ø ØÑ Ø º º Ì ÒÚÖ ÄÔÐ ØÖÒ ÓÖÑ Ú Ø ØÔ Ö ÔÓÒ Øµ Ä Ì ÏÒ Ø Û Ø Ì ÙÖ Ú Øµ ¼ ØÌ µ Ø Ø ØÑ Ø Ì Ø Ý ØÑ ØÑ ÓÒ ØÒØ Ø ØÔ Ö ÔÓÒ Ö ± Ó Ø ÒÐ ÚÐÙ ºº Ì µ ¼ ¼ Ì ÙÖ Ú Û Ú Ø ØÓØÐ ØÖÒ Ö ÙÒØÓÒ Ì Ú µ ¼ Á Û Ñ ÙÖ Ø ÒРص Û ÒØÖÓÙ Ò ØÓÒÐ ØÑ ÐÝ Ó Ä Î Ì ØÓØÐ ØÖÒ Ö ÙÒØÓÒ ØÒ ÓÑ Ò ÛÖ Ú µ ¼ Ä Î Ú µ ¼ Ä Î ØÑ ÙÒØ º

17 º Ò ÜÐÙ Ò Ø Ý ØÑ ÙÒ ØÐº Ò Ð ÜÐÙ Ò Ø Ý ØÒ ØØ Ò ¼º Ò Ú ÙÒØÝ ØØ Òº ÐØÐÝ ÑÔ ÓÑÔÐÜ ÔÓÐ º ÓÑÒØ Ý ÖÐ ÔÓк Ì Ú Ø ÓÑÒØÓÒ Ò º ¼µ ¼µ Ò ØÝ ÓØ Ú Ø Ñ ÓÑÔÐÜ ÔÓÐ ÙØ ÐÓÛÖ ÖÐ ÔÓк Ì Ú Ò º º ÛÖ µ ٠ص Ò Ø µ µ µ Ý Øµ µ Ò Ø Ö µµ µ Ô Ô Ö µ ÖØÒ º ÐÑ Ø Ý Øµ ÐÑ ¼ µ µ ØÔ Ö ÔÓÒ º ÊÐØÚ ÑÔÒ µ ØÔ Ö ÔÓÒ º ÊÐØÚ ÑÔÒ ¼ µ ØÔ Ö ÔÓÒ º ÓÒÐÝ ÖÐ ÔÓÐ Ò Ø ØÔ Ö ÔÓÒ ÛÐÐ ÒÓØ Ó ÐÐØÚ ÓÖ Ú ÒÝ ÓÚÖ ÓÓØº µ ØÔ Ö ÔÓÒ º Ò ÛÖ º µ ÒØÖ Ø Ý ØÑ º Ø µ Ø ¼º µ Ø µ ÓÑÔÙØ Ò ÔÐÓØ Ø ØÔ Ö ÔÓÒ º ØÔ µ Ö Ì Ý ØÑ µ Ò µ Ò ÑÙÐØ Ò ÑÐÖ Ûݺ Ì ÚÐÙ Ó Ø Ö Ø Ò Å ÓÖ Ø ÖÒØ ØÔ Ö ÔÓÒ Ò ÓÙÒ Ù Ò Ø ÒÔÙØ ÓÑÑÒº µ ÓÑÔÙØ Ø ÔÓÐ º

18 ÔÓÐ µ Ò ¹ ¹ Ì ÓØÖ Ý ØÑ Ö ÒÐ Ò Ø Ñ Ûݺ µ Ì Ö ÙÐØ ÖÓÑ µ Ò µ Ò ÙÑÑÖÞ Ò Ø ÓÐÐÓÛÒ ØÐº ÁØ ÑÔÓÖØÒØ ØÓ ÒÓØ ØØ Ø ÚÐÙ ÒÖØ Ý ÖØÔÐÓØ ÐØÐÝ Ø Ý Ø Ó Ó ÑÙÐØÓÒ ÔÖÑØÖ º ËÝ ØÑ Ø Ö Ø Å ÔÓÐ ¼± ± ¼ ¼ ¼ ¼± ¼ Í Ò Ø ØÐ Û Ò ÖÛ Ø ÓÐÐÓÛÒ ÓÒÐÙ ÓÒ º µ Ì Ô Ó Ø ØÔ Ö ÔÓÒ ÑÒÐݵ ÔÒ ÓÒ Ø ØÒ ØÛÒ Ø ÔÓÐ Ò Ø ÓÖÒº ÈÓÐ ÙÖØÖ ÛÝ ÖÓÑ Ø ÓÖÒ Ú ØÖ ØÔ Ö ÔÓÒ Ò ÓÖØÖ Ö ØÑº µ Ì ÑÔÒ Ó Ø Ý ØÑ ÔÒ ÓÒ Ø ÖÐØÓÒ Ô ØÛÒ Ø ÑÒÖÝ ÔÖØ Ò Ø ÖÐ ÔÖØ Ó Ø ÔÓÐ º ÈÓÐ ÛØ ÐÖ ÑÒÖÝ ÔÖØ ÖÐØÚ ØÓ Ø ÖÐ ÔÖØ Ú ÔÓÓÖÐÝ ÑÔ Ó ÐÐØÓÖݵ ØÔ Ö ÔÓÒ º ÊÑÖ Ï ØØ ÚÒ ØÓÙ Ø ØÒ ØÓ Ø ÓÖÒ ÒÖÐÝ Ø Ñ Ò Ý ØÑ Ò Ø Ö ØÑ ÐÑÓ Ø ØÑ ØÖ Ò Ý ØÑ º ÆÓØ ØØ Ô ÒÓØ ÓÒÐÝ Ö ØÑ ÚÒ Ø ÓÐÙØÓÒ ØÑ ÓÙÐ ÓÒ Öº ÄÓÓ Ø Ø ÓÐÐÓÛÒ Ý ØÑ µ ¼ ¼ ¼ Ì ÔÓÐ Ó Ø Ý ØÑ Ö ÚÒ Ý ¼ Ô µ ÛÖ Ó º Ì ÔÖÑØÖ ÐÐ ÖÐØÚ ÑÔÒ Ò ¼ º Ï ÐÖÐÝ ØØ Ø Ö ØÑ ØÖ ÛÒ ÑÐÐ ÙØ ÛÒ ÑÐÐ Ø ÓÐÙØÓÒ ØÑ º ÁÒØÖÓÙ Ø ÒÓØØÓÒ Ì Ú Øµ Ò Ì Ø Øµ ÓÖ Ø ØÙÐ ØÑÔÖØÙÖ Ò Ø Ñ Ù¹ Ö ØÑÔÖØÙÖ Ö ÔØÚÐݺ Ú Ø ØÑÔÖØÙÖ ÒØÓ Ø ÑÒ ÚÐÙ Ò Ø ÚÖØÓÒ Ì Ú Øµ Ù ¼ ٠ص Ò Ì Ø Øµ Ý ¼ Ý Øµ ÛÖ Ù ¼ Ý ¼ ¼ Æ º

19 Ì ØÖÑÓÑØÖ ÑÓÐ Ø ÓÐÐÓÛÒ Ö Ø ÓÖÖ ÐÒÖ ØÑ ÒÚÖÒØ ÝÒÑ Ý ØÑ ÛØ µ Í µ µ ËÒ Ù Øµ Ò Øµ Ø ÓÐÐÓÛ ØØ ØÖ Ø ØÖÒ ÒØ Ú ÚÒ ººÒ ØØÓÒÖØÝµ Ý Øµ µ Ò Ø µ ÛÖ Ö µµ ÖØÒ µ ÖÓÑ Ø ÖÐØÓÒ Ô Ì Ò ÖÓÑ Ø ÙÖ Ø ÓÐÐÓÛÒ ÓØÒ º ¼ ¼ º ¼¼ ¼ º µ ¼ ¼ ¼ Ö» ¼ Ö» º Ö Öº ÀÒ Ò ØÒ µ µ µ ¼ ¼ ¼ Ô µ ¼ Ò ÛÖ µ ¼ ¼ º µ µ Ý Øµ µ Ò Ø Ö µµµ Ý Øµ Ò Ø Ö µµ Ò Ø µ Ô Ò Ø µ µ Ì Ý ØÑ ÙÒ ØÐ ÔÓÐ Ò µ º º µ Ý µ Ù ¼ ØØ Ö ØÖÒÒÒ ¼µ ¼µº µ Ý Øµ Ò Ø µ ¼ Ò Ø µ

20 º¼ µ ËÝ ØÑ º ØÐغ ËÝ ØÑ º ØÐغ ËÝ ØÑ ØÐغ ËÝ ØÑ º ØÐغ µ ËÝ ØÑ ÁÑÔÙÐ µ Ý µ¼ ËØ µ Ý µ» ËÝ ØÑ ÁÑÔÙÐ µ Ý µ¼ ËØ µ Ý µ ËÝ ØÑ ÁÑÔÙÐ µ Ý µ» ËØ µ Ý µ ËÐÙØÚÖ ØÓÖÑØ Ö ÒØ ÚØØØµ µ ËÝ ØÑ Ý ¼ µº ÚÖ Ý ØÑ Ý ¼ µ¼º

21 Ä ÒÒÖ» ÚÖ ØÐÐ ÖÒÚÒÒÖ ØÐÐ ÔØÐ Óѹ ÔÒØ º µ ÄØ Ø Ü Ü Øµ Ý Øµ Ü Øµ Ý Øµ ÎÐØ Ö ¼ ¼ Ü Øµ Ü Øµ ٠ص ¼ Ý Øµ ¼ Ü Øµ µ ÄØ Ø Ü Ü Øµ Ý Øµ Ü Øµ Ý Øµ ÎÐØ Ö ¼ ¼ Ü Øµ Ü Øµ ٠ص ¼ Ý Øµ ¼ Ü Øµ µ ÄØ Ø Ü Ü Øµ Ú Øµ Ü Øµ Ý Øµ ÎÐØ Ö ¼ Ü Øµ Ü Øµ ٠ص ¼ Ý Øµ ¼ Ü Øµ µ ÄØ Ø Ü Ü Øµ Ú Øµ Ü Øµ Ý Øµ Ü Øµ Ý Øµ ¼

22 ÎÐØ Ö ¼ ¼ Ü Øµ ¼ ¼ Ü Øµ ¼ ٠ص ¼ Ý Øµ ¼ ¼ Ü Øµ µ ÄØ Ø Ü ÎÐØ Ö Ü Øµ Ý Øµ Ü Øµ Ý Øµ Ü Øµ ĐÝ Øµ ¼ ¼ ¼ Ü Øµ ¼ ¼ Ü Øµ ¼ ٠ص Ý Øµ ¼ ¼ Ü Øµ º µ µ º µ µ µ ¼ ÌÐÐ ØÒ ÑÓÐÐ Ô ÓÒÐÓÖÑ ¼ Ü Øµ Ü Øµ ٠ص ¼ ¼ Ý Øµ Ü Øµ ÆÓØÖ ØØ Ò¹ÙØ ÒÐ ÑÒØ ÙÐÐ ÙÒÒ ÖÚ Ñ Ò Ö Ø ÓÖÒÒ¹ Ò ØÐÐ ØÒ ÑÓÐк µ µ µ ÌÐÐ ØÒ ÑÓÐÐ Ô ÓÒÐÓÖÑ ¼ Ü Øµ Ü Øµ ¼ Ý Øµ Ü Øµ ٠ص µ µ ¼ Í µ Í µ ¼ µ µ ¼µ Í µ µ ÚÖÖÒ ÙÒØÓÒÒ Ö ÐÐØ µ ¼µ µ

23 µ ÄØ Ü Øµ Ý Øµ Ü Øµ Þ Øµ ÁÒÚÖ ÄÔÐØÖÒ ÓÖÑÖÒ Ú ÑÒÒ Ö ØÐÐ ØÒ ÑÓÐÐÒ ¼ Ü Øµ Ü Øµ ٠ص ¼ Ý Øµ ¼ µ µ ¼µ µ ¼ ÌÐÐ ØÒ ÑÓÐÐÒ Ô ÓÒÐÓÖÑ ÐÖ ¼ Ü Øµ Ü Øµ ٠ص ¼ Ý Øµ Ç ÖÚÖ ØØ ØÐÐ ØÒ ÑÓÐÐÖÒ µ Ó µ ÚÖÖ ÑÓØ ÑÑ Ò¹ÙØ ÒÐ ÑÒº º Ü Øµ ¼ Ü Øµ ٠ص Ý Øµ µü ص ÚÖÖÒ ÙÒØÓÒÒ Ú µ µ Á µ Á µ ¼ Á µ µ µ ¼ µ µ µ ¼ µ µ º ËÚÖ ÈÓÐÖ Ô º ÆÓÐÐ ØÐÐÒ º

24 º µ ÄØ ÚÐØ Ö ØÐÐ ØÒ ÑÓÐÐÒ Ü Øµ Ü Øµ Ü Øµ Ý Øµ ¼ Ü Øµ Ü Øµ ٠ص Ý Øµ ¼ ÚÖÖÒ ÙÒÓÒÒ ÖÒ Í µ ØÐÐ µ Ú µ Á µ ÚÐØ Ñ ÚÒ ÑØÖ ÖÒ ÐÖ µ ¼ ¼ ¼ ¼ ¼ ¼ µ µ µ ËØÐØØÒ Ó ØÐÐ ØÒ ÑÓÐÐÒ ØÑ Ú ÔÓÐÖÒ ÓÑ Ö Ø Á µ ¼ ÚÐØ ØØ ÐÐ ÐÖ Ó ÓÑ ÐÐØ ÑÓØ ÚÖÖ ØØ Ò ØÐØ Ý¹ ØÑº ËØÐØØÒ Ó Ò¹ÙØ ÒÐ ÑÒØ Ú ÔÓÐÖÒ ØÐÐ ÚÖÖÒ ÙÒØÓÒÒ ÑÐÐÒ Í µ Ó µ Ú Ó Ò¹ÙØ ÒÐ ÑÒØ Ö ÖÑ º ع ÐØº ÌÐÐ ØÒ ÑÓÐÐÒ Ö Ò ÒØÖÒ ÖÔÖ ÒØØÓÒ Ú Ý ØÑØ Ö ÑØÐ ÔÓÐÖ ÒÖº ÚÖÖÒ ÙÒØÓÒÒ ÖÚÖ Ö ÑÒØ ÑÐÐÒ Ò Ó ÙØ Òк ÈÓÐÒ ÚÒ ØÖ ÐÚÔÐÒ ÑÓØ ÚÖÖ ÐÐØ Ø Ò ØÐ ØÐÐ ØÒØ Ü ÑÒ ÒÒ Ò ØÐØØ ÓÑÑÖ ÒØ ØØ ÝÒ ÑÒØ ÑÐÐÒ Ò Ó ÙØ Òк º ÆÓØÖ ËÑÒØ ÑÐÐÒ Ò Ó ÙØ ÒÐ ÙÐÐ ÚÒ Ö ÙÒÒ ÖÚ ÓÑ Ò ÓÖÒÒÒ ØÐÐ ØÒ ÑÓÐк Ä ÒÒÒ ØÐÐ Ò ÑÓÐÐ Ô ØÐÐ ØÒ ÓÖÑ Ò ÖÚ Ý Øµ Ä Á µ Í µ ٠ص Ö Ò ÑÔÙÐ Ö Í µ Ó Ð ÒÒÒ Ý Øµ Ò Ø Ú ÐÐÖ Ú ÄÔÐØÖÒ ÓÖÑÖÒ Ä Á µ Ò Ø Á µ

25 ËÝ ØÑØ Ö ÚÖ Ú ÓÖÒÒ Ó Ø ÐÐÖ ØØ Ü Ü º ÅÒ Ò ÐÐØ Ò ØØ ¼ ¼ ÅÒ Ö Á µ ¼ ÁÒØÖÖ Ú ØÖÑÚ Ñ ÖÐØ Ö Ú ØØ ÐÒ ÖÐØÓÒÖ Ñ Ø ÚÖ ÙÔÔÝÐÐ ¼ ¼ ÚÐØ Ö ØØ Ó ¼º Ö Ø ÚØÓÒÖÒ ÓÚÒ Ò ÓÑ ØØ ÚØÓÒ Ý ØÑ Ñ ÓÒØº ØØ Ö ÓÒÐØ ÑÒ Ð ÒÒÖº ÎÐ ØÐÐÜÑÔÐ Ó ¼ Ö ØØ Ø Ö ÚØÓÒÖÒº º µ Ü ¼ ¼ Ý Ü ¼µ Ü Ù Ü Ü Ù µ Ü Ø Ü Ü Ù µ Ü ¼ Ø µ µ ÌÐÐ ØÒÓÖÑÒ Ö ÒØ ÝÑÔØÓØ Ø ØÐ ØÖ ÓÑ Ü Ø Ú Ø Á µ¼ Ö ÔÓÐÖ Ñ ÖÐÐ ØÖÖ Ò ÐÐÖ Ð Ñ ¼º ËÝ ØÑØ Ö Ó Ò¹ÙØ ÒÐ ØÐØ ØÖ ÓÑ ÚÖÖÒ ÙÒØÓÒÒ ÑÐÐÒ Ù Ó Ý Ö Ò ÔÓÐ ÚÒ ØÖ ÐÒ Ú Ø ÓÑÔÐÜ ØÐÔÐÒØº Ö ÙÐØØ ÙÒÖ Ø Ú Ö ÙÐØØØ µº

26 Ä ÒÒÖ» ÚÖ ØÐÐ ÖÒÚÒÒÖ ØÐÐ ÔØÐ Óѹ ÔÒØ º ÌÐÐ ØÒ ÚÖÐÖÒ Ü Ý Ó Ü Ý Ö Ü Ü ¼ Ü µü Ü Üµ Πܵ Ü Ü µ µ Î Î Ü Üµ Ü Ü Ü Ü ¼Ü Ü µ Î ¼ ÙØÓÑ ÐÐØ Ü ¼ Ü ¼ µ Ü ÓÒ ØÒØ ¼º ÐÐØ Ö ÒÓÐÐ ÒÒÒ ÝÑÔØÓØ Ø ØÐ Ë ¹ ÓÑÔÒØµº º Æ ÖÚØ Πܵ ¼ Ü ÙÔÔÝÐÐ º º ĐÜ ¼ ¼ Ü µ Ü Ü Ü ¼ ÁÒÖ ØÐÐ ØÒ ÚÖÐÖÒ Ü Ü Ó Ü Ü ÑØ ÖÚ Ô ØÐÐ ØÒ ÓÖÑ Ü Ü Ü Ü µ Ü Ü Ü µ Ü ¼ ¼Ü µ Ü Ü µ ØÑ ÒÙÐÖ Ó Ö ÖØÖ ÑØ Ö ÔÐÒØº º ËÒÙÐÖ ÔÙÒØÖ Ü Æ µ ¼ µ Ü Æ ¼ ÑØ ÜÆ ÜÆ µ ¼º ËÈ Á Ü Æ ¼ ËÈ ÁÁ ¼ Ü Æ Ü Æ Ü Æ ¼ º ÄÒÖ Ö ÖÒ ÒÙÐÖ ÔÙÒØÖÒ ÌÝÐÓÖ ÓÖÑРܵ Ü Æ µ Ü Üµ ÜÜ Æ Ü Ü Æ µ ÓÜ Ü Æ Ü Üµ ÜÜ Æ Ü Ü Æ µ ÓÜ Ü Æ

27 ØÖ ÓÑ Ü Æ µ ¼º ÅØÖ Ò Ü Üµ Ö ÙÒØÓÒÒ ÂÓÒº Ò Ö ¹ ÐÑÒØØ Üµ Ü Ü ¼ Ü Ü Ü Ü ¼ ¼Ü Ö ÚÖÐÝØØ Þ Ü Ü Æ ÓÐ ÒÙÐÖ ÔÙÒØÖÒº º ËÈ Á ÄÒÖ ÔÔÖÓÜÑØÓÒ Þ Þ Ñ ¼ ¼ ÅØÖ Ò ÒÚÖÒ Ú ¼ Ø Á µ ¼µ Ú ¼¼ Ô ¼¼ Ò ÐÒÖ ÔÔÖÓÜÑØÓÒÒ Ö Ð ØØ Ò ØÐØ ÓÙ ¼ ¼µº Ö Ò ØÐ ÓÙ ÐÐÖ ØØ Ò ÓÐÒÖ ÖÒØÐÚØÓÒÒ Ö ÑÑ ØÝÔ Ú ÒÙÐÖØØ ÓÑ Ò ÐÒÖ ÔÔÖÓÜÑØÓÒÒ ÙÖ ÑØÖÐØµº Ç ÖÚÖ ØØ Ò ÐÒÖ ÔÔÖÓÜÑØÓÒÒ Ò Ø ÐÐÖ ÒÖ Ò ÒÙÐÖ ÔÙÒØÒº

28 ÐÒÖ ÈËÖ ÖÔÐÑÒØ ÓÐÒÖ º ËÈ ÁÁ ÄÒÖ ÔÔÖÓÜÑØÓÒ Þ Þ Ñ ¼ ¼ ÒÚÖÒ ØÐÐ ¼ Ø Á µ ¼µ ¼¼ Ô ¼¼ ¼ ¼ Ò ÐÒÖ Ö ÚØÓÒÒ Ö ØÝÐÒ Ò ÐÔÙÒØ ¹ ¼µº ØØ ÐÐÖ ÚÒ Ö Ò ÓÐÒÖ ÚØÓÒÒº Ò ØÐ ÒÚØÓÖÒ Ö ¼µ Ó Ò Ò ØÐ Ö ¼µº

29 x x1 º ÄÒØ ÖÒ ÒÙÐÖ ÔÙÒØÖ ÀÙÖ Ö ÒÓÖÒ ÙØ Ô ÐÒØ Ú ØÒ ÖÒ ÓÖÓ Ð ÖÚØÒ Ü Ü Ü Ü Ü Ü µ Ü ¼ ¼Ü µ Ü ÆÖ Ü Ö ÖÒ Ó Ü ÐÐÖ ØÝÐÒ ØØ Ü Ü º ÐÐØ ÐÖ ÒÓÖÒ ÐÓÖØ ÒÖ Ü ÚÜÖ Ó ÚÒ Ü ¼µº x x1

30 º ËÒÙÐÖ ÔÙÒØÖ Ú Ü ¼ Ú Ð Ü ¹ÜÐÒ Ù ¼º ÒÓÖÒ Ú Ü Ü Ü Ü Ü 5 u = x x 1 º µ Ú Øµ Ñ Ú ¼ Ú Øµ Ñ Øµ Ö Ú Øµ Ú Øµ Ú ¼ Ó Øµ ص ¼ µ µ Ñ Î µ Ô Ñ µ µ ÝÑÔØÓØ Ø ØÐ ¼ ÚÐØ ØØ ÐÐ ÐÐØ Ö Ðк º µ ËØØ Øµ Ì Øµ º ÂÑÚØ ÖÒ ÑÓØ ÚÖÒ Ù ¼ ÐÖ ¼ Ñ Ó ¼ Ѻ Šص ص ¼ Ò Ø ÐÒÖ Ö Ý ØÑØ ÖÚ Øµ Ôà ¼ Ôà ¼ ¼ Ã Ô ¼ ص ÃÑ ¼ ٠ص Ö Ã ¼¼ Ó Ã Ñ ¼º Å ÐÐ ÚÖÒ Ò ØØ ÐÖ Ý ØÑØ Øµ ¼¼¼ ¼ ¼¼¼ ¼¼¼ ص ¼ ¼ ٠ص µ Ý Øµ ص ¼ صº ËÑÒØ ÑÐÐÒ ÚÚÐ Ò Ó ÙØ ÒÐ Ú µ Á µ Í µº ÅÒ ÖÐÐÖ Ñ Ó ÒÐØ ÓÚÒ ØØ ¼¼¼ µ Í µ µ ¼¼ ¼

31 ÙÐÔÓÐ ¼¼¼ Ó ÑÚØ ÔÙÒØÒ ÖÑ ØÐº ÈÓÐÖÒ Ö Ø ÐÒÖ Ö Ý ØÑØ Ó ÙÒÒØ ÖÐÐ ÖØ ÖÒ ¹ÑØÖ Ò ÒÚÖÒµº º Ü Øµ ¼ Ó Ò ØØÒÒ ÚÖÖÖ ÑÚØ ÔÙÒØÖÒº Ò ÐÒÖ ÑÓÐÐÒ Ò ÖÚ Ü Øµ Ô Ü¼ Ù ¼ Ý Øµ Ü ¼ ¼ Ü Øµ Å ÚÖÒ Ò ØØ ØØ Ý ØÑÑØÖ Ò Ö Ü Øµ ¼ ¼ ¼ Ü ¼ ٠ص ÒÚÖÒ ØÐÐ ÒÒ ÔÓÐÖÒ ØÐÐ Ø ÐÒÖ Ö Ý ØÑص Ú ÔÓÐÝÒÓÑØ ¼µ µ ¼ ¼ Ú ¼ Ó º ÈÙÒØÒ Ö ÐÐØ Ò ÐÔÙÒØ Ó Ð ÒÒÖÒ ØÐÐ Ø ÓÐÒÖ Ý ØÑØ ØÖ ÖÑ Ô ÐÒÒ ØØ ÖÙÒØ ÑÚºÔØÒº ¼

( ) = 3 ( + 2)( + 4) ( ) =

( ) = 3 ( + 2)( + 4) ( ) = ÊÒÚÒÒÖ ØÐÐ ÔØÐ ÓÑÔÒØ º½ ËÖÚ Ý ØÑÒ ÒÒ Ô ØÐÐ ØÒ ÓÖѺ ÒØ ØØ Ù Ö Ò ÒÐ Ó Ý ÙØ ¹ Òк µ µ Ý(Ø) + Ý(Ø) 2 Ý(Ø) + 3 Ý(Ø) 5 µ 4 Ú(Ø) + 5Ú(Ø) 2 Ý(Ø) + 2Ý(Ø) 5Ú(Ø) µ Ú(Ø) + 2Ú(Ø) 3 Ý(Ø) + 7 Ý(Ø) + 4Ý(Ø) 5Ú(Ø) µ Ý (3)

Läs mer

Å Ø Ñ Ø Ø Ø Ø ÌÓÑÑÝ ÆÓÖ Ö ¾ Ù Ù Ø ¾¼¼ ÓÖÑÐ Ö Ó Ø ÐÐ Ö Ø ÐÐ Å Ø Ñ Ø Ø Ø Ø Ô ÙÒ Ú Ö Ø Ø Ó Ø Ò ÓÐÓÖ

Å Ø Ñ Ø Ø Ø Ø ÌÓÑÑÝ ÆÓÖ Ö ¾ Ù Ù Ø ¾¼¼ ÓÖÑÐ Ö Ó Ø ÐÐ Ö Ø ÐÐ Å Ø Ñ Ø Ø Ø Ø Ô ÙÒ Ú Ö Ø Ø Ó Ø Ò ÓÐÓÖ ÅØÑØ ØØ Ø ÌÓÑÑÝ ÆÓÖÖ ¾ ÙÙ Ø ¾¼¼ ÓÖÑÐÖ Ó ØÐÐÖ ØÐÐ ÅØÑØ ØØ Ø Ô ÙÒÚÖ ØØ Ó ØÒ ÓÐÓÖ ËÒÒÓÐØ ØÓÖ ËÒÒÓÐØ ØÓÖ ÄÓÖÑ ÒÒÓÐØ ÖÐÒÒ Ô ØØ ÒÐØ ÙØÐÐ ÖÙÑ Ë ÇÑ ÐÐ ÙØÐÐ Ö Ð ÒÒÓÐ ÐÐÖ Ö Ò ÒÐ ØØ È µ Ò µ Ò Ëµ ØØ Ö Ò Ð ÒÒÓÐØ ÒØÓÒÒº

Läs mer

Ì ÆÌ Å Æ ËØ Ø Ø ÑÓ ÐÐ Ö Ò Ö Á ÌÅ˽ ¼ ÑÒ Ò Ò ½ Ñ Ö ¾¼¼ Ð Ô Îº ÂÓÙÖ ÂÓ Ò Ù Ø Ú ÓÒ Ò Òº ½ À ÐÔÑ Ð ÍØ Ð ÓÖÑ Ð ÑÐ Ò Ñ Ø ÐÐ Ö Ì Ô ÙÖ Ò ÒÚÒ ÓÖ Ð Ø Ó ØÝÔ Ó Ò Ö Ò Ó º ÈÓÒ Ö Ò Ò ÍÔÔ Ø ÖÒ Ö Ú ÖÚ Ð ØÝÔ Ö Ò Ø ØØ ÐØ

Läs mer

ÁÒÒ ÐÐ ½ ÁÒØÖÓ Ù Ø ÓÒ ½ ½º½ ÝÒ Ñ Ð Ø Ð Ò Ö Ò Ú ÔØ Ú È ¹Ð Ö º º º º º º º ½ ½º¾ ÃÓÖØ ÓÑ ØÓÖ ÑÙÐ Ö Ò Ö º º º º º º º º º º º º º º º º º º º º ¾ ¾ Ø Ð Ö

ÁÒÒ ÐÐ ½ ÁÒØÖÓ Ù Ø ÓÒ ½ ½º½ ÝÒ Ñ Ð Ø Ð Ò Ö Ò Ú ÔØ Ú È ¹Ð Ö º º º º º º º ½ ½º¾ ÃÓÖØ ÓÑ ØÓÖ ÑÙÐ Ö Ò Ö º º º º º º º º º º º º º º º º º º º º ¾ ¾ Ø Ð Ö ÝÒ Ñ Ð Ø Ð Ò Ö Ò Ö ÔØ Ú È ¹Ð Ö Ö ØÓ Ö Ê ÑÕÙ Ø Ê Ö Ò Ö Ê Ö Ä ÓÒ Ö Ø Ò Ä Æ Ð ÓÒ Ò Ö Ë ÖÐÙÒ Ù Ø Ú Ì ÒÓ ½¾ Ñ ¾¼¼ ÁÒÒ ÐÐ ½ ÁÒØÖÓ Ù Ø ÓÒ ½ ½º½ ÝÒ Ñ Ð Ø Ð Ò Ö Ò Ú ÔØ Ú È ¹Ð Ö º º º º º º º ½ ½º¾ ÃÓÖØ ÓÑ ØÓÖ ÑÙÐ

Läs mer

Ö Ò histogramtransformationº

Ö Ò histogramtransformationº ÍÐØÖ Ð Ù Ð ÓÖ Ø ÓÒ ÌË ½ Å Ò Ð Ö ÍØÚ Ð Ú Å Ø Ò Ö ÓÒ ÁÅ̵ ¾¼½ ÍÔÔ Ø Ö Ú Å Ö Å ÒÙ ÓÒ ÎÄ ÁË µ ¾¼½ ÓÒØ ÒØ ÍÔÔ Ø Ò Ä Ò Ê ¹ Ø Ò Ê ÒÒ ØÖÐ Ó ÓÙÖ ÖØÖ Ò ÓÖÑ Ò Ð ÒÚ ÐÓÔÔ Ø Ø ÓÒ ÒÚ ÐÓÔÔ Ø Ø ÓÒ Ñ Ú Ö ØÙÖ ËÙ ÑÔÐ Ò Ò

Läs mer

ÝÖ Ö Ò ØØ Ò Ø ÓÒ Ù ØÖ Ø ÓÒ ÑÙÐØ ÔÐ Ø ÓÒ Ó Ú ÓÒ Ö ØÑ Ø ÙØØÖÝ ÙØ Ö Å ÌÄ Ñ ÓÔ Ö ØÓÖ ÖÒ ¹» Ü ÑÔ Ðº ÇÑ Ø Ö ØÑ Ø ÙØØÖÝ Ø ½ ¾ Ò Ú Å ÌÄ ¹ÔÖÓÑÔØ Ò ÒÑ ØÒ Ò Ò Ú

ÝÖ Ö Ò ØØ Ò Ø ÓÒ Ù ØÖ Ø ÓÒ ÑÙÐØ ÔÐ Ø ÓÒ Ó Ú ÓÒ Ö ØÑ Ø ÙØØÖÝ ÙØ Ö Å ÌÄ Ñ ÓÔ Ö ØÓÖ ÖÒ ¹» Ü ÑÔ Ðº ÇÑ Ø Ö ØÑ Ø ÙØØÖÝ Ø ½ ¾ Ò Ú Å ÌÄ ¹ÔÖÓÑÔØ Ò ÒÑ ØÒ Ò Ò Ú ÁÒØÖÓ Ù Ø ÓÒ Ø ÐÐ Å ÌÄ Ö ØÑ Ø ÙØØÖÝ Å Ø Ñ Ø ÙÒ Ø ÓÒ Ö Ø ØÝÔ Ö Ó Ú Ö Ð Ö Î ØÓÖ Ö»Ð ØÓÖ ½ ÝÖ Ö Ò ØØ Ò Ø ÓÒ Ù ØÖ Ø ÓÒ ÑÙÐØ ÔÐ Ø ÓÒ Ó Ú ÓÒ Ö ØÑ Ø ÙØØÖÝ ÙØ Ö Å ÌÄ Ñ ÓÔ Ö ØÓÖ ÖÒ ¹» Ü ÑÔ Ðº ÇÑ Ø Ö ØÑ Ø ÙØØÖÝ

Läs mer

Ö ÙÔ ØÙ Ú ÖÖ Ö ÓØÐ Ò Ä Ö ÆÓÖ Ò ËÚ Ö Ñ Ø ÓÖÓÐÓ Ó Ý ÖÓÐÓ Ò Ø ØÙØ ÆÓÖÖ Ô Ò ¾¼ Ñ Ö ¾¼½¾ ÁÒÒ ÐÐ ½ ÖÙÒ ¾ ÍØÖ Ò Ò ÃÓÑÔÐ ØØ Ö Ò Ö Ö Å ØÓ º½ Ö Ò Ò Ú Ö ØÝ º º º º º º º º º º º º º º º º º º º º º º º º º¾ Ð ÓÖ

Läs mer

Ð ËÅ ½¹½¾¹¼¾ ½ ÅØØ ØÐ ÔÔÒÒ ÇÖÖÒÒ ÖÐÖ ÑØØ ÔÔÒØ ÐÓÒ ½º¾ Ñ ¼ ØÒÓÐÓÖ ÒÖÚÖÒº ¾ ÓÖÑÐ µ ÌÐÐ ÑØ ÓÖÖÒ ÚÐ ÓÖ ÂÓÑ ÅÐÐ ÚÖº µ ÌÐÐ ÑØ ÖØÖÖ ÚÐ Ö ÒÒ Ö ÓÒ ÚÖº µ ÌÐÐ Ù ØÖÒ ÑÒ ÚÐ ÌÓÑ ÏÖ ÜØÙ ÑÙ ÑØ ÂÓÒ ÀÖ ØÖØÙ ¹ ÑÙ º µ ÁÒ

Läs mer

ÃÓÑÔÙØØÓÒÐÐ ÁÒØÐÐÒ ÐÓÖØÓÒ ¾ Ê ËÚÒÖ ÖÞ ÅÙ Ø ÀÒ ÇÐÓ ÓÒ ÑÖ ¾¼¼¾ ÁÒÒÐÐ ½ ËÝØØ Ñ ÒÒ ÐÓÖØÓÒ ¾ ÌÓÖ ÒÐÝ º½ ÖÙ º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º½º½ ÅÖ ÖÙ º º º º º º º º º º º º

Läs mer

ÁÒÒ ÐÐ ÓÑ ØÖ Ð Ö Ð Ñ ÒØ ÓÔ ÒØÓ Ð¹Ã Û Ö ÞÑ Ð Ö Ø Ð Ö ÔÖ Ø ÙØ ÓÖÑ ÙÒ Ö ½ ¼¼¹ Ó ½ ¼¼¹Ø Рغ Î Ø º ÖØ ¾

ÁÒÒ ÐÐ ÓÑ ØÖ Ð Ö Ð Ñ ÒØ ÓÔ ÒØÓ Ð¹Ã Û Ö ÞÑ Ð Ö Ø Ð Ö ÔÖ Ø ÙØ ÓÖÑ ÙÒ Ö ½ ¼¼¹ Ó ½ ¼¼¹Ø Рغ Î Ø º ÖØ ¾ Å Ø Ñ Ø Ò ¾¼½¾¹¼ ¹½ Æ Ö Ò Ð Ð Ö Ò ØÓÖ Æ Ð Ö ÓÒ Ò Ð º Ö ÓÒ Úº ½ ÁÒÒ ÐÐ ÓÑ ØÖ Ð Ö Ð Ñ ÒØ ÓÔ ÒØÓ Ð¹Ã Û Ö ÞÑ Ð Ö Ø Ð Ö ÔÖ Ø ÙØ ÓÖÑ ÙÒ Ö ½ ¼¼¹ Ó ½ ¼¼¹Ø Рغ Î Ø º ÖØ ¾ Ð Ö Ð Ñ ÒØ ÓÑ ØÖ Ð Ñ ÒØ ÙÔÔ Ú Ö Ö Ú Ò

Läs mer

s N = i 2 = s = i=1

s N = i 2 = s = i=1 ÁÒØÖÓ Ù Ø ÓÒ Ø ÐÐ Å ÌÄ ¹ÔÖÓ Ö ÑÑ Ö Ò Ð ÓÖ ØÑ Ö ËÖ ÔØ¹ Ó ÙÒ Ø ÓÒ Ð Ö ÄÓ ÙØØÖÝ Î ÐÐ ÓÖ Ø Ö ¹ Ø Ö Ê Ô Ø Ø ÓÒ Ø Ö ÐÓÓÔ Öµ ÓÖ¹ Ø Ö Û Ð ¹ Ø Ö ½ ÖÒ ÔÖÓ Ð Ñ Ø ÐÐ ÔÖÓ Ö Ñ ÒÐ Ò Ò Ò Ø ÐÐ ØØ Ö Ú ØØ ÔÖÓ Ö Ñ ØØ ÔÖÓ

Läs mer

Föreläsning 13 5 P erceptronen Rosen blatts p erceptron 1958 Inspiration från mönsterigenk änning n X y = f ( wjuj + b) j=1 f där är stegfunktionen.

Föreläsning 13 5 P erceptronen Rosen blatts p erceptron 1958 Inspiration från mönsterigenk änning n X y = f ( wjuj + b) j=1 f där är stegfunktionen. Ä Ò Ö Ó ÃÓÑ Ò ØÓÖ ÓÔØ Ñ Ö Ò Ö Ö Ã Ð Å Ø Ñ Ø ÒØÖÙÑ Ö Ð Ò Ò ½ Æ ÙÖ Ð ÒØÚ Ö ÁÒØÖÓ Ù Ø ÓÒ È Ö ÔØÖÓÒ Ð Ö Ð Ö ËÙÔÔÓÖØ Î ØÓÖ Å Ò ÀÓÔ Ð ÓÐØÞÑ ÒÒÑ Ò Ò ÁÒØÖÓ Ù Ø ÓÒ ØØ ÒÝØØ Ö Ò Ò ØØ È Ö ÐÐ ÐÐ Ø Ø Ö Ò Ø ÁÒÐÖÒ Ò ÇÔØ

Läs mer

ËÐ ½ ØØ ÒØÖÖ ÒÙÑÖ Ø ÚÖØÙÖµ ÐØ ÓÑ ÖØ ÖÒ Ð ËÐ ¾ ÁÒØÖÐÖ Ê ÈÖÓÐÑØ (Ü) Ü ÖÖ ÓÑ (Ü) Ö ÚÒ Ò Ø ÒÖ ÑØÔÙÒØÖ Ü Ò Ø (Ü) Òµ ÆÙÑÖ Ð ÒÒ ÔÖÒÔ ÖØ Ö Ü Ú Ð Ò ÔÙÒØÖ Ü 0 Ü ÜÆ Ö Ü 0 = ÜÆ = ÇÑ Ú ØÒØ ÒÐÒÒ ØÐÒ = = Æ Ö ØØ ÒØÖÒÒ

Läs mer

Î Ö Ä Ì ½º Ì Ö Ò Ø ÜØ¹ Ð ÓÑ ÒÔÙØº ¾º ÈÖÓ Ö Ö Ð Ò Ó ØÑÑ Ö Ø ÓÔØ Ñ Ð ÙØ Ò Øº º Ö ÙØ Ò ÎÁ¹ Ð Ú ¹ÁÒ Ô Ò ÒØµº º ÎÁ¹ Ð Ò Ò ÓÒÚ ÖØ Ö Ø ÐÐ Ü ÑÔ ÐÚ Ò È ¹ к

Î Ö Ä Ì ½º Ì Ö Ò Ø ÜØ¹ Ð ÓÑ ÒÔÙØº ¾º ÈÖÓ Ö Ö Ð Ò Ó ØÑÑ Ö Ø ÓÔØ Ñ Ð ÙØ Ò Øº º Ö ÙØ Ò ÎÁ¹ Ð Ú ¹ÁÒ Ô Ò ÒØµº º ÎÁ¹ Ð Ò Ò ÓÒÚ ÖØ Ö Ø ÐÐ Ü ÑÔ ÐÚ Ò È ¹ к ÐÐÑÒØ ÓÑ Ä Ì Ä Ì Ö Ò Ú Ö ÙØÚ Ð Ò Ú Ì ¹ Ý Ø Ñ Ø ÓÑ ÙØÚ Ð Ô ¼¹Ø Рغ Ì ÐÐØ Ö ØÚ Ò Ö µ Ö ÒØ Ò ØØ ØÒ Ñ Ö Ô ÒÒ ÐÐ Ò ÓÖÑ Ø Ö Ò º Ò ÐØ ØØ Ô ØÖÙ ØÙÖ Ö Ó ÙÑ ÒØ ÁÒÒ ÐÐ ÖØ Ò Ò ÃÐÐ ÖØ Ò Ò ÓØÒÓØ Ö Ê Ö Ò Ö ØÓ Ø Ò Ö

Läs mer

ËÐ ½ ÁÒØÖÖ ÒÙÑÖ Ø ÚÖØÙÖµ ÁÒØÖÐÖ Ê ÈÖÓÐÑØ (Ü) Ü ÖÖ ÓÑ (Ü) Ö ÚÒ Ò Ø ÒÖ ÑØÔÙÒØÖ Ü Ò Ø (Ü) Òµ ËÐ ¾ ÈÖÒÔ Ö ÒÙÑÖ Ð ÒÒ ÖØ Ö Ü Ú Ð Ò ÔÙÒØÖ Ü 0 Ü ÜÆ Ö Ü 0 = ÜÆ = ÇÑ Ú ØÒØ ØÐÒ = = Æ Ö ØØ ÒØÖÒÒ Ô ÚÖ ÐÒØÖÚÐÐ [Ü Ü+]

Läs mer

u(t) = u 0 sin(ωt) y(t) = y 0 sin(ωt+ϕ)

u(t) = u 0 sin(ωt) y(t) = y 0 sin(ωt+ϕ) Ã Ô ¹ ÑÔ Ö ÑÓ ÐÐ Ö Ò ÌÚ ÖÙÒ ÔÖ Ò Ô Ö Ö ØØ Ý Ñ Ø Ñ Ø ÑÓ ÐÐ Ö ÓÑ Ò Ö Ó Ø µ Ý Ð Ø ÑÓ ÐÐ Ý º ÒÚÒ Ò ØÙÖÐ Ö Ñ Ð Ò Ò Ö Ð Ò Æ ÛØÓÒ Ð Ö Ø Øµº Á Ð Ò Ú ÝÔÓØ Ö Ó ÑÔ Ö Ñ Ò µº Ë Ã Ô ¾ ÑÔ Ö ÑÓ ÐÐ Ö Ò ÒÒ Ø Ò ÑÒ ËÝ Ø Ñ

Läs mer

huvudprogram satser funktionsfil utparametrar anrop av funktionsfil satser satser

huvudprogram satser funktionsfil utparametrar anrop av funktionsfil satser satser Á ÈÖÓÖÑ ØÖÙØÙÖ Ð ÒÒ ½ ÀÙÚÙÔÖÓÖÑ Ó ÙÒÖÔÖÓÖÑ ÆÖ ÑÒ Ð Ö ØÓÖ ÔÖÓÐÑ Ö Ö ÑÒ ÓØ Ð ÙÔÔ ÔÖÓÐÑØ ÐÔÖÓÐѺ ËÒ ÖÚÖ ÑÒ Ò Å¹Ð Ö ÚÖ Ðº ÌÝÔ Ø ÖÚÖ ÑÒ Ò ÓÑÑÒÓл ÖÔØÐ ÓÑ ÐÐ ÙÚÙÔÖÓÖѵ ÓÑ ÒÖÓÔÖ ÙÒØÓÒ ÐÖ ÓÑ Ó ÐÐ ÙÖÙØÒÖ ÐÐÖ ÙÒÖÔÖÓÖѵº

Läs mer

ËØÝÖÒ Ò Ú Ð Ò Ñ Ò ØÓÖ ØØ ÔÖÓ Ø Ö ÁË ÓÖ ÓÒ Ý Ø Ñ ½ Ù Ù Ø ¾¼¼¾ ÂÓ Ò Ð Ò ÜÜÜÜÜܹÜÜÜÜ È Ö Ö ¼ ½½¹ Ô ÖÓ ÁÒÒ ÐÐ ½ ÁÒÐ Ò Ò ¾ Ð Ò Ò ¾º½ ÃÓÒ ØÖÙ Ø ÓÒ º º º º º º º º º º º º º º º º º º º º º º º º º º ¾º¾ ÀÖ

Läs mer

¾ ½ ½¼ ÈÖÓ Ö ÑÑ Ö Ò Ø Ò Ö Ì½ Ä ÓÖ Ø ÓÒ Ö Ð Ö Ø ¾¼¼¼»¾¼¼½ ÝÐÐ ØØ Ò ÑÒ Ó Ô Ö ÓÒÒÙÑÑ Ö Ñ Ð ÐÐ Ö ÑÓØ Ú Ö Ò º Ç Ë ÇÑ ÒØ ÒÒ Ú ØØ Ò Ø Ñ Ú Ö ÓÚ Ò Ò Ò Ö Ù Ò Ò Ú ØØ Ò Ö Ùй Ø Ø Ø Ö ÔÔÓÖØ Ö Ó Ò Ö ÔÔÓÖØ Ö Ò Ý Ø Ñ

Läs mer

ÁÒÒ ÐÐ Á ÝÖ ÖÒ ÓÑ ËÙÖ Ð¹ Ö ÓÑ ØØ Ö ÁÁ ÌÖ Ö ÓÑ Ñ Ò Ñ Ø ÒÒ Ø ÐÐ Ó Ò Ð Ø Ö ÁÁÁ йÀ Ò Ö Ñ Ö Ð ÓÒ ÁÎ Ò Ö Ø ÖÙÒ Ò Î Ò Ò Ö ÖÙÒ Ò ÃÒÒ ÓÑ ÓÑ ÚÖ Ö Ð ÓÒ Á ¹ Ð Ñ

ÁÒÒ ÐÐ Á ÝÖ ÖÒ ÓÑ ËÙÖ Ð¹ Ö ÓÑ ØØ Ö ÁÁ ÌÖ Ö ÓÑ Ñ Ò Ñ Ø ÒÒ Ø ÐÐ Ó Ò Ð Ø Ö ÁÁÁ йÀ Ò Ö Ñ Ö Ð ÓÒ ÁÎ Ò Ö Ø ÖÙÒ Ò Î Ò Ò Ö ÖÙÒ Ò ÃÒÒ ÓÑ ÓÑ ÚÖ Ö Ð ÓÒ Á ¹ Ð Ñ ØÖ ÖÙÒ ÖÒ Ë Ý ¹ÙйÁ Ð Ñ ÅÓ ÑÑ Á Ò Ð¹Ï Á ÐÐ Æ ÑÒ Ò Æ Ö Ò ÖÑ ÖØ Ë ÑÑ Ò ØØÒ Ò ÐÐ Ö Ñ Ö Ø ÐÐ ÐÐ Ó Ñ Ö Ó ÚÐ Ò Ð Ö Ú Ö Ñ ÈÖÓ Ø Ò ÅÓ ÑÑ º ØØ Ö ØÖ ÖÙÒ ÖÒ ÒØÐ Ò Ø Ò ÖÒ ÖÙй Ø ºÓÑ Ñ Ö Ø ÐÐØ Ð ÓÑ Ö Ú Ò Ñ Ð Ø Ö Ð

Läs mer

Ê Ò ÓÑ Û Ð Ò Ö Ò ÓÑ Ò ÖÝ ÙÖÚ Ý Ó ÓÑ Ö ÒØ Ö ÙÐØ Ö Ò Ò ÀÓÐÐ Ò Ö Â «Ö Ý º ËØ ØÖ Ø ÁÒ Ø Ô Ô Ö Û Ú ÙÖÚ Ý Ó ÓÑ Ö ÒØ Ö ÙÐØ ÓÖ Ö Ò ÓÑ Û Ð Ò Ö Ò ÓÑ Ò ÖÝ ÊÏÊ˵º

Ê Ò ÓÑ Û Ð Ò Ö Ò ÓÑ Ò ÖÝ ÙÖÚ Ý Ó ÓÑ Ö ÒØ Ö ÙÐØ Ö Ò Ò ÀÓÐÐ Ò Ö Â «Ö Ý º ËØ ØÖ Ø ÁÒ Ø Ô Ô Ö Û Ú ÙÖÚ Ý Ó ÓÑ Ö ÒØ Ö ÙÐØ ÓÖ Ö Ò ÓÑ Û Ð Ò Ö Ò ÓÑ Ò ÖÝ ÊÏÊ˵º Ê Ò ÓÑ Û Ð Ò Ö Ò ÓÑ Ò ÖÝ ÙÖÚ Ý Ó ÓÑ Ö ÒØ Ö ÙÐØ Ö Ò Ò ÀÓÐÐ Ò Ö Â «Ö Ý º ËØ ØÖ Ø ÁÒ Ø Ô Ô Ö Û Ú ÙÖÚ Ý Ó ÓÑ Ö ÒØ Ö ÙÐØ ÓÖ Ö Ò ÓÑ Û Ð Ò Ö Ò ÓÑ Ò ÖÝ ÊÏÊ˵º ÇÒ ½ Û Ö Ú Ò Ö Ò ÓÑ Û Ð Û Ø º º º ÒÖ Ñ ÒØ Ò Ö Ò ÓÑ

Läs mer

2E I L E I 3L E 3I 2L SOLUTIONS

2E I L E I 3L E 3I 2L SOLUTIONS Ä Ò Ô Ò ÍÒ Ú Ö Ø Ø Ú ÐÒ Ò Ò Ö ÀÐÐ Ø Ø ÐÖ Ò Ð Ä ÖÑ Ö Ð Á Ì ÓÖ Ð Á ÒÙÑÑ Ö Ì ÆÌ Å Æ ÌÅÅÁ½ ¹ ÀÐÐ Ø Ø ÐÖ ÖÙÒ ÙÖ ¾¼½ ¹¼ ¹¾ ½ ½º Ò Ö ØØ ÙÔÔÐ Ð ÓÖ Ú ØÐ Ö ØØ Ú Ò ÐÙÑ Ò ÙÑÔÖÓ Ðº ÒÒ Ð Ð Ø Ñ Ò ÔÙÒ ØÐ Ø F Ô Ñ ØØº ÀÙÖ

Läs mer

Ø Ú Ø Ò Ô Ö Ø Ò Ç Ð ÓÒ ² Ñ Ð À Ú Ð Ö Ò Ú Ö Ü Ñ Ò Ö Ø ¾¼¼¼ ¼ ÒÒ Ö ÔÔÓÖØ Ö Ö Ú Ò ÓÑ Ò Ð Ú Ø Ö Ø ÓÑ ÖÚ Ö ØØ Ö ÐÐ Ò Ò Ø Ü Ñ Ò Ø Ú Ø Ò Ôº ÐÐØ Ñ Ø Ö Ð ÒÒ Ö ÔÔÓÖØ Ú Ð Ø ÒØ Ö ÚÖØ Ø Ö Ð Ú Ø ØÝ Ð Ø ÒØ Ö Ø Ó Ò Ø

Läs mer

Ð ÓÖ Ø Ñ Ö ÙÖ Ä Ò ½ Å ËË ¹ ÁÒØÖÓ ÙØ ÓÒ ÔÖÓ Ö ÑÑ Ø ÓÒ Â Î Ë Ø Ò Î Ö Ð Ú Ö Ð ºÙÒ º Ö ÛÛÛº ºÙÒ º Ö» Ú Ö Ð ÕÙ Ô ËÓ ¹ ÍÒ Ú Ö Ø Æ ËÓÔ ¹ ÒØ ÔÓÐ ¾ Ñ Ö ¾¼¼

Ð ÓÖ Ø Ñ Ö ÙÖ Ä Ò ½ Å ËË ¹ ÁÒØÖÓ ÙØ ÓÒ ÔÖÓ Ö ÑÑ Ø ÓÒ Â Î Ë Ø Ò Î Ö Ð Ú Ö Ð ºÙÒ º Ö ÛÛÛº ºÙÒ º Ö» Ú Ö Ð ÕÙ Ô ËÓ ¹ ÍÒ Ú Ö Ø Æ ËÓÔ ¹ ÒØ ÔÓÐ ¾ Ñ Ö ¾¼¼ Ä Ò ½ Å ËË ¹ ÁÒØÖÓ ÙØ ÓÒ ÔÖÓ Ö ÑÑ Ø ÓÒ Â Î Ú Ö Ð ºÙÒ º Ö ÛÛÛº ºÙÒ º Ö» Ú Ö Ð ÕÙ Ô ËÓ ¹ ÍÒ Ú Ö Ø Æ ËÓÔ ¹ ÒØ ÔÓÐ ¾ Ñ Ö ¾¼¼ Ç Ø Ð Ò Ö Ö ÙÒ Ð ÓÖ Ø Ñ Ö ÙÖ Ú ÙÒ ÙÐ Ø Ø Ø Ð Ö Ð Ð Ò ÒØÖ Ô Ö Ö ÙÖÖ Ò Ø Ð ÓÖ Ø Ñ

Läs mer

Imperativ programering

Imperativ programering Imperativ programering Lösningen till Inlämningsuppgift 1A sommaren 2007 Jesper Wilhelmsson 21 juni 2007 1 Program 1 1.1 C - غ ÒÙ Ø Óº ÒÙ Ø º ÒØ Ñ Ò µ Ö ÓÖ ³ ³ ³ ³ µ ÔÖ ÒØ ± µ ÔÖ ÒØ Ò µ Ö ØÙÖÒ ÁÌ ËÍ ËË

Läs mer

ÈÖÓ Ö ÑÚ Ö Ö ÙÒ ÖÚ Ò Ò ÓÑ Ö Ò ¹ Ò ¹ ÓÙÒ ¹Ñ ØÓ Ò Ã Ò Ø Ö Ø ÒÓÑ Ú Ð Ò Ò Ö ÙØ Ð Ò Ò Ò Ú ÐÑ Ö ÂÓÒ Ø Ò Ð Ø Ø ÝÐÐ Ö Ò Ø ÒÒ ÙÖ Ö Ò Ê ÑÐ ÂÓ Ò Î ÐÐÝ ÓÒ ÁÒ Ø ØÙØ ÓÒ Ò Ö Ñ Ø Ñ Ø Ú Ø Ò Ô Ö ÐÑ Ö Ø Ò ÓÐ Ø ÓÖ ÙÒ Ú Ö

Läs mer

Verktyg för visualisering av MCMC-data. JORGE MIRÓ och MIKAEL BARK

Verktyg för visualisering av MCMC-data. JORGE MIRÓ och MIKAEL BARK Verktyg för visualisering av MCMC-data JORGE MIRÓ och MIKAEL BARK Examensarbete Stockholm, Sverige 2010 Verktyg för visualisering av MCMC-data JORGE MIRÓ och MIKAEL BARK Examensarbete i datalogi om 15

Läs mer

Â Ú ËÖ ÔØ ÇŠغ ÈÖÓ Ö ÑÑ Ø ÓÒ Ï Ä Ò Ò ÓÖÑ Ø ÕÙ Ë Ø Ò Î Ö Ð Ú Ö Ð ºÙÒ º Ö ÛÛÛº ºÙÒ º Ö» Ú Ö Ð ÕÙ Ô ËÓ ¹ ÍÒ Ú Ö Ø Æ ËÓÔ ¹ ÒØ ÔÓÐ ½ ÓØÓ Ö ¾¼¼

Â Ú ËÖ ÔØ ÇŠغ ÈÖÓ Ö ÑÑ Ø ÓÒ Ï Ä Ò Ò ÓÖÑ Ø ÕÙ Ë Ø Ò Î Ö Ð Ú Ö Ð ºÙÒ º Ö ÛÛÛº ºÙÒ º Ö» Ú Ö Ð ÕÙ Ô ËÓ ¹ ÍÒ Ú Ö Ø Æ ËÓÔ ¹ ÒØ ÔÓÐ ½ ÓØÓ Ö ¾¼¼ Â Ú ËÖ ÔØ غ Ä Ò Ò ÓÖÑ Ø ÕÙ Ú Ö ºÙÒ º Ö ÛÛÛº ºÙÒ º Ö» Ú Ö ÕÙ Ô ËÓ ¹ ÍÒ Ú Ö Ø Æ ËÓÔ ¹ ÒØ ÔÓ ½ ÓØÓ Ö ¾¼¼ Ç Ø Ò ½ ¾ ÓÒÒ ØÖ ÔÖ Ò Ô Ù Ë ÚÓ Ö Ò Ú Ù Ö Ò Ë ÚÓ Ö ÑÓ Ö Ë ÚÓ Ö ÑÓ Ö ÙÒ ØÝ ³ÙÒ Ñ ÒØ Ù Ë ÚÓ Ö ÓÖ Ö ÙÒ

Läs mer

Ö ÆË Ò Ö ÚÒ Ò Ö Ð Ö Î À ØÓÖ Ó Ò Ö ÐÐ Ö ÚÒ Ò Ò Ð Ö Ø Ò Æ ÑÒ ÖÚ ÖÒ ÐÐ Ö ÒØÐ Ò ÐÚ ÓÒ Ö Ó Ö ÒÒ Ðк ÍÔÔ Ð ÔÖÓ Ò ÐÐ Ö ÙÖ Ñ Ò Ð Ø Ö Ø º ÇÔ Ö Ø Ú Ô Ø Öº Ë Ö Ø

Ö ÆË Ò Ö ÚÒ Ò Ö Ð Ö Î À ØÓÖ Ó Ò Ö ÐÐ Ö ÚÒ Ò Ò Ð Ö Ø Ò Æ ÑÒ ÖÚ ÖÒ ÐÐ Ö ÒØÐ Ò ÐÚ ÓÒ Ö Ó Ö ÒÒ Ðк ÍÔÔ Ð ÔÖÓ Ò ÐÐ Ö ÙÖ Ñ Ò Ð Ø Ö Ø º ÇÔ Ö Ø Ú Ô Ø Öº Ë Ö Ø Ö ÆË Ò Ö ÚÒ Ò Ö Ð Ö Î À ØÓÖ Ó Ò Ö ÐÐ Ö ÚÒ Ò Ò Ð Ö Ø Ò Æ ÑÒ ÖÚ ÖÒ ÐÐ Ö ÒØÐ Ò ÐÚ ÓÒ Ö Ó Ö ÒÒ Ðк ÍÔÔ Ð ÔÖÓ Ò ÐÐ Ö ÙÖ Ñ Ò Ð Ø Ö Ø º ÇÔ Ö Ø Ú Ô Ø Öº Ë Ö Øº Ö ÑØ º ÌÀÆÇ»ËÍÆ Ì Ë ½ ÓÔÝÖ Ø ÅÒ Æ Ð ÓÒ ¾¼¼¾ À ØÓÖ

Läs mer

Ï Ö Ð Ä Æ Ò Ò ÐÝ Ó Ø Ë ÙÖ ØÝ Ò Æ Ó Á ¼¾º½½ ¹ À Ò Ð Ò Ò ÙÖ Ò ¾¼¼½ ÌÓ ÂÓÒ ÓÒ Ø Ó º Ø º Ö ÈÖÓ Ø Ø Ø ÊÓÝ Ð ÁÒ Ø ØÙØ Ó Ì ÒÓÐÓ Ý ÃÌÀµ Ô ÖØÑ ÒØ Ó Å ÖÓ Ð ØÖÓÒ Ò ÁÒ ÓÖÑ Ø ÓÒ Ì ÒÓÐÓ Ý ÁÅÁ̵ Á ÓÖ Ø Ò ½ ¼ Ã Ø ËÛ Ò

Läs mer

Stapeldiagram. Stolpdiagram

Stapeldiagram. Stolpdiagram Á Î Ù Ð Ö Ò Ö Ñ ¹ Ö Ö Å ØÖ Ö Ó Ð Ö ÇÖ ÒØ Ö Ò º Ä ÐÚºµ ½ À ØÓ Ö Ñ Ó Ø Ô Ð Ö Ñ Å ÓÑÑ Ò ÓÒ Ö Ø Ñ Ó Ø Ò Ñ Ò Ö Ø Ø Ô Ð Ö Ñ Ö Ô Ø Ú ØÓ Ö Ñº ØÓÐÔ Ö Ñ ËÝÒØ ܺ Ö Üµ Ê Ø Ö ØØ Ø Ô Ð Ö Ñ Ú Ö Ð Ñ ÒØ Ò Üº Ø Ñ Üµ Ê Ø

Läs mer

ÁÒØÖÓ ÙØ ÓÒ ËÎ ÈÖÓ Ö ÑÑ Ø ÓÒ Ï Ä Ò Ò ÓÖÑ Ø ÕÙ Ë Ø Ò Î Ö Ð Ú Ö Ð ºÙÒ º Ö ÛÛÛº ºÙÒ º Ö» Ú Ö Ð ÕÙ Ô ËÓ ¹ ÍÒ Ú Ö Ø Æ ËÓÔ ¹ ÒØ ÔÓÐ ¾ ÒÓÚ Ñ Ö ¾¼¼

ÁÒØÖÓ ÙØ ÓÒ ËÎ ÈÖÓ Ö ÑÑ Ø ÓÒ Ï Ä Ò Ò ÓÖÑ Ø ÕÙ Ë Ø Ò Î Ö Ð Ú Ö Ð ºÙÒ º Ö ÛÛÛº ºÙÒ º Ö» Ú Ö Ð ÕÙ Ô ËÓ ¹ ÍÒ Ú Ö Ø Æ ËÓÔ ¹ ÒØ ÔÓÐ ¾ ÒÓÚ Ñ Ö ¾¼¼ ÁÒØÖÓ ÙØ ÓÒ ËÎ Ä Ò Ò ÓÖÑ Ø ÕÙ Ú Ö Ð ºÙÒ º Ö ÛÛÛº ºÙÒ º Ö» Ú Ö Ð ÕÙ Ô ËÓ ¹ ÍÒ Ú Ö Ø Æ ËÓÔ ¹ ÒØ ÔÓÐ ¾ ÒÓÚ Ñ Ö ¾¼¼ Ç Ø Ð Ò ½½ ½ ¾ ÓÒÒ ØÖ Ð ÔÖ Ò Ô ËÎ ÓÒÒ ØÖ Ð ØÖÙØÙÖ ³ÙÒ Ö Ú ÓÒÒ ØÖ Ð ÙÖ Ë ÚÓ Ö Ö ÖÓÙÔ Ö ÙÒ

Läs mer

x 2 + ax = (x + a 2 )2 a2

x 2 + ax = (x + a 2 )2 a2 ÅÐ Ö Î ½ ½º ÒØ Ñ Å ÔÐ º ¾º Î Ö Ô Ø Ø ÓÒ Ú Ð Ò Ö Ð Ö º º ÇÐ ØØ ØØ Ö ÔÖ ÒØ Ö ÑÒ Ö ÔÐ Ò Ø»ÖÙÑÑ Øº µ ÁÐÐÙ ØÖ Ö Ð Ø Ö Ð Ñ Å ÔÐ Ð Ö Ò Ò Ð Ø Ò Ö µ ÐÐ Ø Ü Ð Ò Ö Ó Ò Ö Ö ÙÖÚÓÖ º Á Å ÔРй Ð Ø Ö Ñ Ò ÙÒ Ö Ô ÙÖ ÙÖÚ

Läs mer

f(x) = f t (x) = e tx f(x) = log x X = log A Ö Ð e X = A f(x) = x X = A Ö Ð X 2 = A. (cosa) 2 + (sin A) 2 = I, p (k) (α) k=0

f(x) = f t (x) = e tx f(x) = log x X = log A Ö Ð e X = A f(x) = x X = A Ö Ð X 2 = A. (cosa) 2 + (sin A) 2 = I, p (k) (α) k=0 ½»¾¹¼ ÙÒ Ø ÓÒ Ö Ú Ñ ØÖ Ö Ë Ø ÙØ Ö Ú p(a) Ö p(x) Ö ØØ ÔÓÐÝÒÓѺ ÆÙ ÐÐ Ú Ú ÙÖ Ñ Ò Ò Ò Ö f(a) Ö Ñ Ö ÐÐÑÒÒ ÙÒ Ø ÓÒ Öº Ü ÑÔ Ð Ô ÙÒ Ø ÓÒ Ö f(x) ÓÑ Ò Ú Ö ÒØÖ Ö f(x) = f t (x) = e tx ÓÑ Ö e ta Ö ËÝ Ø Ñ Ó ØÖ Ò ÓÖÑ

Läs mer

Å Þ Ö Î Ö Ø ÓÒ Ó Ò Ö Ð Ö Ð ÓÖ Ø Ñ ÖØ Ø ÓÒ Ö ÙÐØĐ Ø ĐÙÖ ÁÒ ÓÖÑ Ø Ö Ö Ö ¹Ã ÖÐ ¹ÍÒ Ú Ö ØĐ Ø ÌĐÙ Ò Ò ÞÙÖ ÖÐ Ò ÙÒ Ö Ò Ó ØÓÖ Ö Æ ØÙÖÛ Ò Ø Ò ÚÓÖ Ð Ø ÚÓÒ Ö ØÓ

Å Þ Ö Î Ö Ø ÓÒ Ó Ò Ö Ð Ö Ð ÓÖ Ø Ñ ÖØ Ø ÓÒ Ö ÙÐØĐ Ø ĐÙÖ ÁÒ ÓÖÑ Ø Ö Ö Ö ¹Ã ÖÐ ¹ÍÒ Ú Ö ØĐ Ø ÌĐÙ Ò Ò ÞÙÖ ÖÐ Ò ÙÒ Ö Ò Ó ØÓÖ Ö Æ ØÙÖÛ Ò Ø Ò ÚÓÖ Ð Ø ÚÓÒ Ö ØÓ Å Þ Ö Î Ö Ø ÓÒ Ó Ò Ö Ð Ö Ð ÓÖ Ø Ñ ÖØ Ø ÓÒ Ö ÙÐØĐ Ø ĐÙÖ ÁÒ ÓÖÑ Ø Ö Ö Ö ¹Ã ÖÐ ¹ÍÒ Ú Ö ØĐ Ø ÌĐÙ Ò ÞÙÖ ÖÐ Ò ÙÒ Ö Ò Ó ØÓÖ Ö Æ ØÙÖÛ Ò Ø Ò ÚÓÖ Ð Ø ÚÓÒ Ö ØÓÔ Ë Û ÖÞÛ ÐÐ Ö ÌĐÙ Ò ½ Ì Ö ÑĐÙÒ Ð Ò ÉÙ Ð Ø ÓÒ ½ º½¾º½

Läs mer

B:=0; C:=0; B:=B+2; C:= 0; B>0 -> B:= B-2; B>0 -> B:= B-2;

B:=0; C:=0; B:=B+2; C:= 0; B>0 -> B:= B-2; B>0 -> B:= B-2; ËÝÑ ÓÐ Ò ÐÝ Ó ÌÖ Ò Ø ÓÒ ËÝ Ø Ñ ÁÒÚ Ø Ô Ô Ö Ø Ø Ëž¼¼¼ ÏÓÖ ÓÔ Æ Ø Ö Ò Ë Ò Ö ÓÑÔÙØ Ö Ë Ò Ä ÓÖ ØÓÖÝ ËÊÁ ÁÒØ ÖÒ Ø ÓÒ Ð Å ÒÐÓ È Ö ¼¾ ÍË Ò Ö ÓÛÖ Ðº Ö ºÓÑ ÍÊÄ ØØÔ»»ÛÛÛº к Ö ºÓÑ» Ò Ö» È ÓÒ ½ ¼µ ¹ ¾ ¾ Ü ½ ¼µ ¹¾

Läs mer

½ ÐÐ Ö À ÖÖ ÇÐÓ Ó ÐÚÓÖÒ À ÖÖ ÇÐÓ Ö Ö ÓÑ ÓØØ ¹ Ö Û Ö ÐÐ Ö Ö Ñ¹ Ð Ù Ò ÓÒÓÑ ØÝ Ø ¹À ÖÖ ÇÐÓ ÓÑÑ Ö Ñ ÒÖ Ó Ò Ö Ð Û Ö Òº À ÖÖ ÇÐÓ Ö Ö Ö Ö ÒÒ Ö Ò ÒØÞ Ñ Ð Û Öº

½ ÐÐ Ö À ÖÖ ÇÐÓ Ó ÐÚÓÖÒ À ÖÖ ÇÐÓ Ö Ö ÓÑ ÓØØ ¹ Ö Û Ö ÐÐ Ö Ö Ñ¹ Ð Ù Ò ÓÒÓÑ ØÝ Ø ¹À ÖÖ ÇÐÓ ÓÑÑ Ö Ñ ÒÖ Ó Ò Ö Ð Û Ö Òº À ÖÖ ÇÐÓ Ö Ö Ö Ö ÒÒ Ö Ò ÒØÞ Ñ Ð Û Öº Æ Ö Ø Ö Â ÒÙ Ö ¾¼¼ ½ ÐÐ Ö À ÖÖ ÇÐÓ Ó ÐÚÓÖÒ À ÖÖ ÇÐÓ Ö Ö ÓÑ ÓØØ ¹ Ö Û Ö ÐÐ Ö Ö Ñ¹ Ð Ù Ò ÓÒÓÑ ØÝ Ø ¹À ÖÖ ÇÐÓ ÓÑÑ Ö Ñ ÒÖ Ó Ò Ö Ð Û Ö Òº À ÖÖ ÇÐÓ Ö Ö Ö Ö ÒÒ Ö Ò ÒØÞ Ñ Ð Û Öº Ö ÒØÞ Ö Ð Ó Ð Û Ñ Ð Û ÓÒ Ò ÓØØ

Läs mer

Multivariat tolkning av sensordata

Multivariat tolkning av sensordata Multivariat tolkning av sensordata Totalförsvarets forskningsinstitut, FOI Hanna Smedh Examensarbete i matematisk statistik 3, 30 högskolepoäng Vt/ht 2009 Handledare: Peter Anton, Leif Nilsson och Pär

Läs mer

1 S nr = L nr dt = 2 mv2 dt

1 S nr = L nr dt = 2 mv2 dt Ë Ñ Ò ÖÚÓÖØÖ Ö Ð Ó ÓÒ ËØÖ Ò Ò Ö ÖÓ Ö Ø ¾½º Å ¾¼¼ ÁÒ ÐØ Ú ÖÞ Ò ½ ÏÓÖÙÑ Ø³ ¾ ¾ Ö Ð Ø Ú Ø ÈÙÒ ØØ Ð Ò ¾ ¾º½ Ï Ö ÙÒ ÒØ Ö Ð Ö Ö Ð Ø Ú Ø ÈÙÒ ØØ Ð Ò º º º º º º º º º ¾ ¾º¾ Ê Ô Ö Ñ ØÖ ÖÙÒ ÒÚ Ö ÒÞ º º º º º º º

Läs mer

Införande av objektorienterade mönster för ökad förändringsbarhet i mjukvarusystem

Införande av objektorienterade mönster för ökad förändringsbarhet i mjukvarusystem Avdelning för datavetenskap Andréas Jonsson Införande av objektorienterade mönster för ökad förändringsbarhet i mjukvarusystem Introduction of object oriented patterns to increase software modifiability

Läs mer

Ø Ú Ø Ò Ô ÊÓ ÖØ Ù Ø Ú ÓÒ Ó È Ö¹ÇÚ Ê Ò Ý ÓÓØÔÖ ÒØ ÌÓÓÐ ÓÜ Ö Ñ ÛÓÖ Ü Ñ Ò Ö Ø ¾¼¼¼ ¼ ÓÓØÔÖ ÒØ ÌÓÓÐ ÓÜ Ö Ñ ÛÓÖ ÊÓ ÖØ Ù Ø Ú ÓÒ Ó È Ö¹ÇÚ Ê Ò Ý ¾¼¼¼ Ö ØØ ÖÒ Ó Ã ÖÐ Ø ÍÒ Ú Ö Ø Ø ÒÒ Ö ÔÔÓÖØ Ö Ö Ú Ò ÓÑ Ò Ð Ú Ø

Läs mer

Ä Ò Ô Ò ÙÒ Ú Ö Ø Ø ÄÖ ÖÔÖÓ Ö ÑÑ Ø Å Ö Ã Ð Ö Ò ÅÓØ Ú Ø ÓÒ Ó ÐÚÙÔÔ ØØÒ Ò ÀÙÖ Ò Ò ÐÖ Ö ÔÚ Ö Ü Ñ Ò Ö Ø ½¼ ÔÓÒ ÄÁÍ¹Ä Ê¹Ä¹ ¹¹¼»½¼ ¹¹Ë À Ò Ð Ö ÂÓ Ñ Ë ÑÙ Ð ÓÒ

Ä Ò Ô Ò ÙÒ Ú Ö Ø Ø ÄÖ ÖÔÖÓ Ö ÑÑ Ø Å Ö Ã Ð Ö Ò ÅÓØ Ú Ø ÓÒ Ó ÐÚÙÔÔ ØØÒ Ò ÀÙÖ Ò Ò ÐÖ Ö ÔÚ Ö Ü Ñ Ò Ö Ø ½¼ ÔÓÒ ÄÁÍ¹Ä Ê¹Ä¹ ¹¹¼»½¼ ¹¹Ë À Ò Ð Ö ÂÓ Ñ Ë ÑÙ Ð ÓÒ Ä Ò Ô Ò ÙÒ Ú Ö Ø Ø ÄÖ ÖÔÖÓ Ö ÑÑ Ø Å Ö Ã Ð Ö Ò ÅÓØ Ú Ø ÓÒ Ó ÐÚÙÔÔ ØØÒ Ò ÀÙÖ Ò Ò ÐÖ Ö ÔÚ Ö Ü Ñ Ò Ö Ø ½¼ ÔÓÒ ÄÁÍ¹Ä Ê¹Ä¹ ¹¹¼»½¼ ¹¹Ë À Ò Ð Ö ÂÓ Ñ Ë ÑÙ Ð ÓÒ ÁÒ Ø ØÙØ ÓÒ Ò Ö Ø Ò Ú Ø Ò Ô Ó ÐÖ Ò Ú ÐÒ Ò ÁÒ Ø ØÙØ

Läs mer

σ ϕ = σ x cos 2 ϕ + σ y sin 2 ϕ + 2τ xy sinϕcos ϕ

σ ϕ = σ x cos 2 ϕ + σ y sin 2 ϕ + 2τ xy sinϕcos ϕ ÃÓÑÔÐ ØØ Ö Ò ÓÖÑ Ð ÑÐ Ò Ì Ò Ñ Ò Ú º Ö ÀÐÐ Ø Ø ÐÖ ÄÙÒ ÍÒ Ú Ö Ø Ø Ù Ù Ø ¾¼½¾ ½ ËÔÒÒ Ò Ö τ σ ÆÓÖÑ Ð ÔÒÒ Ò σ = ÔÒÒ Ò ÓÑÔÓÒ ÒØ Ú Ò ÐÖØ ÑÓØ Ò ØØÝØ Ë ÙÚ ÔÒÒ Ò τ = ÔÒÒ Ò ÓÑÔÓÒ ÒØ Ø Ò ÒØ ÐÐØ Ø ÐÐ Ò ØØÝØ ËÔÒÒ Ò

Läs mer

0, x a x a b a 1, x b. 1, x n. 2 n δ rn (x), { 0, x < rn δ rn (x) = 1, x r n

0, x a x a b a 1, x b. 1, x n. 2 n δ rn (x), { 0, x < rn δ rn (x) = 1, x r n Ë ÒÒÓÐ Ø ÐÖ È ÚÓ Ë ÐÑ Ò Ò ÒÙ Ö ¾¼½¼ ÁÒÒ ÐÐ ½ Ö ÐÒ Ò ÙÒ Ø ÓÒ Ö Ó ÒÒÓÐ Ø ÑØØ ¾ ¾ ËØÓ Ø Ú Ö Ð Ö ÇÑ ÈÓ ÓÒ¹ Ö ÐÒ Ò Ò ½¼ º½ ÈÓ ÓÒ Ö ÐÒ Ò ÓÑ ÖÒ Ö ÐÒ Ò Ö ÒÓÑ Ð Ö ÐÒ Ò º ½½ º¾ ÈÓ ÓÒ¹ Ö ÐÒ Ò ÓÑ Ò ÑÓ ÐÐ Ö Ó ÖÙØ Ó

Läs mer

Imperativ programering

Imperativ programering Imperativ programering Inlämningsuppgift 1 sommaren 2007 Jesper Wilhelmsson 12 juni 2007 1 Deluppgift A Nedan finns fem program skrivna i fem olika språk. Er uppgift är att skriva alla fem programmen i

Läs mer

¾ ÓÖ ÓÖ ØÓÚ ½ ¼ ½ µ Ó ÙÚÐ º Ñ Ð Ò Ì Ö º ÊÓÑ Ò ½ µº ÇÖ Ò Ð Ø Ø Ø Ð Æ ÔÓ ÓÖ ÒÒÝ º ÖÒ ÖÝ Ò Ú ËÚ Ò ËØÓÖ ½ µº Ä Ù ÖÐ ËØÓ ÓÐѺ ÌÖÝ Ø Ó ÐØ Ø ÓÐ ËØÓ ÓÐÑ ½

¾ ÓÖ ÓÖ ØÓÚ ½ ¼ ½ µ Ó ÙÚÐ º Ñ Ð Ò Ì Ö º ÊÓÑ Ò ½ µº ÇÖ Ò Ð Ø Ø Ø Ð Æ ÔÓ ÓÖ ÒÒÝ º ÖÒ ÖÝ Ò Ú ËÚ Ò ËØÓÖ ½ µº Ä Ù ÖÐ ËØÓ ÓÐѺ ÌÖÝ Ø Ó ÐØ Ø ÓÐ ËØÓ ÓÐÑ ½ Ó ÙÚÐ º Ú ÓÖ ÓÖ ØÓÚº Ú Ö Ø Ò Ò Ø Ò Ö Ù Ù Ø ¾¼¼½º ¾ ÓÖ ÓÖ ØÓÚ ½ ¼ ½ µ Ó ÙÚÐ º Ñ Ð Ò Ì Ö º ÊÓÑ Ò ½ µº ÇÖ Ò Ð Ø Ø Ø Ð Æ ÔÓ ÓÖ ÒÒÝ º ÖÒ ÖÝ Ò Ú ËÚ Ò ËØÓÖ ½ µº Ä Ù ÖÐ ËØÓ ÓÐѺ ÌÖÝ Ø Ó ÐØ Ø ÓÐ ËØÓ ÓÐÑ ½ Á Ö Ø

Läs mer

ÖÓÖ ØØ ÓÑÔ Ò ÙÑ Ö ÙØÚ Ð Ø ÙÒ Ö ¾¼¼ ¹¾¼½ Ó Ö Ú ØØ ÓÑ Ò Ð Ú ÙÖ Ñ Ø Ö Ð Ø Ø ÐÐ ÙÖ Ò ÅÓ ÐÐ Ö Ò Ú ÝÒ Ñ Ý Ø Ñ ÓÑ Ô ËÌ˹ Ó Á̹ÔÖÓ Ö ÑÑ Ø Ô Ö Ó ¾ µº Ò Ð Ð Ú Ñ

ÖÓÖ ØØ ÓÑÔ Ò ÙÑ Ö ÙØÚ Ð Ø ÙÒ Ö ¾¼¼ ¹¾¼½ Ó Ö Ú ØØ ÓÑ Ò Ð Ú ÙÖ Ñ Ø Ö Ð Ø Ø ÐÐ ÙÖ Ò ÅÓ ÐÐ Ö Ò Ú ÝÒ Ñ Ý Ø Ñ ÓÑ Ô ËÌ˹ Ó Á̹ÔÖÓ Ö ÑÑ Ø Ô Ö Ó ¾ µº Ò Ð Ð Ú Ñ ÅÓ ÐÐ Ö Ò Ú ÝÒ Ñ Ý Ø Ñ ¹ ¾¼½ Ò Ø ÖÐ ÓÒ Ó ÈÖ Ë ÑÙ Ð ÓÒ + Ú º º Ý Ø ÑØ Ò ÁÒ Øº º ÁÒ ÓÖÑ Ø ÓÒ Ø ÒÓÐÓ ÍÔÔ Ð ÙÒ Ú Ö Ø Ø + ÈÓÛ Ö ËÝ Ø Ñ ÀÎ ÄÙ Ú ½ Ñ Ö ¾¼½ ÖÓÖ ØØ ÓÑÔ Ò ÙÑ Ö ÙØÚ Ð Ø ÙÒ Ö ¾¼¼ ¹¾¼½ Ó Ö Ú ØØ ÓÑ Ò

Läs mer

Tmem. ::= {mem data := Tmem data ;mem free := Tmem free ;mem null := Tmem null ;mem code := Tmem code }

Tmem. ::= {mem data := Tmem data ;mem free := Tmem free ;mem null := Tmem null ;mem code := Tmem code } ÓÖÑ Ð Î Ö Ø ÓÒ Ó Å ÑÓÖÝ ÅÓ Ð ÓÖ ¹Ä ÁÑÔ Ö Ø Ú Ä Ò Ù Ë Ò Ö Ò Ð ÞÝ Ò Ú Ö Ä ÖÓÝ ÁÆÊÁ ÊÓÕÙ ÒÓÙÖØ ½ Ä Ò Ý Ü Ö Ò ßË Ò Ö Ò º Ð ÞÝ Ú ÖºÄ ÖÓÝÐ ÒÖ º Ö ØÖ غ Ì Ô Ô Ö ÔÖ ÒØ ÓÖÑ Ð Ú Ö Ø ÓÒ Û Ø Ø ÓÕ ÔÖÓÓ Ø ÒØ Ó Ñ ÑÓÖÝ

Läs mer

º º ËÝÒ ÔØ ÔÐ Ø Ø Ø º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º ¾¼ º Æ ÙÖÓØÖ Ò Ñ ØØ Ö º º º º º º º º º º

º º ËÝÒ ÔØ ÔÐ Ø Ø Ø º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º ¾¼ º Æ ÙÖÓØÖ Ò Ñ ØØ Ö º º º º º º º º º º Æ ÙÖÓ Ý ÓÐÓ ¹ Ò ÑÑ Ò ØØÒ Ò Ú ³ÈÖ Ò ÔÐ Ó Æ ÙÖ Ð Ë Ò ³ Ú Ö ÓÒ ¼º½¾ Ò Ø Ä ÙÒ ÕÙ Ø ¾¼ ÒÙ Ö ¾¼¼ Ë ÑÑ Ò ØØÒ Ò ÒÒ Ö ÔÔÓÖØ Ö Ó Ö Ö Ò Ö Ú Ú Ø Ø ÓÒ ÔØ Ò ÓÑ Ö ÓÑÑ Ö Ã Ò Ð Ë Û ÖØÞ ² Â Ð Ó ³ÈÖ Ò ÔÐ Ó Æ ÙÖ Ð Ë Ò ³ ½

Läs mer

ÁÒØÖÓ Ù Ø ÓÒ Ø ÐÐ Å ÔÐ ½ Ñ ¾¼¼

ÁÒØÖÓ Ù Ø ÓÒ Ø ÐÐ Å ÔÐ ½ Ñ ¾¼¼ ÁÒØÖÓ Ù Ø ÓÒ Ø ÐÐ Å ÔÐ ½ Ñ ¾¼¼ ¾ ÁÆÆ À ÄÄ ½ ÁÒÒ ÐÐ ½ ÖÙÒ ¾ ½º½ ØØ Ø ÖØ Å ÔÐ Ö Ï Ò ÓÛ µ º º º º º º º º º º º º º º º º º º º ¾ ¾ Ö ØÑ Ø ÙØØÖÝ ¾ Ò Ú Ö Ð Ö Å Ò ÔÙÐ Ö Ò Ú Ð Ö ÙØØÖÝ Ò ÙÒ Ø ÓÒ Ö ÖÒ ÚÖ Ò Ö Ú

Läs mer

=

= ËÝ ØÑ Ó ØÖÒ ÓÖÑÖ ØÓÖÐÓÖØÓÒ ½ Ú ËÚÒ ËÔÒÒ ÊÚÖ Ø ¾¼¼ Ú ÑÖÒ ÑÖÓÐÞ Ó ÂÒ Ù ØÚ ÓÒ ÁÒÐÒÒ ÈÖÓÖÑÑØ Ö ÒÒ ØÓÖÚÒÒ Ö Ð ÖÒÒ Ú ÒÚÖÒ Ó Ò¹ ÚØÓÖÖ ÑØ ÓÒÐ ÖÒ Ú ÑØÖ Ö Ñ ÐÔ Ú ÅØÐ Ó ÅÔÐ Ð Ð ÒÒ Ú ÖÒØÐÚØÓÒÖ Ñ ÐÔ Ú ÅÔк À ÐÖÓÓÒ

Läs mer

Ú Ö Ö ÐÒ Ö ØØ Ö Ú Ø Ú Ò Ò ¹ Ú Ö ÓÑ Ò Ø ÓÒ Ö Ú Ñ Ò Ö ¹ Ø Öº ËØÝÖ Ú ØØ Ø ÜØ ÖÒ Ð Ò ÑÓØ Ð ÙÐÐ º Á Ó Ç ÓÐ ÔÖ Ð Ú ÝÒº ÍÒ Ø Ö ÖÒ ÐÒ Ø Ñ ÐÐ Ò ÔÓ Ò ÀÓÑ ÖÓ Ö Ø

Ú Ö Ö ÐÒ Ö ØØ Ö Ú Ø Ú Ò Ò ¹ Ú Ö ÓÑ Ò Ø ÓÒ Ö Ú Ñ Ò Ö ¹ Ø Öº ËØÝÖ Ú ØØ Ø ÜØ ÖÒ Ð Ò ÑÓØ Ð ÙÐÐ º Á Ó Ç ÓÐ ÔÖ Ð Ú ÝÒº ÍÒ Ø Ö ÖÒ ÐÒ Ø Ñ ÐÐ Ò ÔÓ Ò ÀÓÑ ÖÓ Ö Ø ÒØ Ò Ò Ö ÄÎ ÂÓ Ò Î ÐÐ ÙÑ Ñ Ö ¾¼¼ ÒÑÖ Ò Ò Ö Å Ò Ó ÙÐÐ ÓÖ ÒØ Ò Ò Ö ÑØ Ò Ø Ò Ò Ö ½ ½º½ ÐÐÑÒØ ÀÓÑ ÖÓ ÁÐ Ò Ó Ç Ý Ò ØÚ Ð Ö Ú Ò ØÖÓ Ò Ý ÐÒ ÓÑ ØÓ Ú ÔÓ º ÁÒØ ÑÝ Ø Ú Ö Ø ÖÒ ÒÒ Ú Ö º ÁÐ Ò º ¹ ¼ Ç Ý Ò º ¼ Ö Ò Ö º

Läs mer

Självorganiserande strömningsteknik

Självorganiserande strömningsteknik Självorganiserande strömningsteknik i Viktor Schaubergers fotspår Lars Johansson Morten Ovesen Curt Hallberg Institutet för Ekologisk Teknik Forskningsrapporter 1 Malmö - 2002 Ë ÐÚÓÖ Ò Ö Ò ØÖ ÑÒ Ò Ø Ò

Läs mer

ÁÒ Ø ØÙØ ÓÒ Ò Ö Ý Ø ÑØ Ò Ô ÖØÑ ÒØ Ó Ð ØÖ Ð Ò Ò Ö Ò Ü Ñ Ò Ö Ø Ö ØØÖ Ò Ú ÙÓÖÓ ÓÔ Ð Ö Ü Ñ Ò Ö Ø ÙØ ÖØ Ð Ò Ð Ò Ú Ì Ò ÓÐ Ò Ä Ò Ô Ò Ú À Ò ÖÓÐÙÒ ÄÁÌÀ¹ÁË ¹ ¹¼» ¾ ¹Ë Ä Ò Ô Ò ¾¼¼ Ô ÖØÑ ÒØ Ó Ð ØÖ Ð Ò Ò Ö Ò Ä Ò Ô

Läs mer

Anpassning av copulamodeller för en villaförsäkring

Anpassning av copulamodeller för en villaförsäkring Anpassning av copulamodeller för en villaförsäkring Emma Södergren Kandidatuppsats i matematisk statistik Bachelor Thesis in Mathematical Statistics Kandidatuppsats 2012:9 Matematisk statistik December

Läs mer

Ö Ð Ò Ò ÒØ Ò Ò Ö Ö Ú Ö ÙÖ Ò Ê Ô Ø Ø ÓÒ ÙÖ Å ¹ Ø Ñ Ø Ôº Ì˵ Ö Ö Ø Ö Ø ØÙ Ö Ò ÙÐØ Ø ÓÑÖ Ø Ö Ò ØÙÖÚ Ø Ò Ô Ö Ó Ø Ò Ó Ñ º ÃÙÖ Ò Ú Ø Ö ØØ ÖÑ Ò Ó Ò Ú Ô Ö ÙÒ

Ö Ð Ò Ò ÒØ Ò Ò Ö Ö Ú Ö ÙÖ Ò Ê Ô Ø Ø ÓÒ ÙÖ Å ¹ Ø Ñ Ø Ôº Ì˵ Ö Ö Ø Ö Ø ØÙ Ö Ò ÙÐØ Ø ÓÑÖ Ø Ö Ò ØÙÖÚ Ø Ò Ô Ö Ó Ø Ò Ó Ñ º ÃÙÖ Ò Ú Ø Ö ØØ ÖÑ Ò Ó Ò Ú Ô Ö ÙÒ Ê Ô Ø Ø ÓÒ ÙÖ Å Ø Ñ Ø Ö Ð Ò Ò Ñ Ø Ö Ð ÑÑ Ò ØÐÐØ Ú ÌÓÑ Ö Ñ Ò ÙÐØ Ø ÓÑÖ Ø Ö Ò ØÙÖÚ Ø Ò Ô Ö Ó Ø Ò Ó Ñ Ö ÙÔÔÐ Ò ¾¼½ Ö Ð Ò Ò ÒØ Ò Ò Ö Ö Ú Ö ÙÖ Ò Ê Ô Ø Ø ÓÒ ÙÖ Å ¹ Ø Ñ Ø Ôº Ì˵ Ö Ö Ø Ö Ø ØÙ Ö Ò ÙÐØ Ø ÓÑÖ Ø Ö

Läs mer

Vattenabsorption i betong under inverkan av temperatur

Vattenabsorption i betong under inverkan av temperatur LUNDS TEKNISKA HÖGSKOLA LUNDS UNIVERSITET Avd Byggnadsmaterial Vattenabsorption i betong under inverkan av temperatur Tina Wikström Rapport TVBM-5084 Lund 2012 ISRN: LUTVDG/TVBM--12/5084--SE (1-66) ISSN:

Läs mer

Tentamen i Beräkningsvetenskap II, 5.0 hp,

Tentamen i Beräkningsvetenskap II, 5.0 hp, Uppsala universitet Institutionen för informationsteknologi Teknisk databehandling Tentamen i Beräkningsvetenskap II, 5.0 hp, 2013-08-29 Skrivtid: 08 00 11 00 (OBS! Tre timmars skrivtid!) Hjälpmedel: Bifogat

Läs mer

Tentamen i Beräkningsvetenskap II, 5.0 hp,

Tentamen i Beräkningsvetenskap II, 5.0 hp, Uppsala universitet Institutionen för informationsteknologi Teknisk databehandling Tentamen i Beräkningsvetenskap II, 5.0 hp, 2011-12-16 Skrivtid: 14 00 17 00 (OBS! Tre timmars skrivtid!) Hjälpmedel: Bifogat

Läs mer

¾

¾ ÁÒØÖÓ Ù Ø ÓÒ Ø ÐÐ Å ÔÐ Ò Ö ÀÓÐ Ø ¾ Ñ Ö ¾¼¼ ¾ ÁÆÆ À ÄÄ ½ ÁÒÒ ÐÐ ½ ÖÙÒ ¾ ½º½ ØØ Ø ÖØ Å ÔÐ Ö Ï Ò ÓÛ µ º º º º º º º º º º º º º º º º º ¾ ¾ Ö ØÑ Ø ÙØØÖÝ Ò Ú Ö Ð Ö Å Ò ÔÙÐ Ø ÓÒ Ú Ð Ö ÙØØÖÝ Ò ÙÒ Ø ÓÒ Ö ÖÒ ÚÖ

Läs mer

Ë ÑÑ Ò ØØÒ Ò ÃÓ ÑÓÐÓ ÑÑ ÙØ ÖÓØØ Ö Ð Ò Ñ Ø Ò Ö Ö ÒÓÑ Ò ÓÑ Ó ÖÚ Ö Ø ÍÒ Ú Ö ÙѺ ÍÖ ÔÖÙÒ Ø Ö Ö Ø Ð ÜØ Ö Ú Ñ¹ Ñ ØÖÐÒ Ò Ö Ö Ð Ø ÚØ Ó ÒØ Ñ Ò ØÖÓ ÓÑÑ ÙÖ ÓÐÐ Ó

Ë ÑÑ Ò ØØÒ Ò ÃÓ ÑÓÐÓ ÑÑ ÙØ ÖÓØØ Ö Ð Ò Ñ Ø Ò Ö Ö ÒÓÑ Ò ÓÑ Ó ÖÚ Ö Ø ÍÒ Ú Ö ÙѺ ÍÖ ÔÖÙÒ Ø Ö Ö Ø Ð ÜØ Ö Ú Ñ¹ Ñ ØÖÐÒ Ò Ö Ö Ð Ø ÚØ Ó ÒØ Ñ Ò ØÖÓ ÓÑÑ ÙÖ ÓÐÐ Ó ËÔ ØÖ Ð Ò ÐÝ Ú ÑÑ ÙØ ÖÓØØ Ò ØÙ ØØ Ú ÍÒ Ú Ö ÙÑ Ñ Ø Ò Ö Ö ÒÓÑ Ò Ú Ò Ë Ó Ó Ø º Ö Ö Ò Ð Ö ÖÓ Ø º Ë ½¼ Ü Ñ Ò Ö Ø ÒÓÑ Ø Ò Ý ÖÙÒ Ò Ú ½ ¼ Ô À Ò Ð Ö Ð Ü ÊÝ ÁÒ Ø ØÙØ ÓÒ Ò Ö Ý Ë ÓÐ Ò Ö Ø Ò Ú Ø Ò Ô ÃÙÒ Ð Ì Ò ÓÐ Ò

Läs mer

Tentamen i TMME32 Mekanik fk för Yi

Tentamen i TMME32 Mekanik fk för Yi Ì ÒØ Ñ Ò ÌÅÅ ¾ Ì Æ½µ Å Ò Ö Ì ÒØ Ñ Ò ØÙÑ ¾¼½ ¹¼ ¹½ к ½ ¹½ º Ü Ñ Ò ØÓÖ Ä Ö ÂÓ Ò ÓÒº ÂÓÙÖ Ú Ò Ä Ö ÂÓ Ò ÓÒº Ì Ð ÓÒ ¼½ ¹¾ ½½¾¼º Ö Ø ÒØ Ñ Ò ÐÓ Ð Ò Ðº ½ Ó ½ º ¼º À ÐÔÑ Ð Ê ØÚ Ö ØÝ ÑØ ØØ ¹ Ð ÓÖµ Ñ ÒØ Ò Ò Ö Ò

Läs mer

Article available at or

Article available at   or Å Ø º ÅÓ Ðº Æ Øº È ÒÓѺ ÎÓк ÆÓº ¾ ¾¼¼ ÔÔº ¾ ¹ ÅÓ ÐÐ Ò ÚÓÐÙØ ÓÒ Ó Ê ÙÐ ØÓÖÝ Æ ØÛÓÖ Ò ÖØ Ð Ø Ö º Ë Ò Þ¹ a,c º È Ö ÓÒ a ºź È b Ò º ÐÓÒ ½,a,c a ÄÁÊÁË ÆÊË ÍÅÊ ¾¼ ÁÆË ¹ÄÝÓÒ ÍÒ Ú Ö Ø ÄÝÓÒ ¾½ Î ÐÐ ÙÖ ÒÒ Ö Ò

Läs mer

ÅÓ ÐÐ Ö Ò Ú ÝÒ Ñ Ý Ø Ñ Ò Ø ÖÐ ÓÒ Ó ÈÖ Ë ÑÙ Ð ÓÒ + Ú º º Ý Ø ÑØ Ò ÁÒ Øº º ÁÒ ÓÖÑ Ø ÓÒ Ø ÒÓÐÓ ÍÔÔ Ð ÙÒ Ú Ö Ø Ø + Ú º º Ð ØÖÓØ Ò À ÓÐ Ò Ð ÖÒ ¾¾ Ñ Ö ¾¼¼

ÅÓ ÐÐ Ö Ò Ú ÝÒ Ñ Ý Ø Ñ Ò Ø ÖÐ ÓÒ Ó ÈÖ Ë ÑÙ Ð ÓÒ + Ú º º Ý Ø ÑØ Ò ÁÒ Øº º ÁÒ ÓÖÑ Ø ÓÒ Ø ÒÓÐÓ ÍÔÔ Ð ÙÒ Ú Ö Ø Ø + Ú º º Ð ØÖÓØ Ò À ÓÐ Ò Ð ÖÒ ¾¾ Ñ Ö ¾¼¼ ÅÓÐÐÖÒ Ú ÝÒÑ Ý ØÑ ÒØ ÖÐ ÓÒ Ó ÈÖ ËÑÙÐ ÓÒ + Úº º Ý ØÑØÒ ÁÒ Øº º ÁÒÓÖÑØÓÒ ØÒÓÐÓ ÍÔÔ Ð ÙÒÚÖ ØØ + Úº º ÐØÖÓØÒ À ÓÐÒ ÐÖÒ ¾¾ ÑÖ ¾¼¼ ÖÓÖ ØØ ÓÑÔÒÙÑ Ö ÙØÚÐØ ÙÒÖ ¾¼¼¹¾¼¼ Ó Ö Ú ØØ ÓÑ Ò Ð Ú ÙÖ ÑØÖÐØ ØÐÐ ÙÖ Ò ÅÓÐÐÖÒ

Läs mer

Svenska Matematikersamfundet MEDLEMSUTSKICKET

Svenska Matematikersamfundet MEDLEMSUTSKICKET Svenska Matematikersamfundet MEDLEMSUTSKICKET 15 oktober 2009 Redaktör: Ulf Persson Ansvarig utgivare: Tobias Ekholm Dinner with the Devlin: Persson Logikern Pelle Lindström död: Dag Westerståhl More Sex.

Läs mer

Svenska Matematikersamfundet MEDLEMSUTSKICKET

Svenska Matematikersamfundet MEDLEMSUTSKICKET Svenska Matematikersamfundet MEDLEMSUTSKICKET 15 maj 2011 Redaktör: Ulf Persson Ansvarig utgivare: Tobias Ekholm Intervjuer: Raghunathan, Björner, Laptev Popular Mathematics: Ulf Persson John Milnor -

Läs mer

¾¼ Ë Ò ÓÐ ÖØ Ö Ò ÓÒÒ Ö ËØÓ ¹ ÓÐÑ ½ ¼ º ½½ º Í ÍÍ Ë ÄÍÅ ÆÍ Å Ú Ò ØØ Ö Ú Ë Ö ØÖ Ѻ ÀÒÚ ÖÒ ¾½ ¾¾ ¾ ¾¾ ¾ ½¼½ ¾ ¾ ¾ ½¾ ½ ½ ¾ ¾º ¾½ Ö À Ò ËÚ Ò Ú Ö º ÍÖ ÇÖ Ó

¾¼ Ë Ò ÓÐ ÖØ Ö Ò ÓÒÒ Ö ËØÓ ¹ ÓÐÑ ½ ¼ º ½½ º Í ÍÍ Ë ÄÍÅ ÆÍ Å Ú Ò ØØ Ö Ú Ë Ö ØÖ Ѻ ÀÒÚ ÖÒ ¾½ ¾¾ ¾ ¾¾ ¾ ½¼½ ¾ ¾ ¾ ½¾ ½ ½ ¾ ¾º ¾½ Ö À Ò ËÚ Ò Ú Ö º ÍÖ ÇÖ Ó Ë ÙÖ Ö ÐÐ Ð ØØ Ö ØÙÖ Ò Ö Ö ÐÐ ¾¼ ÒÙ Ö ¾¼¼ Á Ë Ð Ò ½ ½ Ë Ð Ð Ø ÐÓ Ð³ Ô ÖÓ Ì ÐÐ ÓÔÔ Ø Ø Ö¹ Ò µº ÍÖ Ä Ò ÚÓ ÁÒØ ÖÒ ÒÖ ½ º Ø Ô Ô Ö ÒØÓº Ë ÑÑ ÔÙ Ð Ø ÓÒ ÓÑ ½ ¼º ¾ Ë Ô Ö ÑÓ Ô Ö Ñµº ÍÖ Ä Ò ÚÓ ÁÒØ ÖÒ ¹ ÒÖ ½ º ÃÓÖØ

Läs mer

ÄÓ Ð Ö Ò Ú ÖÓÚ ÙÖ Ñ ÐÔ Ú È˹ Ó ÈÊË¹Ø Ò Ö Ö Ð Ò Æ Ð Ò Ö Ò Â ÑÑÝ ÖÐ Ò Å ØØ Ö Ä Ö ÂÓ Ò ÓÒ ÃÖ ØÓ Ö Æ Ð ÓÒ Ö Ö Ð Ò Æ Ð Ò Ö Ò Â ÑÑÝ ÖÐ Ò Å ØØ Ö Ä Ö ÂÓ Ò ÓÒ

ÄÓ Ð Ö Ò Ú ÖÓÚ ÙÖ Ñ ÐÔ Ú È˹ Ó ÈÊË¹Ø Ò Ö Ö Ð Ò Æ Ð Ò Ö Ò Â ÑÑÝ ÖÐ Ò Å ØØ Ö Ä Ö ÂÓ Ò ÓÒ ÃÖ ØÓ Ö Æ Ð ÓÒ Ö Ö Ð Ò Æ Ð Ò Ö Ò Â ÑÑÝ ÖÐ Ò Å ØØ Ö Ä Ö ÂÓ Ò ÓÒ ÄÓ Ð Ö Ò Ú ÖÓÚ ÙÖ Ñ ÐÔ Ú È˹ Ó ÈÊË¹Ø Ò Ã Ò Ø Ö Ø Ú Ð Ò Ò Ö ÔÖÓ Ö ÑÑ Ø Ö Ø Ø Ò Ö Ö Ð Ò Æ Ð Ò Ö Ò Â ÑÑÝ ÖÐ Ò Å ØØ Ö Ä Ö ÂÓ Ò ÓÒ ÃÖ ØÓ Ö Æ Ð ÓÒ ÁÒ Ø ØÙØ ÓÒ Ò Ö Ø ¹ Ó Ò ÓÖÑ Ø ÓÒ Ø Ò Ú ÐÒ Ò Ò Ö ØÓÖØ Ò À ÄÅ

Läs mer

Tentamen i Beräkningsvetenskap I, 5.0 hp,

Tentamen i Beräkningsvetenskap I, 5.0 hp, Uppsala universitet Institutionen för informationsteknologi Teknisk databehandling Tentamen i Beräkningsvetenskap I, 5.0 hp, 2008-03-25 OBS! Denna tentamen avser nya versionen av kursen Beräkningsvetenskap

Läs mer

1 = 2π 360 = π ( 57.3 ) 2π = = 60 1 = 60. 7π π = 210

1 = 2π 360 = π ( 57.3 ) 2π = = 60 1 = 60. 7π π = 210 ÁÒØÖÓ Ù Ø ÓÒ ÙÖ Ñ Ø Ñ Ø Å»Ì Æ Ð Ö ÓÒ ¾¼½¾¹¼ ¹¾ ½ Á Ñ» ܺ ÐÙÐÙ ÓÑÔÐ Ø ÓÙÖ º Ì ÌÖ ÓÒÓÑ ØÖ ÙÒØ ÓÒ È. Î Ò ÐÑØØ Ø Ö Ò Ö Ë ÒÙ Ó ÒÙ Ó Ø Ò Ò º Ò Ø ÓÒ Öº ÌÖ ÓÒÓÑ ØÖ ÙÒ Ø ÓÒ Ö Ó Ö Ö Ö ÌÖ ÓÒÓÑ ØÖ ÒØ Ø Ø Ö ÌÖ Ò Ð

Läs mer

x + y + z = 0 ax y + z = 0 x ay z = 0

x + y + z = 0 ax y + z = 0 x ay z = 0 LUNDS TEKNISKA HÖGSKOLA MATEMATIK TENTAMENSSKRIVNING LINJÄR ALGEBRA 2011-12-13 kl 1419 INGA HJÄLPMEDEL Lösningarna skall vara försedda med ordentliga motiveringar Alla koordinatsystem får antas vara ortonormerade

Läs mer

G(h r k r l r ) = h r A + k r B + l r C (1)

G(h r k r l r ) = h r A + k r B + l r C (1) ËÌÇ ÃÀÇÄÅË ÍÆÁÎ ÊËÁÌ Ì ËÁÃÍÅ ÎÆÁÆ ËÄ ÇÊ ÌÇÊÁ Ì Ê ËÈÊÁ ÆÁÆ ¹ Á Á Ê ÃÌÁÇÆËÅ ÆËÌ Ê ÎÁ Ê ÆÌ Æ Á Ê ÃÌÁÇÆ ÆÄÁ Ì ¹Ë À ÊÊ ÊË Å ÌÇ ½ºÁÒÐ Ò Ò º ÃÓÖØ ÑÑ Ò ØØÒ Ò Ú ÖÙÒ Ð Ò Ø ÓÖ ºµ Ç º ÒÒ ÒÐ Ò Ò Ö ÒØ Ú ØØ ÙØ ÖÐ Ø Ö

Läs mer

Errata. by Afif Osseiran. August 17, 2006

Errata. by Afif Osseiran. August 17, 2006 Ú Ò ÒØ ÒÒ Ò Ï Ö Ð ÓÑÑÙÒ Ø ÓÒ Ó¹ÐÓ Ø ² ØÖ ÙØ Á ÇËË ÁÊ Æ ÓØÓÖ Ð Ì ËØÓ ÓÐÑ ËÛ Ò ¾¼¼ ÌÊÁÌ ¹Á ̹ Ç˹¼ ¼¾ ÁËËÆ ½ ¹ ÁËÊÆ ÃÌÀ»ÊË̻ʹ¹¼»¼¾¹¹Ë ÃÌÀ Á Ì Ë ¹½ ¼ ËØÓ ÓÐÑ ËÏ Æ Ñ Ú Ò Ð Ò ÓÑ Ñ Ø ÐÐ ØÒ Ú ÃÙÒ Ð Ì Ò ÓÐ Ò

Läs mer

ÿ(t) + 2ẏ(t) + y(t) = u(t 2) + ṙ(t) r 1 + st Tẏ(t) + y(t) = Ke(t) e(t) = r(t) y(t)

ÿ(t) + 2ẏ(t) + y(t) = u(t 2) + ṙ(t) r 1 + st Tẏ(t) + y(t) = Ke(t) e(t) = r(t) y(t) ÊÐÖØÒ Å Ô ÌÒØÑÒ ¾¼¼¹¼½¹½ Ì ½¼¼ ½¼¼ ÄÓÐ Î¹Ù Ø ÃÙÖ Ó Ê¼ ½ ÄÖÖ ÃÒÙØ ÓÒ ØÐ ¼¼½¹¾ ÄÖÖÒ Ö ØÒØÑÒ ÐÒ Ú ØÚ ØÐÐÐÐÒ Ö ØØ ÚÖ Ô ÚÒØÙÐÐ ÖÓÖº ØØ Ö ÒÓÖÑÐØ ØØ Ò ØÑÑÖ ØÖ ØÒØÑÒ ØÖØ ÑØ Ò ØÑÑ Ö ØÒØÑÒ ÐÙØº ÌÒØÑÒ ÓÑØØÖ ØÓØÐØ

Läs mer

u(t) = u o sin(ωt) y(t) = y o sin(ωt + φ) Y (iω) = G(iω)U(iω)

u(t) = u o sin(ωt) y(t) = y o sin(ωt + φ) Y (iω) = G(iω)U(iω) Ã Ô Ø Ð ÑÔ Ö ÑÓ ÐÐ Ö Ò ØØ Ö Ã Ô Ø Ð Ø ÐÐ ÓÑÔ Ò Ø ÅÓ ÐÐ Ö Ò Ú ÝÒ Ñ Ý Ø Ñ Ó Ö Ø Ñ Ô Ø ÒØ Òº Á Ô Ø Ð ¾ ÙØ Ö Ý Ð ÑÓ ÐÐ Ö Ò Ú ÙÖ Ñ Ò ÖÒ Ú Ø ÓÒ Ö Ò Ø Ö Ñ ÝÒ Ñ ÑÓ ÐÐ Öº Î Ö Ó ÒØ Ø ØØ ÑÓ ÐÐÔ Ö Ñ ØÖ ÖÒ ÝÒ Ñ ÑÓ

Läs mer

Svenska Matematikersamfundet MEDLEMSUTSKICKET

Svenska Matematikersamfundet MEDLEMSUTSKICKET Svenska Matematikersamfundet MEDLEMSUTSKICKET 15 oktober 2008 Redaktör: Ulf Persson Ansvarig utgivare: Nils Dencker Brändén och Karlsson Wallenbergpristagare: Borcea och Benedicks Lund under luppen: Magnus

Läs mer

ÁÑÔÐ Ñ ÒØ Ö Ò Ó Ö Ø Ö Ö Ò Ú ÔÙÒ Ø Ö ÔØÓÖ Ö Ö Ö ÐØ Ò Ð Ò Ú ÓØÓ Ø Ö Ñ Ö Ø ØÖ Ø Ò Ú Ö Ò ÂÇÀ Æ ÃÊÁËÌ ÆË Æ Ü Ñ Ò Ö Ø ËØÓ ÓÐÑ ËÚ Ö Å ¾¼½¾ ʹ ¹Ë ¾¼½¾ ¼¼

ÁÑÔÐ Ñ ÒØ Ö Ò Ó Ö Ø Ö Ö Ò Ú ÔÙÒ Ø Ö ÔØÓÖ Ö Ö Ö ÐØ Ò Ð Ò Ú ÓØÓ Ø Ö Ñ Ö Ø ØÖ Ø Ò Ú Ö Ò ÂÇÀ Æ ÃÊÁËÌ ÆË Æ Ü Ñ Ò Ö Ø ËØÓ ÓÐÑ ËÚ Ö Å ¾¼½¾ ʹ ¹Ë ¾¼½¾ ¼¼ ÁÑÔÐ Ñ ÒØ Ö Ò Ó Ö Ø Ö Ö Ò Ú ÔÙÒ Ø Ö ÔØÓÖ Ö Ö Ö ÐØ Ò Ð Ò Ú ÓØÓ Ø Ö Ñ Ö Ø ØÖ Ø Ò Ú Ö Ò ÂÇÀ Æ ÃÊÁËÌ ÆË Æ Ü Ñ Ò Ö Ø ËØÓ ÓÐÑ ËÚ Ö Å ¾¼½¾ ʹ ¹Ë ¾¼½¾ ¼¼ Ë ÑÑ Ò ØØÒ Ò Î ØÙ Ö Ö Ò Ñ ØÓ Ö ØÑÑ Ò Ú ÔÙÒ Ø Ú Ö Ò ØÑÑ

Läs mer

Dlnx = 1 x. D 1 4 x4 = 1 4 4x3 = x 3. F(x) = x3 + x2. + x2. F (x) = G (x) = x 2 + x = f(x). Ó G(x) =

Dlnx = 1 x. D 1 4 x4 = 1 4 4x3 = x 3. F(x) = x3 + x2. + x2. F (x) = G (x) = x 2 + x = f(x). Ó G(x) = ÃÓÑÔ Ò ÙÑ ÈÖÓÔ ÙØ Ñ Ø Ñ Ø ÁÁ Ò Ð ÙÔ Ö Ø Ø Ú Å Ð Ò À Å Ø Ñ Ø Ò Ø ØÙØ ÓÒ Ò Ó Ñ Ó ¾¼¼ ÁÒÒ ÐÐ ½ ÁÒÐ Ò Ò ¾ ÁÒØ Ö Ð Ö ¾º½ Ö Ú Ø Ó ÔÖ Ñ Ø Ú ÙÒ Ø ÓÒ º º º º º º º º º º º º º º º º º º ¾º¾ ÈÖ Ñ Ø Ú ÙÒ Ø ÓÒ Ø ÐÐ

Läs mer

ÌÁÄÄ ÅÈ ÁËÃÊ Ì ËÌÊÍÃÌÍÊ Ê ÂÙÐ Ù ÖÞ Þ Ò Ó Â Ò ËØ Ú Ò Å Ì Å ÌÁÃ À ÄÅ ÊË Ì ÃÆÁËÃ À ËÃÇÄ Ì ÇÊ Ë ÍÆÁÎ ÊËÁÌ Ì Ì ÇÊ ¾¼¼½

ÌÁÄÄ ÅÈ ÁËÃÊ Ì ËÌÊÍÃÌÍÊ Ê ÂÙÐ Ù ÖÞ Þ Ò Ó Â Ò ËØ Ú Ò Å Ì Å ÌÁÃ À ÄÅ ÊË Ì ÃÆÁËÃ À ËÃÇÄ Ì ÇÊ Ë ÍÆÁÎ ÊËÁÌ Ì Ì ÇÊ ¾¼¼½ ÌÁÄÄ ÅÈ ÁËÃÊ Ì ËÌÊÍÃÌÍÊ Ê ÂÙÐ Ù ÖÞ Þ Ò Ó Â Ò ËØ Ú Ò Å Ì Å ÌÁÃ À ÄÅ ÊË Ì ÃÆÁËÃ À ËÃÇÄ Ì ÇÊ Ë ÍÆÁÎ ÊËÁÌ Ì Ì ÇÊ ¾¼¼½ ÊÇÊ Ì ÖÑ Ò Ö Ø Ñ Ø Ñ Ø Ø Ö ØØ ÑÝ Ø Ö ØØ Ô ØÖÙÑ Ú ÓÐ Ñ Ø Ñ Ø ÑÒ Ò ÓÑ Ô ØØ ÐÐ Ö ÒÒ Ø ØØ

Läs mer

Svenska Matematikersamfundet MEDLEMSUTSKICKET

Svenska Matematikersamfundet MEDLEMSUTSKICKET Svenska Matematikersamfundet MEDLEMSUTSKICKET 15 maj 2010 Redaktör: Ulf Persson Ansvarig utgivare: Tobias Ekholm 19P 10P 2P 11P 20P 29P 6P 15P 24P P 25P 16P 7P 30P 21P 12P 3P 26P 17P 8P John Tate - Abelprisvinnare:

Läs mer

Svenska Matematikersamfundet MEDLEMSUTSKICKET

Svenska Matematikersamfundet MEDLEMSUTSKICKET Svenska Matematikersamfundet MEDLEMSUTSKICKET 15 januari 2007 Redaktör: Ulf Persson Ansvarig utgivare: Olle Häggström Mittag-Lefflers testamente: Arild Stubhaug Reminiscenser av Mittag-Lefflerinstitutet:

Läs mer

ÍØÚÖ Ö Ò Ú ËË ¹ Ò Ð Ö Ò ÓÑ Ö Ö Ò Ò Ø Ð ÓÔ Ö Ø Ö ÓÔ Ö Ø Ú Ú Ö Ñ Ø Å ØØ Ë Ð Ò Ö Ñ ¾¼¼ Å Ø Ö³ Ì Ò ÓÑÔÙØ Ò Ë Ò ¾¼ Ö Ø ËÙÔ ÖÚ ÓÖ Ø Ë¹ÍÑÍ Â ÖÖÝ Ö ÓÒ Ü Ñ Ò Ö È Ö Ä Ò ØÖ Ñ ÍÑ ÍÒ Ú Ö ØÝ Ô ÖØÑ ÒØ Ó ÓÑÔÙØ Ò Ë Ò Ë

Läs mer

=

= ËÝ ØÑ Ó ØÖÒ ÓÖÑÖ ØÓÖÐÓÖØÓÒ ½ Ú ËÚÒ ËÔÒÒ ÊÚÖ Ø ¾¼½¾ Ú ÂÒ Ù ØÚ ÓÒ Ó ÌÓÑ ÖÒ ØÑ ÁÒÐÒÒ ÈÖÓÖÑÑØ Ö ÒÒ ØÓÖÚÒÒ Ö ØÓÖØ ØØ ØÙÖ ÑØÖ ÓÔÖØÓÒÖ Ñ ÅØÐ Ó ÅÔÐ ÒÚÖÒ ÒÚØÓÖÖ Ó ÓÒÐ ÖÒ Ñ ÅØÐ Ó ÅÔÐ ÒÖÐ ÖØ ØØÓÒÖ Ð ÒÒÖ ÜÔÓÒÒØÐÑØÖ

Läs mer

level days

level days ÌÓÑÑÝ ÆÓÖÖ ÅØÑØ ØØ Ø ÐÑÖ ² Í ½ ÑÖ ¾¼¼ ÈÓ ÓÒÔÖÓ Ò Ó ÜØÖÑ Ð ØÖ ÒÒ ÖÐ ÒÒ Ú ØÓÖØ Ö ÐØ ÖÒ Ô ØÑØ ÓÚÒÐ ÒÐ Öº Î ÖÖ Ñ ØØ ÒÖ ÈÓ ÓÒÔÖÓ Ò ÓÑ ÓØ Ö Ò Ö ÑÓÐÐ Ö ÒÖ ØÒ ÓÚÒÐ ÒÐ Ö ÒØÖÖº ËÒ Ú Ñ Ò ÈÇÌ¹ÑØÓÒ ØØ ØÓÖÐÒ ÐÐÖ ØÝÖÒ

Läs mer

Ê Ò ÓÑ Ö ÙÐ Ö Ö Ô Ó Ö Å Ð ÃÖ Ú Ð Ú ÒÒÝ ËÙ ÓÚ Ý Î Ò Àº ÎÙ Þ Æ ÓÐ º ÏÓÖÑ Ð Ü ØÖ Ø Ê Ò ÓÑ ¹Ö ÙÐ Ö Ö Ô Ú Ò Û ÐÐ ØÙ Û Ò Ü Ò Ø ÒÙÑ Ö Ó Ú ÖØ Ó ØÓ Ò Ò ØÝº Ï Ó

Ê Ò ÓÑ Ö ÙÐ Ö Ö Ô Ó Ö Å Ð ÃÖ Ú Ð Ú ÒÒÝ ËÙ ÓÚ Ý Î Ò Àº ÎÙ Þ Æ ÓÐ º ÏÓÖÑ Ð Ü ØÖ Ø Ê Ò ÓÑ ¹Ö ÙÐ Ö Ö Ô Ú Ò Û ÐÐ ØÙ Û Ò Ü Ò Ø ÒÙÑ Ö Ó Ú ÖØ Ó ØÓ Ò Ò ØÝº Ï Ó ÊÓÑ ÖÙÐÖ ÖÔ Ó Ö ÅÐ ÃÖÚÐÚ Ý ËÙÓÚ Ý Î Àº ÎÙ Þ ÆÓÐ º ÏÓÖÑÐ Ü ØÖØ ÊÓÑ ¹ÖÙÐÖ ÖÔ Ú ÛÐÐ ØÙ Û Ü Ø ÙÑÖ Ó ÚÖØ Ó ØÓ ØÝº Ï ÓØ Ö ÙÐØ Ó ÑÝ Ó Ø ÔÖÓÔÖØ Ó ÖÓÑ ¹ÖÙÐÖ ÖÔ Û µ ÖÓÛ ÑÓÖ ÕÙÐÝ Ø Ô º Ì ÔÖÓÔÖØ ÐÙ ÓØÚØÝ ÑÐØÓØÝ ÔØ

Läs mer

arxiv: v1 [physics.gen-ph] 3 Sep 2008

arxiv: v1 [physics.gen-ph] 3 Sep 2008 Ê Ä ÌÁÎÁËÌÁËÃ Ê ÈËÇ Á arxiv:0809.0708v1 [physics.gen-ph] 3 Sep 2008 Ë ÑÑ Ò ØØÒ Ò º Ö Ð Ò Ò Ð Ö Ò ËÔ ÐÐ Ê Ð Ø Ú Ø Ø Ø ¹ ÓÖ Ò Ñ ØÓÖ ÓÑÑ ÒØ Ö Ö ÑØ Ú Ö Ö ØØ ÑÓ Ö Ø ÓÖ Òº ÌÖÓØ Ñ Ö Ò ÙÒ Ö Ö Ô Ò Ò ÒÒ Ø Ò Ø ÓÑ

Läs mer

Svenska Matematikersamfundet MEDLEMSUTSKICKET

Svenska Matematikersamfundet MEDLEMSUTSKICKET Svenska Matematikersamfundet MEDLEMSUTSKICKET 15 februari 2010 Redaktör: Ulf Persson Ansvarig utgivare: Tobias Ekholm What should a Mathematician Know?: Davis & Mumford Två klassiska läroböcker i analys:

Läs mer

1 k j = 1 (N m ) jk =

1 k j = 1 (N m ) jk = ÂÓÖÒ ÖÒ ½ ÖÙÖ ¾¼¼ ÀÙÚÙÖ ÙÐØØØ ÓÒ ÔØÐ Ö ØØ ÚÖ ÚÖØ ÑØÖ Ö ÐÓÖ¹ Ñ Ñ Ò ÓÖÒÑØÖ ÓÑ Ú ØÐÐØÖ ÓÑÔÐÜ ÑØÖ ÐÑÒØµ ÓÑ ÐÐ ÂÓÖÒ ÒÓÖÑÐÓÖÑ Ö ÑØÖ Òº ËÓÑ ÔÔ ÓÒ Ö ÒÓÖÑÐÓÖÑÒ Ò¹ Ö Ø ØØ ØÓÖØ Ø ÚÖØÝ ØÖ ÓÑ Ò ÐÐÑÒØ ÒØ ÖÓÖ ÓÒØÒÙÖÐØ

Läs mer

Svenska Matematikersamfundet MEDLEMSUTSKICKET

Svenska Matematikersamfundet MEDLEMSUTSKICKET Svenska Matematikersamfundet MEDLEMSUTSKICKET 1 maj 2007 Redaktör: Ulf Persson Ansvarig utgivare: Olle Häggström En brevväxling: Olle Häggström och Anders Hallberg Uppsala Gästabud: Ulf Persson Uppsalas

Läs mer

S(c 1 w 1 + c 2 w 2 ) = c 1 S(w 1 ) + c 2 S(w 2 ) S(c 1 w 1 + c 2 w 2 ) (c 1 S(w 1 ) + c 2 S(w 2 )).

S(c 1 w 1 + c 2 w 2 ) = c 1 S(w 1 ) + c 2 S(w 2 ) S(c 1 w 1 + c 2 w 2 ) (c 1 S(w 1 ) + c 2 S(w 2 )). ËÝ ØÑ Ó ØÖÒ ÓÖÑÖ ØÓÖÐÓÖØÓÒ ¾ Ú ËÚÒ ËÔÒÒ ÊÚÖ Ø ¾¼¼ Ú ÂÒ Ù ØÚ ÓÒ ÁÒÐÒÒ ÈÖÓÖÑÑØ Ö ÒÒ ØÓÖÚÒÒ Ö ØÙÙÑ Ú Ò ÒÐ¹ÙØ ÒÐÖÐØÓÒÖ Ð Ø ÓÑÖØ Ð ÖÚÒ ÓÑÖØ ÑØ Ò ÓÖØ ÒØÖÓÙØÓÒ ØÐÐ ÓÙÖÖØÖÒ ¹ ÓÖÑÖÒ Ñ ÅÔк À ÐÖÓÓÒ Ó ÚÒÒ ØØ ØÐÐÒк

Läs mer

Svenska Matematikersamfundet MEDLEMSUTSKICKET

Svenska Matematikersamfundet MEDLEMSUTSKICKET Svenska Matematikersamfundet MEDLEMSUTSKICKET 15 maj 2009 Redaktör: Ulf Persson Ansvarig utgivare: Nils Dencker Intervjuer: Lithner och du Sautoy: Ulf Persson From Sweden with Love: An Yajun Boij och Nyström

Läs mer

Från det imaginära till normala familjer

Från det imaginära till normala familjer Från det imaginära till normala familjer Analytiska konvergenser Linnea Widman Vt 2010 Examensarbete 1, 15 hp Kandidatexamen i matematik, 180 hp Institutionen för matematik och matematisk statistik ÖÒ

Läs mer

a = ax e b = by e c = cz e

a = ax e b = by e c = cz e ËÁÃÍÅ ËÌÇ ÃÀÇÄÅË ÍÆÁÎ ÊËÁÌ Ì ÈÊÇ Ä ÅË ÅÄÁÆ Ê ÃÇÆ ÆË Ê Å Ì ÊÁ ÆË ËÁà РÁ Ĺ ½ ½º ÃÖ Ø ÐÐ ØÖÙ ØÙÖ ½¹½º ÃÓÔÔ Ö Ö ¹ ØÖÙ ØÙÖ Ó Ò Ø Ø Ò º»Ñ 3 º Ö Ò Ñ ÐÔ Ö Ú µ Ã ÒØÐÒ Ò Ò ÓÒÚ ÒØ ÓÒ ÐÐ Ò Ø ÐÐ Òº µ Ú ØÒ Ø Ñ ÐÐ

Läs mer

ÁÒÐÒÒ ÒÒ ØÓÖÚÒÒ Ö Ò ÒØÖÓÙØÓÒ ØÐÐ ÅØÐº ËÝ ØÑØ ÒÚÒ Ö ÓÑ Ò ÚÒ¹ Ö ÖÒÓ Ñ ÒÝ ÑØÖ ÓÔÖØÓÒÖ Ó Öº À Ò ÅØÐÑÒÙÐ ØÐÐÒÐ ÓÑ Ù Ö ÚÒ Úº ÚÒÒÖÒ Ö ØÒØ ØØ ÒÓÑÖ Ô Ò Ò ÑÒ Ú

ÁÒÐÒÒ ÒÒ ØÓÖÚÒÒ Ö Ò ÒØÖÓÙØÓÒ ØÐÐ ÅØÐº ËÝ ØÑØ ÒÚÒ Ö ÓÑ Ò ÚÒ¹ Ö ÖÒÓ Ñ ÒÝ ÑØÖ ÓÔÖØÓÒÖ Ó Öº À Ò ÅØÐÑÒÙÐ ØÐÐÒÐ ÓÑ Ù Ö ÚÒ Úº ÚÒÒÖÒ Ö ØÒØ ØØ ÒÓÑÖ Ô Ò Ò ÑÒ Ú ÙÒØÓÒ ØÓÖ ÁÒÐÒ ØÓÖÚÒÒÖ Ó ÖÔØØÓÒ Ú ÅØÐ Ú ËÚÒ ËÔÒÒ ÊÚÖ Ø ¾¼¼ Ú ÂÒ Ù ØÚ ÓÒ ÁÒÐÒÒ ÒÒ ØÓÖÚÒÒ Ö Ò ÒØÖÓÙØÓÒ ØÐÐ ÅØÐº ËÝ ØÑØ ÒÚÒ Ö ÓÑ Ò ÚÒ¹ Ö ÖÒÓ Ñ ÒÝ ÑØÖ ÓÔÖØÓÒÖ Ó Öº À Ò ÅØÐÑÒÙÐ ØÐÐÒÐ ÓÑ Ù Ö ÚÒ Úº ÚÒÒÖÒ Ö ØÒØ

Läs mer

ÁÒ Ò Ö Ñ Ø Ñ Ø ÁÁ Ö Ð Ò Ò Ñ Ø Ö Ð ÑÑ Ò ØÐÐØ Ú ÌÓÑ Ö Ñ Ò ÙÐØ Ø ÓÑÖ Ø Ö Ò ØÙÖÚ Ø Ò Ô Ö Ó Ø Ò Ó Ñ Ö ÙÔÔÐ Ò ¾¼½

ÁÒ Ò Ö Ñ Ø Ñ Ø ÁÁ Ö Ð Ò Ò Ñ Ø Ö Ð ÑÑ Ò ØÐÐØ Ú ÌÓÑ Ö Ñ Ò ÙÐØ Ø ÓÑÖ Ø Ö Ò ØÙÖÚ Ø Ò Ô Ö Ó Ø Ò Ó Ñ Ö ÙÔÔÐ Ò ¾¼½ ÁÒ Ò Ö Ñ Ø Ñ Ø ÁÁ Ö Ð Ò Ò Ñ Ø Ö Ð ÑÑ Ò ØÐÐØ Ú ÌÓÑ Ö Ñ Ò ÙÐØ Ø ÓÑÖ Ø Ö Ò ØÙÖÚ Ø Ò Ô Ö Ó Ø Ò Ó Ñ Ö ÙÔÔÐ Ò ¾¼½ Ö Ð Ò Ò ÒØ Ò Ò Ö Ö Ú Ö ÙÖ Ò ÁÒ Ò Ö Ñ Ø Ñ Ø ÁÁ Ôº Ì˵ Ö Ö Ø Ö Ø ØÙ Ö Ò Ú ÙÐØ Ø ÓÑÖ Ø Ö Ò ØÙÖÚ

Läs mer

ÁÒÐÒÒ Ú ØÖØÖ Ú Ò Ø ÒÒ ÐÐ ÖÚØ ÓÑ ÒÖ Ú ØØ Ò ÚĐÖÔÔÔÖ ÒĐÑÐÒ Ò Øº ØÒ ÔÖ Ú ØÒ Ø ØÒ Ñ Ë Øµº ÄØ ÒÙ Ì ÚÖ ØØ ÚØ ÖÑØ ØÙÑ Ó ÒØ ØØ ØØ Ú Ø ÖÚØ ØÒ Ò ÒÐĐÓ Ú ØÒ Ì Ó ÙØ

ÁÒÐÒÒ Ú ØÖØÖ Ú Ò Ø ÒÒ ÐÐ ÖÚØ ÓÑ ÒÖ Ú ØØ Ò ÚĐÖÔÔÔÖ ÒĐÑÐÒ Ò Øº ØÒ ÔÖ Ú ØÒ Ø ØÒ Ñ Ë Øµº ÄØ ÒÙ Ì ÚÖ ØØ ÚØ ÖÑØ ØÙÑ Ó ÒØ ØØ ØØ Ú Ø ÖÚØ ØÒ Ò ÒÐĐÓ Ú ØÒ Ì Ó ÙØ ½º ÓÑÒÒ ÔÖÒÔÒ ØØ ÚĐÖÔÔÔÖ ÓÑ ÒÖ ØÖÑÖ Ú ÒÖ ÚĐÖÔÔÔÖ ÐÐ ØØ ¹ ÒÒ ÐÐØ ÖÚØº ÊĐØØØÒ ÑÒ ÝÐØÒ ØØ ĐÓÔ ØØ ÚØ ÚĐÖÔÔÔÖ ØØ ÖÑØ ØÙÑ ØÐÐ ØØ ĐÓÖÚĐ ÙÔÔÓÖØ ÔÖ ÐÐ Ò ĐÓÔÓÔØÓÒº ¹ ØÖ Ó ÓÔØÓÒ ÓÒØÖØ ĐÖ ÑÝØ ÑÐ ĐÓÖØÐ Öº ØÖ Ö ÚÖØ

Läs mer

S(c 1 w 1 +c 2 w 2 ) (c 1 S(w 1 )+c 2 S(w 2 )).

S(c 1 w 1 +c 2 w 2 ) (c 1 S(w 1 )+c 2 S(w 2 )). ËÝ ØÑ Ó ØÖÒ ÓÖÑÖ ØÓÖÐÓÖØÓÒ ¾ Ú ËÚÒ ËÔÒÒ ÊÚÖ Ø ¾¼½¾ Ú ÂÒ Ù ØÚ ÓÒ Ó ÌÓÑ ÖÒ ØÑ ÁÒÐÒÒ ÈÖÓÖÑÑØ Ö ÒÒ ØÓÖÚÒÒ Ö ØÙÙÑ Ú Ò ÒÐ¹ÙØ ÒÐÖÐØÓÒÖ Ð Ø ÓÑÖØ Ð ÖÚÒ ÓÑÖØº ÖØÖ ÐÖ Ò ÙÔÔØ ÑØ Ò ÓÖØ Ò¹ ØÖÓÙØÓÒ ØÐÐ ÓÙÖÖØÖÒ ÓÖÑÖÒ

Läs mer

2π e. P(k, l, q Y, T) P(k, l, q)p(y, T k, l, q) = P(k, l, q) i. P(y i t i, k, l, q) 2 i (yi kti l)2 (2π) P(z Y, T, s) = P(z k, l, q, s)p(k, l, q Y, T)

2π e. P(k, l, q Y, T) P(k, l, q)p(y, T k, l, q) = P(k, l, q) i. P(y i t i, k, l, q) 2 i (yi kti l)2 (2π) P(z Y, T, s) = P(z k, l, q, s)p(k, l, q Y, T) ÒÐÝ Ó ÔÖØÓÒ Ú ÐØ Ô ÙÐÔÖÓÐÖ Ó ÖÓÑ Ð Ô Ø ÒÖ ÀÓÐ Ø ÑÖ ¾¼½½ ËÁË ÌÒÐ ÊÔÓÖØ ̾¼½½½ ÁËËÆ ½½¼¼¹ ½ ËÑÑÒØØÒÒ Î Ö ÓÑ Ò Ð Ú Ø ÎÒÒÓÚ¹ÒÒ Ö ÔÖÓØØ ÍËÌ ÙÒ¹ Ö Ø ÙÖ Ý Ò ØØ Ø ÑÓÐÐÖÒ Ó ÚÚÐ ØØÓÒ Ò ÒÚÒ Ö ØØ ÒÐÝ Ö ÐØ Ô ÙÐÔÖÓÐÖ

Läs mer

ÖÙÒ ÙÖ Ë Ò Ð Ò Ð Ò Ö Ð Ò Ò Ñ Ø Ö Ð À ÒÒÙ ÌÓ ÚÓÒ Ò Ö Ö Ø Ú ÌÓÑ Ö Ñ Ò ÙÐØ Ø Ò Ö Ò ØÙÖÚ Ø Ò Ô Ö Ó Ø Ò Ó Ñ ¾¼½

ÖÙÒ ÙÖ Ë Ò Ð Ò Ð Ò Ö Ð Ò Ò Ñ Ø Ö Ð À ÒÒÙ ÌÓ ÚÓÒ Ò Ö Ö Ø Ú ÌÓÑ Ö Ñ Ò ÙÐØ Ø Ò Ö Ò ØÙÖÚ Ø Ò Ô Ö Ó Ø Ò Ó Ñ ¾¼½ ÖÙÒ ÙÖ Ë Ò Ð Ò Ð Ò Ö Ð Ò Ò Ñ Ø Ö Ð À ÒÒÙ ÌÓ ÚÓÒ Ò Ö Ö Ø Ú ÌÓÑ Ö Ñ Ò ÙÐØ Ø Ò Ö Ò ØÙÖÚ Ø Ò Ô Ö Ó Ø Ò Ó Ñ ¾¼½ Ö Ð Ò Ò ÒØ Ò Ò Ö Ö Ú Ö ÙÖ Ò ÖÙÒ ÙÖ Ë Ò Ð ¹ Ò Ð Ò Ôº Ì˵ Ö ØÙ Ö Ò Ú ÙÐØ Ø Ò Ö Æ ØÙÖÚ Ø Ò Ô Ö Ó

Läs mer

arxiv: v1 [nucl-th] 28 May 2008

arxiv: v1 [nucl-th] 28 May 2008 Å ÖÓ ÓÔ Ù Ø Ø ÓÒ Ó Ø ÕÙ Ð ÐÐ Ò ÔÔÖÓÜ Ñ Ø ÓÒ Ë Ö È Ö Þ¹Å ÖØ Ò Ò ÄºÅº ÊÓ Ð Ó Ô ÖØ Ñ ÒØÓ Ì Ö ¹ Á ÙÐØ Ò ÍÒ Ú Ö ÙØ ÒÓÑ Å Ö ¾ ¼ Å Ö ËÔ Ò Ì ÕÙ Ð ÐÐ Ò ÔÔÖÓÜ Ñ Ø ÓÒ ÔÖÓ ÙÖ Û ÐÝ Ù Ò Ñ Ò Ð ÐÙÐ Ø ÓÒ ØÓ ØÖ Ø Ø ÝÒ Ñ

Läs mer