Tillämpad Matematik I Övning 1

Storlek: px
Starta visningen från sidan:

Download "Tillämpad Matematik I Övning 1"

Transkript

1 HH/ITE/BN Tillämpad Matematik I, Övning 0 3 Tillämpad Matematik I Övning Allmänt 0 Övningsuppgifterna, speciellt Typuppgifter i första hand, är exempel på uppgifter du kommer att möta på tentamen. På denna är du ensam, så det är viktigt att du klarar av uppgifterna på egen hand! Trots detta rekommenderas och uppmuntras arbete i grupp samt användning av Mathematica även där endast handräkning förväntas! I lösningsförslagen hittar du oftast både handräkning och Mathematica, detta för att du ska få träning på båda! Avsaknad av lösningsförslag eller "snåla" sådana ska tolkas positivt som en inspiration och utmana dig till att fylla igen luckor och verifiera det som är gjort. Ha teorikompendierna till hands, där finns många lösta exempel. Uppgifter Typuppgifter i första hand. Låt F 4, 3, 9,, G,,, 0, 4 och H, 0. Bestäm 9 F, 9 G, F G, F G, F H, F\G, G\H och F G\H. Lösningsförslag: Övning på mängdalgebra. Börja med att definiera mängderna för Mathematica. F 4, 3, 9, ; G,,, 0, 4; H, 0; Visst, 9 är en medlem i mängden F. MemberQF, 9 True Visst, 9 är inte en medlem i mängden G. MemberQG, 9 True Unionen av två mängder är en ny mängd där alla unika medlemmar i de två mängderna ingår. Mathematica tar för vana att leverera unionen sorterad. Matematiskt sett är detta inget krav. F G,, 3, 4,, 9, 0 Snittet av två mängder är en ny mängd innehållande de unika medlemmar som ingår i båda mängderna. Mathematica tar för vana att leverera snittet sorterad. Matematiskt sett är detta inget krav. F G, 4 När en mängd inte innehåller några objekt kallas den för tomma mängden och man reserverar namnet. Visst, F och H har inga gemensamma objekt så snittet är tomma mängden. F H De objekt som finns i F men inte i G. ComplementF, G

2 Tillämpad Matematik I, Övning HH/ITE/BN 3, 9 De objekt som finns i G men inte i H. ComplementG, H,, 4 De objekt som finns både i F och i den mängd som finns på raden ovanför. F ComplementG, H, 4. Beräkna a n n 3 4 b k0 k 3k c 00 i 3 Lösningsförslag: Räkna på! a) n n , 4 b) k0 k 3k , c) 00 i st n 3, k 3k, 3 n 4 k0, 0, i 3. Skriv med summatecken a 3 0 b Lösningsförslag: Fingerfärdighetsträning på summatecken. 0 0 i i, k k k 738 0, Beräkna 4 8 Lösningsförslag: En inledande tvåa samt en geometrisk summa , k0 8, 8, k, k k n. Visa med ett induktionsbevis att i i 3 n nn för alla n,, 3, Lösningsförslag: Vi ska tydligen visa den aritmetiska prototypsumman ännu en gång. Ett induktionsbevis består av tre delar. Visa först att påståendet är sant för det första n:et i följden. n VL i i, HL Ok Visa sedan att om det är sant för n p så är det sant även för n p. Vi får p p i i i i p Dela upp summationen pp p Om formeln gäller för n p. Faktorisera p p Snegla på önskat resultat och skriv om p p Så formeln stämmer för n p Så påståendet är sant för alla n. Färdig

3 HH/ITE/BN Tillämpad Matematik I, Övning 3 6. Visa med ett induktionsbevis att 9 n är jämnt delbart med 8 för alla n. Lösningsförslag: Ett induktionsbevis består av tre delar. Visa sant för alla n 0,,, Visa först att påståendet är sant för det första n:et i följden. n Vilket uppenbarligen är delbart med 8 Visa sedan att om det är sant för n p så är det sant även för n p. Vi får 9 p Potenslagar 9 p 9 Om 9 p delbart med 8 så k så 9 p 8k 8k 9 Hyfsa 8k k Vilket uppenbarligen är delbart med 8 Så påståendet är sant för alla n. Färdig 7. Förenkla a 3 b 6 c d Lösningsförslag: Endast, aldrig!! Så med potenslagarna a) 3, b) 6 3 3, c) 4, d) Naturligtvis klarar Mathematica av det direkt 3, 6,,,,, Givet de komplexa talen 3 4 och w. Bestäm Im, Re, w, w, w, w,, w och argw. Skriv på exponentiell form. Rita w, w. Lösningsförslag: Fingerfärdighetsträning på komplexa tal. 3 4 ; w ; Im, Re, w, w, w, w,, Absw, Argw 4, 3,,46,0,,3 4,,tan Finns ingen funktion i Mathematica som direkt översätter Rektangulär form till Exponentiell form. Så man får göra på samma sätt som när man räknar för hand Arg Abs tan Skriv det komplexa talet på rektangulär form. Lösningsförslag: Använd Eulers definition cos sin så cos sin Skriv det komplexa talet 4 på rektangulär och exponentiell form, då. + Lösningsförslag: Använd exponentiell form 4 Förläng med nämnarens komplexkonjugat Så w

4 4 Tillämpad Matematik I, Övning HH/ITE/BN Argw w e Absw 4 tan ComplexExpandw e 8 4. Lös ekvationen, där betyder komplexkonjugat. Lösningsförslag: Ansätt a b i ekvationen. Identifiera sedan real- och imaginärdelar. Likhet för komplexa tal ger sedan ett ekvationssystem som bestämmer a och b. a ba b Re : 3a Im : b a 3 b det vill säga ekvationen har lösningen. Solve klarar många ekvationer. 3 Solve 3 Extrauppgifter i andra hand i mån av tid. Vad blir x x x 3 x 4 om x x x 3 x 4? Lösningsförslag: Först bestämmer vi x ur villkoret x x x 3 x 4. Här gömmer sig en geometrisk summa. x x x 3 x 4 x x x x 3 x 4 xlim xn n x För att gränsvärdet ska existera krävs att x, så x n 0. Alltså x x x 6. Så svaret på den brännande frågan om den snarlika geometriska summan x x x 3 x 4 xxx x 3 x 4 xlim xn n x 6 Vi gör en sista ängslig kontroll med hjälp av Mathematica 6 i 6 i i 3. Förenkla a 4 b 6 c 0 d Lösningsförslag: Endast, aldrig!! Så med potenslagarna a) 4, b) 6, c) 0, d) Naturligtvis klarar Mathematica av det direkt 4, 6, 0,,,, 4. Givet de komplexa talen och w 3. Bestäm Im, Re, w, w, w, w,, w och argw. Skriv på exponentiell form. Lösningsförslag: Fingerfärdighetsträning på komplexa tal.

5 HH/ITE/BN Tillämpad Matematik I, Övning ; w 3 ; Im, Re, w, w, w, w,, Absw, Argw,,,,63, 6 3,,3, Finns ingen funktion i Mathematica som direkt översätter Rektangulär form till Exponentiell form. Så man får göra på samma sätt som när man räknar för hand Arg Abs tan. Skriv det komplexa talet på rektangulär form. Lösningsförslag: Använd Eulers def cos sin så cos sin Skriv det komplexa talet 6 _ på rektangulär och exponentiell form, då. + Lösningsförslag: Använd exponentiell form 6 Så Förläng med nämnarens komplexkonjugat w Argw w e Absw 8 tan ComplexExpandw e Lös ekvationen, där betyder komplexkonjugat. Lösningsförslag: Ansätt a b i ekvationen. Identifiera sedan real- och imaginärdelar. Likhet för komplexa tal ger sedan ett ekvationssystem som bestämmer a och b. a ba b Re : a 0 a 0 Im : 3b b 3 det vill säga ekvationen har lösningen. Solve klarar många ekvationer. 3 Solve 3 8. Visa med ett induktionsbevis att 3 n n är jämnt delbart med 7 för alla n. Lösningsförslag: Ett induktionsbevis består av tre delar. Visa sant för alla n 0,,, Visa först att påståendet är sant för det första n:et i följden.

6 6 Tillämpad Matematik I, Övning HH/ITE/BN n Vilket uppenbarligen är delbart med 7 Visa sedan att om det är sant för n p så är det sant även för n p. Vi får 3 p p Meka om exponenterna 3 p p Potenslagar 3 p 3 p Om 3 p p delbart med 7 så k så 3 p p 7k 7k p 3 p Hyfsa 7k 9 7 p 79k p Vilket uppenbarligen är delbart med 7 Så påståendet är sant för alla n. Färdig Fördjupningsuppgifter i tredje hand eller inte alls 9. För det komplexa talet gäller att Re. Vilka värden kan Re anta? Lösningsförslag: Vi mekar ihop ett b enligt receptet, så f bre Re Re b b Re b bb b b varav D f, och svaret på frågan V f 0,. Plot, b, 0, 0, PlotRange All, AxesLabel "b" b b 0. Antag att a b. Åskådliggör geometriskt a b c d Lösningsförslag: Rita och diskutera med dina kamrater!. Åskådliggör geometriskt de punkter som uppfyller a b c d Lösningsförslag: Rita och diskutera med dina kamrater!. Visa att avståndet mellan punkterna och i det komplexa talplanet är. Lösningsförslag: Rita, räkna och diskutera med dina kamrater! 3. Visa att följande samband är sant för alla. a Re b Im c Re Lösningsförslag: Räkna och diskutera med dina kamrater! 4. Låt a b ligga i rektangeln 0 a a a,0 b b b i det komplexa talplanet. Vilken form får rektangeln efter transformationen? Lösningsförslag: Rita, räkna och diskutera med dina kamrater! n. Visa att för alla heltal n,, gäller a) k k nn n, b) n 6 k k n, c) 4 n 4n Lösningsförslag: Gör induktionsbevis och diskutera med dina kamrater!

2 Tillämpad Matematik I, Övning 1 HH/ITE/BN. De objekt som finns G men inte i H.

2 Tillämpad Matematik I, Övning 1 HH/ITE/BN. De objekt som finns G men inte i H. HH/ITE/BN Tillämpad Matematik I, Övning 0 3 Tillämpad Matematik I Övning Allmänt 0 Övningsuppgifterna, speciellt Typuppgifter i första hand, är exempel på uppgifter du kommer att möta på tentamen. På denna

Läs mer

29 Det enda heltalet n som satisfierar båda dessa villkor är n = 55. För detta värde på n får vi x = 5, y = 5.

29 Det enda heltalet n som satisfierar båda dessa villkor är n = 55. För detta värde på n får vi x = 5, y = 5. Tentamenskrivning MATA15 Algebra: delprov 1, 6hp Lördagen den 3 november 01 Matematikcentrum Matematik NF LÖSNINGSFÖRSLAG 1 a) Lös den diofantiska ekvationen 9x + 11y 00 b) Ange alla lösningar x, y) sådana

Läs mer

Uppföljning av diagnostiskt prov Repetition av kursmoment i TNA001-Matematisk grundkurs.

Uppföljning av diagnostiskt prov Repetition av kursmoment i TNA001-Matematisk grundkurs. Uppföljning av diagnostiskt prov 06-0- Repetition av kursmoment i TNA00-Matematisk grundkurs. Reella tal, intervall, räta linjer, cirklar Faktorsatsen, faktoriseringar, polynomekvationer Olikheter Ekvationer

Läs mer

Tillämpad Matematik I Övning 3

Tillämpad Matematik I Övning 3 HH/ITE/BN Tillämpad Matematik I, Övning 3 1 Tillämpad Matematik I Övning 3 Allmänt Övningsuppgifterna, speciellt Typuppgifter i första hand, är eempel på uppgifter du kommer att möta på tentamen. På denna

Läs mer

Talmängder. Målet med första föreläsningen:

Talmängder. Målet med första föreläsningen: Moment 1..1, 1.., 1..4, 1..5, 1.. 1..5, 1..6 Viktiga exempel 1.7, 1.8, 1.8,1.19,1. Handräkning 1.7, 1.9, 1.19, 1.4, 1.9 b,e 1.0 a,b Datorräkning 1.6-1.1 Målet med första föreläsningen: 1 En första kontakt

Läs mer

Tillämpad Matematik II Övning 1

Tillämpad Matematik II Övning 1 HH/ITE/BN Tillämpad Matematik II, Övning Tillämpad Matematik II Övning Allmänt Övningsuppgifterna, speciellt Typuppgifter i första hand, är exempel på uppgifter du kommer att möta på tentamen. På denna

Läs mer

Complex numbers. William Sandqvist

Complex numbers. William Sandqvist Complex numbers Hur många lösningar har en andragradsekvation? y = x 2 1 = 0 Två lösningar! Kommer Du ihåg konjugatregeln? Svaret kan ju lika gärna skrivas: x 1 = 1 x2 = + 1 Hur många lösningar har den

Läs mer

MA2018 Tillämpad Matematik III-ODE, 4.0hp,

MA2018 Tillämpad Matematik III-ODE, 4.0hp, MA2018 Tillämpad Matematik III-ODE,.0hp, 2018-08-13 Hjälpmedel: Penna, radergummi och rak linjal. Varken räknedosa eller formelsamling är tillåtet! Tentamen består av 20 frågor! Endast Svarsblanketten

Läs mer

x 2 4 (4 x)(x + 4) 0 uppfylld?

x 2 4 (4 x)(x + 4) 0 uppfylld? MÄLARDALENS HÖGSKOLA Akademin för utbildning, kultur och kommunikation Avdelningen för tillämpad matematik Examinator: Örjan Dillner TENTAMEN I MATEMATIK MMA11 Matematisk grundkurs TEN1 Datum: 7 september

Läs mer

Föreläsning 5: Summor (forts) och induktionsbevis

Föreläsning 5: Summor (forts) och induktionsbevis ht01 Föreläsning 5: Summor (forts) och induktionsbevis Några viktiga summor Det är inte alltid möjligt att hitta uttryck för summor beskriva med summanotation, men vi tar här upp tre viktiga fall: Sats:

Läs mer

1. Ange samtliga uppsättningar av heltal x, y, z som uppfyller båda ekvationerna. x + 2y + 24z = 13 och x 11y + 17z = 8.

1. Ange samtliga uppsättningar av heltal x, y, z som uppfyller båda ekvationerna. x + 2y + 24z = 13 och x 11y + 17z = 8. Tentamenskrivning MATA15 Algebra: delprov 1, 6hp Lördagen den mars 014 Matematikcentrum Matematik NF LÖSNINGSFÖRSLAG 1. Ange samtliga uppsättningar av heltal x, y, z som uppfyller båda ekvationerna x +

Läs mer

Dugga 2 i Matematisk grundkurs

Dugga 2 i Matematisk grundkurs Linköpings tekniska högskola Matematiska institutionen Tillämpad matematik Kurskod: TATA68 Provkod: TEN Inga hjälpmedel är tillåtna. Dugga i Matematisk grundkurs 013 16 kl 8.00 1.00 Lösningarna skall vara

Läs mer

Introduktion till Komplexa tal

Introduktion till Komplexa tal October 8, 2014 Introduktion till Komplexa tal HT 2014 CTH Lindholmen 2 Index 1 Komplexa tal 5 1.1 Definition och jämförelse med R 2................ 5 1.1.1 Likheter mellan R 2 och C................ 5

Läs mer

Lösningsförslag TATM

Lösningsförslag TATM Lösningsförslag TATM79 016-09-6 1 a) Vi isolerar x + och kvadrerar ekvationen observera att det då bara blir en implikation!): + x + = x x + = x ) x + = x ) = x 1x + 1 x 1 x + 10 = 0 x = 1 6 ± 7 6 Eftersom

Läs mer

5. Förklara varför sannolikheten att en slumpvis vald lottorad har 7 rätt är x + x 2 innehåller termen 14x. Bestäm

5. Förklara varför sannolikheten att en slumpvis vald lottorad har 7 rätt är x + x 2 innehåller termen 14x. Bestäm VECKANS UPPGIFTER MENY FÖR HELA MOMENT 3 5B3 Amelia fr P och T ht 004 Uppgifter till Vecka 4. Förklara hur ett induktionsbevis fungerar.. Bevisa att 4 n är jämnt delbart med 3 för n =,, 3,... 3. Bevisa

Läs mer

Komplexa tal: Begrepp och definitioner

Komplexa tal: Begrepp och definitioner UPPSALA UNIVERSITET Baskurs i matematik, 5hp Matematiska institutionen Höstterminen 007 Erik Darpö Martin Herschend Komplexa tal: Begrepp och definitioner Komplexa tal uppstod ur det faktum att vissa andragradsekvationer,

Läs mer

SF1661 Perspektiv på matematik Tentamen 20 oktober 2011 kl Svar och lösningsförslag

SF1661 Perspektiv på matematik Tentamen 20 oktober 2011 kl Svar och lösningsförslag Hans Thunberg KTH Matematik SF66 Perspektiv på matematik Tentamen 0 oktober 0 kl 08.00.00 Svar och lösningsförslag () Bestäm ekvationen för den cirkel som passerar genom punkten (, 4) och har sin medelpunkt

Läs mer

S n = (b) Med hjälp av deluppgift (a) beräkna S n. 1 x < 2x 1? i i. och

S n = (b) Med hjälp av deluppgift (a) beräkna S n. 1 x < 2x 1? i i. och Uppgift 1 För vilka x R gäller x 4 = 4? Uppgift Låt S n = n k=1 3 k (a) Visa att S n är en geometrisk summa (b) Med hjälp av deluppgift (a) beräkna S n Uppgift 3 Lös ekvationen e x + e x = 3 Uppgift 4

Läs mer

Övningshäfte 2: Induktion och rekursion

Övningshäfte 2: Induktion och rekursion GÖTEBORGS UNIVERSITET MATEMATIK 1, MMG200, HT2017 INLEDANDE ALGEBRA Övningshäfte 2: Induktion och rekursion Övning D Syftet är att öva förmågan att utgående från enkla samband, aritmetiska och geometriska,

Läs mer

Övningshäfte 2: Komplexa tal

Övningshäfte 2: Komplexa tal LMA100 VT007 ARITMETIK OCH ALGEBRA DEL Övningshäfte : Komplexa tal Övningens syfte är att bekanta sig med komplexa tal. De komplexa talen, som är en utvidgning av de reella talen, kom till på 1400 talet

Läs mer

Explorativ övning 7 KOMPLEXA TAL

Explorativ övning 7 KOMPLEXA TAL Explorativ övning 7 KOMPLEXA TAL Övningens syfte är att bekanta sig med komplexa tal. De komplexa talen, som är en utvidgning av de reella talen, kom till på 1400 talet då man försökte lösa kvadratiska

Läs mer

Lösningar till utvalda uppgifter i kapitel 5

Lösningar till utvalda uppgifter i kapitel 5 Lösningar till utvalda uppgifter i kapitel 5 5.3. Vi använder Euklides algoritm och får 4485 = 1 3042 + 1443 3042 = 2 1443 + 156 1443 = 9 156 + 39 156 = 4 39. Alltså är sgd(3042, 4485) = 39. Om vi startar

Läs mer

lösningar! ger 0 poäng.) i partiella bråk. och deras typ.

lösningar! ger 0 poäng.) i partiella bråk. och deras typ. TENTAMEN Introduktionskurs i Matematik H1009 Datum: augg 018 Tid: 8:15-10 (1.5 hp) Tentamen ger maimalt 1p. För godkändd tentamen krävs 6p. Till samtliga uppgifter krävs fullständiga lösningar! Inga hjälpmedel

Läs mer

forts. Kapitel A: Komplexa tal

forts. Kapitel A: Komplexa tal forts. Kapitel A: Komplexa tal c 005 Eric Järpe Högskolan i Halmstad Andragradsekvationer Obs! i är antingen 1 1 + i) eller 1 1 + i), dvs i = 1 1 + i). Obs! Se upp med roten ur negativa tal: regeln ab

Läs mer

TATM79: Föreläsning 1 Notation, ekvationer, polynom och summor

TATM79: Föreläsning 1 Notation, ekvationer, polynom och summor TATM79: Föreläsning 1 Notation, ekvationer, polynom och summor Johan Thim 22 augusti 2018 1 Vanliga symboler Lite logik Implikation: P Q. Detta betyder att om P är sant så är Q sant. Utläses P medför Q

Läs mer

Elteknik. Komplexa tal

Elteknik. Komplexa tal Sven-Bertil Kronkvist Elteknik Komplexa tal Revma utbildning KOMPLEXA TAL Komplexa eller imaginära tal kan användas för algebraiska växelströmsberäkningar på samma sätt som i likströmsläran. Den läsare

Läs mer

MA2047 Algebra och diskret matematik

MA2047 Algebra och diskret matematik MA2047 Algebra och diskret matematik Något om komplexa tal Mikael Hindgren 17 oktober 2018 Den imaginära enheten i Det finns inga reella tal som uppfyller ekvationen x 2 + 1 = 0. Vi inför den imaginära

Läs mer

Andragradsekvationer. + px + q = 0. = 3x 7 7 3x + 7 = 0. q = 7

Andragradsekvationer. + px + q = 0. = 3x 7 7 3x + 7 = 0. q = 7 Andragradsekvationer Tid: 70 minuter Hjälpmedel: Formelblad. Alla andragradsekvationer kan skrivas på formen Vilket värde har q i ekvationen x = 3x 7? + E Korrekt svar. B (q = 7) x + px + q = 0 (/0/0)

Läs mer

x2 6x x2 6x + 14 x (x2 2x + 4)

x2 6x x2 6x + 14 x (x2 2x + 4) Tentamenskrivning MATA15 Algebra: delprov 1, 6hp Måndagen den 5:e november 01 Matematikcentrum Matematik NF LÖSNINGSFÖRSLAG 1. För vilka reella tal x gäller olikheten x 6x + 14? Lösningsalternativ 1: Den

Läs mer

1 Talteori. Det här kapitlet inleder vi med att ta

1 Talteori. Det här kapitlet inleder vi med att ta 1 Talteori DELKAPITEL 1.1 Kongruensräkning 1. Talföljder och induktionsbevis FÖRKUNSKAPER Faktorisering av tal Algebraiska förenklingar Formler Direkta och indirekta bevis CENTRALT INNEHÅLL Begreppet kongruens

Läs mer

Allmänna Tredjegradsekvationen - version 1.4.0

Allmänna Tredjegradsekvationen - version 1.4.0 Allmänna Tredjegradsekvationen - version 1.4.0 Lars Johansson 0 april 017 Vi vet hur man med rotutdragning löser en andragradsekvation med reella koecienter: x + px + 0 1) Men hur gör man för att göra

Läs mer

Matematisk Modellering Övning 2

Matematisk Modellering Övning 2 HH/IDE/BN Matematisk Modellering, Övning 2 Matematisk Modellering Övning 2 Allmänt Övningsuppgifterna är eempel på uppgifter, eller delar av uppgifter, du kommer att möta på tentamen. Undantag utgör naturligtvis

Läs mer

4x 1 = 2(x 1). i ( ) får vi 5 3 = 5 1, vilket inte stämmer alls, så x = 1 2 är en falsk rot. Svar. x = = x x + y2 1 4 y

4x 1 = 2(x 1). i ( ) får vi 5 3 = 5 1, vilket inte stämmer alls, så x = 1 2 är en falsk rot. Svar. x = = x x + y2 1 4 y UPPSALA UNIVERSITET Matematiska institutionen Styf Prov i matematik BASKURS DISTANS 011-03-10 Lösningar till tentan 011-03-10 Del A 1. Lös ekvationen 5 + 4x 1 5 x. ( ). Lösning. Högerledet han skrivas

Läs mer

Delbarhet och primtal

Delbarhet och primtal Talet 35 är delbart med 7 eftersom 35 = 5 7 Delbarhet och primtal 7 är en faktor i 35 kan skrivas 7 35 7 är en delare (divisor) till 35 35 är en multipel av 7 De hela talen kan delas in i jämna och udda

Läs mer

MA2003 Tillämpad Matematik I, 7.5hp,

MA2003 Tillämpad Matematik I, 7.5hp, MA Tillämpad Matematik I, 7.hp, 9-6- Hjälpmedel: Penna, radergummi och rak linjal. Varken räknedosa eller formelsamling är tillåtet! Tentamen består av frågor! Endast Svarsblanketten ska lämnas in! Inget

Läs mer

Namn Klass Personnummer (ej fyra sista)

Namn Klass Personnummer (ej fyra sista) Prövning matematik 6 feb 16 (prövningstillfälle ) Namn Klass Personnummer (ej fyra sista) Mobiltelefonnummer e-post SKRIV TYDLIGT! Alla papper ska förses med namn och återlämnas Skriv tydligt. Oläsliga

Läs mer

Lösningsförslag TATM

Lösningsförslag TATM Lösningsförslag TATM9 0-0-0. a) Summan är geometrisk med kvoten q = / och termer. Alltså, 50 k = 50 k+ = k ) ) ) ) =. k= k= b) Från definitionen av binomialkoefficienter ser vi att ) ) n n nn ) 6 = = =

Läs mer

Övningshäfte 2: Komplexa tal (och negativa tal)

Övningshäfte 2: Komplexa tal (och negativa tal) LMA110 VT008 ARITMETIK OCH ALGEBRA DEL Övningshäfte : Komplexa tal (och negativa tal) Övningens syfte är att bekanta sig med komplexa tal och att fundera på några begreppsliga svårigheter som negativa

Läs mer

Tentamen Matematisk grundkurs, MAGA60

Tentamen Matematisk grundkurs, MAGA60 MATEMATIK Karlstads universitet 2010-11-02, kl 8.15-13.15 Hjälpmedel: Inga Ansvarig lärare: Håkan Granath Tel: 2181, alt. 0735-37 37 34 Tentamen Matematisk grundkurs, MAGA60 För uppgift 1 skall endast

Läs mer

MA2004 Tillämpad Matematik II, 7.5hp,

MA2004 Tillämpad Matematik II, 7.5hp, MA004 Tillämpad Matematik II, 7.5hp, 09-06-07 Hjälpmedel: Penna, radergummi och rak linjal. Varken räknedosa eller formelsamling är tillåtet! Tentamen består av 0 frågor! Endast Svarsblanketten ska lämnas

Läs mer

Lösningar till övningstentan. Del A. UPPSALA UNIVERSITET Matematiska institutionen Styf. Övningstenta BASKURS DISTANS

Lösningar till övningstentan. Del A. UPPSALA UNIVERSITET Matematiska institutionen Styf. Övningstenta BASKURS DISTANS UPPSALA UNIVERSITET Matematiska institutionen Styf Övningstenta BASKURS DISTANS 011-0-7 Lösningar till övningstentan Del A 1. Lös ekvationen 9 + 5x = x 1 ( ). Lösning. Genom att kvadrera ekvationens led

Läs mer

Övningstentamen i MA2004 Tillämpad Matematik II, 7.5hp

Övningstentamen i MA2004 Tillämpad Matematik II, 7.5hp Övningstentamen i MA00 Tillämpad Matematik II, 7hp Tentamen består av 30 frågor! Endast Svarsblanketten ska lämnas in! Inget tentamensomslag! Hjälpmedel: Penna, radergummi och linjal Varken räknedosa eller

Läs mer

Talmängder N = {0,1,2,3,...} C = {a+bi : a,b R}

Talmängder N = {0,1,2,3,...} C = {a+bi : a,b R} Moment 1..1, 1.., 1..4, 1..5 Viktiga exempel 1., 1.4, 1.8 Övningsuppgifter I 1.7, 1.8, 1.9 Extrauppgifter 1,,, 4 Den teori och de exempel, som kommer att presenteras här, är normalt vad jag kommer att

Läs mer

MA2018 Tillämpad Matematik III-ODE, 4.0hp,

MA2018 Tillämpad Matematik III-ODE, 4.0hp, MA208 Tillämpad Matematik III-ODE, 4.0hp, 208-05-28 Hjälpmedel: Penna, radergummi och rak linjal. Varken räknedosa eller formelsamling är tillåtet! Tentamen består av 20 frågor! Endast Svarsblanketten

Läs mer

Tillämpad Matematik II Övning 2

Tillämpad Matematik II Övning 2 HH/ITE/BN Tillämpad Matematik II, Övning Tillämpad Matematik II Övning Allmänt Övningsuppgifterna, speciellt Typuppgifter i första hand, är exempel på uppgifter du kommer att möta på tentamen. På denna

Läs mer

Lösningar till utvalda uppgifter i kapitel 4

Lösningar till utvalda uppgifter i kapitel 4 Lösningar till utvalda uppgifter i kapitel 4 4.7 Vi visar först att A 2n 3 2 n 2 med ett induktionsbevis. Basfall: n 0 Vi har att 3 2 0 2 A 0, och alltså gäller likheten för n 0. Induktionssteget: Antag

Läs mer

Induktion, mängder och bevis för Introduktionskursen på I

Induktion, mängder och bevis för Introduktionskursen på I Induktion, mängder och bevis för Introduktionskursen på I J A S, ht 04 1 Induktion Detta avsnitt handlar om en speciell teknik för att försöka bevisa riktigheten av påståenden eller formler, för alla heltalsvärden

Läs mer

Exempeltenta 3 Introduktionskurs i Matematik H1009 (1.5 hp) Datum: xxxxxx

Exempeltenta 3 Introduktionskurs i Matematik H1009 (1.5 hp) Datum: xxxxxx Eempeltenta Introduktionskurs i Matematik H1009 (15 hp) Datum: Tentamen ger maimalt 1p För godkänd tentamen krävs 6p Till samtliga uppgifter krävs fullständiga lösningar! Inga hjälpmedel tillåtna Skriv

Läs mer

1.1 Den komplexa exponentialfunktionen

1.1 Den komplexa exponentialfunktionen TATM79: Föreläsning 8 Komplexa exponentialfunktionen och binomiska ekvationer Johan Thim augusti 07 Komplexa tal på polär form Ett komplex tal z = a+bi kan som bekant betraktas som en punkt i komplexa

Läs mer

Tentamen i Matematisk analys MVE045, Lösningsförslag

Tentamen i Matematisk analys MVE045, Lösningsförslag Tentamen i Matematisk analys MVE5 26-8-23 Lösningsförslag Kl. 8.3 2.3. Tillåtna hjälpmedel: Mathematics handbook for science and engineering (BE- TA) eller CRC Standard Mathematical Tables. Indexeringar

Läs mer

Instuderingsfrågor i Funktionsteori

Instuderingsfrågor i Funktionsteori Instuderingsfrågor i Funktionsteori Anvisningar. Avsikten med dessa instuderingsfrågor är att ge Dig möjlighet att fortlöpande kontrollera att Du någorlunda behärskar kursens teori. Om Du märker att Du

Läs mer

Kompletteringskompendium

Kompletteringskompendium Kompletteringskompendium Tomas Ekholm Institutionen för matematik Innehåll 0 Notationer och inledande logik 3 0.1 Talmängder............................ 3 0. Utsagor.............................. 3 1 Induktion

Läs mer

Tillämpad Matematik II Övning 2

Tillämpad Matematik II Övning 2 HH/ITE/BN Tillämpad Matematik II, Övning Tillämpad Matematik II Övning Allmänt Övningsuppgifterna, speciellt Typuppgifter i första hand, är exempel på uppgifter du kommer att möta på tentamen. På denna

Läs mer

TATM79: Föreläsning 3 Komplexa tal

TATM79: Föreläsning 3 Komplexa tal TATM79: Föreläsning 3 Komplexa tal Johan Thim 22 augusti 2018 1 Komplexa tal Definition. Det imaginära talet i uppfyller att i 2 = 1. Detta är alltså ett tal vars kvadrat är negativ. Det kan således aldrig

Läs mer

Uppsala Universitet Matematiska Institutionen Thomas Erlandsson

Uppsala Universitet Matematiska Institutionen Thomas Erlandsson Uppsala Universitet Matematiska Institutionen Thomas Erlandsson LÄSANVISNINGAR VECKA 36 VERSION 1. ARITMETIK FÖR RATIONELLA OCH REELLA TAL, OLIKHETER, ABSOLUTBELOPP ADAMS P.1 Real Numbers and the Real

Läs mer

MA2003 Tillämpad Matematik I, 7.5hp,

MA2003 Tillämpad Matematik I, 7.5hp, MA Tillämpad Matematik I, 7.hp, 9--8 Hjälpmedel: Penna, radergummi och rak linjal. Varken räknedosa eller formelsamling är tillåtet! Tentamen består av frågor! Endast Svarsblanketten ska lämnas in! Inget

Läs mer

M0038M Differentialkalkyl, Lekt 15, H15

M0038M Differentialkalkyl, Lekt 15, H15 M0038M Differentialkalkyl, Lekt 15, H15 Staffan Lundberg Luleå Tekniska Universitet Staffan Lundberg M0038M H15 1/ 15 Repetition Lekt 14 Bestäm följande gränsvärden cos x tan x lim x 0 x x + ln ( e 2x

Läs mer

4 Fler deriveringsregler

4 Fler deriveringsregler 4 Fler deriveringsregler 4. Dagens Teori Derivatan av potensfunktioner. Potensfunktioner med heltalsexponenter, som du redan kan derivera, kallas polynomfunktioner, som till exempel: f(x) = 2x4 x3 + 2x

Läs mer

P03. (A) Visa, att om en aritmetisk serie med differensen d har a som första och b som sista term, så är seriens summa b + a 2.

P03. (A) Visa, att om en aritmetisk serie med differensen d har a som första och b som sista term, så är seriens summa b + a 2. Kap P. P0. (A) Rita följande kurvor a. = + = c. = [ + ], där [a] betecknar heltalsdelen av talet a d. sgn( ), där sgn(a) betecknar tecknet av talet a. P0. (B) För vilka reella gäller + + + 4? P0. (A) Visa,

Läs mer

Komposanter, koordinater och vektorlängd Ja, den här teorin gick vi igenom igår. Istället koncentrerar vi oss på träning inför KS3 och tentamen.

Komposanter, koordinater och vektorlängd Ja, den här teorin gick vi igenom igår. Istället koncentrerar vi oss på träning inför KS3 och tentamen. Sidor i boken 40-4 Komposanter, koordinater och vektorlängd Ja, den här teorin gick vi igenom igår. Istället koncentrerar vi oss på träning inför KS3 och tentamen. Läxa 1. En rät linje, L 1, skär y-axeln

Läs mer

TNA001- Matematisk grundkurs Tentamen Lösningsskiss

TNA001- Matematisk grundkurs Tentamen Lösningsskiss TNA00- Matematisk grundkurs Tentamen 05-0-0 - Lösningsskiss. a) Vi löser ekvationen x + x = x + 4 genom att studera tre fall. Fall : x 0. Vi får ekvationen: x + x = x + 4 x =, som duger ty x = tillhör

Läs mer

IX Diskret matematik

IX Diskret matematik Lösning till tentamen 101213 IX1500 - Diskret matematik 1 Betrakta det finska ordet m a t e m a t i i k k a. Hur många arrangemang av bokstäverna i detta ord innehåller varken orden matematik eller matte?

Läs mer

Något om Taylors formel och Mathematica

Något om Taylors formel och Mathematica HH/ITE/BN Taylors formel och Mathematica Något om Taylors formel och Mathematica Bertil Nilsson 207-0-0 I am the best Ett av Brooks många ödmjuka inlägg i den infekterade striden som under början av 700

Läs mer

. Bestäm Rez och Imz. i. 1. a) Låt z = 1+i ( b) Bestäm inversen av matrisen A = (3p) x + 3y + 4z = 5, 3x + 2y + 7z = 3, 2x y + z = 4.

. Bestäm Rez och Imz. i. 1. a) Låt z = 1+i ( b) Bestäm inversen av matrisen A = (3p) x + 3y + 4z = 5, 3x + 2y + 7z = 3, 2x y + z = 4. MÄLARDALENS HÖGSKOLA Akademin för utbildning, kultur och kommunikation Avdelningen för tillämpad matematik Examinator: Erik Darpö TENTAMEN I MATEMATIK MAA150 Vektoralgebra TEN1 Datum: 3 oktober 2014 Skrivtid:

Läs mer

MA2004 Tillämpad Matematik II, 7.5hp,

MA2004 Tillämpad Matematik II, 7.5hp, MA004 Tillämpad Matematik II, 7.hp, 08-0- Hjälpmedel: Penna, radergummi och rak linjal. Varken räknedosa eller formelsamling är tillåtet! Tentamen består av 0 frågor! Endast Svarsblanketten ska lämnas

Läs mer

Moment 6.1, 6.2 Viktiga exempel Övningsuppgifter T6.1-T6.6

Moment 6.1, 6.2 Viktiga exempel Övningsuppgifter T6.1-T6.6 Moment 6., 6. Viktiga exempel 6.-6. Övningsuppgifter T6.-T6.6 Matriser Definition. En matris är ett schema med m rader och n kolonner eller kolumner, som vi kallar dem i datalogin innehållande m n element.

Läs mer

A-del. (Endast svar krävs)

A-del. (Endast svar krävs) Lösningar till tentamen i Matematik grundkurs den 7 juni 011. A-del. (Endast svar krävs) 1. Förenkla så långt som möjligt. Svar: 1 1 1 1 +1. Skriv talet på formen a + ib. Svar: 1 + i 3. Beräkna 10 + 5i

Läs mer

Tentamensuppgifter, Matematik 1 α

Tentamensuppgifter, Matematik 1 α Matematikcentrum Matematik NF Tentamensuppgifter, Matematik 1 α Utvalda och utskrivna av Tomas Claesson och Per-Anders Ivert Aritmetik 1. Bestäm en största gemensam delare till heltalen a) 5431 och 1345,

Läs mer

Sidor i boken Figur 1: Sträckor

Sidor i boken Figur 1: Sträckor Sidor i boken 37-39 Vektorer Det vi ska studera här är bara en liten del av den teori du kommer att stifta bekantskap med i dina fortsatta studier i kursen Linjär algebra. Många av de objekt man arbetar

Läs mer

3, 6, 9, 12, 15, 18. 1, 2, 4, 8, 16, 32 Nu är stunden inne, då vill vill summera talen i en talföljd

3, 6, 9, 12, 15, 18. 1, 2, 4, 8, 16, 32 Nu är stunden inne, då vill vill summera talen i en talföljd I föreläsning 18 bekantade vi oss med talföljder, till exempel eller 3, 6, 9, 1, 15, 18 1,, 4, 8, 16, 3 Nu är stunden inne, då vill vill summera talen i en talföljd och 3 + 6 + 9 + 1 + 15 + 18 1 + + 4

Läs mer

Övningstentamen i MA2003 Tillämpad Matematik I, 7.5hp

Övningstentamen i MA2003 Tillämpad Matematik I, 7.5hp Övningstentamen i MA Tillämpad Matematik I,.hp Hjälpmedel: Penna, radergummi och rak linjal. Varken räknedosa eller formelsamling är tillåtet! Tentamen består av frågor! Endast Svarsblanketten ska lämnas

Läs mer

f(x) = 1 x 1 y = f(x) = 1 y = 1 (x 1) = 1 y x = 1+ 1 y f 1 (x) = 1+ 1 x 1+ 1 x 1 = 1 1 =

f(x) = 1 x 1 y = f(x) = 1 y = 1 (x 1) = 1 y x = 1+ 1 y f 1 (x) = 1+ 1 x 1+ 1 x 1 = 1 1 = Moment.5,.5.,.5.,.5. Viktiga eempel.0,.,.,.,.,.5,.,.7 Övningsuppgifter.8,.0 abc Inversfunktioner Givet: y = f(), y uttryckt i Sökt : = g(y), uttryckt i y När kan man lösa ut som funktion av y? Sats. Om

Läs mer

Namn Klass Personnummer (ej fyra sista)

Namn Klass Personnummer (ej fyra sista) Prövning matematik 4 april 06 (prövningstillfälle 6) Namn Klass Personnummer (ej fyra sista) Mobiltelefonnummer e-post SKRIV TYDLIGT! Alla papper ska förses med namn och återlämnas Skriv tydligt. Oläsliga

Läs mer

DEL I. Matematiska Institutionen KTH. Lösning till tentamensskrivning på kursen Linjär algebra II, SF1604 för D, den 5 juni 2010 kl

DEL I. Matematiska Institutionen KTH. Lösning till tentamensskrivning på kursen Linjär algebra II, SF1604 för D, den 5 juni 2010 kl 1 Matematiska Institutionen KTH Lösning till tentamensskrivning på kursen Linjär algebra II, SF164 för D, den 5 juni 21 kl 9.- 14.. Examinator: Olof Heden. Hjälpmedel: Inga hjälpmedel är tillåtna på tentamensskrivningen.

Läs mer

(5 + 4x)(5 2y) = (2x y) 2 + (x 2y) ,

(5 + 4x)(5 2y) = (2x y) 2 + (x 2y) , MÄLARDALENS HÖGSKOLA Akademin för utbildning, kultur och kommunikation Avdelningen för tillämpad matematik Examinator: Lars-Göran Larsson TENTAMEN I MATEMATIK MMA11 Matematisk grundkurs TEN Datum: 015-06-01

Läs mer

1, 2, 3, 4, 5, 6,...

1, 2, 3, 4, 5, 6,... Dagens nyhet handlar om talföljder, ändliga och oändliga. Talföljden 1,, 3, 4, 5, 6,... är det första vi, som barn, lär oss om matematik över huvud taget. Så småningom lär vi oss att denna talföljd inte

Läs mer

e x x + lnx 5x 3 4e x (0.4) x 0 e 2x 1 a) lim (0.3) b) lim ( 1 ) k. (0.3) c) lim 2. a) Lös ekvationen e x = 0.

e x x + lnx 5x 3 4e x (0.4) x 0 e 2x 1 a) lim (0.3) b) lim ( 1 ) k. (0.3) c) lim 2. a) Lös ekvationen e x = 0. LUNDS TEKNISKA HÖGSKOLA MATEMATIK TENTAMENSSKRIVNING ENDIMENSIONELL ANALYS DELKURS B 00 0 kl 8 3 INGA HJÄLPMEDEL. Lösningarna ska vara försedda med ordentliga motiveringar. Lämna tydliga svar om så är

Läs mer

Komplexa tal. j 2 = 1

Komplexa tal. j 2 = 1 1 Komplexa tal De komplexa talen används när man behandlar växelström inom elektroniken. Imaginära enheten betecknas i elektroniken med j (i, som används i matematiken, är ju upptaget av strömmen). Den

Läs mer

1. Rita in i det komplexa talplanet det område som definieras av följande villkor: (1p)

1. Rita in i det komplexa talplanet det område som definieras av följande villkor: (1p) TENTAMEN I MATEMATIK MED MATEMATISK STATISTIK HF TEN Datum: -- Tid: :5-7:5 Hjälpmedel: Formelblad, delas ut i salen Miniräknare (av vilken tp som hels Förbjudna hjälpmedel: Ägna formelblad, telefon, laptop

Läs mer

Matematik E (MA1205)

Matematik E (MA1205) Matematik E (MA105) 50 p Betygskriterier med eempeluppgifter Värmdö Gymnasium Mål och betygskriterier Ma E (MA105) Matematik Läsåret 003-004 Betygskriterier enligt Skolverket KRITERIER FÖR BETYGET GODKÄND

Läs mer

1 Tal, mängder och funktioner

1 Tal, mängder och funktioner 1 Tal, mängder och funktioner 1.1 Komplexa tal Här skall vi snabbt repetera de grundläggande egenskaperna hos komplexa tal. För en mera utförlig framställning hänvisar vi till litteraturen i Matematisk

Läs mer

den reella delen på den horisontella axeln, se Figur (1). 1

den reella delen på den horisontella axeln, se Figur (1). 1 ANTECKNINGAR TILL RÄKNEÖVNING 1 & - KOMPLEXA TAL Det nns era olika talmängder; de positiva heltalen (0, 1,,... kallas de naturliga talen N, tal som kan skrivas som kvoter av andra tal kallas rationella

Läs mer

MATEMATIKPROV, LÅNG LÄROKURS BESKRIVNING AV GODA SVAR

MATEMATIKPROV, LÅNG LÄROKURS BESKRIVNING AV GODA SVAR MATEMATIKPROV, LÅNG LÄROKURS 8906 BESKRIVNING AV GODA SVAR Examensämnets censorsmöte har godkänt följande beskrivningar av goda svar Av en god prestation framgår det hur examinanden har kommit fram till

Läs mer

Om a 2 är ett jämnt tal, så är också a ett jämt tal sant. = 4n 2 + 4n + 1

Om a 2 är ett jämnt tal, så är också a ett jämt tal sant. = 4n 2 + 4n + 1 1127 Påstående betecknas med P Motsatsen till påsteåendet betecknas P = icke P = inte P = ej P P n är ett udda tal P n är ett jämnt tal Kommentar: n kan enbart vara udda eller jämnt, P a + 2b 15 P a +

Läs mer

MA2004 Tillämpad Matematik II, 7.5hp,

MA2004 Tillämpad Matematik II, 7.5hp, MA00 Tillämpad Matematik II, 7hp, 09-0-6 Hjälpmedel: Penna, radergummi och rak linjal Varken räknedosa eller formelsamling är tillåtet! Tentamen består av 0 frågor! Endast Svarsblanketten ska lämnas in!

Läs mer

Tentamen i Komplex analys, SF1628, den 21 oktober 2016

Tentamen i Komplex analys, SF1628, den 21 oktober 2016 Institutionen för matematik KTH Håkan Hedenmalm Tentamen i Komplex analys, SF68, den oktober 06 Skrivtid 4.00-9.00. Inga hjälpmedel är tillåtna. Skriv tydliga lösningar med utförliga motiveringar. För

Läs mer

Matematisk kommunikation för Π Problemsamling

Matematisk kommunikation för Π Problemsamling Problemsamling Charlotte Soneson & Niels Chr. Overgaard september 200 Problem. Betrakta formeln n k = k= n(n + ). 2 Troliggör den först genom att exempelvis i summan +2+3+4+5+6 para ihop termer två och

Läs mer

= 1 h) y 3 = 4(x 1) i) y = 17 j) x = 5. = 1 en ekvation för linjen genom a) (6, 0) och (0, 5) b) (9, 0) och (0, 5)

= 1 h) y 3 = 4(x 1) i) y = 17 j) x = 5. = 1 en ekvation för linjen genom a) (6, 0) och (0, 5) b) (9, 0) och (0, 5) Matematikcentrum Matematik NF Räta linjen. Ange riktningskoefficient och skärningspunkter me alarna för följane linjer. a) y = 5 b) = y + 5 c) y = 5 + ) + y + = 0 e) y 4 = 0 f) + y = g) y 5 = h) y = 4

Läs mer

1 Addition, subtraktion och multiplikation av (reella) tal

1 Addition, subtraktion och multiplikation av (reella) tal Omstuvat utdrag ur R Pettersson: Förberedande kurs i matematik Addition, subtraktion och multiplikation av (reella) tal För reella tal gäller som bekant bl.a. följande räkneregler: (a + b) + c = a + (b

Läs mer

Matematisk kommunikation för Π Problemsamling

Matematisk kommunikation för Π Problemsamling Problemsamling Niels Chr. Overgaard & Johan Fredriksson 3 september 205 Problem 0. Skriv följande summor mha summationstecken. ( Dvs på formen q k=p a k där k är en räknare som löper med heltalssteg mellan

Läs mer

Radien r och vinkeln θ för komplexa tal i polär form och potensform: KOMPLEXA TAL. ) (polär form) (potensform)

Radien r och vinkeln θ för komplexa tal i polär form och potensform: KOMPLEXA TAL. ) (polär form) (potensform) Armn Hallovc: EXTRA ÖVNINGAR KOMPLEXA TAL a + b, där a, b R (rektangulär form r(cosθ + snθ (polär form θ re (potensform Om a + b och a, b R då gäller: a kallas realdelen av och betecknas Re( b kallas magnärdelen

Läs mer

Kontinuitet och gränsvärden

Kontinuitet och gränsvärden Kapitel Kontinuitet och gränsvärden.1 Introduktion till kontinuerliga funktioner Kapitlet börjar med allmänna definitioner. Därefter utvidgar vi successivt familjen av kontinuerliga funktioner, genom specifika

Läs mer

1. (a) Formulera vad som skall bevisas i basfallet och i induktionssteget i ett induktionsbevis av påståendet att. 4 5 n för alla n = 0, 1, 2, 3,...

1. (a) Formulera vad som skall bevisas i basfallet och i induktionssteget i ett induktionsbevis av påståendet att. 4 5 n för alla n = 0, 1, 2, 3,... UPPSALA UNIVERSITET PROV I MATEMATIK Matematiska institutionen Baskurs i matematik Vera Koponen 2008-02-2 Skrivtid: 8-. Tillåtna hjälpmedel: Inga, annat än pennor, radergum och papper det sista tillhandahålles).

Läs mer

Analys 2 M0024M, Lp

Analys 2 M0024M, Lp Analys 2 M0024M, Lp 4 2013 Lektion 1 Staffan Lundberg Luleå Tekniska Universitet 4 april 2013 Staffan Lundberg (LTU) Analys 2 M0024M, Lp 4 2013 4 april 2013 1 / 17 Kursinformation m.m. Examinator: Lennart

Läs mer

1. (a) Los ekvationen z 2 4iz 7 + 4i = 0: Rotterna ska ges pa formen a + bi. (b) Rita i det komplexa talplanet alla komplexa tal z som uppfyller

1. (a) Los ekvationen z 2 4iz 7 + 4i = 0: Rotterna ska ges pa formen a + bi. (b) Rita i det komplexa talplanet alla komplexa tal z som uppfyller Repetitionsuppgifter Endimensionell analys, Komplexa tal delkurs B2. (a) Los ekvationen z 2 4iz 7 + 4i = 0: Rotterna ska ges pa formen a + bi. (b) Rita i det komplexa talplanet alla komplexa tal z som

Läs mer

Föreläsning 9: Komplexa tal, del 2

Föreläsning 9: Komplexa tal, del 2 ht016 Föreläsning 9: Komplexa tal, del Den komplexa exponentialfunktionen För att definiera den komplexa exponentialfunktionen utgår vi ifrån att den ska följa samma regler som för reella tal. Vi minns

Läs mer

också en lösning: Alla lösningar, i detta fall, ges av

också en lösning: Alla lösningar, i detta fall, ges av H009, Introduktionskurs i matematik Armin Halilovic TRIGONOMETRISKA EKVATIONER A) Ekvationen sin( x ) = a (och liknande ekvationer) Ekvationen sin( x ) = a har lösningar endast om a (eftersom sin( x )

Läs mer

2 Matematisk grammatik

2 Matematisk grammatik MATEMATISK GRAMMATIK Matematisk grammatik.1 Skriva matematik Matematisk grammatik, minst lika kul som det låter, och hur man skriver matematik är nästan lika viktigt som vad man skriver. En grammatisk

Läs mer

Euklides algoritm för polynom

Euklides algoritm för polynom Uppsala Universitet Matematiska institutionen Isac Hedén isac distans@math.uu.se Algebra I, 5 hp Vecka 22. Euklides algoritm för polynom Ibland kan det vara intressant att bestämma den största gemensamma

Läs mer

Tentamen i Envariabelanalys 1

Tentamen i Envariabelanalys 1 Linköpings universitet Matematiska institutionen Matematik och tillämpad matematik Kurskod: TATA4 Provkod: TEN Tentamen i Envariabelanalys 4--8 kl. 8.. Inga hjälpmedel. Lösningarna ska vara fullständiga,

Läs mer