CHALMERS TEKNISKA HÖGSKOLA Institutionen för kemi- och bioteknik

Storlek: px
Starta visningen från sidan:

Download "CHALMERS TEKNISKA HÖGSKOLA Institutionen för kemi- och bioteknik"

Transkript

1 CHAMERS EKNISKA HÖGSKOA Institutionen för kemi- och bioteknik KURSNAMN Bisoseprtionsteknik, KAA50 Med förslg till lösningr v beräkningsuppgifter. PROGRAM: nmn åk / läsperiod Civilingenjörsprogrm bioteknik årskurs 3 läsperiod 3 EXAMINAOR Krister Ström ID FÖR ENAMEN OKA Onsdg 5 pril, kl V-slr HJÄPMEDE ANSV ÄRARE: nmn telnr besöker tentmen DAUM FÖR ANSAG v resultt smt v tid och plts för grnskning ÖVRIG INFORM. Vlfri räknedos/klkltor med tömt minne. Egn nteckningr och kursmteril är ej godkänt hjälpmedel."dt och Digrm" v Sven-Erik Mörtstedt/Gunnr Hellsten beller och Digrm v Gunnr Hellsten "Phsics Hndbook" v Crl Nordling/Jonn Östermn "BEA β" v ennrt Råde/Bertil Westergren Formelbld (vilket bifogts tentmenstesen) Krister Ström c. kl och 6.30 ösningr till tentmens räknedel nslås på kurshemsidn 5 pril. Resultt på tentmen nslås pril. Grnskning torsdg 3 pril smt 8 pril kl i seminrierummet, forskrhus II pln eller efter överenskommelse med emintor. entmen består v en teoridel med ått teorifrågor smt en räknedel med fr räkneuppgifter. Poäng på respektive uppgift finns notert i tentmentesen. För godkänd tentmen fordrs 50% v tentmens totlpoäng. Smtlig digrm och bilgor skll bifogs lösningen v tentmensuppgiften. Digrm och bilgor kn ej kompletters med vid senre tillfälle. Det är Ditt nsvr tt Du besitter nödvändig kunskper och färdigheter. Det mteril som Du lämnr in för rättning skll vr väl läsligt och förståeligt. Mteril som inte uppfller dett kommer tt utelämns vid bedömningen.

2 Del A: eoridel A. Vd är det som gör tt det iblnd går tt skilj två ämnen i en blndning med hjälp v destilltion? (p) A. Förklr vd som mens med ttre återflödesförhållndet i en destilltionsnläggning, smt vis med hjälp v ett digrm hur destilltets hlt v lättflktig komponent vrierr med återflödesförhållndet för en given kolonn. (3p) A3. Skiss bubbel-dggpunktskurvn smt jämviktskurvn för en binär blndning som hr minimizeotrop! (p) A4. Vrför är en destilltionskolonn försedd med återkokre och kondensor? (3p) A5. Vilk egenskper sk bsorptionsvätskn, vid en bsorptionsprocess, h i fråg om löslighet, flktighet och viskositet? Motiver svren kortfttt! (3p) A6. På vd sätt skiljer sig strukturerd pckning från en så klld slumpvis ordnd pckning v te Pllringr? Ange någr fördelr med strukturerd pckning! A7. Nämn minst tre fktorer som påverkr etrktionshstigheten vid fst fs-vätskeetrktion. Förklr också på vilket sätt dess tre fktorer påverkr etrktionshstigheten. (4p) (5p) A8. Nämn och diskuter minst tre fktorer som mn särskilt skll bekt, när det gäller tt åstdkomm effektiv vätsk-vätsketrktion! (4p)

3 Del B: Problemdel. B. En blndning v etnol och n-propnol seprers i en kontinuerlig rbetnde vdrivrkolonn, till en hög renhet v n-propnol 99.5 mol-%. Det inre återflödesförhållndet (/V) är 3.0. Bestäm med Sorels metod smmnsättningen hos utgående topprodukt när vdrivrkolonnen hr tre idel ventilbottnr! Seprtionen genomförs vid 760 mmhg och den reltiv flktigheten kn nses konstnt. Givn dt: Antoines ekvtion: lnp i o (mmhg)a i - B i K +C i A i B i C i Etnol n-propnol B. I en processnläggning nvänds ett pckt torn för motströms bsorption v en gskomponent i en vätsk. ornets pckningshöjd är 4.0 m och dimetern 80 cm. I dgsläget är tornet fllt med ½ kermisk Rschigringr (S B 0 m /m 3, e0.73). ill tornet förs ett vätskeflöde på.0 kg/s, och gshstigheten genom tornet är.75 m/s. (Flöden kn nses vr konstnt genom tornet.) På grund v en ändring i ett tidigre processteg så kommer gsflödet till kolonnen tt ök till det dubbl. Kn mn fortsätt tt nvänd det befintlig pckningsmterilet, utn tt mn riskerr tt kolonnen flödr? Mn hr fundert på tt bt ut pckningsmterilet till 4 kermisk Rschigringr (S B 46 m /m 3, e 0.80). Skulle det gå tt nvänd dett pckningsmteril vid det n flödet? Bekt gshstighet vid flödning och vätningshstighet! Givn dt: rck tm empertur 0 C Vätskns densitet 00 kg/m 3 Vätskns dnmisk viskositet kn nts vr försumbrt skild ifrån dnmisk viskositeten för vtten vid smm tempertur. Molmssn för gsfsen kn sätts till molmssn för luft. (4p) (9p) 3

4 B3. En ntriumhdroidlösning skll koncentrers i en indunstre. illflödet, 4536 kg/h, håller 0 vikt-% NOH och hr temperturen 60 C. Mn önskr tt den koncentrerde lösningen som lämnr indunstreffekten skll håll 50 vikt-% NOH. Färskångn håller trcket.7 br och trcket i ångrummet är 0. br. Det skenbr värmegenomgångstlet är 560 W/m K. Beräkn erforderligt behov v färskång smt erforderlig värmeöverförnde t. Dühringdigrm för kokpunktsförhöjning och entlpidigrm för vttenlösningr med NOH bifogs. (6p) B4. I en tvärströms etrktionsnläggning med två steg rens en vttenström, 00 kg/h, från pridin genom etrktion med ren klorbensen. Ingående underström till nläggningen håller 0 vikt-% pridin och resten vtten. ill vrje steg förs 5 kg/h ren klorbensen. Hur stor ndel v pridin i ingående vttenström etrhers bort? ringeldigrm med lösningskurv smt jämviktsdigrm bifogs tentmentesen (6p) Göteborg Krister Ström 4

5 Bioseprtionsteknik Formelsmling 5

6 DESIAION Reltiv flktighet: α, där nger vätskefssmmnsättning nger ångfssmmnsättning nger lättflktig komponent nger tung komponent Destilltion: Mterilblnser: D, D n Vn+ n + DD F, F n+ m m+ Vm+ m - BB W, B, BW q-linje: q -q F + q 6

7 7

8 8

9 9 ABSORPION Vätningshstigheten: B W S ρ W > 0-5 m /s för ringr med dimeter melln 5 mm och 75 mm, och för gller med delning mindre än 50 mm. W > m /s för större pckningsmteril. Bindelinjens lutning: P k C k G i i Pckningshöjd: Vid låg hlter: ) ( ) ( ) ( ) ( * * i G i G d C K d C k l d P K V d P k V l ) ( ' ) ( ' ) ( ' ) ( ' * * X X X X i Y Y G Y Y i G X X dx C K X X dx C k l Y Y dy P K V Y Y dy P k V l Vid rät driftlinje och rät jämvikts- kurv: ln ln m m V m C K l m m V m P K V l G

10 Vid rät driftlinje och rät jämviktskurv gäller: H OG H G m G + H H O H + H m G G FIRERING dv dt A ΔP μ( cα V + v AR m SEDIMENERING ) ρ J c ε v (- J ) - - ε v J ρ ρ s Fri sedimentering: D p ( ρ s ρ) g v 8μ 0

11 SYMBOFÖRECKNING: ABSORPION mssöverförnde t per tornvolm, m /m 3 C sb,flood kpcitetsprmeter, ft/s C vätskns totlkoncentrtion, kmol/m 3 e pckningens porositet, - F pckningsfktor, m - F lv flödesprmeter, - g tngdccelertionen, m/s V gsflöde, kmol/(m s) G gsflöde, kg/(m s) V inert gsflöde, kmol/(m s) H G höjd svrnde mot en mssöverföringsenhet, gsfilm, m H höjd svrnde mot en mssöverföringsenhet, vätskefilm, m H OG höjd svrnde mot en mssgenomgångsenhet, gsfsstorheter, m H O höjd svrnde mot en mssgenomgångsenhet, vätskefsstorheter, m k G mssöverföringstl, gsfilm, kmol/(m stm) k mssöverföringstl, vätskefilm, m/s K G mssgenomgångstl bsert på gsfsstorheter, kmol/(m stm) K mssgenomgångstl bsert på vätskefsstorheter, m/s vätskeflöde, kmol/(m s) vätskeflöde, kg/(m s) inert vätskeflöde, kmol/s W vätningshstighet, m /s m jämviktskurvns lutning, - P totltrck, tm S B specifik t hos pckningsmterilet, m /m 3 u G gshstighet, m/s u nf gshstighet vid flödning (bserd på ktiv re), ft/s molbråk i vätskefs, - X molbråksförhållnde i vätskefs, mol bsorberbrt/mol inert vätsk molbråk i gsfs, - Y molbråksförhållnde i gsfs, mol bsorberbrt/mol inert gs l pckningshöjd, m μ vätskns dnmisk viskositet, Ps μ W dnmisk viskositeten för vtten vid 0 C, Ps ρ G gsens densitet, kg/m 3 ρ vätskns densitet, kg/m 3 ρ W densiteten för vtten vid 0 C, kg/m 3 σ tspänning, dn/cm (mn/m)

12 FIRERING A filtreringsre, m c förhållndet melln vikten v det fst mterilet i filterkkn och filtrtvolmen, kg/m 3 J mssbråk v fst mteril i suspensionen, - ΔP trckfll över filterkkn, P R m filtermediets motstånd, m - t filtreringstid, s V erhållen filtrtvolm under tiden t, m 3 α v specifikt filtreringsmotstånd, m/kg ε v filterkkns porositet, - μ fluidens viskositet, Ps ρ fluidens densitet, kg/m 3 ρ s fst fsens densitet, kg/m 3 SEDIMENERING D p prtikelstorlek, m g tngdccelertionen, m/s v prtikelns sedimenttionshstighet, m/s μ fluidens viskositet, Ps ρ fluidens densitet, kg/m 3 ρ s fst fsens densitet, kg/m 3

13 ösningens tempertur 00 C 40 C 60 C 80 C 0 C 00 C 80 C 60 C 40 C 0 C Vikts-% NOH Entlpi för lösningen [kj/kg] 3

14 vikts-% NOH Kokpunkt för vtten [ C] Kokpunkt för lösningen [ C] 4

15 B. Dt: n 3 V 3.0 B P 760 mmhg Sökt: D ösning: F, F D, D 3 V B, B Sorels metod: Komponentblns och jämviktsvillkor löses till dess tre idel bottnr hr uppnåtts. Jämviktsvillkor: α, konst. α, α, P o o Ångtrcken P o P och P o bestäms vid en rimlig tempertur. Vilken? emperturen i återkokren t smmnsättningen känd ut från återkokren. Bottenprodukten håller 99.5 mol-% n-propnol vrför temperturen är när kokpunkten för ren n-propnol vid 760 mmhg är kokpunkten för n-propnol K eller 97. C. Etnol hr vid motsvrnde tempertur ångtrcket P o mmhg α, P o P o α.04 Jämviktsvillkoret kn då teckns:. där n nger bottennummer. och inte komponentnummer som tidigre. 5

16 Komponentblns: Komponentblnsen kn på llmän form teckns n V n- +B B B -V Dett ger n V n- + - V B n n- + B Beräkning: n n n oppen nådd då D 3 opprodukt håller.7 mol-% etnol! Svr:.7 mol-% etnol 6

17 B. Dt: l 4.0 m Φ 0.80 m I dg: ½ kermisk Rschig ringr: S B 0 m /m 3, e 0.73 A.0 kg/s u G.75 m/s Ntt mteril: 4 kermisk Rshig ringr: S B 46 m /m 3, e 0.80 P tm 0 C ρ 00 kg/m 3 μ μ W M G M uft 8.96 kg/kmol Sökt: Om gsflödet öks till det dubbl, kommer då kolonnen tt flöd? Kn mn nvänd 4 pcknings mteril? ösning: Gmmlt flöde: Ntt flöde: V VO u G A där A πφ m V VO m 3 /s VA V VO ρ G ρ G PM G.04 kg/m3 R VA kg/s VA kg/s Flödningskorreltion, fig 4. i bifogd formelsmling nvänds Abskiss: Ordint:, V ρ G ρ Gmmlt pckningsmteril: μ. 0.9 μ u G,fl u G,fl.47 m/s u G V A ρ G A m/s u G > u G,fl Fungerr inte! 7

18 Ntt pckningsmteril: u G,fl u G,fl 4.57 m/s u G 3.50 u G,fl OK! Vätningshstighet: ' W ρ S B m/s W > m/s OK! Svr: Mn kn inte nvänd ½ kermisk Rschigringr. Mn kn nvänd 4 kermisk Rschigringr. 8

19 B3. Dt: F 4536 kg/h F 0.0 X 0.50 F 60 C P S.7 br P 0. br U SKB 560 W/m K Sökt: S, A ösning: P P V S, P S VAP,S otlblns: F V + () Komponentblns: F F () () X F F 84.4 kg/h () V 7.6 kg/h F Värmeblns: SΔH VAP,S + Fh F VH V + h (3), Entlpier söks för tt kunn bestämm S! P S.7 br S 5.7 C (Dt & Digrm) Duringdigrm ger tt β 37.3 C smt tt den 50%-ig lösningens temperture är 85 C. ΔH VAP,S {.7 br} 5.9 kj/kg 9

20 h F { 60 C, f 0.0} 0 kj/kg H V {P0. br, 85 C} kj/kg h { 685 C, 0.50} 490 kj/kg Värmeblnsen ger S 337 kg/h Erforderlig värmeöverförnde t ges v kpcitetsekvtionen Kpcitetsekvtionen ger A 4.3 m SΔH VAP,S U SKB AΔ (4) Δ Svr: 337 kg/h, 4.3 m 0

21 B4. Dt: A C V 0 5 kg/h 0 00 kg/h Sökt: Hur stor ndel v inkommnde pridin etrhers bort? ösning: V 0 V 0 0 V V Steg Blndningspunkt 0 V 0 b.6 mm A b 08 b 86.4 mm A V 0 + V + V 5 kg/h 56 V Steg Blndningspunkt 90.9 kg/h ; V 34. kg/h 0 α V 0 β α.6 mm A α+β 08 β 86.4 mm A V 0 + V + V 5.9 kg/h 6 V 85. kg/h ; V 30.7 kg/h Andel som etrherts bort: Svr: 64% 0 A 0 - A 0 A %

CHALMERS TEKNISKA HÖGSKOLA Institutionen för kemi- och bioteknik

CHALMERS TEKNISKA HÖGSKOLA Institutionen för kemi- och bioteknik CHAMERS EKNISKA HÖSKOA Institutionen för kemi- och bioteknik KURSNAMN Bisoseprtionsteknik, KAA50 PRORAM: nmn åk / läsperiod Civilingenjörsprogrm bioteknik årskurs 3 läsperiod 3 EXAMINAOR Krister Ström

Läs mer

CHALMERS TEKNISKA HÖGSKOLA Institutionen för kemi- och bioteknik Avdelningen för kemiteknik

CHALMERS TEKNISKA HÖGSKOLA Institutionen för kemi- och bioteknik Avdelningen för kemiteknik CHAMERS EKNISKA HÖSKOA Institutionen för kemi- och bioteknik Avdelningen för kemiteknik KURSNAMN Bisoseprtionsteknik, KAA50 Med förslg till lösningr v beräkningsuppgifter PRORAM: nmn åk / läsperiod Civilingenjörsprogrm

Läs mer

CHALMERS TEKNISKA HÖGSKOLA Institutionen för kemi- och bioteknik

CHALMERS TEKNISKA HÖGSKOLA Institutionen för kemi- och bioteknik CHAMERS EKNISKA HÖGSKOA Institutionen för kemi- och bioteknik KURSNAMN Bisoseparationsteknik, KAA50 Med förslag till lösningar av beräkningsuppgifter PROGRAM: namn åk / läsperiod Civilingenjörsprogram

Läs mer

CHALMERS TEKNISKA HÖGSKOLA Institutionen för kemi- och bioteknik

CHALMERS TEKNISKA HÖGSKOLA Institutionen för kemi- och bioteknik CHAMERS EKNISKA HÖGSKOA Institutionen för kei- och bioteknik KURSNAMN Bisoseparationsteknik, KAA50 Med förslag till lösningar av beräkningsuppgifter PROGRAM: nan åk / läsperiod Civilingenjörsprogra bioteknik

Läs mer

CHALMERS TEKNISKA HÖGSKOLA Institutionen för kemi- och bioteknik

CHALMERS TEKNISKA HÖGSKOLA Institutionen för kemi- och bioteknik CHAMER TEKNIKA HÖKOA Institutionen för kei- och bioteknik KURNAMN Bisoseprtionsteknik, KAA50 RORAM: nn åk / läsperiod Civilingenjörsprogr bioteknik årskurs 3 läsperiod 3, EAMINATOR Krister trö TID FÖR

Läs mer

CHALMERS TEKNISKA HÖGSKOLA Institutionen för kemi- och bioteknik

CHALMERS TEKNISKA HÖGSKOLA Institutionen för kemi- och bioteknik CHALMERS TEKNISKA HÖGSKOLA Institutionen för kemi- och bioteknik KURSNAMN Separations- och apparatteknik, KAA095 Med förslag till lösningar av beräkningsuppgifter PROGRAM: namn åk / läsperiod EXAMINATOR

Läs mer

CHALMERS TEKNISKA HÖGSKOLA Institutionen för kemi- och bioteknik. Separations- och apparatteknik, KAA095

CHALMERS TEKNISKA HÖGSKOLA Institutionen för kemi- och bioteknik. Separations- och apparatteknik, KAA095 CHALMER EKNIKA HÖGKOLA Institutionen för kemi- och bioteknik KURNAMN eparations- och apparatteknik, KAA095 entamentes utan lösningar till beräkningsuppgifter. PROGRAM: namn åk / läsperiod EXAMINAOR Civilingenjörsprogram

Läs mer

Tentamen 41K02B En1. Provmoment: Ladokkod: Tentamen ges för:

Tentamen 41K02B En1. Provmoment: Ladokkod: Tentamen ges för: ENEGITEKNIK I 7,5 högskoleoäng rovmoment: Ldokkod: Tentmen ges för: Tentmen 4K0B En Nmn: ------------------------------------------------------------------------------------------------------- ersonnummer:

Läs mer

Där a mol av ämnet A reagerar med b mol av B och bildar c mol av C och d mol av D.

Där a mol av ämnet A reagerar med b mol av B och bildar c mol av C och d mol av D. 1 Kemisk jämvikt oh termoynmik Vi en kemisk rektion omvnls en eller fler molekyler från en form till en nnn. Mång olik typer v kemisk rektioner hr ren reovists uner kursen. För tt eskriv v som häner vi

Läs mer

TentamensKod:

TentamensKod: ENEGITEKNIK 7,5 högskoleoäng rovmoment: Ldokkod: Tentmen ges för: Tentmen 4ET07 Bt TentmensKod: ------------------------------------------------------------------------------------------------------- Tentmensdtum:

Läs mer

ξ = reaktionsomsättning eller reaktionsmängd, enhet mol.

ξ = reaktionsomsättning eller reaktionsmängd, enhet mol. Kemisk jämvikt. Kp. 6.1 4. Spontn kemisk retion: r G < 0, p konst, T konst. Jämvikt där G hr minimum i syst. Kinetiken (hög ktiveringsenergi) kn hindr. 6.1 Minimet i Gibbs fri energi. (p konst, T konst.)

Läs mer

Tentamen 1 i Matematik 1, HF dec 2016, kl. 8:00-12:00

Tentamen 1 i Matematik 1, HF dec 2016, kl. 8:00-12:00 Tentmen i Mtemtik, HF9 9 dec 6, kl. 8:-: Emintor: Armin Hlilovic Undervisnde lärre: Erik Melnder, Jons Stenholm, Elis Sid För godkänt betyg krävs v m poäng. Betygsgränser: För betyg A, B, C, D, E krävs,

Läs mer

CHALMERS TEKNISKA HÖGSKOLA Institutionen för kemi- och bioteknik

CHALMERS TEKNISKA HÖGSKOLA Institutionen för kemi- och bioteknik CHALMERS TEKNISKA HÖGSKOLA Institutionen för kemi- och bioteknik KURSNAMN Separations- och apparatteknik, KAA095 Med förslag till lösningar PROGRAM: namn åk / läsperiod EXAMINATOR Civilingenjörsprogram

Läs mer

Tentamen för FYSIK (TFYA68), samt ELEKTROMAGNETISM (TFYA48, 9FY321)

Tentamen för FYSIK (TFYA68), samt ELEKTROMAGNETISM (TFYA48, 9FY321) Tentmen för FYK (TFYA68), smt LKTROMAGNTM (TFYA48, 9FY321) 2013-01-09 kl. 14.00-19.00 Tillåtn hjälpmedel: Physics Hndbook (Nordling, Östermn), miniräknre, smt formelsmling som bifogs denn tentmen men består

Läs mer

Frågor för tentamen EXTA50 Samhällsmätning, 9 hp, kl januari, 2015.

Frågor för tentamen EXTA50 Samhällsmätning, 9 hp, kl januari, 2015. FÖRSÄTTSBLAD Institutionen för Nturgeogrfi och Ekosystemvetenskper Institutionen för Teknik och Smhälle Frågor för tentmen EXTA50 Smhällsmätning, 9 hp, kl. 8-13 12 jnuri, 2015. Denn tentmen rätts nonymt.

Läs mer

Tentamen i Hållfasthetslära gkmpt, gkbd, gkbi, gkipi (4C1010, 4C1020, 4C1035, 4C1012) den 4 juni 2007

Tentamen i Hållfasthetslära gkmpt, gkbd, gkbi, gkipi (4C1010, 4C1020, 4C1035, 4C1012) den 4 juni 2007 Tentmen i Hållfsthetslär gkmpt, gkbd, gkbi, gkipi (4C1010, 4C1020, 4C105, 4C1012) den 4 juni 2007 Resultt finns tillgänglig på Min Sidor senst den 19 juni 2007 kl. 1. Klgomål på rättningen skll vr frmförd

Läs mer

TENTAMEN I KEMI TFKE

TENTAMEN I KEMI TFKE Linköpings Universitet IFM-Kemi. Kemi för Y, M. m. fl. (TFKE09) TENTAMEN I KEMI TFKE09. 2006-10-16 Lokl: TER2. Skrivtid: 14.00 18.00 Ansvrig lärre: Nils-l Persson, tel. 1387, lt 070-517 1088. Stefn Svensson,

Läs mer

CHALMERS TEKNISKA HÖGSKOLA Institutionen för kemi- och bioteknik Avdelningen för kemiteknik

CHALMERS TEKNISKA HÖGSKOLA Institutionen för kemi- och bioteknik Avdelningen för kemiteknik CHALMERS TEKNISKA HÖGSKOLA Institutionen för kemi- och bioteknik Avdelningen för kemiteknik KURSNAMN Separations- och apparatteknik, KAA095 PROGRAM: namn åk / läsperiod EXAMINATOR Civilingenjörsprogram

Läs mer

Tentamen i ETE115 Ellära och elektronik, 25/8 2015

Tentamen i ETE115 Ellära och elektronik, 25/8 2015 Tentmen i ETE5 Ellär och elektronik, 5/8 05 Tillåtn hjälpmedel: Formelsmling i kretsteori. Oserver tt uppgiftern inte är sorterde i svårighetsordning. All lösningr skll ges tydlig motiveringr. Bestäm Thévenin-ekvivlenten

Läs mer

SF1626 Flervariabelanalys Tentamen 8 juni 2011, Svar och lösningsförslag

SF1626 Flervariabelanalys Tentamen 8 juni 2011, Svar och lösningsförslag SF166 Flervribelnlys Tentmen 8 juni 11, 8. - 13. Svr och lösningsförslg Del A (1 estäm en ekvtion för tngentplnet till ytn z + y z 3 1 i punkten (, y, (1, 1,. (3p b Punkten (, y, z (1.1,.9, t ligger på

Läs mer

MATEMATISK STATISTIK I FORTSÄTTNINGSKURS. Tentamen måndagen den 17 oktober 2016 kl 8 12

MATEMATISK STATISTIK I FORTSÄTTNINGSKURS. Tentamen måndagen den 17 oktober 2016 kl 8 12 Kurskod: TAMS65 Provkod: TEN MATEMATISK STATISTIK I FORTSÄTTNINGSKURS Tentmen måndgen den 7 oktober 206 kl 8 2 Hjälpmedel: Formelsmling i mtemtisk sttistik utgiven v mtemtisk institutionen och/eller formelsmling

Läs mer

Tentamen ETE115 Ellära och elektronik för F och N,

Tentamen ETE115 Ellära och elektronik för F och N, Tentmen ETE5 Ellär och elektronik för F och N, 009 087 Tillåtn hjälpmedel: formelsmling i kretsteori och elektronik. Oserver tt uppgiftern inte är ordnde i svårighetsordning. All lösningr skll ges tydlig

Läs mer

CHALMERS TEKNISKA HÖGSKOLA Institutionen för kemi- och bioteknik

CHALMERS TEKNISKA HÖGSKOLA Institutionen för kemi- och bioteknik CHALMERS TEKNISKA HÖGSKOLA Institutionen för kemi- och bioteknik KURSNAMN Separations- och apparatteknik, KAA095 Med förslag till lösningar PROGRAM: namn åk / läsperiod EXAMINATOR Civilingenjörsprogram

Läs mer

TENTAMEN. Matematik för basår I. Massimiliano Colarieti-Tosti, Niclas Hjelm & Philip Köck :00-12:00

TENTAMEN. Matematik för basår I. Massimiliano Colarieti-Tosti, Niclas Hjelm & Philip Köck :00-12:00 Kursnummer: Moment: Progrm: Rättnde lärre: TENTAMEN HF00 Mtemtik för bsår I TENA / TEN Tekniskt bsår Mssimilino Colrieti-Tosti, Nicls Hjelm & Philip Köck Nicls Hjelm 0-0-6 08:00-:00 Emintor: Dtum: Tid:

Läs mer

Kvalificeringstävling den 2 oktober 2007

Kvalificeringstävling den 2 oktober 2007 SKOLORNAS MATEMATIKTÄVLING Svensk Mtemtikersmfundet Kvlifieringstävling den oktober 007 Förslg till lösningr 1 I en skol hr vr oh en v de 0 klssern ett studieråd med 5 ledmöter vrder Per är den ende v

Läs mer

Kontrollskrivning 3 till Diskret Matematik SF1610, för CINTE1, vt 2019 Examinator: Armin Halilovic Datum: 2 maj

Kontrollskrivning 3 till Diskret Matematik SF1610, för CINTE1, vt 2019 Examinator: Armin Halilovic Datum: 2 maj Kontrollskrivning 3 till Diskret Mtemtik SF60, för CINTE, vt 209 Emintor: Armin Hlilovic Dtum: 2 mj Version B Resultt: Σ p P/F Etr Bonus Ing hjälpmedel tillåtn Minst 8 poäng ger godkänt Godkänd KS nr n

Läs mer

Preliminär version 2 juni 2014, reservation för fel. Tentamen i matematik. Kurs: MA152G Matematisk Analys MA123G Matematisk analys för ingenjörer

Preliminär version 2 juni 2014, reservation för fel. Tentamen i matematik. Kurs: MA152G Matematisk Analys MA123G Matematisk analys för ingenjörer Lösningsförslg Högskoln i Skövde SK, JS) Preliminär version juni 0, reservtion för fel. Tentmen i mtemtik Kurs: MA5G Mtemtisk Anlys MAG Mtemtisk nlys för ingenjörer Tentmensdg: 0-05- kl.0-9.0 Hjälpmedel

Läs mer

Tentamen i ETE115 Ellära och elektronik, 4/1 2017

Tentamen i ETE115 Ellära och elektronik, 4/1 2017 Tentmen i ETE5 Ellär och elektronik, 4/ 07 Tillåtn hjälpmedel: Formelsmling i kretsteori. Oserver tt uppgiftern inte är sorterde i svårighetsordning. All lösningr skll ges tydlig motiveringr. v 0 i 0 Beräkn

Läs mer

Tentamen ellära 92FY21 och 27

Tentamen ellära 92FY21 och 27 Tentmen ellär 92FY21 och 27 201-08-22 kl. 8 13 Svren nges på seprt ppper. Fullständig lösningr med ll steg motiverde och eteckningr utstt sk redoviss för tt få full poäng. Poängen för en helt korrekt löst

Läs mer

Lösningar till tentamen i EF för π3 och F3

Lösningar till tentamen i EF för π3 och F3 Lösningr till tentmen i EF för π3 och F3 Tid och plts: 31 oktober, 14, kl. 14.19., lokl: Vic 3BC. Kursnsvrig lärre: Gerhrd Kristensson. Lösning problem 1 Vi beräknr potentilen från en stv och multiplicerr

Läs mer

Rektangulär kanal, K. Produktbeteckning. Beteckningsexempel. Sida A (se storlekstabell) Sida B (se storlekstabell)

Rektangulär kanal, K. Produktbeteckning. Beteckningsexempel. Sida A (se storlekstabell) Sida B (se storlekstabell) K Rektngulär knl, K Produkteteckning Produkt K c d Sid A (se storlekstell) Sid B (se storlekstell) Längd 1=2000 mm 2= 1250 mm 3= 1000 mm 4= 600 mm 5= Löpnde längd nges i klrtext (mx 2500 mm) 1= Skrv i

Läs mer

CHALMERS TEKNISKA HÖGSKOLA Institutionen för kemi- och bioteknik

CHALMERS TEKNISKA HÖGSKOLA Institutionen för kemi- och bioteknik CHALMERS TEKNISKA HÖGSKOLA Institutionen för kemi- och bioteknik KURSNAMN Separations- och apparatteknik, KAA095 Med förslag till lösningar av beräkningsuppgifter PROGRAM: namn åk / läsperiod EXAMINATOR

Läs mer

Lösningsförslag till deltentamen i IM2601 Fasta tillståndets fysik. Teoridel

Lösningsförslag till deltentamen i IM2601 Fasta tillståndets fysik. Teoridel Lösningsförslg till deltentmen i IM601 Fst tillståndets fysik Gitter och bs i dimensioner Fredgen den 18 mrs, 011 Teoridel 1. ) Den primitiv enhetscellen är den minst enhetscell som ger trnsltionssymmetri

Läs mer

Lösningsförslag till tentamen i SF1683 och SF1629 (del 1) 23 oktober 2017

Lösningsförslag till tentamen i SF1683 och SF1629 (del 1) 23 oktober 2017 KTH, Mtemtik Mri Sprkin Lösningsförslg till tentmen i SF683 och SF629 (del ) 23 oktober 207 Tentmen består v sex uppgifter där vrder uppgift ger mximlt fr poäng. Preliminär betgsgränser: A 2 poäng, B 9,

Läs mer

Tentamen för FYSIK (TFYA68), samt ELEKTROMAGNETISM (TFYA48, 9FY321)

Tentamen för FYSIK (TFYA68), samt ELEKTROMAGNETISM (TFYA48, 9FY321) Tentmen för FYK (TFYA68), smt LKTROMAGNTM (TFYA48, 9FY321) 2012-08-16 kl. 8.00-13.00 Tillåtn hjälpmedel: Physics Hndbook (Nordling, Östermn), miniräknre, smt formelsmling som bifogs denn tentmen men består

Läs mer

Tentamen för FYSIK (TFYA68), samt ELEKTROMAGNETISM (TFYA48, 9FY321)

Tentamen för FYSIK (TFYA68), samt ELEKTROMAGNETISM (TFYA48, 9FY321) Tentmen för FYK (TFYA68), smt LKTOMAGNTM (TFYA48, 9FY321) 2012-05-30 kl. 14.00-19.00 Tillåtn hjälpmedel: Physics Hndbook (Nordling, Östermn), miniräknre, smt formelsmling som bifogs denn tentmen men består

Läs mer

CHALMERS TEKNISKA HÖGSKOLA Institutionen för kemi- och bioteknik Avdelningen för kemiteknik

CHALMERS TEKNISKA HÖGSKOLA Institutionen för kemi- och bioteknik Avdelningen för kemiteknik CHALMERS TEKNISKA HÖGSKOLA Institutionen för kemi- och bioteknik Avdelningen för kemiteknik KURSNAMN PROGRAM: namn åk / läsperiod EXAMINATOR Separations- och apparatteknik, KAA095 Civilingenjörsprogram

Läs mer

TENTAMEN I KEMI TFKE16 (4 p)

TENTAMEN I KEMI TFKE16 (4 p) Linköpings Universitet IFM-Kemi. Kemi för Y, M. m. fl. (TFKE16) TENTAMEN I KEMI TFKE16 (4 p). 2008-10-16 Lokl: TER1. Skrivtid: 14.00 18.00 Ansvrig lärre: Nils-l Persson, tel. 1387, lt 070-517 1088 (efter

Läs mer

anslås på kursens hemsida Resultatet: anslås på kursens hemsida Granskning:

anslås på kursens hemsida Resultatet: anslås på kursens hemsida Granskning: Dugg i Elektromgnetisk fältteori för F. EEF31 7-11-4 kl. 8.3-1.3 Tillåtn hjälpmedel: BETA, Physics Hndbook, Formelsmling i Elektromgnetisk fältteori, Vlfri klkyltor men ing egn nteckningr utöver egn formler

Läs mer

SF1625 Envariabelanalys

SF1625 Envariabelanalys Modul 5: Integrler Institutionen för mtemtik KTH 30 november 4 december Integrler Integrler är vd vi sk håll på med denn veck och näst. Vi kommer tt gör följnde: En definition v vd begreppet betyder En

Läs mer

Lösningsförslag till deltentamen i IM2601 Fasta tillståndets fysik. Torsdagen den 15 mars, Teoridel

Lösningsförslag till deltentamen i IM2601 Fasta tillståndets fysik. Torsdagen den 15 mars, Teoridel Millerindex Lösningsförslg till deltentmen i IM61 Fst tillståndets fysik Torsdgen den 15 mrs, 1 Teoridel 1. ) Millerindex för ett tompln bestäms med följnde principiell metod. i) Bestäm plnets skärningspunkter

Läs mer

Skriftlig tentamen i Elektromagnetisk fältteori för π3 (ETEF01) och F3 (ETE055)

Skriftlig tentamen i Elektromagnetisk fältteori för π3 (ETEF01) och F3 (ETE055) Skriftlig tentmen i Elektromgnetisk fältteori för π3 (ETEF01) och F3 (ETE055) Ti och plts: 3 jnuri, 017, kl. 14.00 19.00, lokl: Sprt B för F och E3139 för Pi. Kursnsvrig lärre: Aners Krlsson, tel. 40 89.

Läs mer

Tentamen i ETE115 Ellära och elektronik, 3/6 2017

Tentamen i ETE115 Ellära och elektronik, 3/6 2017 Tentmen i ETE115 Ellär och elektronik, 3/6 17 Tillåtn hjälpmedel: Formelsmling i kretsteori. Oserver tt uppgiftern inte är sorterde i svårighetsordning. All lösningr skll ges tydlig motiveringr. 1 8 V

Läs mer

Skriftlig tentamen i Elektromagnetisk fältteori för π3 (ETEF01) och F3 (EITF85)

Skriftlig tentamen i Elektromagnetisk fältteori för π3 (ETEF01) och F3 (EITF85) Skriftlig tentmen i Elektromgnetisk fältteori för π3 (ETEF) och F3 (EITF85) Ti och plts: 3 oktober, 8, kl. 4. 9., lokl: MA A H. Kursnsvrig lärre: Aners Krlsson, tel. 4 89 och 733 35958. Tillåtn hjälpmeel:

Läs mer

SF1625 Envariabelanalys

SF1625 Envariabelanalys SF1625 Envribelnlys Föreläsning 13 Institutionen för mtemtik KTH 27 september 2017 SF1625 Envribelnlys Anmäl er till tentn Anmäl er till tentn nu. Det görs vi min sidor. Om det inte går, mejl studentexpeditionen

Läs mer

Materiens Struktur. Lösningar

Materiens Struktur. Lösningar Mteriens Struktur Räkneövning 1 Lösningr 1. I ntriumklorid är vrje N-jon omgiven v sex Cl-joner. Det intertomär vståndet är,8 Å. Ifll tomern br skulle växelverk med Coulombväxelverkn oh br med de närmste

Läs mer

Lösningar till tentamen i EF för π3 och F3

Lösningar till tentamen i EF för π3 och F3 Lösningr till tentmen i EF för π och F Tid och plts: 7 jnuri, 4, kl. 8.., lokl: MA9, EF. Kursnsvrig lärre: Gerhrd Kristensson. Lösning problem Den totlt upplgrde elektrosttisk energin ges v W = i,j= i

Läs mer

TENTAMEN HF0021 TEN1. Program: Examinator: Datum: Tid: :15-17:15. , linjal, gradskiva. Lycka till! Poäng

TENTAMEN HF0021 TEN1. Program: Examinator: Datum: Tid: :15-17:15. , linjal, gradskiva. Lycka till! Poäng TENTMEN Kursnummer: Moment: Progrm: Rättnde lärre: Emintor: Dtum: Tid: Hjälpmedel: Omfttning oc etgsgränser: H Mtemtik för sår I TEN Tekniskt sår Nicls Hjelm Nicls Hjelm -8- :-7: ormelsmling: ISBN 78--7-77-8

Läs mer

Tentamen i EDA320 Digitalteknik-syntes för D2

Tentamen i EDA320 Digitalteknik-syntes för D2 CHALMERS TEKNISKA HÖGSKOLA Institutionen för dtorteknik Tentmen i EDA320 Digitlteknik-syntes för D2 Tentmenstid: tisdgen den 24 ugusti 999, kl. 08.45-2.45, Sl: mg. Exmintor: Peter Dhlgren Tel. expedition

Läs mer

Några integraler. Kjell Elfström. x = f 1 (y) = arcsin y. . 1 y 2 Vi låter x och y byta roller och formulerar detta resultat som en sats: cos x = 1

Några integraler. Kjell Elfström. x = f 1 (y) = arcsin y. . 1 y 2 Vi låter x och y byta roller och formulerar detta resultat som en sats: cos x = 1 F r å g L u n d o m m t e m t i k Mtemtikcentrum Mtemtik NF Någr integrler Kjell Elfström Invers funktioner Om f är en funktion, och ekvtionen f() = till vrje V f hr en entdigt bestämd lösning D f, så

Läs mer

Skriv tydligt! Uppgift 1 (5p)

Skriv tydligt! Uppgift 1 (5p) 1(1) IF1611 Ingenjörsmetodik för IT och ME, HT 1 Tentmen Gäller även studenter som är registrerde på B1116 Torsdgen den 1 okt, 1, kl. 14.-19. Skriv tydligt! Skriv nmn och personnummer på ll inlämnde ppper!

Läs mer

1 Bestäm Théveninekvivalenten med avseende på nodparet a-b i nedanstående krets.

1 Bestäm Théveninekvivalenten med avseende på nodparet a-b i nedanstående krets. (7) 9 jnuri 009 Institutionen för elektro och informtionsteknik Dniel Sjöerg ETE5 Ellär och elektronik, tentmen jnuri 009 Tillåtn hjälpmedel: formelsmling i kretsteori. Oserver tt uppgiftern inte är sorterde

Läs mer

Tentamen i Databasteknik

Tentamen i Databasteknik Tentmen i Dtsteknik lördgen den 22 oktoer 2005 Tillåtn hjälpmedel: Allt upptänkligt mteril Använd r frmsidn på vrje ld. Skriv mx en uppgift per ld. Motiver llt, dokumenter egn ntgnden. Oläslig/oegriplig

Läs mer

Tentamen i ELEKTROMAGNETISM I, för F1 och Q1 (1FA514)

Tentamen i ELEKTROMAGNETISM I, för F1 och Q1 (1FA514) Uppsl universitet Institutionen för fysik och stronomi Gbriell Andersson Skrivtid: 5 tim Tentmen i ELEKTROMAGNETISM I, 2013-05-31 för F1 och Q1 (1FA514) Kn även skrivs v studenter på ndr progrm där 1FA514

Läs mer

CHALMERS TEKNISKA HÖGSKOLA Institutionen för kemi- och bioteknik Avdelningen för kemiteknik

CHALMERS TEKNISKA HÖGSKOLA Institutionen för kemi- och bioteknik Avdelningen för kemiteknik CHALMERS TEKNISKA HÖGSKOLA Institutionen för kemi- och bioteknik Avdelningen för kemiteknik KURSNAMN PROGRAM: namn åk / läsperiod EXAMINATOR Separations- och apparatteknik 2, KAA095 Civilingenjörsprogram

Läs mer

Sidor i boken

Sidor i boken Sidor i boken -5 Vi räknr en KS För tt ni sk få en uppfttning om hur en KS kn se ut räknr vi här igenom den end KS som givits i denn kurs! Totlt kn mn få poäng. Om mn lycks skrp ihop 7 poäng eller mer

Läs mer

Internetförsäljning av graviditetstester

Internetförsäljning av graviditetstester Internetförsäljning v grviditetstester Mrkndskontrollrpport från Enheten för medicinteknik 2010-05-28 Postdress/Postl ddress: P.O. Box 26, SE-751 03 Uppsl, SWEDEN Besöksdress/Visiting ddress: Dg Hmmrskjölds

Läs mer

Matematisk statistik för B, K, N, BME och Kemister

Matematisk statistik för B, K, N, BME och Kemister Mtemtisk sttistik för B, K, N, BME och Kemister Föreläsning 2 John Lindström 3 ugusti 217 John Lindström - johnl@mths.lth.se FMSF7/MASB2 F1 1/22 Grundläggnde begrepp Stokstisk vribel Snnolikhetsfunktion

Läs mer

RÄTTNINGSMALL TILL KEMIOLYMPIADEN 2014, OMGÅNG 2

RÄTTNINGSMALL TILL KEMIOLYMPIADEN 2014, OMGÅNG 2 RÄTTNINGSMALL TILL EMIOLYMPIADEN 201, OMGÅNG 2 Nmn: Födelsedtum: Skol: Hemdress: e-post: Uppg. Endst svr ing uträkningr Poäng L 1 b c d e f 2 2 b c d e 2,1 cm 2 0,20 mol/dm 2 b 1 kp 2 5 2ClO 2 + 2OH ClO

Läs mer

Tentamen för FYSIK (TFYA68), samt ELEKTROMAGNETISM (TFYA48, 9FY321)

Tentamen för FYSIK (TFYA68), samt ELEKTROMAGNETISM (TFYA48, 9FY321) Tentmen för FYK (TFYA68), smt LKTROMAGNTM (TFYA48, 9FY31) 013-05-8 kl. 08.00-13.00 Tillåtn hjälpmedel: Physics Hndbook (Nordling, Östermn) - egn bokmärken ok, dock ej formler, nteckningr miniräknre - grfräknre

Läs mer

CHALMERS TEKNISKA HÖGSKOLA Institutionen för kemi- och bioteknik Kemisk apparatteknik

CHALMERS TEKNISKA HÖGSKOLA Institutionen för kemi- och bioteknik Kemisk apparatteknik CHALMER TEKNIKA HÖGKOLA Institutionen för kemi- och bioteknik Kemisk apparatteknik KURNAMN eparations- och apparatteknik, KAA095 Med förslag till lösningar PROGRAM: namn åk / läsperiod EXAMINATOR Civilingenjörsprogram

Läs mer

Skriftlig tentamen i Elektromagnetisk fältteori för π3 (ETEF01) och F3 (ETE055)

Skriftlig tentamen i Elektromagnetisk fältteori för π3 (ETEF01) och F3 (ETE055) Skriftlig tentmen i Elektromgnetisk fältteori för π3 (ETEF1) och F3 (ETE55) Tid och plts: 7 jnuri, 215, kl. 8. 13., lokl: MA9, E F. Kursnsvrig lärre: Anders Krlsson, tel. 222 4 89. Tillåtn hjälpmedel:

Läs mer

CHALMERS TEKNISKA HÖGSKOLA. Institutionen för kemi- och bioteknik

CHALMERS TEKNISKA HÖGSKOLA. Institutionen för kemi- och bioteknik CHALMERS TEKNISKA HÖGSKOLA Institutionen för kemi- och bioteknik KURSNAMN Grundläggande kemiteknik, KAA 146 Förslag till lösningar av beräkningsuppgifter PROGRAM: namn åk / läsperiod EXAMINATOR Civilingenjörsprogram

Läs mer

Kompletterande formelsamling i hållfasthetslära

Kompletterande formelsamling i hållfasthetslära Kompletternde formelsmling i hållfsthetslär Görn Wihlorg LTH 004 Spänningstillståndet i ett pln, vinkelätt mot en huvudspänningsriktning ϕ cos ϕ+ sin ϕ + sinϕcosϕ ϕ sinϕ+ cos ϕ Huvudspänningr och huvudspänningsriktningr

Läs mer

CHALMERS TEKNISKA HÖGSKOLA Institutionen för kemi- och bioteknik Avdelningen för kemiteknik

CHALMERS TEKNISKA HÖGSKOLA Institutionen för kemi- och bioteknik Avdelningen för kemiteknik CHALMERS TEKNISKA HÖGSKOLA Institutionen för kemi- och bioteknik Avdelningen för kemiteknik KURSNAMN PROGRAM: namn åk / läsperiod EXAMINATOR Separations- och apparatteknik 2, KAA095 Civilingenjörsprogram

Läs mer

Tentamen 1 i Matematik 1, HF sep 2016, kl. 8:15-12:15

Tentamen 1 i Matematik 1, HF sep 2016, kl. 8:15-12:15 Tenmen i Memik, HF9 sep 6, kl. 8:-: Eminor: rmin Hlilovic Undervisnde lärre: Erik Melnder, Jons Senholm, Elis Sid För godkän beg krävs v m poäng. egsgränser: För beg,,, D, E krävs, 9, 6, respekive poäng.

Läs mer

Lösningar till uppgifter i magnetostatik

Lösningar till uppgifter i magnetostatik Lösningr till uppgifter i mgnetosttik 16-1-14 Uppgift 1 Metodvl: Biot-Svrts lg ing symmetrier som kn nvänds. Biot-Svrts lg evluerd i origo r = är B = µ 4π dr r r = µ dr r 4π r Linjeelementet dr bestäms

Läs mer

Uppgiftssamling 5B1493, lektionerna 1 6. Lektion 1

Uppgiftssamling 5B1493, lektionerna 1 6. Lektion 1 Uppgiftssmling 5B1493, lektionern 1 6 Lektion 1 4. (Räkning med oändlig decimlbråk) Låt x = 0, 1 2 3 n och y = 0,b 1 b 2 b 3 b n ( i och b i siffror 0, 1,, 9).. Kn Du beskriv något förfrnde som säkert

Läs mer

RÄKNEOPERATIONER MED VEKTORER. LINJÄRA KOMBINATIONER AV VEKTORER. ----------------------------------------------------------------- Låt u vr en vektor med tre koordinter u. Vi säger tt u är tredimensionell

Läs mer

Sammanfattning, Dag 9

Sammanfattning, Dag 9 Smmnfttning, Dg 9 Idg studerde vi begrepp sklärprudokt (eller innerprodukt), norm och ortogonlitet på ett llmänt vektorrum. Vi börjde med en kort repetition på smm begrep för vektorrummet R 3. I rummet

Läs mer

Tentamen i EITF90 Ellära och elektronik, 28/8 2018

Tentamen i EITF90 Ellära och elektronik, 28/8 2018 Tentmen i EITF9 Ellär och elektronik, 8/8 8 Tillåtn hjälpmedel: Formelsmling i kretsteori. Oserver tt uppgiftern inte är sorterde i svårighetsordning. All lösningr skll ges tydlig motiveringr. Bestäm Thévenin-ekvivlenten

Läs mer

Diskreta stokastiska variabler

Diskreta stokastiska variabler Definitioner: Diskret stokstisk vribler Utfllet i ett slumpmässigt försök i form v ett reellt tl, betrktt innn försöket utförts, klls för stokstisk vribel eller slumpvribel (oft betecknd ξ, η ) Ett resultt

Läs mer

Oleopass Bypass-oljeavskiljare av betong för markförläggning

Oleopass Bypass-oljeavskiljare av betong för markförläggning Instlltionsnvisning Oleopss Bypss-oljevskiljre v etong för mrkförläggning Figur 1 P C H G F E D B I J L M Q 0 O N O Innehåll: Uppyggnd och ingående komponenter... 1 Hlssystem... 2 Lossning... 2 Schkt,

Läs mer

Fysiktävlingen Lösningsförslag. Uppgift 1. Vi får anta att kinetisk energi övergår i lägesenergi, och att tyngdpunkten lyftes 6,5 m.

Fysiktävlingen Lösningsförslag. Uppgift 1. Vi får anta att kinetisk energi övergår i lägesenergi, och att tyngdpunkten lyftes 6,5 m. SVESK FYSIKESMFUDET Fysiktälingen 006. Lösningsörslg. Uppgit. Vi år nt tt kinetisk energi öergår i lägesenergi, och tt tyngdpunkten lytes 6,5 m. m mgh gh t s gh 00 9,8 6,5 8,85 8,9 s Stöten stången mot

Läs mer

Det material Du lämnar in för rättning ska vara väl läsligt och förståeligt.

Det material Du lämnar in för rättning ska vara väl läsligt och förståeligt. Industriell energihushållning Provmoment: Ladokkod: Tentamen ges för: Tentamen 41N11C TGENE13h 7,5 högskolepoäng TentamensKod: Tentamensdatum: 2016-03-16 Tid: 9:00-13:00 Hjälpmedel: Alvarez. Formler och

Läs mer

SPEL OM PENGAR FÖR - EN FRÅGA FÖR SKOLAN? VERKTYG, ÖVNINGAR OCH KUNSKAPSBANK FÖR ARBETE MED SPEL OM PENGAR I SKOLAN

SPEL OM PENGAR FÖR - EN FRÅGA FÖR SKOLAN? VERKTYG, ÖVNINGAR OCH KUNSKAPSBANK FÖR ARBETE MED SPEL OM PENGAR I SKOLAN Övningr och verktyg för år 7-9 och gymnsiet SPEL OM PENGAR - EN FRÅGA FÖR SKOLAN? ANPASSAT FÖR BLAND ANNAT SVENSKA, SPEL I KONSTHISTORIEN BILD, MATEMATIK OCH SAMHÄLLSKUNSKAP IILLEGALT SPEL VERKTYG, ÖVNINGAR

Läs mer

GEOMETRISKA VEKTORER Vektorer i rummet.

GEOMETRISKA VEKTORER Vektorer i rummet. GEOMETRISKA VEKTORER Vektorer i rummet. v 6 Någr v de storheter som förekommer inom nturvetenskp kn specificers genom tt ders mätetl nges med ett end reellt tl. Exempel på sådn storheter, som klls sklär

Läs mer

Tentamen i ETE115 Ellära och elektronik, 10/1 2015

Tentamen i ETE115 Ellära och elektronik, 10/1 2015 Tentmen i ETE Ellär och elektronik, 0/ 20 Tillåtn hjälpmedel: Formelsmling i kretsteori. Observer tt uppgiftern inte är sorterde i svårighetsordning. All lösningr skll ges tydlig motiveringr. g 2 v in

Läs mer

TATA42: Föreläsning 4 Generaliserade integraler

TATA42: Föreläsning 4 Generaliserade integraler TATA42: Föreläsning 4 Generliserde integrler John Thim 5 november 28 Vi hr stött på begreppet tidigre när vi diskutert Riemnnintegrler i föregående kurs. Denn gång kommer vi lite mer tt fokuser på frågn

Läs mer

Integraler och statistik

Integraler och statistik Föreläsning 8 för TNIU Integrler och sttistik Krzysztof Mrcinik ITN, Cmpus Norrköping, krzm@itn.liu.se www.itn.liu.se/krzm ver. 4 - --8 Inledning - lite om sttistik Sttistik är en gren v tillämpd mtemtik

Läs mer

CHALMERS TEKNISKA HÖGSKOLA Institutionen för kemi- och bioteknik

CHALMERS TEKNISKA HÖGSKOLA Institutionen för kemi- och bioteknik CHALMER TEKNIKA HÖGKOLA Institutionen för kemi- och bioteknik KURNAMN eparations- och apparatteknik, KAA095 Förslag till lösningar infogade PROGRAM: namn åk / läsperiod EXAMINATOR Civilingenjörsprogram

Läs mer

TATA42: Föreläsning 4 Generaliserade integraler

TATA42: Föreläsning 4 Generaliserade integraler TATA42: Föreläsning 4 Generliserde integrler John Thim 29 mrs 27 Vi hr stött på begreppet tidigre när vi diskutert Riemnnintegrler i föregående kurs. Denn gång kommer vi lite mer tt fokuser på frågn om

Läs mer

19 Integralkurvor, potentialer och kurvintegraler i R 2 och R 3

19 Integralkurvor, potentialer och kurvintegraler i R 2 och R 3 Nr9,3mj-5,Ameli 9 Integrlkurvor, potentiler och kurvintegrler i R och R 3 9. Integrlkurvor En integrlkurv r(t) ((t), (t)) till ett vektorfält F(, ) är en kurv där vektorfältet är en tngent till kurvn i

Läs mer

Evighetskalender. 19 a) nyårsdagen var år 2000 b) julafton kommer att vara på år 2010 c) de första människorna landade på månen, 20 juli 1969

Evighetskalender. 19 a) nyårsdagen var år 2000 b) julafton kommer att vara på år 2010 c) de första människorna landade på månen, 20 juli 1969 Evighetsklender Vilken veckodg vr det när du föddes? På vilken veckodg fyller du 18 år? Med den här evighetsklendern kn du t red på det. Gör så här när du sk t red på veckodgen: Lägg ihop följnde fyr tl:

Läs mer

Finaltävling den 20 november 2010

Finaltävling den 20 november 2010 SKOLORNAS MATEMATIKTÄVLING Svensk Mtemtikersmfundet Finltävling den 20 november 2010 Förslg till lösningr Problem 1 Finns det en tringel vrs tre höjder hr måtten 1, 2 respektive 3 längdenheter? Lösning

Läs mer

x 12 12 = 32 12 x 11 + 11 = 26 + 11 x 20 + 20 = 45 + 20 x=3 x=5 x=6 42 = 10x x + 10 = 15 x + 10 10 = 15 10 11 + 9 = 20 x = 65 x + 36 = 46

x 12 12 = 32 12 x 11 + 11 = 26 + 11 x 20 + 20 = 45 + 20 x=3 x=5 x=6 42 = 10x x + 10 = 15 x + 10 10 = 15 10 11 + 9 = 20 x = 65 x + 36 = 46 Vilket tl sk stå i rutn så tt likheten stämmer? + Lös ekvtionen så tt likheten stämmer. = + 9 = + = + = = Det sk stå 9 i rutn. Subtrher båd leden med. r -termen sk vr kvr i vänstr ledet. Skriv rätt tl

Läs mer

24 Integraler av masstyp

24 Integraler av masstyp Nr, mj -5, Ameli Integrler v msstyp Kurvintegrler v msstyp Vi hr hittills studert en typ v kurvintegrl, R F dr, där vi integrerr den komponent v ett vektorfält F som är tngentiell till kurvn ( dr) i punkter

Läs mer

Läsanvisningar för MATEMATIK I, ANALYS

Läsanvisningar för MATEMATIK I, ANALYS Läsnvisningr för MATEMATIK I, ANALYS Läsnvisningrn är tänkt i först hnd för dig som läser kursen mtemtik I på distns, och de sk vägled dig på din res genom nlysen. Stoffet är i stort sett portionert på

Läs mer

Försättsblad till skriftlig tentamen vid Linköpings Universitet

Försättsblad till skriftlig tentamen vid Linköpings Universitet Försättsld till skriftlig tentmen vid Linköpings Universitet Dtum för tentmen 2011-10-18 Sl TER3 Tid 14-18 Kurskod TFKE16 Provkod TEN1 Kursnmn/enämning Provnmn/enämning Kemi En skriftlig tentmen Institution

Läs mer

Tentamen i Elektromagnetisk fältteori för π3 och Modellering och simulering inom fältteori för F3, 29 augusti, 2008, kl

Tentamen i Elektromagnetisk fältteori för π3 och Modellering och simulering inom fältteori för F3, 29 augusti, 2008, kl Tentmen i Elektromgnetisk fältteori för π3 och Modellering och simulering inom fältteori för F3, 9 ugusti, 8, kl. 14. 19., lokl: MA9A Kursnsvrig lärre: Gerhrd Kristensson, tel. 45 6 & Anders Krlsson tel.

Läs mer

Kontinuerliga variabler

Kontinuerliga variabler Kontinuerlig vribler c 005 Eric Järpe Högskoln i Hlmstd Antg tt vi kunde mät med oändligt stor noggrnnhet hur stor strömstyrk en viss typ v motstånd klrr. Ing mätningr skulle då vr exkt lik. Om vi mätte

Läs mer

Tentamen TEN1, HF1012, 30 maj Matematisk statistik Kurskod HF1012 Skrivtid: 14:00-18:00 Lärare och examinator : Armin Halilovic

Tentamen TEN1, HF1012, 30 maj Matematisk statistik Kurskod HF1012 Skrivtid: 14:00-18:00 Lärare och examinator : Armin Halilovic Tentmen TEN, HF, mj 8 Mtemtis sttisti Kursod HF Srivtid: 4:-8: Lärre och emintor : Armin Hlilovic Hjälmedel: Bifogt formelhäfte ("Formler och teller i sttisti " och miniränre v vilen ty som helst Förjudn

Läs mer

Tentamen i Mekanik D, TKYY , kl 14:00-19:00

Tentamen i Mekanik D, TKYY , kl 14:00-19:00 Tenten i Meknik D, TKYY06 003-1-18, kl 14:00-19:00 Tenten är på 5 tir och består v 6 uppgifter v teoretisk och prktisk ntur. Vrje helt korrekt löst uppgift vrder 4 poäng, betyg ges endligt skl: 10-14 poäng

Läs mer

Tentamen 1 i Matematik 1, HF1903 tisdag 8 januari 2013, kl

Tentamen 1 i Matematik 1, HF1903 tisdag 8 januari 2013, kl Tentmen i Mtemtik, HF9 tisdg 8 jnui, kl 8.. Hjälpmedel: ndst fomelbld miniäkne ä inte tillåten Fö godkänt kävs poäng v 4 möjlig poäng betgsskl ä,,c,d,,f,f. Den som uppnått 9 poäng få betget F och h ätt

Läs mer

1 e x2. lim. x ln(1 + x) lim. 1 (1 x 2 + O(x 4 )) = lim. x 0 x 2 /2 + O(x 3 ) x 2 + O(x 4 ) = lim. 1 + O(x 2 ) = lim = x = arctan x 1

1 e x2. lim. x ln(1 + x) lim. 1 (1 x 2 + O(x 4 )) = lim. x 0 x 2 /2 + O(x 3 ) x 2 + O(x 4 ) = lim. 1 + O(x 2 ) = lim = x = arctan x 1 UPPSALA UNIVERSITET Svr till tent i mtemtik Mtemtisk institutionen Anlys MN Distns Jons Elisson 7-- Skrivtid: - 5. Observer tt problemen inte står i svårighetsordning. All svr sk motivers. Det kn krävs

Läs mer

9. Vektorrum (linjära rum)

9. Vektorrum (linjära rum) 9. Vektorrum (linjär rum) 43. Vektorrum (linjärt rum) : definition och xiom 44. Exempel på vektorrum v funktioner. 45. Hur definierr mn subtrktion i ett vektorrum? 46. Underrum 47. Linjärkombintioner,

Läs mer

9. Bestämda integraler

9. Bestämda integraler 77 9. Bestämd integrler Låt f vr en icke-negtiv, begränsd funktion på [,b]. Vi hr lltså 0 f(x) ll x [,b] för någon konstnt B. B för Problem: Beräkn ren A v den yt som begränss v kurvn y = f(x), x b, x-xeln

Läs mer

============================================================ V1. Intervallet [a,b] är ändligt, dvs gränserna a, b är reella tal och INTE ±.

============================================================ V1. Intervallet [a,b] är ändligt, dvs gränserna a, b är reella tal och INTE ±. GENERALISERADE INTEGRALER När vi definierr Riemnnintegrl ntr vi tt följnde två krv är uppfylld: V Intervllet [,] är ändligt, dvs gränsern, är reell tl och INTE ± V Funktionen f () är egränsd i intervllet

Läs mer

PASS 1. RÄKNEOPERATIONER MED DECIMALTAL OCH BRÅKTAL

PASS 1. RÄKNEOPERATIONER MED DECIMALTAL OCH BRÅKTAL PASS. RÄKNEOPERATIONER MED DECIMALTAL OCH BRÅKTAL. Tl, bråktl och decimltl Vd är ett tl för någonting? I de finländsk fmiljern brukr det vnligtvis finns två brn enligt Sttistikcentrlen (http://www.tilstokeskus.fi/tup/suoluk/suoluk_vesto_sv.html).

Läs mer

14. MINSTAKVADRATMETODEN

14. MINSTAKVADRATMETODEN 4 MINTAKADRATMETODEN Nu sk vi gå igenom någr olik sätt tt lös ekvtionssystemet Ax Om A är m n mtris med m n så sägs systemet vr överestämt och det sknr då i llmänhet lösningr Istället söker mn en pproximtiv

Läs mer