FILTER: Tvåportar. Tvåportar, impedansparametrar (z-par.) Uttryck två av storheterna V 1, V 2, I 1 och I 2 som funktion av de andra två.

Storlek: px
Starta visningen från sidan:

Download "FILTER: Tvåportar. Tvåportar, impedansparametrar (z-par.) Uttryck två av storheterna V 1, V 2, I 1 och I 2 som funktion av de andra två."

Transkript

1 V I 7 - Filterteori FILTER: Tvåortar V I Paivt RLMC-ät Kaualt LTI-ytem Uttryck två av torhetera V, V, I och I om fuktio av de adra två. T.ex V f I, I V f I, I Lijärt ytem uero. z I + z I z I + z I Coyright Lae Alfredo, LiT 7 - Filterteori I () V () Tvåortar, imedaarametrar (z-ar.) V V z I () z z I z z I ; V z z I () z I () V () z I Imedamatrie Allmä tvåortekvivalet: Ekvivalet T-chema då z z : Dv. för recirok tvåort V () I () z -z z - z I () z V () Coyright Lae Alfredo, LiT

2 7 - Filterteori 3 Tvåortar, fort Exemel: I () Z () V () Z () I z Z 3 () Z 4 () I () V () z? I z V z I + z I V Strömdelig Z (av I I z ) V z I Z4 I Z + Z + Z 3 4 I 0 z V I I 0 ZZ4 Z + Z + Z 3 4 Coyright Lae Alfredo, LiT 7 - Filterteori 4 Tvåortar, hybridarametrar (h-ar.) V h h I I h h V ybridmatrie h I () V () h h V () h I () h I () V () Allmä tvåortekvivalet: Ex: lijär modell av biolartraitor Det fi äve K-, K -, y- och g-arametrar (e boke). Exemel, kakadkol: K K K tot K K Coyright Lae Alfredo, LiT

3 7 - Filterteori 5 PASSIVA FILTER ortfiltrerig av igalkomoeter: Y TX 3 4 X 3 N j Im{} De komlexkojugerade olera och 3 ho X() motvarar e igalkomoet i x(t) om kall helt filtrera bort! Re{} Stabilt ytem: # oler # olltälle t.ex Coyright Lae Alfredo, LiT 7 - Filterteori 6 Olika frekveelektiva filtertyer () Låga (LP) Idealt Aroximatio () Arox. öga (P) Idealt 0 0 () ada (P) Idealt () adärr (S) Arox. Arox. Idealt Coyright Lae Alfredo, LiT

4 7 - Filterteori 7 Ideala Filter (Exemel - LP): ; 0 0; f.ö. f 0 τ h t f ic f t τ ; arg 0 0; f.ö. Grulötide: d t g arg d τ Idealt filter t g kotat i abadet ( τ ) 0 Coyright Lae Alfredo, LiT t ( πf ) f Filterteori 8 Frekveelektiva Paiva Filter Exemel, dämigkrav för amlitudormerat LP-filter: G() () ( ) max 0 A () 0 0 log () A : Störta abaddämige : Pabadgräe (grävikelfrekvee) Pabad Övergågbad Särrbad A : Mita ärrbaddämige : Särrbadgräe Coyright Lae Alfredo, LiT

5 7 - Filterteori 9 Syte av raktika filter (LP, P, P & S). Överför frekveer och dämigkrav frå ökat filter ökat () till ett motvarade ormerat LP-filter orm () Låt ( orm () max ( 0 ) Ofta är ( 0 ) rad/ ) orm + L där L är e ratioell fk. av olyom av ordig.. LP-filtret: A, A, & orm () 3. Tabell (filter med gräv.frekv. rad/) orm () (gräv.frekv. ) 4. Filtertraformera: orm () ökat () ( ökat () är t.ex LP-, P-, P- eller S-filter ) Coyright Lae Alfredo, LiT 7 - Filterteori 0 Frekvetraformatio (filtertraf.). Syte av ormerat refere(lp-)filter om ufyller tällda dämigkrav ( tag fram orm (S) ). Filtertraformera till ökat filter ( orm (S) ökat () ) orm (Ω) Ω Ω Ω I (där ) I Filtertraformatioer (ka 7.8): LP S + I Ω ( Ω ) ökat () LP P P S Coyright Lae Alfredo, LiT

6 7 - Filterteori utterworthfilter 0 ( ) ( ) 0 log ( ) G 3 G ( ) ( ) ( ) A 0 ( ) ( ) ( ) ( ) ( ) 0 log( + ) A A 0 log + kotat, oberoede av är kotat ε ε 0 A 0 log( + ε ) G 3 ( ) ( ) ε 0.A 0 - Coyright Lae Alfredo, LiT 7 - Filterteori 3 utterworthfilter G ( ) ( ) 0 ( ) ( ) 0 log ( ) G G 3 ( ) ( ) G 3 A ( ) A A ( ) A dv. 3 ( ) ε 3 ε ( ) ε 3 3 (e äta ida ) Coyright Lae Alfredo, LiT

7 7 - Filterteori 3 utterworthfilter (ammafattig) orm ( ) ( ) där () erhåll frå ( ) ( ) + ε utterwortholyomet av ordig ( L ( ) ε ), ε 0. A 0 (ε A 3 ) S S + a S + + a S + S ε S ε Filtret A -grävikelfrekve är 3 ε rad/ här Coyright Lae Alfredo, LiT 7 - Filterteori 4 utterworthfilter, fort G () () utterworthfilter har maximalt flat amlitudkaraktäritik i abadet! A Filterkrave ufyll om log dv ger bäta abad-aroximatio 0. A 0 0. A 0 0 log ( heltal) Coyright Lae Alfredo, LiT

8 orm 7 - Filterteori 5 Chebyhev I-filter ( ) ( ) C + T ε där T () är chebyhevolyomet av ordig Motvarade ytemfuktio: ( ) ( ) orm C T ( ) ( ) K + a + + a + a 0 ; udda K C 0 a0 C ( ) ; jäm + ε ( L ( ) ε T ), ε 0. A 0 Coyright Lae Alfredo, LiT 7 - Filterteori 6 Chebyhev I-filter, fort G C () C () Riel ( A ) tillåt i abadet! A 4 Filterkrave ufyll om 3 arcoh Chebyhev I-filter är otimalt m.a.. brathete i övergågbadet! arcoh 0. A 0 ε ( heltal) Coyright Lae Alfredo, LiT

9 7 - Filterteori 7 Kretdemo Paiva LP-filter : Coyright Lae Alfredo, LiT 7 - Filterteori 8 Klaika ideala LP-aroximatioer () utterworthfilter () Chebyhev I-filter () Chebyhev II-filter () Ellitikt filter Coyright Lae Alfredo, LiT

10 7 - Filterteori 9 eelfilter utterworth, Chebyhev I & II och ellitikt filter ger bra aroximatioer till ideala LP-filtret amlitudkaraktäritik. eelfiltret har goda fakaraktäritikegekaer! orm () utterworth Chebyhev I eel t g () ; grulötide Chebyhev I utterworth eel Coyright Lae Alfredo, LiT 7 - Filterteori 0 Räkeugift, Chebyhev I-filter G LP () LP (),LP 3,LP,LP G P () P (),P 3,P,P 3 3 A Referefilter, Chebyhev, LP: A,,LP 000 rad/ A 0 vid,lp 000 rad/ A LP P: Ι,LP,P Ökat Chebyhevfilter, P: f 3,P kz 3,P πf 3,P 4π krad/ Coyright Lae Alfredo, LiT

Frekvensselektiva Passiva Filter

Frekvensselektiva Passiva Filter 9 Frekveelektiva Paiva Filter Exemel, dämigkrav för amlitudormerat LP-filter: G() = H() d H( ) max = [d] 0 d H() = 0 0 d log H() d (grävikelfrekvee) A : Mita ärrbad- A : Störta abad- dämige A : Pabadgräe

Läs mer

TSDT18/84 SigSys Kap 4 Laplacetransformanalys av tidskontinuerliga system. De flesta begränsade insignaler ger upphov till begränsade utsignaler

TSDT18/84 SigSys Kap 4 Laplacetransformanalys av tidskontinuerliga system. De flesta begränsade insignaler ger upphov till begränsade utsignaler 9 Stabilitet för energifria LTI-system Marginellt stabilt system: De flesta begränsade insignaler ger upphov till begränsade utsignaler Kap 2, bild 4 h t h( t) dt /< < t gäller för marginellt stabila LTI-system

Läs mer

Tentamen SF1633, Differentialekvationer I, den 22 oktober 2018 kl

Tentamen SF1633, Differentialekvationer I, den 22 oktober 2018 kl 1 Matematiska Istitutioe, KTH Tetame SF1633, Differetialekvatioer I, de 22 oktober 2018 kl 08.00-13.00. Examiator: Pär Kurlberg OBS: Iga hjälpmedel är tillåta på tetamesskrivige. För full poäg krävs korrekta

Läs mer

{ ( )} = X s. ( ) /< t. Stabilitet för energifria LTI-system. L{ } e(t) i 0 (t) E(s) I 0 (s) ( ) ( )e st 0. Kretsberäkningar, linjära RLMC-nät

{ ( )} = X s. ( ) /< t. Stabilitet för energifria LTI-system. L{ } e(t) i 0 (t) E(s) I 0 (s) ( ) ( )e st 0. Kretsberäkningar, linjära RLMC-nät Kap 4 Laplaceanfomanaly av idkoninueliga yem 9 Sabilie fö enegifia LTI-yem Maginell abil yem: De flea begänade inignale ge upphov ill begänade uignale Kap 4 Laplaceanfomanaly av idkoninueliga yem 0 Sabilie

Läs mer

2 Ortogonala signaler. Fourierserier. Enkla filter.

2 Ortogonala signaler. Fourierserier. Enkla filter. Ortogonala signaler. Fourierserier. Enkla filter. ktuella ekvationer: Se formelsamlingen och förberedelsehäftet. För effektivvärdet av en summa av N ortogonala signaler gäller: ν rms = ν rms1 + ν rms +...

Läs mer

Exempelsamling Grundläggande systemmodeller. Klas Nordberg Computer Vision Laboratory Department of Electrical Engineering Linköping University

Exempelsamling Grundläggande systemmodeller. Klas Nordberg Computer Vision Laboratory Department of Electrical Engineering Linköping University Exempelsamling Grundläggande systemmodeller Klas Nordberg Computer Vision Laboratory Department of Electrical Engineering Linköping University Version: 0.1 August 25, 2015 Uppgifter markerade med (A) är

Läs mer

Exempelsamling Grundläggande systemmodeller. Klas Nordberg Computer Vision Laboratory Department of Electrical Engineering Linköping University

Exempelsamling Grundläggande systemmodeller. Klas Nordberg Computer Vision Laboratory Department of Electrical Engineering Linköping University Exempelsamling Grundläggande systemmodeller Klas Nordberg Computer Vision Laboratory Department of Electrical Engineering Linköping University Version: 0.11 September 14, 2015 Uppgifter markerade med (A)

Läs mer

Ett system är asymptotiskt stabilt om det efter en övergående störning återgår till sitt begynnelsetillstånd.

Ett system är asymptotiskt stabilt om det efter en övergående störning återgår till sitt begynnelsetillstånd. 6. Stabilitet Såom framgått i de två iledade kaitle förutätter e lyckad regulatordeig komromier mella retada ( abbhet ) och tabilitet. Ett ytem om oreglerat är tabilt ka bli itabilt geom för aggreiv reglerig.

Läs mer

Bestäm uttrycken för följande spänningar/strömmar i kretsen, i termer av ( ) in a) Utspänningen vut b) Den totala strömmen i ( ) c) Strömmen () 2

Bestäm uttrycken för följande spänningar/strömmar i kretsen, i termer av ( ) in a) Utspänningen vut b) Den totala strömmen i ( ) c) Strömmen () 2 7 Elektriska kretsar Av: Lasse Alfredsson och Klas Nordberg 7- Nedan finns en krets med resistanser. Då kretsen ansluts till en annan elektrisk krets uppkommer spänningen vin ( t ) och strömmen ( ) Bestäm

Läs mer

Digital signalbehandling Fönsterfunktioner

Digital signalbehandling Fönsterfunktioner Istitutioe för data- och elektrotekik Digital sigalbehadlig Fösterfuktioer 2-2-7 Fösterfuktioer aväds för att apassa mätserie vid frekvesaalys via DFT och FFT samt vid dimesioerig av FIR-filter via ivers

Läs mer

vara ett polynom där a 0, då kallas n för polynomets grad och ibland betecknas n grad( P(

vara ett polynom där a 0, då kallas n för polynomets grad och ibland betecknas n grad( P( Armi Halilovic: EXTRA ÖVNINGAR Polyom POLYNOM OCH ALGEBRAISKA EKVATIONER Defiitio Polyom är uttrycket av type a a a 0 ( där är ett icke-egativt heltal) Defiitio Låt P( a a a0 vara ett polyom där a 0, då

Läs mer

Lösningar till tentamen i Reglerteknik

Lösningar till tentamen i Reglerteknik Löningar till tentamen i Reglerteknik Tentamendatum: 8 Juni 205. (a) Välj t.ex. tyrbar kanonik form 5 4 3 ẋ(t) = 0 0 x(t) + 0 u(t) 0 0 0 y(t) = ( 0 ) x(t) (b) Stabilt ytem och tationär förtärkning G(0)

Läs mer

RÄKNEEXEMPEL FÖRELÄSNINGAR Signaler&System del 2

RÄKNEEXEMPEL FÖRELÄSNINGAR Signaler&System del 2 t 1) En tidskontinuerlig signal x( t) = e 106 u( t) samplas med sampelperioden 1 µs, varefter signalen trunkeras till 5 sampel. Den så erhållna signalen får utgöra insignal till ett tidsdiskret LTI-system

Läs mer

Digital signalbehandling Digital signalbehandling

Digital signalbehandling Digital signalbehandling Istitutioe för data- och eletrotei --8 Ly, Fuerst: Itroductory Digital Sigal Processig Kapitel. 7 Mbit/s. 96 Mbit/s., bit/s. a) b) - - CHALMERS LINDHOLMEN Sida Istitutioe för data- och eletrotei Sve Kutsso

Läs mer

H1009, Introduktionskurs i matematik Armin Halilovic POLYNOM, POLYNOMDIVISION, ALGEBRAISKA EKVATIONER, PARTIALBRÅKSUPPDELNING. vara ett polynom där a

H1009, Introduktionskurs i matematik Armin Halilovic POLYNOM, POLYNOMDIVISION, ALGEBRAISKA EKVATIONER, PARTIALBRÅKSUPPDELNING. vara ett polynom där a POLYNOM, POLYNOMDIVISION, ALGEBRAISKA EKVATIONER, PARTIALBRÅKSUPPDELNING Defiitio Polyom är ett uttryck av följade typ P( ) a a a, där är ett icke-egativt heltal (Kortare 0 P k ( ) a a 0 k ) k Defiitio

Läs mer

Tentamen del 2 i kursen Elinstallation, begränsad behörighet ET

Tentamen del 2 i kursen Elinstallation, begränsad behörighet ET Tetame del 2 i kure Elitallatio, begräad behörighet ET1013 2013-06-03 Tetame omfattar 60 poäg. För godkäd tetame kräv 30 poäg. Tillåta hjälpmedel är räkedoa amt bifogad formelamlig Beräkigar behöver bara

Läs mer

Vad är det okända som efterfrågas? Vilka data är givna? Vilka är villkoren?

Vad är det okända som efterfrågas? Vilka data är givna? Vilka är villkoren? Problemlösig. G. Polya ger i si utmärkta lilla bok How to solve it (Priceto Uiversity press, 946) ett schema att följa vid problemlösig. I de flod av böcker om problemlösig som har följt på Polyas bok

Läs mer

Tentamen i Sannolikhetsteori III 13 januari 2000

Tentamen i Sannolikhetsteori III 13 januari 2000 STOCKHOLMS UNIVERSITET MATEMATISK STATISTIK Louise af Klitberg Lösigar Tetame i Saolikhetsteori III 13 jauari 2000 Uppgift 1 a) Det mest detaljerade utfallsrummet är med uppebara beteckigar Ω = {(B1, B2),

Läs mer

INGENJÖRSMATEMATISK FORMELSAMLING

INGENJÖRSMATEMATISK FORMELSAMLING Sätyck u femte upplaga av fomle och tabelle fö aolikhetläa och tatitik, idoa 89-4. Toe Gutafo 004. INGENJÖRSMATEMATISK FORMELSAMLING Toe K. Gutafo Kombiatoik 89 90 Kombiatoik 6 KOMBINATORIK Atal pemutatioe

Läs mer

Lösningar Reglerteknik AK Tentamen

Lösningar Reglerteknik AK Tentamen Lösningar Reglerteknik AK Tentamen 15 1 3 Uppgift 1a Systemet är stabilt ( pol i ), så vi kan använda slutvärdesteoremet för att bestämma Svar: l = lim y(t) = lim sg(s)1 t s s = G()1 = 5l = r = 1 Uppgift

Läs mer

Periodisk summa av sinusar

Periodisk summa av sinusar 1 Periodis sua av sinusar Låt x( t) = Asin( ω a t + α ) + Bsin( ω b t + β ). O ω a! x( t) är T-periodis, dvs. x( t) = x( t +T ) ω b ed T = π ω 1, där ω 1 = SGD( ω a,ω ) Största Geensaa Delare (SGD) b =

Läs mer

Tentamen i Linjär Algebra, SF december, Del I. Kursexaminator: Sandra Di Rocco. Matematiska Institutionen KTH

Tentamen i Linjär Algebra, SF december, Del I. Kursexaminator: Sandra Di Rocco. Matematiska Institutionen KTH 1 Matematiska Istitutioe KTH Tetame i Lijär Algebra, SF164 14 december, 21. Kursexamiator: Sadra Di Rocco OBS! Svaret skall motiveras och lösige skrivas ordetligt och klart. Iga hjälpmedel är tillåta.

Läs mer

Signal- och bildbehandling TSBB03

Signal- och bildbehandling TSBB03 Tentamen i Signal- och bildbehandling TSBB3 Tid: 28-5-29 kl. 8-2 Lokal: TER2 Ansvarig lärare: Maria Magnusson besöker lokalen kl. 9. och.4 tel 73-84 38 67 Hjälpmedel: Räknedosa, medskickad formelsamling,

Läs mer

101. och sista termen 1

101. och sista termen 1 Lektio, Evariabelaalys de ovember 999 5.. Uttryck summa j uta summasymbole. j + Termera är idexerade frå j = till j = och varje term är blir j j+. Summa Skriver vi upp summa uta summasymbole blir de +

Läs mer

Tillåtna hjälpmedel: Eget handskrivet formelblad (A4), utdelad tabellsamling, miniräknare med tömt minne Studenterna får behålla tentamensuppgifterna

Tillåtna hjälpmedel: Eget handskrivet formelblad (A4), utdelad tabellsamling, miniräknare med tömt minne Studenterna får behålla tentamensuppgifterna UMEÅ UNIVERSITET Ititutioe för matematik tatitik Statitik för lärare, MSTA8 PA LÖSNINGSFÖRSLAG 004-0-8 LÖSNINGSFÖRSLAG TILL TENTAMEN I MATEMATISK STATISTIK Statitik för lärare, poäg Tillåta hjälpmedel:

Läs mer

1. Rita följande tidssekvenser. 2. Givet tidssekvensen x n i nedanstående figur. Rita följande tidssekvenser.

1. Rita följande tidssekvenser. 2. Givet tidssekvensen x n i nedanstående figur. Rita följande tidssekvenser. Lasse Björkma 999 . Rita följade tidssekveser. a) δ e) u b) δ f) u u c) δ + δ g) u d) u h) u. Givet tidssekvese x i edaståede figur. Rita följade tidssekveser. a) x c) x b) x + 3 d) x 3. Givet tidssekvesera

Läs mer

= x 1. Integration med avseende på x ger: x 4 z = ln x + C. Vi återsubstituerar: x 4 y 1 = ln x + C. Villkoret ger C = 1.

= x 1. Integration med avseende på x ger: x 4 z = ln x + C. Vi återsubstituerar: x 4 y 1 = ln x + C. Villkoret ger C = 1. Lösigsförslag till tetamesskrivig i Matematik IV, 5B0 Torsdage de 6 maj 005, kl 0800-00 Hjälpmedel: BETA, Mathematics Hadbook Redovisa lösigara på ett sådat sätt att beräkigar och resoemag är lätta att

Läs mer

DIGITALA FILTER. Tillämpad Fysik Och Elektronik 1. Frekvensfunktioner FREKVENSSVAR FÖR ETT TIDSDISKRET SYSTEM. x(n)= Asin(Ωn)

DIGITALA FILTER. Tillämpad Fysik Och Elektronik 1. Frekvensfunktioner FREKVENSSVAR FÖR ETT TIDSDISKRET SYSTEM. x(n)= Asin(Ωn) DIGITALA FILTER TILLÄMPAD FYSIK OCH ELEKTRONIK, UMEÅ UNIVERSITET 1 Frekvensfunktioner x(n)= Asin(Ωn) y(n) H(z) TILLÄMPAD FYSIK OCH ELEKTRONIK, UMEÅ UNIVERSITET 2 FREKVENSSVAR FÖR ETT TIDSDISKRET SYSTEM

Läs mer

Föreläsning 7: Stabilitetsmarginaler. Föreläsning 7. Stabilitet är viktigt! Förra veckan. Stabilitetsmarginaler. Extra fördröjning i loopen?

Föreläsning 7: Stabilitetsmarginaler. Föreläsning 7. Stabilitet är viktigt! Förra veckan. Stabilitetsmarginaler. Extra fördröjning i loopen? Föreläning 7 Föreläning 7: Känlighetfunktionen och Stationära fel 4 Februari, 29. 2. Standardkreten 3. Känlighetfunktion Förra veckan Stabilitet är viktigt! yquitkriteriet Im G(iω) Amplitud- och famarginal

Läs mer

Resttentamen i Signaler och System Måndagen den 11.januari 2010, kl 14-19

Resttentamen i Signaler och System Måndagen den 11.januari 2010, kl 14-19 Resttentamen i Signaler och System Måndagen den 11.januari 2010, kl 14-19 Tillåtna hjälpmedel: Valfri miniräknare (utan möjlighet till trådlös kommunkation). Valfri litteratur, inkl. kursböcker, formelsamlingar.

Läs mer

TSDT18/84 SigSys Kap 7 Fouriertransformanalys av tidskontinuerliga signaler 1 1 Kap 7 Fouriertransformanalys av tidskontinuerliga signaler 2

TSDT18/84 SigSys Kap 7 Fouriertransformanalys av tidskontinuerliga signaler 1 1 Kap 7 Fouriertransformanalys av tidskontinuerliga signaler 2 Kap 7 Fourirrasormaalys av idskoiurliga sigalr Kap 7 Fourirrasormaalys av idskoiurliga sigalr Fourirrasorm Fourirrasorm ill x(: F F { x( } X( x( j d Ivrsa ourirrasorm ill X(: { X( } x( π X( j d Jr. ourirsri:

Läs mer

Linjär Algebra (lp 1, 2016) Lösningar till skrivuppgiften Julia Brandes

Linjär Algebra (lp 1, 2016) Lösningar till skrivuppgiften Julia Brandes Lijär Algebra (lp 1, 2016) Lösigar till skrivuppgifte Julia Brades Uppgift 1. Betecka mägde av alla matriser med M(). Vi har e elemetvist defiierad additio av två matriser A, B M(). De är defiierad geom

Läs mer

Anmärkning: I några böcker använder man följande beteckning ]a,b[, [a,b[ och ]a,b] för (a,b), [a,b) och (a,b].

Anmärkning: I några böcker använder man följande beteckning ]a,b[, [a,b[ och ]a,b] för (a,b), [a,b) och (a,b]. MÄNGDER Stadardtalmägder: N={0,, 2, 3, } mägde av alla aturliga tal (I ågra böcker N={,2,3, }) Z={ 3, 2,,0,, 2, 3, 4, } mägde av alla hela tal m Q={, där m, är hela tal och 0 } mägde av alla ratioella

Läs mer

( ), så kan du lika gärna skriva H ( ω )! ( ) eftersom boken går igenom laplacetransformen före

( ), så kan du lika gärna skriva H ( ω )! ( ) eftersom boken går igenom laplacetransformen före Några allmänna kommentarer gällande flera av lösningarna: Genomgående används kausala signaler och kausala system, vilket innebär att det är den enkelsidiga laplacetransformen som används. Bokens författare

Läs mer

Försättsblad till skriftlig tentamen vid Linköpings universitet G33(1) TER4(63)

Försättsblad till skriftlig tentamen vid Linköpings universitet G33(1) TER4(63) Försättsblad till skriftlig tentamen vid Linköpings universitet Datum för tentamen 2017-01-07 Sal (2) G33(1) TER4(63) Tid 8-12 Kurskod TSBB16 Provkod TEN2 Kursnamn/benämning Provnamn/benämning Institution

Läs mer

Signal- och bildbehandling TSEA70

Signal- och bildbehandling TSEA70 Tentamen i Signal- och bildbehandling TSEA70 Tid: 000-03-8 kl. 4-8 Lokaler: Garnisonen Ansvariga lärare: Olle Seger, Maria M Seger besöker lokalerna kl 500 och 700 tel 070/33 79 48 Hjälpmedel: Räknedosa,

Läs mer

FÖRELÄSNING 13: Analoga o p. 1 Digitala filter. Kausalitet. Stabilitet. Ex) på användning av analoga p. 2 filter = tidskontinuerliga filter

FÖRELÄSNING 13: Analoga o p. 1 Digitala filter. Kausalitet. Stabilitet. Ex) på användning av analoga p. 2 filter = tidskontinuerliga filter FÖRELÄSNING 3: Analoga o p. Digitala filter. Kausalitet. Stabilitet. Analoga filter Ideala filter Butterworthfilter (kursivt här, kommer inte på tentan, men ganska bra för förståelsen) Kausalitet t oh

Läs mer

c n x n, där c 0, c 1, c 2,... är givna (reella eller n=0 c n x n n=0 absolutkonvergent om x < R divergent om x > R n n lim = 1 R.

c n x n, där c 0, c 1, c 2,... är givna (reella eller n=0 c n x n n=0 absolutkonvergent om x < R divergent om x > R n n lim = 1 R. P Potesserier Med e potesserie mear vi e serie av type c x, där c, c, c,... är giva (reella eller komplexa) kostater, s.k. koefficieter, och där x är e (reell eller komplex) variabel. För varje eskilt

Läs mer

SAMMANFATTNING TAMS79 Matematisk statistik, grundkurs

SAMMANFATTNING TAMS79 Matematisk statistik, grundkurs SAMMANFATTNING TAMS79 Matematisk statistik, grudkurs LÄST SOM EN DEL AV CIVILINGENJÖRSPROGRAMMET I INDUSTRIELL EKONOMI VID LITH, HT 2015 Versio: 1.0 Seast reviderad: 2016-02-01 Författare: Viktor Cheg

Läs mer

Sannolikhetslära statistisk inferens F10 ESTIMATION (NCT )

Sannolikhetslära statistisk inferens F10 ESTIMATION (NCT ) Stat. teori gk, vt 2006, JW F10 ESTIMATION (NCT 8.1-8.3) Ordlita till NCT Iferece Slutledig, ifere Parameter Parameter Saolikhetlära tatitik ifere Hittill har vi ylat med aolikhetlära. Problem av type:

Läs mer

Bertrands postulat. Kjell Elfström

Bertrands postulat. Kjell Elfström F r å g a L u d o m m a t e m a t i k Matematikcetrum Matematik NF Bertrads ostulat Kjell Elfström Bertrads ostulat är satse, som säger, att om > är ett heltal, så fis det ett rimtal, sådat att < < 2 2.

Läs mer

TNA001 Matematisk grundkurs Övningsuppgifter

TNA001 Matematisk grundkurs Övningsuppgifter TNA00 Matematisk grudkurs Övigsuppgiter Iehåll: Uppgit Uppgit 8 Uppgit 9 6 Uppgit 7 5 Uppgit 55 60 Facit sid. 8-0 Summor, Biomialsatse, Iduktiosbevis Ivers uktio Logaritmer, Expoetialuktioer Trigoometri

Läs mer

Tentamen del 2 i kursen Elinstallation, begränsad behörighet ET1020 2014-08-29

Tentamen del 2 i kursen Elinstallation, begränsad behörighet ET1020 2014-08-29 Tetame del 2 i kure Elitallatio, begräad behörighet ET1020 2014-08-29 Tetame omfattar 60 poäg. För godkäd tetame kräv 30 poäg. Tillåta hjälpmedel är räkedoa amt bifogad formelamlig Beräkigar behöver bara

Läs mer

TSDT08 Signaler och System I Extra uppgifter

TSDT08 Signaler och System I Extra uppgifter TSDT08 Signaler och System I Extra uppgifter Erik G. Larsson ISY/Kommunikationssystem december, 2008 P. Ett LTI system har impulssvaret och matas med insignalen ht) = e 2t ut) xt) = e 3t ut) + cosπt +

Läs mer

EGENRUM, ALGEBRAISK- OCH GEOMETRISK MULTIPLICITET

EGENRUM, ALGEBRAISK- OCH GEOMETRISK MULTIPLICITET EGENRUM, ALGEBRAISK- OCH GEOMETRISK MULTIPLICITET INLEDNING Ett polyom ( i variabel λ ) av grad är ett uttryc på forme P( λ) a λ + aλ + aλ + a, där a Polyomets ollställe är lösigar ( rötter) till evatioe

Läs mer

4. Uppgifter från gamla tentor (inte ett officiellt urval) 6

4. Uppgifter från gamla tentor (inte ett officiellt urval) 6 SF69 - DIFFERENTIALEKVATIONER OCH TRANSFORMER II - ÖVNING 4 KARL JONSSON Iehåll. Egeskaper hos Fouriertrasforme. Kapitel 3: Z-Trasform.. Upp. 3.44a-b: Bestämig av Z-trasforme för olika talföljder.. Upp.

Läs mer

LINJÄR ALGEBRA II LEKTION 4

LINJÄR ALGEBRA II LEKTION 4 LINJÄR ALGEBRA II LEKTION 4 JOHAN ASPLUND Iehåll Egevärde, egevektorer och egerum 2 Diagoaliserig 3 Uppgifter 2 5:4-5a) 2 Extrauppgift frå dugga 2 52:8 4 52:3 4 Extrauppgift frå teta 4 Egevärde, egevektorer

Läs mer

Sida 1 av 12. vara ett inkonsistent system (= olösbart system dvs. ett system som saknar lösning). b =.

Sida 1 av 12. vara ett inkonsistent system (= olösbart system dvs. ett system som saknar lösning). b =. Sida av MINSAKVADRAMEODEN Låt a a a a a a a a a vara ett ikosistet sste ( olösart sste dvs. ett sste so sakar lösig). Vi ka skriva ssteet på fore A (ss ) där a a... a a a... a A, och............. a p a

Läs mer

Kap. 1. Gaser Ideala gaser. Ideal gas: För en ideal gas gäller: Allmänna gaslagen. kraft yta

Kap. 1. Gaser Ideala gaser. Ideal gas: För en ideal gas gäller: Allmänna gaslagen. kraft yta Termodyamk - ärmets rörelse - Jämvkt - Relatoer mella olka kemska tllståd - Hur mycket t.ex. eerg eller rodukter som bldas e kemsk reakto - arför kemska reaktoer sker Ka. 1. Gaser 1.1-2 Ideala gaser Ideal

Läs mer

Tentamen i matematisk statistik, Statistisk Kvalitetsstyrning, MSN320/TMS070 Lördag , klockan Lärare: Jan Rohlén

Tentamen i matematisk statistik, Statistisk Kvalitetsstyrning, MSN320/TMS070 Lördag , klockan Lärare: Jan Rohlén FACIT Tetame i matematisk statistik, Statistisk Kvalitetsstyrig, MSN3/TMS7 Lördag 6-1-16, klocka 14.-18. Lärare: Ja Rohlé Ugift 1 (3.5 ) Se boke! Ugift (3.5) Se boke! Ugift 3 (3) a-ugifte Partistorlek:

Läs mer

Elektronik 2018 EITA35

Elektronik 2018 EITA35 Elektronik 218 EITA35 Föreläsning 1 Filter Lågpassfilter Högpassfilter (Allpassfilter) Bodediagram Hambley 296-32 218-1-2 Föreläsning 1, Elektronik 218 1 Laboration 2 Förberedelseuppgifter! (Ingen anmälan

Läs mer

Signal- och bildbehandling TSEA70

Signal- och bildbehandling TSEA70 Tentamen i Signal- och bildbehandling TSEA70 Tid: 2003-08-22 kl. 4-8 Lokaler: G36 Ansvarig lärare: Maria Magnusson Seger besöker lokalen kl. 6.00. tel 0702/33 79 48 Hjälpmedel: Räknedosa, OH-film, medskickad

Läs mer

Reglerteknik I: F6. Bodediagram, Nyquistkriteriet. Dave Zachariah. Inst. Informationsteknologi, Avd. Systemteknik

Reglerteknik I: F6. Bodediagram, Nyquistkriteriet. Dave Zachariah. Inst. Informationsteknologi, Avd. Systemteknik Reglerteknik I: F6 Bodediagram, Nyquistkriteriet Dave Zachariah Inst. Informationsteknologi, Avd. Systemteknik 1 / 11 Frekvensegenskaper Hur svarar ett (slutet) system på oscillerande signaler? 2 / 11

Läs mer

Skattning / Inferens. Sannolikhet och statistik. Skattning / Inferens. Vad är det som skattas?

Skattning / Inferens. Sannolikhet och statistik. Skattning / Inferens. Vad är det som skattas? Skattig / Iferes Saolikhet och statistik Puktskattig Försöket att beskriva e hel populatio pga ågra få mätvärde! Oberservatio = Populatio HT 2008 UweMezel@mathuuse http://wwwmathuuse/ uwe/ Populatio har

Läs mer

Hambley avsnitt 12.7 (även 7.3 för den som vill läsa lite mer om grindar)

Hambley avsnitt 12.7 (även 7.3 för den som vill läsa lite mer om grindar) 1 Föreläsig 6, Ht 2 Hambley avsitt 12.7 (äve 7.3 för de som vill läsa lite mer om gridar) Biära tal Vi aväder ormalt det decimala talsystemet, vilket har base 10. Talet 2083 rereseterar då 2 10 3 0 10

Läs mer

b 1 och har för olika värden på den reella konstanten a.

b 1 och har för olika värden på den reella konstanten a. Första häftet 649. a) A och B spelar cigarr, vilket som bekat tillgår på följade sätt. Omväxlade placerar de ibördes lika, jämtjocka cigarrer på ett rektagulärt bord, varvid varje y cigarr måste placeras

Läs mer

NEWTON-RAPHSONS METOD (en metod för numerisk lösning av ekvationer)

NEWTON-RAPHSONS METOD (en metod för numerisk lösning av ekvationer) Armi Halilovic: EXTRA ÖVNINGAR Newto-Raphsos metod NEWTON-RAPHSONS METOD (e metod för umeris lösig av evatioer Måga evatioer är besvärligt och iblad äve omöjligt att lösa eat. Då aväder ma umerisa metoder

Läs mer

Uppsala Universitet Matematiska Institutionen Bo Styf. Genomgånget på föreläsningarna Föreläsning 26, 9/2 2011: y + ay + by = h(x)

Uppsala Universitet Matematiska Institutionen Bo Styf. Genomgånget på föreläsningarna Föreläsning 26, 9/2 2011: y + ay + by = h(x) Uppsala Uiversitet Matematiska Istitutioe Bo Styf Evariabelaalys, 0 hp STS, X 200-0-27 Föreläsig 26, 9/2 20: Geomgåget på föreläsigara 26-30. Att lösa de ihomogea ekvatioe. De ekvatio vi syftar på är förstås

Läs mer

Minsta kvadrat-metoden, MK. Maximum likelihood-metoden, ML. Medelfel. E(X i ) = µ i (θ) MK-skattningen av θ fås genom att minimera

Minsta kvadrat-metoden, MK. Maximum likelihood-metoden, ML. Medelfel. E(X i ) = µ i (θ) MK-skattningen av θ fås genom att minimera Matematisk statistik slumpes matematik Saolikhetsteori hur beskriver ma slumpe? Statistikteori vilka slutsatser ka ma dra av ett datamaterial? Statistikteori översikt Puktskattig Hur gör ma e bra gissig

Läs mer

LINJÄRA DIFFERENTIALEKVATIONER AV HÖGRE ORDNINGEN

LINJÄRA DIFFERENTIALEKVATIONER AV HÖGRE ORDNINGEN Armi Halilovic: EXTRA ÖVNINGAR, SF7 LINJÄRA DIFFERENTIALEKVATIONER AV HÖGRE ORDNINGEN INLEDNING LINJÄRA DIFFERENTIAL EKVATIONER E DE är lijär om de är lijär med avseede å de obekata fuktioe oc dess derivator

Läs mer

bli utsatta för inbrottsförsök? Låter dina villafönster få chansen att motverka inbrott och skadegörelse.

bli utsatta för inbrottsförsök? Låter dina villafönster få chansen att motverka inbrott och skadegörelse. By ytt hu eller reover med föter Brottprevetiv tekik!! Sid. 1-7 er vil e try och trivm boedemiljö! Se filme om krot! K di vil bli uttt för ibrottförök? Tidit Ibrott certifiert elit reelverk Möt tjuve medk

Läs mer

Föreläsning 2: Punktskattningar

Föreläsning 2: Punktskattningar Föreläsig : Puktskattigar Joha Thim joha.thim@liu.se 7 augusti 08 Repetitio Stickprov Defiitio. Låt de stokastiska variablera X, X,..., X vara oberoede och ha samma fördeligsfuktio F. Ett stickprov x,

Läs mer

Borel-Cantellis sats och stora talens lag

Borel-Cantellis sats och stora talens lag Borel-Catellis sats och stora tales lag Guar Eglud Matematisk statistik KTH Vt 2005 Iledig Borel-Catellis sats är e itressat och avädbar sats framför allt för att bevisa stora tales lag i stark form. Vi

Läs mer

i(t) C i(t) = dq(t) dt = C dy(t) dt y(t) + (4)

i(t) C i(t) = dq(t) dt = C dy(t) dt y(t) + (4) 2 Andra lektionen 2. Impulssvar 2.. En liten krets Beräkna impulssvaret för kretsen i figur genom att beräkna hur y(t) beror av x(t). R x(t) i(t) C y(t) Figur : Första ordningens lågpassfilter. Utsignalen

Läs mer

. Mängden av alla möjliga tillstånd E k kallas tillståndsrummet.

. Mängden av alla möjliga tillstånd E k kallas tillståndsrummet. Stokastiska rocesser Defiitio E stokastisk rocess är e mägd familj av stokastiska variabler Xt arameter t är oftast me ite alltid e tidsvariabel rocesse kallas diskret om Xt är e diskret s v för varje

Läs mer

Formelsamling Elektriska kretsar

Formelsamling Elektriska kretsar Formelsamlig Elektriska kretsar Iehållsförteckig sida Symbolsamlig Formelsamlig. Ström, späig, effekt, eergi, potetial 4. Ohms lag, resistas, koduktas 4 3. Kirchhoffs lagar, späigs- och strömdelig 4 4.

Läs mer

Tentamenskrivning, , kl SF1625, Envariabelanalys för CINTE1(IT) och CMIEL1(ME ) (7,5hp)

Tentamenskrivning, , kl SF1625, Envariabelanalys för CINTE1(IT) och CMIEL1(ME ) (7,5hp) KTH-Matematik Tetameskrivig, 2008-0-0, kl. 4.00-9.00 SF625, Evariabelaalys för CITE(IT) och CMIEL(ME ) (7,5h) Prelimiära gräser. Registrerade å kurse SF625 får graderat betyg eligt skala A (högsta betyg),

Läs mer

Armin Halilovic: EXTRA ÖVNINGAR

Armin Halilovic: EXTRA ÖVNINGAR Stokastiska rocesser Defiitio E stokastisk rocess är e mägd (familj) av stokastiska variabler X(t) arameter t är oftast (me ite alltid) e tidsvariabel rocesse kallas diskret om X(t) är e diskret s v för

Läs mer

F3 Lite till om tidsserier. Statistikens grunder 2 dagtid. Sammansatta index 4. Deflatering HT Laspeyres index: Paasche index: Index.

F3 Lite till om tidsserier. Statistikens grunder 2 dagtid. Sammansatta index 4. Deflatering HT Laspeyres index: Paasche index: Index. F3 Lite till om tidsserier Deflaterig, att justera för iflatioe tatistikes gruder dagtid 4 3,5 3,5,5 Mjölk ockerdricka HT,5 975 976 977 978 979 98 98 98 Löpade priser År Mjölk ockerdricka KPI 945 = 975,34,

Läs mer

NEWTON-RAPHSONS METOD (en metod för numerisk lösning av ekvationer)

NEWTON-RAPHSONS METOD (en metod för numerisk lösning av ekvationer) Armi Halilovic: EXTRA ÖVNINGAR Newto-Raphsos metod NEWTON-RAPHSONS METOD (e metod för umeris lösig av evatioer Måga evatioer är besvärligt och iblad äve omöjligt att lösa eat. Då aväder ma umerisa metoder

Läs mer

Signal- och bildbehandling TSEA70

Signal- och bildbehandling TSEA70 Tentamen i Signal- och bildbehandling TSEA70 Tid: 00-05-8 kl. -8 Lokaler: G, G Ansvarig lärare: Maria Magnusson Seger besöker lokalen kl. 5 och 7. tel Hjälpmedel: Räknedosa, OH-film, medskickad formelsamling

Läs mer

Inledande matematisk analys. 1. Utred med bevis vilket eller vilka av följande påståenden är sana:

Inledande matematisk analys. 1. Utred med bevis vilket eller vilka av följande påståenden är sana: TATA79/TEN3 Tetame, 08-04-06 Iledade matematisk aalys. Utred med bevis vilket eller vilka av följade påståede är saa: (a) Om x 7 är x(x 3) 5; (b) Om (x )(x 6) 0 är x 6; (c) (x + 6)(x ) > 0 om x > 6. Solutio:

Läs mer

Hambley avsnitt

Hambley avsnitt Föreläsning Hambley avsnitt 6.6.8 Filter [6.2, 6.5 6.8] Nästan all trådlös och trådbunden kommunikation är baserad på tidsharmoniska signaler. Signalerna utnyttjar ett frekvensband centrerad kring en bärfrekvens.

Läs mer

Lycka till! I(X i t) 1 om A 0 annars I(A) =

Lycka till! I(X i t) 1 om A 0 annars I(A) = Avd Matematisk statistik TENTAMEN I SF955 f d 5B555 DATORINTENSIVA METODER ONSDAGEN DEN AUGUSTI 008 KL 400 900 Examiator: Guar Eglud, tel 790746 Email: guare@mathkthse Tillåta hjälpmedel: Formel- och tabellsamlig

Läs mer

Experiment, Försök, Utfall, Händelse, Sannolikhet. Kaptiel1: Slump, Utfall, Händelse, Sannolikhet... Kaptiel2: Stokastiska variabler

Experiment, Försök, Utfall, Händelse, Sannolikhet. Kaptiel1: Slump, Utfall, Händelse, Sannolikhet... Kaptiel2: Stokastiska variabler Kaptiel: lup Utall Hädelse aolikhet... Begreppe eperiet örsök hädelse utallsru saolikhet osv Diskreta/Kotiuerliga utallsru aasatta och betigade ( A B hädelser/saolikheter. ( A B ( A B ( B Bayes regel.

Läs mer

Föreläsning 7. Signalbehandling i multimedia - ETI265. Kapitel 5. LTI system Signaler genom linjära system

Föreläsning 7. Signalbehandling i multimedia - ETI265. Kapitel 5. LTI system Signaler genom linjära system Sigalbhadlig i multimdia - ETI65 Förläsig 7 Sigalbhadlig i multimdia - ETI65 Kapitl 5 LTI systm Sigalr gom lijära systm LTH 5 dlko Grbic (mtrl. frå Bgt adrsso Dpartmt of Elctrical ad Iformatio Tchology

Läs mer

EXAMENSARBETEN I MATEMATIK

EXAMENSARBETEN I MATEMATIK EXAMENSARBETEN I MATEMATIK MATEMATISKA INSTITUTIONEN, STOCKHOLMS UNIVERSITET Baires ategorisats och dess tillämpigar av Kristia Nilsso 007 - No 4 MATEMATISKA INSTITUTIONEN, STOCKHOLMS UNIVERSITET, 069

Läs mer

TSRT09 Reglerteori. Sammanfattning av föreläsning 8. Inversa cirkelkriteriet. Föreläsning 9. Föreläsning 9: Cirkelkriteriet och beskrivande funktion

TSRT09 Reglerteori. Sammanfattning av föreläsning 8. Inversa cirkelkriteriet. Föreläsning 9. Föreläsning 9: Cirkelkriteriet och beskrivande funktion glerteori 27, Föreläsning 9 Daniel Axehill / 2 Sammanfattning av föreläsning 8 TSRT9 glerteori Föreläsning 9: Cirkelkriteriet och beskrivande fnktion Daniel Axehill glerteknik, ISY, Linköpings Universitet

Läs mer

Lösningsförslag till tentamen i TSRT19 Reglerteknik Tentamensdatum: Svante Gunnarsson

Lösningsförslag till tentamen i TSRT19 Reglerteknik Tentamensdatum: Svante Gunnarsson Löningförlag till tentamen i TSRT9 Reglerteknik Tentamendatum: 207-0-03 Svante Gunnaron. (a) Styrignaler: Gapådrag, rattvinkel Utignaler: Hatighet, poition på vägbanan Störignaler: Vind, uppför-/nedförbackar

Läs mer

Uppsala Universitet Matematiska Institutionen Bo Styf. Sammanfattning av föreläsningarna 1-6, 29/10-8/11, = m n

Uppsala Universitet Matematiska Institutionen Bo Styf. Sammanfattning av föreläsningarna 1-6, 29/10-8/11, = m n Uppsala Uiversitet Matematiska Istitutioe Bo Styf Trasformmetoder, 5 hp ES, gyl, Q, W --9 Sammafattig av föreläsigara - 6, 9/ - 8/,. De trigoometriska basfuktioera. Dea kurs hadlar i pricip om att uttrycka

Läs mer

Tentamen i Elektronik för E, ESS010, 12 april 2010

Tentamen i Elektronik för E, ESS010, 12 april 2010 Tentamen i Elektronik för E, ESS00, april 00 Tillåtna hjälpmedel: Formelsamling i kretsteori v i v in i Spänningen v in och är kända. a) Bestäm i och i. b) Bestäm v. W lampa spänningsaggregat W lampa 0

Läs mer

KTH/ICT IX1501:F7 IX1305:F2 Göran Andersson Statistik: Skattningar

KTH/ICT IX1501:F7 IX1305:F2 Göran Andersson Statistik: Skattningar KTH/ICT IX50:F7 IX305:F Göra Adero goera@th.e Statiti: Sattigar Statiti Vi all u tudera obervatioer av toatia variabler. Vad blev det för värde? Dea obervatioer alla ett ticprov (ample). Iom tatitie fi

Läs mer

HOMOGENA LINJÄRA DIFFERENTIALEKVATIONER MED KONSTANTA KOEFFICIENTER

HOMOGENA LINJÄRA DIFFERENTIALEKVATIONER MED KONSTANTA KOEFFICIENTER Armi alilovi: EXTRA ÖVNINGAR omoga lijära diffrtialkvatior OMOGENA LINJÄRA DIFFERENTIALEKVATIONER MED KONSTANTA KOEFFICIENTER Lijär diffrtialkvatio (DE) md kostata koffiitr är kvatio av följad tp ( ) (

Läs mer

AKTIVA FILTER. Laboration E42 ELEKTRO. UMEÅ UNIVERSITET Tillämpad fysik och elektronik Sverker Johansson Rev 1.0.

AKTIVA FILTER. Laboration E42 ELEKTRO. UMEÅ UNIVERSITET Tillämpad fysik och elektronik Sverker Johansson Rev 1.0. UMEÅ UNIVERSITET Tillämpad fysik och elektronik Sverker Johansson 1999-09-03 Rev 1.0 AKTIVA FILTER Laboration E42 ELEKTRO Personalia: Namn: Kurs: Datum: Återlämnad (ej godkänd): Rättningsdatum Kommentarer

Läs mer

( ) ( θ( n) 1. Ett kausalt tidskontinuerligt filter F har tillståndsekvationen

( ) ( θ( n) 1. Ett kausalt tidskontinuerligt filter F har tillståndsekvationen gamla eor maem me E, fk, del B () CTH&GU, maemaik Teame i maemaiska meoder fk, del B, TMA98, -8-, kl 85-5 Hjälpmedel: Formelsamlig (delas u, lämas illbaka efer skrivige) Bea Ej räkedosa Telefo: Rolf Liljedal,

Läs mer

Tentamen i Elektronik, ESS010, del 1 den 18 oktober, 2010, kl

Tentamen i Elektronik, ESS010, del 1 den 18 oktober, 2010, kl Institutionen för Elektro och informationsteknik, LTH Tentamen i Elektronik, ESS00, del den 8 oktober, 00, kl. 08.00.00 Ansvariga lärare: Anders Karlsson, tel. 40 89, 07 98 (kursexp. 90 0). arje uppgift

Läs mer

Tentamen i TMA 982 Linjära System och Transformer VV-salar, 27 aug 2013, kl

Tentamen i TMA 982 Linjära System och Transformer VV-salar, 27 aug 2013, kl Tentamen i TMA 982 Linjära System och Transformer VV-salar, 27 aug 2013, kl 8.30-12.30 Examinatorer: Lars Hammarstrand och Thomas Wernstål Tentamen består av två delar (Del I och Del II) på sammanlagt

Läs mer

DT1120/DT1130 Spektrala transformer Tentamen

DT1120/DT1130 Spektrala transformer Tentamen DT/DT3 Spektrala transformer Tentamen 86 Tentamen består av fem uppgifter där varje uppgift maximalt ger 4 p. Normalt gäller följande betygsgränser: E: 9 p, D:.5 p, C: 4 p, B: 6 p, A: 8 p Tillåtna hjälpmedel:

Läs mer

Tenta i MVE025/MVE295, Komplex (matematisk) analys, F2 och TM2/Kf2

Tenta i MVE025/MVE295, Komplex (matematisk) analys, F2 och TM2/Kf2 Teta i MVE5/MVE95, Komplex (matematisk) aalys, F och TM/Kf 6, 8.3-.3 Hjälpmedel: Formelblad som delas ut av tetamesvaktera Telefovakt: Mattias Leartsso, 3-535 Betygsgräser: -9 (U), -9 (3), 3-39 (4), 4-5

Läs mer

PLACERING I STADSBIBLIO- TEKET.

PLACERING I STADSBIBLIO- TEKET. KOTOR ETRÉ FRÅ GLASSKJUTDÖRRAR 13,9 KVM UTSTÄLLIGSYTA 121,5 KVM TAKHÖJD 3,2 m SOLID VÄGG GLASVÄGG GLASVÄGG H U V U D - E TRÉ GLASVÄGG PLACERIG I STADSBIBLIO- TEKET. GLASVÄGG HALMSTADS YA STADSGALLERIET

Läs mer

Höftledsdysplasi hos dansk-svensk gårdshund - Exempel på tavlan

Höftledsdysplasi hos dansk-svensk gårdshund - Exempel på tavlan Höftledsdysplasi hos dask-svesk gårdshud - Exempel på tavla Sjö A Sjö B Förekomst av parasitdrabbad örig i olika sjöar Exempel på tavla Sjö C Jämföra medelvärde hos kopplade stickprov Tio elitlöpare spriger

Läs mer

Kompletterande material till föreläsning 5 TSDT08 Signaler och System I. Erik G. Larsson LiU/ISY/Kommunikationssystem

Kompletterande material till föreläsning 5 TSDT08 Signaler och System I. Erik G. Larsson LiU/ISY/Kommunikationssystem ompletterande material till föreläsning 5 TSDT8 Signaler och System I Erik G. Larsson LiU/ISY/ommunikationssystem erik.larsson@isy.liu.se November 8 5.1. Första och andra ordningens tidskontinuerliga LTI

Läs mer

FYSIKUM STOCKHOLMS UNIVERSITET Tentamensskrivning i Vågrörelselära och optik, 10,5 hp, FK4009 Torsdagen den 21 augusti 2008 kl 9-15

FYSIKUM STOCKHOLMS UNIVERSITET Tentamensskrivning i Vågrörelselära och optik, 10,5 hp, FK4009 Torsdagen den 21 augusti 2008 kl 9-15 FYSIKUM STOCKHOLMS UNIVERSITET Tentamensskrivning i Vågrörelselära och optik, 10,5 hp, FK4009 Torsdagen den 1 augusti 008 kl 9-15 Hjälpmedel: handbok och räknare. Varje uppgift ger maximalt 4 poäng. Var

Läs mer

Laplace, Fourier och resten varför alla dessa transformer?

Laplace, Fourier och resten varför alla dessa transformer? Laplace, Fourier och resten varför alla dessa transformer? 1 Bakgrund till transformer i kontinuerlig tid Idé 1: Representera in- och utsignaler till LTI-system i samma basfunktion Förenklad analys! Idé

Läs mer

DEL I. Matematiska Institutionen KTH

DEL I. Matematiska Institutionen KTH 1 Matematiska Istitutioe KTH Lösig till tetamesskrivig på kurse Diskret Matematik, momet A, för D2 och F, SF1631 och SF1630, de 5 jui 2009 kl 08.00-13.00. DEL I 1. (3p) Bestäm e lösig till de diofatiska

Läs mer

DN1240 numi12 1

DN1240 numi12 1 F7 Ssem av ODE - iiialvärdesproblem Exises & edige Lipsciz Euler overges fel overgesordig Lösigssaror fasrum Sabilie äslige Högre ord. evaio ill försa ord. ssem Ruge-Kua-meoder seglägdsreglerig Sva evaioer

Läs mer

Lösningar till Matematisk analys

Lösningar till Matematisk analys Lösningar till Matematisk analys 685. Sätt fx x. Rotationskroppens volym är π fx dx π ] x 6 dx π 7 x7 π 7. Rotationskroppens area är summan av arean av kroppens mantelyta och arean av kroppens cirkulära

Läs mer

ett uttryck för en våg som beskrivs av Jonesvektorn: 2

ett uttryck för en våg som beskrivs av Jonesvektorn: 2 Tentamen i Vågrörelselära(FK49) Datum: Tisdag, 6 Juni, 29, Tid: 9: - 5: Tillåten Hjälp: Physics handbook eller dylikt Förklara resonemang och uträkningar klart och tydligt. Tentamensskrivningen består

Läs mer

1. BERÄKNING AV GRÄNSVÄRDEN ( då x 0 ) MED HJÄLP AV MACLAURINUTVECKLING. n x

1. BERÄKNING AV GRÄNSVÄRDEN ( då x 0 ) MED HJÄLP AV MACLAURINUTVECKLING. n x BERÄKNING AV GRÄNSVÄRDEN ( då ) MED HJÄLP AV MACLAURINUTVECKLING a) Maclauris formel ( ) f () f () f () f ( ) f () + f () + + + +!!! ( ) f ( c) där R och c är tal som ligger mella och ( + )! Amärkig Eftersom

Läs mer

θx θ 1 om 0 x 1 f(x) = 0 annars

θx θ 1 om 0 x 1 f(x) = 0 annars Avd. Matematisk statistik TENTAMEN I SF903 SANNOLIKHETSLÄRA OCH STATISTIK FÖR 3-ÅRIG Media TIMEH TORSDAGEN DEN TREDJE JUNI 200 KL 4.00 9.00. Examiator: Guar Eglud, tel. 790 74 06 Tillåta hjälpmedel: Läroboke.

Läs mer