Konsultarbete, Hitta maximal volym fo r en la da

Storlek: px
Starta visningen från sidan:

Download "Konsultarbete, Hitta maximal volym fo r en la da"

Transkript

1 Konsultarbete, Hitta maximal volym fo r en la da Uppgift 2. Maximal låda. I de fyra hörnen på en rektangulär pappskiva klipper man bort lika stora kvadrater. Flikarna viks sedan upp så att vi får en öppen låda: a) Välj några olika värden på den rektangulära skivans längd och bredd, a och b. Bestäm sedan vilket värde på den bortklippta kvadratens sida, x som ger maximal volym. b) Ta fram en formel så att du direkt från de givna värdena på rektangelns sidor, a och b cm kan beräkna vilket värde på x som ger den största volymen. Kontrollera att detta stämmer med de exempel du valt. Frågeställning: Hitta en formel som gör att du från givna värden på a och b kan bestämma värdet på x som ger maximala volymen på lådan. Kortfattat svar Genom algebraisk lösning av frågeställningen har jag kommit fram till att, det exakta värdet på x som ger den maximala volymen av en låda enl. ovan utifrån bestämda värden på a och b är då x. Man kan även genom GeoGebra (metod 3) bestämma värdena på a och b och utifrån detta direkt hitta värdet på x som ger den maximala volymen, och vad denna är i detta fall.

2 Metod 1: Algebraisk lösning För denna metod har jag valt att lösa frågeställningen algebraiskt steg för steg, för att få ett exakt värde på x som ger den maximala volymen för lådan, då du har ett bestämt värde på sidorna a och b. V = x (a 2x) (b 2x) = abx 2ax 2 2bx 2 + 4x 3 V = ab 4ax 4bx + 12x 2 V = - 4a 4b + 24x Hitta volymens extrempunkter: V = ab 4ax 4bx + 12x 2 0 = ab 4ax 4bx + 12x 2 = = ( ) p = - ( ) q = Pq-formel ger: ( ) = = = Hitta det x som ger maximal volym: V (x) = - 4a 4b + 24x V (x 1 ) = - 4a 4b + 24 ( )= - 4a 4b + 4 ( )= - 4a 4b+ 4a +4b +4 = 4

3 V (x 2 ) = - 4a 4b + 24 ( )= - 4a 4b + 4 ( )= - 4a 4b+ 4a +4b - 4 = - 4 så V (x 1 ) = 4 då a 0 och b 0 vilket ger att ab vilket i sin tur ger att V (x 1 ) minimipunkt V (x 2 ) = - 4 då a 0 och b 0 vilket ger att ab vilket i sin tur ger att V (x 2 ) maximipunkt Detta betyder att volymen blir störst då x Kontrollexempel: Vi sätter att a=20 och b=15 X max = = 2,8333 ger V = abx 2ax 2 2bx 2 + 4x 3 = , , , , ,04 för att kolla att detta verkligen är en max.punkt sätter vi x=1 ger V= =234 x=4 ger V= =336 ger båda mindre värden än x max så x ger en maximipunkt för V. (detta kan också kontrolleras med någon av GeoGebra-metoderna) Metod 2: GeoGebra modell För denna metod har jag gjort en modell i GeoGebra för att visa att denna algebraiska lösning stämmer. Men också för att i 3d kunna se framför sig hur lådans form och volym ändras då du varierar värdena på a, b och x. Jag har då gjort en modell av en låda i 3D där man kan variera värdena på a, b och x och även få ut volymen av lådan. Detta gör att man kan bestämma värdena på a och b och sedan variera värdet på x

4 och samtidigt kolla volymen för att se när denna är som störst beroende på x (även a eller b om det önskas). Vilket då även gör att man kan kontrollera att den algebraiska lösningen stämmer, genom att från bestämda värden på a och b beräkna x utifrån den algebraiska lösningen. Sedan sätter man in detta värde på x som man får och kan då se om detta är den maximala volymen genom att utifrån x variera denna variabel till större och mindre värden, och då samtidigt kolla av volymen. Metod 3: GeoGebra graf För denna metod har jag ritat upp volymen, derivatan av volymen och andraderivatan av volymen som tre funktioner, grafer beroende av a och b. För att direkt från bestämda värden på a och b kunna avläsa det värde på x som ger den maximala volymen och vad denna är. Då ser vi att som i exemplet nedan där a=20 och b=15 ger två nollställen av V och då ser vi även att den maximala volymen ges av x 1 som är ca 2,8 detta värde får du genom att hitta skärningspunkten mellan x-axel och V och då ta fram x-koordinaten ur detta från GeoGebra. Sedan drog jag även en lodrät linje genom x=2,8 för att se allt tydligare. Vi ser även genom att titta på V funktionen då x=2,8 ger att V < 0 vilket betyder att V har en maximipunkt för x=2,8. Och om man ändrar på a och b gör man samma sak igen kan man direkt ur GeoGebra bestämma värdet på x för den maximala volymen.

5 V = (20-2x) (15-2x) x V = 12x 2-140x V = 24x 140 Metod 4: Verklig modell För denna metod har jag med hjälp av kartong byggt ihop 3 lådor enligt modell nedan, alla med samma värde på a och b men varierande värden på x. I låda nr. 2 har jag med hjälp av den algebraiska lösningen beräknat det värde på x som ger den största volymen för lådan. För låda nr. 1 och nr.3 har jag då tagit ett mindre och ett större värde än detta. Sedan tog jag ca 4 dl quinoa, en sorts sädesslag och hällde i en skål se bild nedan. Sedan hällde jag i denna quinoa i den första lådan och fyllde lådan upp till toppen, det resterande quinoan hällde jag upp i ett glas, se bild nedan. Efter detta hällde jag tillbaka all quinoa i skålen för att hela tiden använda samma mängd (4 dl) quinoa. Och detta för att kunna se vilken låda som fick plats med mest quinoa (minst kvar i glaset) och därmed hade störst volym. För att i verkligheten kunna visa och se att lösningen stämmer och hur allting hänger ihop. (cm)

6 4 dl quinoa a=20 a=20 a=20 b=15 b=15 b=15 x=2 x=2,8 x=4 Resultatet av detta ser vi här att låda nr.2 fick plats med mest quinoa eftersom det finns minst kvar i glaset. Både låda nr.1 och nr.3 har mer quinoa kvar i glaset, och har därmed fått plats med mindre quinoa i lådan. Detta betyder att låda nr.2 då x=2,8 cm har störst volym, precis som den algebraiska lösningen visade. Diskussion: För att jämföra dessa metoder, med lösningar; den algebraiska lösningen är den enda av dessa metoder som ger en lösning i exakt form, som man sedan självklart kan beräkna och därefter avrunda till ett ungefärligt/exakt resultat. Medan båda GeoGebra metoderna ger ungefärliga, avrundade värden på x och volymen beroende på värdet på a och b. Även den verkliga modellen ger ett ungefärligt resultat, men tillräckligt noggrant för att man ska se det jag ville visa, att låda nr. 2 hade störst volym. I denna uppgift ger som sagt den algebraiska lösningen en exakt lösning, medan GeoGebra direkt beräknar ut värdet på x och volymen, som då är avrundat beroende på x som heltal eller ej. Men i denna uppgift gör det inte någon större skillnad om x räknas ut exakt eller ungefärligt, eftersom volymen ändå kommer att bli ungefär densamma då det inte handlar om så stora marginaler i detta fall. Vilken metod som är bäst att använda beror helt på vad man vill få ut av uppgiften och lösningen. Den algebraiska metoden är bäst att använda/titta på om man vill steg för steg se hur man generellt beräknar en formel för att beräkna det värde på x som ger den största volymen för lådan med a och b som beroende variabler. Eller om du vill för hand, med räknare beräkna utifrån denna formel det värde som ger den största volymen på lådan, i exakt form, eller avrundad form.

7 GeoGebra modellen, metod 2 är bra om man vill kunna se lådan i 3D och samtidigt kunna variera värdena på både a, b och x och se hur dessa ändringar påverkar lådans form, men också hur ändringarna påverkar lådans volym. Tack vare detta kan man också bestämma värdena på a och b och sedan variera värdet på x och se hur detta påverkar volymen, och se vid vilket värde på x som volymen är störst. Man kan även använda denna modell som en kontroll av den algebraiska lösningen, att det värde man beräknat på x faktiskt ger den största volymen. Om man på direkten vill se och få ut värdet på både x, som ger den största volymen för lådan, och vad denna är, är metod 3 med GeoGebra graferna den bästa och enklaste metoden att använda. Då du endast behöver bestämma värdena på a och b som går att variera, och sedan ser du på direkten det ungefärliga nollställets x-koordinat för den maximala volymen och även vad denna är. Vill du ha ett mer noggrant värde går det även att få fram genom GeoGebra. Denna metod fungerar även utmärkt som kontroll av algebraisk lösning. Den verkliga modellen, metod 4 är den som är mest ungefärlig men tillräckligt noggrann för det den är till för. Vilket är att i verkligheten kunna se och förstå hur allt fungerar och hänger ihop. Från ritning av lådan till att bygga ihop den med olika mått, till att se framför sig att den algebraiska lösningen stämmer, och faktiskt ger den största volymen. Alla metoder var enligt mig lyckade till denna uppgift och frågeställning. Vare sig du på direkten vill bestämma värdet på x för den maximala volymen på lådan, och vad denna är med redan bestämda värden på a och b. Eller om du vill steg för steg se och förstå hur du beräknar en generell formel för värdet på x för maximal volym, med a och b som beroende variabler. Eller i verkligheten, se och förstå hur hela uppgiften hänger ihop och se att den algebraiska lösningen faktiskt stämmer. De är som sagt varierande och relevanta metoder som belyser flera olika sätt och tillvägagångsätt för att lösa och samtidigt förstå uppgiften.

Optimala vinkeln av bortklippt cirkelsektor fo r maximal volym pa glasstrut

Optimala vinkeln av bortklippt cirkelsektor fo r maximal volym pa glasstrut Optimala vinkeln av bortklippt cirkelsektor fo r maximal volym pa glasstrut Frågeställning Av en cirkulär pappersskiva kan en cirkelsektor med en viss vinkel klippas bort. Med den resterande sektorn går

Läs mer

Hur länge ska fisken vara i dammen?

Hur länge ska fisken vara i dammen? Hur länge ska fisken vara i dammen? Frågeställning Uppgift 10 fiskodling Uppgiften går ut på att ta reda på hur länge ett stim fisk ska växa upp i en fiskodling för att få den maximala vikten tillsammans.

Läs mer

Del I: Digitala verktyg är inte tillåtna. Endast svar krävs. Skriv dina svar direkt i provhäftet.

Del I: Digitala verktyg är inte tillåtna. Endast svar krävs. Skriv dina svar direkt i provhäftet. Del I: Digitala verktyg är inte tillåtna. Endast svar krävs. Skriv dina svar direkt i provhäftet. 1) a) Bestäm ekvationen för den räta linjen i figuren. (1/0/0) b) Rita i koordinatsystemet en rät linje

Läs mer

Institutionen för matematik och datavetenskap Karlstads universitet. GeoGebra. ett digitalt verktyg för framtidens matematikundervisning

Institutionen för matematik och datavetenskap Karlstads universitet. GeoGebra. ett digitalt verktyg för framtidens matematikundervisning Karlstads GeoGebrainstitut Institutionen för matematik och datavetenskap Karlstads universitet Mats Brunström Maria Fahlgren GeoGebra ett digitalt verktyg för framtidens matematikundervisning Invigning

Läs mer

5 Om f (r) = 0 kan andraderivatan inte avgöra vilken typ av extrempunkt det handlar om. Återstår att avgöra punktens typ med teckenstudium.

5 Om f (r) = 0 kan andraderivatan inte avgöra vilken typ av extrempunkt det handlar om. Återstår att avgöra punktens typ med teckenstudium. Så här hittar man extrempunkter, max-, min eller terrasspunkter, till en kurva y = f(x) med hjälp av i första hand f (x) 1 Bestäm f (x) och f (x) 2 Lös ekvationen f (x) = 0. Om ekvationen saknar rötter

Läs mer

GeoGebra i matematikundervisningen - Inspirationsdagar för gymnasielärare. Karlstads universitet 19-20 april. Liten introduktionsguide för nybörjare

GeoGebra i matematikundervisningen - Inspirationsdagar för gymnasielärare. Karlstads universitet 19-20 april. Liten introduktionsguide för nybörjare GeoGebra i matematikundervisningen - Inspirationsdagar för gymnasielärare 19-20 april Liten introduktionsguide för nybörjare GeoGebra 0 Introduktionsövningar till GeoGebra När man startar GeoGebra är det

Läs mer

Beräkningsmetoder för superellipsens omkrets

Beräkningsmetoder för superellipsens omkrets Beräkningsmetoder för superellipsens omkrets Frågeställning Svar 1. Vi förväntades ta reda på olika metoder för att beräkna en superellips eller en ellips omkrets. o Givet var ellipsens ekvation:. (Källa

Läs mer

NpMa3c Muntligt delprov Del A ht 2012

NpMa3c Muntligt delprov Del A ht 2012 Till eleven - Information inför det muntliga delprovet Du kommer att få en uppgift som du ska lösa skriftligt och sedan ska du presentera din lösning muntligt. Om du behöver får du ta hjälp av dina klasskamrater

Läs mer

Matematik A Testa dina kunskaper!

Matematik A Testa dina kunskaper! Testa dina kunskaper! Försök i största möjliga mån att räkna utan hjälp av boken, skriv små noteringar i kanten om ni tycker att ni kan uppgifterna, att ni löste dem med hjälp av boken etc. Facit kommer

Läs mer

Prov 1 2. Ellips 12 Numeriska och algebraiska metoder lösningar till övningsproven uppdaterad 20.5.2010. a) i) Nollställen för polynomet 2x 2 3x 1:

Prov 1 2. Ellips 12 Numeriska och algebraiska metoder lösningar till övningsproven uppdaterad 20.5.2010. a) i) Nollställen för polynomet 2x 2 3x 1: Ellips Numeriska och algebraiska metoder lösningar till övningsproven uppdaterad.. Prov a) i) ii) iii) =,, = st 9,876 =,9876,99 = 9,9,66,66 =,7 =,7 Anmärkning. Nollor i början av decimaltal har ingen betydelse

Läs mer

Undervisningsplanering i Matematik KURS C (100 poäng) Kurskod: MA1203

Undervisningsplanering i Matematik KURS C (100 poäng) Kurskod: MA1203 Undervisningsplanering i Matematik KURS C (100 poäng) Kurskod: MA1203 Styrdokument: Kursplan i matematik med betygskriterier. Läromedel: Matematik 3000 N&K. Lån för studerande upp till 20 år De studerande

Läs mer

Kapitel Grafer för koniska sektioner

Kapitel Grafer för koniska sektioner Kapitel 14 Grafer för koniska sektioner Det går att rita en graf över följande koniska sektioner med hjälp av räknarens inbyggda funktioner. Parabelgraf Cirkelgraf Elliptisk graf Hyperbelgraf 14-1 Före

Läs mer

Kortaste Ledningsdragningen mellan Tre Städer

Kortaste Ledningsdragningen mellan Tre Städer Kortaste Ledningsdragningen mellan Tre Städer Tre städer A, B och C, belägna som figuren till höger visar, ska förbindas med fiberoptiska kablar. En så kort ledningsdragning som möjligt vill uppnås för

Läs mer

Mål Likformighet, Funktioner och Algebra år 9

Mål Likformighet, Funktioner och Algebra år 9 Mål Likformighet, Funktioner och Algebra år 9 Provet omfattar s. 102-135 (kap 4) och s.183-186, 189, 191, 193, 200-215. Repetition: Repetitionsuppgifter 4, läa 13-16 (s. 255 260) samt andra övningsuppgifter

Läs mer

y z 3 = 0 z 5 16 1 i )

y z 3 = 0 z 5 16 1 i ) ATM-Matematik Mikael Forsberg 734-433 Sören Hector 7-46686 Rolf Källström 7-6939 Ingenjörer, Lantmätare och Distansstuderande, mfl. Linjär Algebra ma4a 4 3 Skrivtid: 9:-4:. Inga hjälpmedel. Lösningarna

Läs mer

Precis som var fallet med förra artikeln, Geogebra för de yngre i Nämnaren

Precis som var fallet med förra artikeln, Geogebra för de yngre i Nämnaren Publicerad med tillstånd av Nämnaren Thomas Lingefjärd Geogebra i gymnasieskolan En tilltalande egenskap med Geogebra är att programmet kan användas tvärs över stora delar av utbildningssystemets matematikkurser.

Läs mer

Optimering av depåpositioner för den minimala bensinförbrukningen i öknen

Optimering av depåpositioner för den minimala bensinförbrukningen i öknen Optimering av depåpositioner för den minimala bensinförbrukningen i öknen Frågeställning: En jeep kan sammanlagt ha 200 liter bensin i tanken samt i lösa dunkar. Jeepen kommer 2,5 km på 1 liter bensin.

Läs mer

Algebra & Ekvationer. Svar: Sammanfattning Matematik 2

Algebra & Ekvationer. Svar: Sammanfattning Matematik 2 Algebra & Ekvationer Algebra & Ekvationer Parenteser En parentes När man multiplicerar en term med en parentes måste man multiplicera båda talen i parentesen. Förenkla uttrycket 42 9. 42 9 4 2 4 9 8 36

Läs mer

Studieplan och bedömningsgrunder i Matematik för åk 7 Moment Bedömningsgrunder för uppnåendemålen Begreppsbildning Tal och räkning

Studieplan och bedömningsgrunder i Matematik för åk 7 Moment Bedömningsgrunder för uppnåendemålen Begreppsbildning Tal och räkning Moment Begreppsbildning Mätningar och enheter Algebra och ekvationer Studieplan och bedömningsgrunder i Matematik för åk 7 Bedömningsgrunder för uppnåendemålen känna igen naturliga tal kunna positiva heltal:

Läs mer

MA1201 Matematik A Mål som deltagarna skall ha uppnått efter avslutad kurs

MA1201 Matematik A Mål som deltagarna skall ha uppnått efter avslutad kurs MA1201 Matematik A Mål som deltagarna skall ha uppnått efter avslutad kurs Tolkning Deltagaren skall kunna formulera, analysera och lösa matematiska problem av betydelse för vardagsliv och vald studieinriktning

Läs mer

Algebra - uttryck och ekvationer

Algebra - uttryck och ekvationer Förenkla: Tänk så här: Du går till affären och köper 3 äpplen och 2 bananer och lösgodis för 7 kr. Din kompis köper 1 äpple och 3 bananer och lösgodis för 10 kr. Hur många äpplen och hur många bananer

Läs mer

Tangenter till tredjegradsfunktioner

Tangenter till tredjegradsfunktioner Tangenter till tredjegradsfunktioner I bilden intill ser du grafen av en tredjegradsfunktion som har tre nollställen nämligen x = 2, x = 1 och x = -1. Om man ritar en tangent till funktionsgrafen kommer

Läs mer

MA1201 Matematik A Mål som deltagarna skall ha uppnått efter avslutad kurs

MA1201 Matematik A Mål som deltagarna skall ha uppnått efter avslutad kurs MA1201 Matematik A Mål som deltagarna skall ha uppnått efter avslutad kurs Tolkning Deltagaren skall kunna formulera, analysera och lösa matematiska problem av betydelse för vardagsliv och vald studieinriktning

Läs mer

fredag den 11 april 2014 POOL BYGGE

fredag den 11 april 2014 POOL BYGGE POOL BYGGE KLADD Såhär ser min kladd ut: På min kladd så bestämde jag mig för vilken form poolen skulle ha och ritade ut den. På min kladd har jag även skrivit ut måtten som min pool skulle vara i. Proportionerna

Läs mer

Godisförsäljning. 1. a) Vad blir den totala kostnaden om klassen köper in 10 kg godis? Gör beräkningen i rutan nedan.

Godisförsäljning. 1. a) Vad blir den totala kostnaden om klassen köper in 10 kg godis? Gör beräkningen i rutan nedan. Godisförsäljning För att samla in pengar till en klassresa har Klass 9b på Gotteskolan bestämt sig för att hyra ett bord och sälja godis på Torsbymarten. Det kostar 100 kr att hyra ett bord. De köper in

Läs mer

Matematik. Mål som eleverna skall ha uppnått i slutet av det fjärde skolåret. Mål som eleverna skall ha uppnått i slutet av det femte skolåret

Matematik. Mål som eleverna skall ha uppnått i slutet av det fjärde skolåret. Mål som eleverna skall ha uppnått i slutet av det femte skolåret Balderskolan, Uppsala musikklasser 2009 Matematik Mål som eleverna skall ha uppnått i slutet av det fjärde skolåret läsa och skriva tal inom talområdet 0 10 000 räkna de fyra räknesätten med olika metoder

Läs mer

Ansvariga lärare: Yury Shestopalov, rum 3A313, tel 054-7001856 (a) Problem 1. Använd Eulers metod II (tre steg) och lös begynnelsevärdesproblemet

Ansvariga lärare: Yury Shestopalov, rum 3A313, tel 054-7001856 (a) Problem 1. Använd Eulers metod II (tre steg) och lös begynnelsevärdesproblemet FACIT: Numeriska metoder Man måste lösa tre problem. Problemen 1 och är obligatoriska, och man kan välja Problemet 3 eller 4 som den tredje. Hjälp medel: Miniräknare (med Guidebook för miniräknare) och

Läs mer

NATIONELLT KURSPROV I MATEMATIK KURS A HÖSTEN 2000. Del II

NATIONELLT KURSPROV I MATEMATIK KURS A HÖSTEN 2000. Del II Skolverket hänvisar generellt beträffande provmaterial till bestämmelsen om sekretess i 4 kap 3 Sekretesslagen. För detta material gäller sekretessen till och med utgången av 2010. Anvisningar Provtid

Läs mer

NATIONELLT KURSPROV I MATEMATIK KURS C VÅREN 2011

NATIONELLT KURSPROV I MATEMATIK KURS C VÅREN 2011 Prov som ska återanvändas omfattas av sekretess enligt 17 kap. 4 offentlighets- och sekretesslagen (009:400). Avsikten är att detta prov ska kunna återanvändas t.o.m. 017-06-0. Vid sekretessbedömning ska

Läs mer

MATEMATIKPROV, KORT LÄROKURS 18.3.2015 BESKRIVNING AV GODA SVAR

MATEMATIKPROV, KORT LÄROKURS 18.3.2015 BESKRIVNING AV GODA SVAR MATEMATIKPROV, KORT LÄROKURS 8..05 BESKRIVNING AV GODA SVAR De beskrivningar av svarens innehåll och poängsättningar som ges här är inte bindande för studentexamensnämndens bedömning. Censorerna beslutar

Läs mer

Tema: Pythagoras sats. Linnéa Utterström & Malin Öberg

Tema: Pythagoras sats. Linnéa Utterström & Malin Öberg Tema: Pythagoras sats Linnéa Utterström & Malin Öberg Innehåll: Introduktion till Pythagoras sats! 3 Pythagoras sats! 4 Variabler! 5 Potenser! 5 Att komma tillbaka till ursprunget! 7 Vi bevisar Pythagoras

Läs mer

MATEMATIK KURS A Våren 2005

MATEMATIK KURS A Våren 2005 MATEMATIK KURS A Våren 2005 1. Vilket tal pekar pilen på? 51 52 53 Svar: (1/0) 2. Skugga 8 3 av figuren. (1/0) 3. Vad är 20 % av 50 kr? Svar: kr (1/0) 4. Hur mycket vatten ryms ungefär i ett dricksglas?

Läs mer

Matematik i Gy11. 110912 Susanne Gennow

Matematik i Gy11. 110912 Susanne Gennow Matematik i Gy11 110912 Susanne Gennow Var finns matematik? Bakgrund Nationella utredning 2003 PISA 2009 TIMSS Advanced 2008 Skolinspektionens rapporter Samband och förändring åk 1 3 Olika proportionella

Läs mer

NATIONELLT KURSPROV I MATEMATIK KURS A HÖSTEN 2001. Del II

NATIONELLT KURSPROV I MATEMATIK KURS A HÖSTEN 2001. Del II Skolverket hänvisar generellt beträffande provmaterial till bestämmelsen om sekretess i 4 kap 3 Sekretesslagen. För detta material gäller sekretessen till och med utgången av 2011. Anvisningar Provtid

Läs mer

sträckan = tiden. hastigheten hastigheten = sträckan tiden 210 hastigheten = 3 = 70 Bilisten kör 70 km/h. tiden =

sträckan = tiden. hastigheten hastigheten = sträckan tiden 210 hastigheten = 3 = 70 Bilisten kör 70 km/h. tiden = Enheter och skala I det här kapitlet kan du lära dig mer om hastighet att skriva minuter som del av timme att räkna om km/h till m/s något om hastigheter till sjöss om volymenheterna cm 3, dm 3 och m 3

Läs mer

ha utvecklat sin taluppfattning till att omfatta hela tal och rationella tal i bråk- och decimalform.

ha utvecklat sin taluppfattning till att omfatta hela tal och rationella tal i bråk- och decimalform. 1 (6) 2005-08-15 Matematik, år 9 Mål för betyget Godkänd Beroende på arbetssätt och arbetsmaterial kan det vara svårt att dela upp dessa uppnående mål mellan skolår 8 och skolår 9. För att uppnå godkänd

Läs mer

RÖRELSE. - Mätningar och mätinstrument och hur de kan kombineras för att mäta storheter, till exempel fart, tryck och effekt.

RÖRELSE. - Mätningar och mätinstrument och hur de kan kombineras för att mäta storheter, till exempel fart, tryck och effekt. RÖRELSE Inledning När vi går, springer, cyklar etc. förflyttar vi oss en viss sträcka på en viss tid. Ibland, speciellt när vi har bråttom, tänker vi på hur fort det går. I det här experimentet undersöker

Läs mer

Högskoleprovet Kvantitativ del

Högskoleprovet Kvantitativ del Högskoleprovet Kvantitativ del Här följer anvisningar till de kvantitativa delproven XYZ, KVA, NOG och DTK. Provhäftet innehåller 40 uppgifter och den totala provtiden är 55 minuter. Ägna inte för lång

Läs mer

NATIONELLT PROV I MATEMATIK KURS C VÅREN 1996. Tidsbunden del. Anvisningar

NATIONELLT PROV I MATEMATIK KURS C VÅREN 1996. Tidsbunden del. Anvisningar NATIONELLT PROV I MATEMATIK KURS C VÅREN 1996 Tidsbunden del Anvisningar Provperiod 3 maj - 15 maj 1996. Provtid Hjälpmedel Provmaterialet 180 minuter utan rast. Miniräknare och formelsamling. Formelblad

Läs mer

Kapitel. 9-1 Innan graflösning används 9-2 Analys av en funktionsgraf

Kapitel. 9-1 Innan graflösning används 9-2 Analys av en funktionsgraf Kapitel Graflösning Det går att använda följande metoder för att analysera funktionsgrafer och approximera resultat. Beräkning av roten Bestämning av lokalt maximivärde och lokalt minimivärde Bestämning

Läs mer

Till några uppgifter behöver endast svar anges. De är markerade med Endast svar krävs.

Till några uppgifter behöver endast svar anges. De är markerade med Endast svar krävs. Anvisningar Del II Provtid Hjälpmedel Del II 120 minuter för Del II. Miniräknare, formelblad och linjal. Del II består av 11 uppgifter. Till de flesta uppgifterna räcker det inte med endast svar, utan

Läs mer

Välkommen till Borgar!

Välkommen till Borgar! Välkommen till Borgar! Välkommen till Borgar! Vi ser fram emot att snart träffa en ny årskull med naturettor och hoppas att du kommer att trivas mycket bra hos oss. Studier i naturvetenskapliga ämnen förutsätter

Läs mer

Tutorial - Värmeljuskort för valfritt antal värmeljus av Bi för Skrotboken

Tutorial - Värmeljuskort för valfritt antal värmeljus av Bi för Skrotboken <http://skrotboken.blogspot.com> Tutorial - Värmeljuskort för valfritt antal värmeljus av Bi för Skrotboken Du behöver Cardstock och/eller mönsterpapper Plast Skärmaskin med bigare eller motsvarande Dubbelhäftande

Läs mer

Känguru 2014 Student sida 1 / 8 (gymnasiet åk 2 och 3)

Känguru 2014 Student sida 1 / 8 (gymnasiet åk 2 och 3) Känguru 2014 Student sida 1 / 8 NAMN GRUPP Poängsumma: Känguruskutt: Lösgör svarsblanketten. Skriv ditt svarsalternativ under uppgiftsnumret. Felaktigt svar ger minus 1/4 poäng av uppgiftens totala poängantal.

Läs mer

Torskolan i Torsås Mars 2007. Matematik. Kriterier för betyget godkänd. Metoder: Arbetssätt. Muntligt. Problemlösning

Torskolan i Torsås Mars 2007. Matematik. Kriterier för betyget godkänd. Metoder: Arbetssätt. Muntligt. Problemlösning Torskolan i Torsås Mars 2007 Matematik Kriterier för betyget godkänd Metoder: Arbetssätt Ta ansvar för sin egen inlärning. Göra läxor. Utnyttja lektionstiden (lyssna, arbeta). Utnyttja den hjälp/stöd som

Läs mer

Optimeringslära 2013-11-01 Kaj Holmberg

Optimeringslära 2013-11-01 Kaj Holmberg Tekniska Högskolan i Linköping Optimering för ingenjörer Matematiska Institutionen Lösning till tentamen Optimeringslära 23-- Kaj Holmberg Uppgift a: Problemet skrivet i standardform är: Lösningar min

Läs mer

Institutionen för Matematik TENTAMEN I LINJÄR ALGEBRA OCH NUMERISK ANALYS F1, TMA671 2009-01-16. DAG: Fredag 16 januari 2009 TID: 14.00-18.

Institutionen för Matematik TENTAMEN I LINJÄR ALGEBRA OCH NUMERISK ANALYS F1, TMA671 2009-01-16. DAG: Fredag 16 januari 2009 TID: 14.00-18. Institutionen för Matematik Göteborg TENTAMEN I LINJÄR ALGEBRA OCH NUMERISK ANALYS F, TMA67 9--6 DAG: Fredag 6 januari 9 TID: 4. - 8. SAL: V Ansvarig: Ivar Gustafsson, tel: 77 94 Förfrågningar: Ivar Gustafsson

Läs mer

Anvisningar Del I. Namn: Födelsedatum: Komvux/gymnasieprogram: Provtid

Anvisningar Del I. Namn: Födelsedatum: Komvux/gymnasieprogram: Provtid Anvisningar Del I Provtid Hjälpmedel Miniräknarfri del Uppgift 14 Kravgränser 90 minuter för del I. Vi rekommenderar att du använder högst 45 minuter för arbetet med den miniräknarfria delen. Du får inte

Läs mer

Optimering av bränsledepåer för effektiv resa i öknen

Optimering av bränsledepåer för effektiv resa i öknen Optimering av bränsledepåer för effektiv resa i öknen Konsultarbete Matematik D Skriftlig rapport till kunden! Frågeställning: En jeep kan ta sammanlagt 200 liter bensin i tanken och i lösa dunkar. Jeepen

Läs mer

NpMa2b Muntlig del vt 2012

NpMa2b Muntlig del vt 2012 Till eleven - Information inför den muntliga provdelen Du kommer att få en uppgift som du ska lösa skriftligt och sedan ska du presentera din lösning muntligt. Om du behöver får du ta hjälp av dina klasskamrater

Läs mer

Bedömningsexempel. Matematik kurs 1c

Bedömningsexempel. Matematik kurs 1c Bedömningsexempel Matematik kurs 1c Innehåll Inledning... 3 Bedömning... 3 Exempeluppgifter som är representativa för Del I... 5 Exempeluppgifter som är representativa för Del II och Del III... 9 Exempel

Läs mer

Prov 1 c) 1 a) x x x. x cos = + 2π 0 = 2 cos cos = + + = 27 36 + 3 1+ 4 1 = = = 7 7 2,3. Svar a) 4 b) 7 c) 4 d) 9

Prov 1 c) 1 a) x x x. x cos = + 2π 0 = 2 cos cos = + + = 27 36 + 3 1+ 4 1 = = = 7 7 2,3. Svar a) 4 b) 7 c) 4 d) 9 Ellips Integralkalkyl lösningar till övningsproven uppdaterad 9.5. Prov c a b 8+ d / 8 + / + 7 6 + + + + 5 d / 5 5 ( 5 5 8 8 + 5 5 5 6 6 5 9 8 5 5 5 5 7 7 5 5 d π sin d π sin d u( s s' π / cos U( s π cos

Läs mer

DIGITALA VERKTYG ÄR INTE TILLÅTNA. Namn:... Klass/Grupp:...

DIGITALA VERKTYG ÄR INTE TILLÅTNA. Namn:... Klass/Grupp:... DIGITALA VERKTYG ÄR INTE TILLÅTNA Namn:... Klass/Grupp:... Del I 1. Bestäm värdet av 25 3x om x = 2 Svar: (1/0/0) 2. Vilket tal ska stå i rutan för att likheten ska stämma? 2 3 + + 1 =1 Svar: (1/0/0) 9

Läs mer

Introduktion till algoritmer - Lektion 1 Matematikgymnasiet, Läsåret 2014-2015. Lektion 1

Introduktion till algoritmer - Lektion 1 Matematikgymnasiet, Läsåret 2014-2015. Lektion 1 Kattis Lektion 1 I kursen används onlinedomaren Kattis (från http://kattis.com) för att automatiskt rätta programmeringsproblem. För att få ett konto på Kattis anmäler du dig på Programmeringsolympiadens

Läs mer

Tentamensinstruktioner. Vid skrivningens slut

Tentamensinstruktioner. Vid skrivningens slut Matematiska institutionen Optimeringslära TENTAMEN TAOP14/TEN1 OPTIMERINGSLÄRA GRUNDKURS för I och Ii Datum: 13:e januari 2011 Tid: 8.00 13.00 Hjälpmedel: Kurslitteratur av Lundgren m fl: Optimeringslära

Läs mer

Arbetsblad 1:10. Avrundning. 1 a) 17,8 b) 156,3 c) 19,09 2 a) 30,49 b) 6,85 c) 49,64

Arbetsblad 1:10. Avrundning. 1 a) 17,8 b) 156,3 c) 19,09 2 a) 30,49 b) 6,85 c) 49,64 Arbetsblad 1:10 Avrundning Avrunda till heltal 1 a) 17,8 b) 156,3 c) 19,09 2 a) 30,49 b) 6,85 c) 49,64 Avrunda till tiotal 3 a) 88 b) 19 c) 164 4 a) 144,8 b) 347,5 c) 29,39 5 a) 43,5 b) 163,99 c) 496,1

Läs mer

Introduktion. Exempel Övningar Lösningar 1 Lösningar 2 Översikt

Introduktion. Exempel Övningar Lösningar 1 Lösningar 2 Översikt KTHs Sommarmatematik 2002 Exempel Övningar Lösningar 1 Lösningar 2 Översikt 1.1Introduktion Introduktion Avsnitt 1 handlar till att börja med om hantering av bråkstreck. Samtidigt ges exempel och övningar

Läs mer

KRAVNIVÅER. Åtvidabergs kommuns grundskolor MATEMATIK

KRAVNIVÅER. Åtvidabergs kommuns grundskolor MATEMATIK KRAVNIVÅER Åtvidabergs kommuns grundskolor MATEMATIK Reviderade april 2009 Förord Välkommen att ta del av Åtvidabergs kommuns kravnivåer och bedömningskriterier för grundskolan. Materialet har tagits fram

Läs mer

SKOGLIGA TILLÄMPNINGAR

SKOGLIGA TILLÄMPNINGAR STUDIEAVSNITT 3 SKOGLIGA TILLÄMPNINGAR I detta avsnitt ska vi titta på några av de skogliga tillämpningar på geometri som finns. SKOGSKARTAN EN MODELL AV VERKLIGHETEN Arbetar man i skogen klarar man sig

Läs mer

Kunskapsmål och betygskriterier för matematik

Kunskapsmål och betygskriterier för matematik 1 (1) 2009-0-12 Kunskapsmål och betygskriterier för matematik För betyget G i matematik skall eleven kunna utföra beräkningar, lösa problem samt se enklare samband utifrån de kunskapsmål som anges under

Läs mer

ARBETE VAD ÄR DET? - Mätningar och mätinstrument och hur de kan kombineras för att mäta storheter, till exempel fart, tryck och effekt.

ARBETE VAD ÄR DET? - Mätningar och mätinstrument och hur de kan kombineras för att mäta storheter, till exempel fart, tryck och effekt. Inledning ARBETE VAD ÄR DET? När vi till vardags pratar om arbete är det en helt annan sak än begreppet arbete i fysikens värld. Ett lönearbete är t ex att arbeta som vaktpost utanför Buckingham Palace.

Läs mer

Kommunövergripande Mål i matematik, åk 1-9

Kommunövergripande Mål i matematik, åk 1-9 Kommunövergripande Mål i matematik, åk 1-9 Många skolor har lagt ner mycket tid på att omforma de mål som anges på nationell nivå till undervisningsmål på den egna skolan. Tanken är att vi nu ska kunna

Läs mer

Grupp/Center-statistik. Terminologi/ordlista...2 Urval...3 Analystyper...4

Grupp/Center-statistik. Terminologi/ordlista...2 Urval...3 Analystyper...4 Terminologi/ordlista...2...3 Analystyper...4 1 Terminologi/ordlista Gruppering Patientinformationsvariabel Besöksvariabel Patientstatus En/flervalsvariabel Numerisk variabel Fritextvariabel Standardbesök

Läs mer

Luftförvärmare- Manual + Faktablad

Luftförvärmare- Manual + Faktablad Luftförvärmare- Manual + Faktablad Luftförvärmarens funktion och hur den är konstruerad Luftförvärmare är ett riktigt energismart och miljövänligt sätt att värma upp ett hus på. Den här luftförvärmaren

Läs mer

Mäta rakhet Scanning med M7005

Mäta rakhet Scanning med M7005 Matematikföretaget jz M7005.metem.se 141121/150411/150704/SJn Mäta rakhet Scanning med M7005 Mätgivare Detalj Mäta rakhet - Scanning 1 (12) Innehåll 1 Ett exempel... 3 2 Beskrivning... 6 2.1 Scanna in

Läs mer

Laboration Fuzzy Logic

Laboration Fuzzy Logic BILAGA B Laboration Fuzzy Logic Lär dig simulera ett program! ABB INDUSTRIGYMNASIUM Fuzzy Logic Wikingsons Wåghalsiga Wargar Projekt ABB VT 2006 Västerås Innehåll 1 Introduktion... 3 2 Uppgiften... 3 2.1

Läs mer

Elever skall i samtliga årskurser ges tillfälle till regelbunden träning i muntliga och skriftliga räknemetoder

Elever skall i samtliga årskurser ges tillfälle till regelbunden träning i muntliga och skriftliga räknemetoder Matematik Elever skall i samtliga årskurser ges tillfälle till regelbunden träning i muntliga och skriftliga räknemetoder Ämnets syfte och roll i utbildningen Grundskolan har till uppgift att hos eleven

Läs mer

NATIONELLT KURSPROV I MATEMATIK KURS D VÅREN 2005

NATIONELLT KURSPROV I MATEMATIK KURS D VÅREN 2005 Skolverket hänvisar generellt beträffande provmaterial till bestämmelsen om sekretess i 4 kap. 3 sekretesslagen. För detta material gäller sekretessen fram till och med den 10 juni 2005. Anvisningar NATIONELLT

Läs mer

sex miljoner tre miljarder femton miljoner trehundratusen 6 000 000 520 000 > 50 200 40 000 500 > 40 000 050 5 505 050 < 5 505 500

sex miljoner tre miljarder femton miljoner trehundratusen 6 000 000 520 000 > 50 200 40 000 500 > 40 000 050 5 505 050 < 5 505 500 Namn: Förstå och använda stora tal som miljoner och miljarder Skriv talen med siffror. sex miljoner tre miljarder femton miljoner trehundratusen Läs talen först. Använd sedan > eller > < Vilket tal

Läs mer

Graärgning och kromatiska formler

Graärgning och kromatiska formler Graärgning och kromatiska formler Henrik Bäärnhielm, d98-hba 2 mars 2000 Sammanfattning I denna uppsats beskrivs, för en ickematematiker, färgning av grafer samt kromatiska formler för grafer. Det hela

Läs mer

Teresia Månsson, VFU, Matematik 5, 2014-12-10

Teresia Månsson, VFU, Matematik 5, 2014-12-10 Temauppgifter Syfte Det är tänkt att det ska finnas möjlighet med uppgiften att öva på följande förmågor: begrepps-, procedur-, problemlösning, kommunikations-, resonemang, modelleringsförmåga och relevansförmåga

Läs mer

NATIONELLT KURSPROV I MATEMATIK KURS C HÖSTEN 2009

NATIONELLT KURSPROV I MATEMATIK KURS C HÖSTEN 2009 Anvisningar Provtid Hjälpmedel Provmaterialet Provet Poäng och betygsgränser NATIONELLT KURSPROV I MATEMATIK KURS C HÖSTEN 2009 240 minuter för Del I och Del II tillsammans. Vi rekommenderar att du använder

Läs mer

MATEMATIK Datum: 2015-08-19 Tid: eftermiddag Hjälpmedel: inga. Mobiltelefoner är förbjudna. A.Heintz Telefonvakt: Tim Cardilin Tel.

MATEMATIK Datum: 2015-08-19 Tid: eftermiddag Hjälpmedel: inga. Mobiltelefoner är förbjudna. A.Heintz Telefonvakt: Tim Cardilin Tel. MATEMATIK Datum: 0-08-9 Tid: eftermiddag Chalmers Hjälmedel: inga. Mobiltelefoner är förbjudna. A.Heintz Telefonvakt: Tim Cardilin Tel.: 0703-088304 Lösningar till tenta i TMV036 Analys och linjär algebra

Läs mer

TENTAMENSUPPGIFTER i MIKROTEORI Från Peter Lohmander 2010-03-02

TENTAMENSUPPGIFTER i MIKROTEORI Från Peter Lohmander 2010-03-02 1 File = EK_GK_OM_Tentafragor Lohmander Peter 010_03_0 TENTAMENSUPPGIFTER i MIKROTEORI Från Peter Lohmander 010-03-0 UPPGIFT 1: Det finns ett särskilt samand mellan ATC s minpunkt och MC, som gäller under

Läs mer

Förord. Innehåll. 1 Tal 4. 4 Algebra 42. 2 Bråk och procent 18. 5 Statistik och sannolikhet 54. 6 Tid, hastighet och skala 60.

Förord. Innehåll. 1 Tal 4. 4 Algebra 42. 2 Bråk och procent 18. 5 Statistik och sannolikhet 54. 6 Tid, hastighet och skala 60. Förord Det här häftet är tänkt som ett komplement till kapitel 5, Genrepet, i läroboken Matte Direkt år 9. Häftet vänder sig främst till de elever som har svårigheter att klara Genrepets nivå i boken och

Läs mer

Kursplan för Matematik

Kursplan för Matematik Sida 1 av 5 Kursplan för Matematik Inrättad 2000-07 SKOLFS: 2000:135 Ämnets syfte och roll i utbildningen Grundskolan har till uppgift att hos eleven utveckla sådana kunskaper i matematik som behövs för

Läs mer

Det första riktigt lättmonterade systemet för trädäck!

Det första riktigt lättmonterade systemet för trädäck! Det första riktigt lättmonterade systemet för trädäck! DECK IN A BOX ÄR ETT PATENTERAT SYSTEM Det enkla sättet att bygga trädäck! Deck in a Box är möjligheten för dig som på ett enkelt sätt vill bygga

Läs mer

Repetitionsuppgifter 1

Repetitionsuppgifter 1 Repetitionsuppgifter 1 1 Är talet a) 5 ett heltal b) 9 ett naturligt tal c) π ett rationellt tal d) 5 ett reellt tal 6 2 Rita av figuren och placera in talen rätt talmängd. naturliga tal hela tal rationella

Läs mer

Matematik Uppnående mål för år 6

Matematik Uppnående mål för år 6 Matematik Uppnående mål för år 6 Allmänt: Eleven ska kunna förstå, lösa samt redovisa problem med konkret innehåll inom varje avsnitt. Ha en grundläggande taluppfattning som omfattar naturliga tal och

Läs mer

Bedömning av muntliga prestationer

Bedömning av muntliga prestationer Bedömningsstöd i matematik på gymnasial nivå Bedömning av muntliga prestationer Materialet har framställts under 2013 av PRIM-gruppen vid Stockholms universitet i samarbete med Institutionen för tillämpad

Läs mer

INSTRUKTIONSMANUAL QHC+

INSTRUKTIONSMANUAL QHC+ INSTRUKTIONSMANUAL QHC+ Innehåll 1. Introduktion sid. 3 2. Knappförklaringar sid. 3 3. Displayer sid. 4 4. Enkelt handhavande sid. 5 5. Räknevägning sid. 6 6. Kontrollvägning sid. 7 7. Batterifunktion

Läs mer

Experimentversion av Endimensionell analys 1

Experimentversion av Endimensionell analys 1 Matematikcentrum Matematik Eperimentversion av Endimensionell anals Alternativ eamination Under lp 999 kommer för Bi 99, L 99 och V 99 att ges en något modifierad kurs i Endimensionell anals. Kursen avviker

Läs mer

FACIT TILL TENTAMEN, 30/4, 2011 Delkurs 1 FRÅGA 1

FACIT TILL TENTAMEN, 30/4, 2011 Delkurs 1 FRÅGA 1 17 FACIT TILL TENTAMEN, 3/4, 211 Delkurs 1 FRÅGA 1 I. c.(x) 38,25 euro. II. b.(x) Om MC < ATC så sjunker ATC. III. c.(x) 1/3 av skattebördan bärs av konsumenterna och resten av producenterna. 1 3Q = 1

Läs mer

C Höstterminen 2009. Matematik. Elevhäfte KURSPROV. Elevens namn

C Höstterminen 2009. Matematik. Elevhäfte KURSPROV. Elevens namn KURSPROV Matematik C Höstterminen 2009 Prov som ska återanvändas omfattas av sekretess enligt 17 kap. 4 offentlighets- och sekretesslagen. Avsikten är att detta prov ska kunna återanvändas t o m 2015-12-31.

Läs mer

PROVUPPGIFTER. Steg 9 10 Bråk och procent. Godkänd 9 10 1 Skriv 0,03 i procentform. 2 Skriv i blandad form.

PROVUPPGIFTER. Steg 9 10 Bråk och procent. Godkänd 9 10 1 Skriv 0,03 i procentform. 2 Skriv i blandad form. Steg 9 10 Bråk och procent Godkänd 9 10 1 Skriv 0,03 i procentform. 16 2 Skriv i blandad form. 5 3 Vilket eller vilka av talen är lika med en åttondel? 0,8 2 8 2 16 0,12 1,8 4 Skriv 7 % i decimalform.

Läs mer

Matematik. Mål att sträva mot. Mål att uppnå. År 1 Mål Kriterier Eleven ska kunna. Taluppfattning koppla ihop antal och siffra kan lägga rätt antal

Matematik. Mål att sträva mot. Mål att uppnå. År 1 Mål Kriterier Eleven ska kunna. Taluppfattning koppla ihop antal och siffra kan lägga rätt antal Matematik Mål att sträva mot Vi strävar mot att varje elev ska utveckla intresse för matematik samt tilltro till det egna tänkandet och den egna förmågan att lära sig matematik utveckla sin förmåga att

Läs mer

1. a) I en fortskridande våg, vad är det som rör sig från sändare till mottagare? Svara med ett ord. (1p)

1. a) I en fortskridande våg, vad är det som rör sig från sändare till mottagare? Svara med ett ord. (1p) Problem Energi. a) I en fortskridande våg, vad är det som rör sig från sändare till mottagare? Svara med ett ord. (p) b) Ge en tydlig förklaring av hur frekvens, period, våglängd och våghastighet hänger

Läs mer

Matematik Betygskriterier i matematik år 9 Ekholmsskolan i Linköping

Matematik Betygskriterier i matematik år 9 Ekholmsskolan i Linköping Enhet 591 Ekholmen Matematik Betygskriterier i matematik år 9 Ekholmsskolan i Linköping Fakta Förståelse Färdighet Förtrogenhet De olika formerna samspelar och utgör varandras förutsättningar. För att

Läs mer

Alltså endast 3 minuter efter att fartyget är på plats

Alltså endast 3 minuter efter att fartyget är på plats Lösningsförslag Gymnasiecaset 2014 DEL A - Internationell spaningsoperation Gör om till SI- enheter: 1240 * 1,852 = 2296,48 km 550 * 1,852 = 1018,6 km / h Sträckan genom hastigheten ger tiden: 2296,48/

Läs mer

Känguru 2013 Cadet (åk 8 och 9) i samarbete med Jan-Anders Salenius vid Brändö gymnasium

Känguru 2013 Cadet (åk 8 och 9) i samarbete med Jan-Anders Salenius vid Brändö gymnasium sida 1 / 7 NAMN KLASS/GRUPP Poängsumma: Känguruskutt: Lösgör svarsblanketten. Skriv ditt svarsalternativ under uppgiftsnumret. Lämna rutan tom om du inte vill besvara den frågan. Gissa inte, felaktigt

Läs mer

Algebra, exponentialekvationer och logaritmer

Algebra, exponentialekvationer och logaritmer Höstlov Uppgift nr 1 Ge en lösning till ekvationen 0 434,2-13x 3 Ange både exakt svar och avrundat till två decimalers noggrannhet. Uppgift nr 2 Huvudräkna lg20 + lg50 Uppgift nr 3 Ge en lösning till ekvationen

Läs mer

C++ Lektion Tecken och teckenfält

C++ Lektion Tecken och teckenfält C++ Lektion Tecken och teckenfält Teori Hittills har alla variabler du jobbat med varit olika typer av tal, men du kan också deklarera variabler som håller bokstavstecken. Denna variabeltyp kallas för

Läs mer

Matriser och vektorer i Matlab

Matriser och vektorer i Matlab CTH/GU LABORATION 3 TMV206-2013/2014 Matematiska vetenskaper 1 Inledning Matriser och vektorer i Matlab I denna laboration ser vi på hantering och uppbyggnad av matriser samt operationer på matriser En

Läs mer

MATEMATIK FÖR KURS B (NV/AB-boken och B-boken version 1)

MATEMATIK FÖR KURS B (NV/AB-boken och B-boken version 1) NATUR OCH KULTURS PROV VÅRTERMINEN 1997 MATEMATIK FÖR KURS B (NV/AB-boken och B-boken version 1) Provets omfattning: t o m kapitel 5.6 i Matematik 2000 NV kurs AB. Provets omfattning: t o m kapitel 3.5

Läs mer

UPPGIFT 1 TVÅPOTENSER. UPPGIFT 2 HISSEN I LUSTIGA HUSET.

UPPGIFT 1 TVÅPOTENSER. UPPGIFT 2 HISSEN I LUSTIGA HUSET. UPPGIFT 1 TVÅPOTENSER. 2 ½ ¾ = 5575186299632655785383929568162090376495104 n = 142 är det minsta värde på n för vilket 2 Ò inleds med siffrorna 55. Uppgiften består i att skriva ett program som tar emot

Läs mer

MATEMATIK. Ämnets syfte

MATEMATIK. Ämnets syfte MATEMATIK Matematiken har en flertusenårig historia med bidrag från många kulturer. Den utvecklas såväl ur praktiska behov som ur människans nyfikenhet och lust att utforska matematiken som sådan. Kommunikation

Läs mer

OBS: Alla mätningar och beräknade värden ska anges i SI-enheter med korrekt antal värdesiffror. Felanalys behövs endast om det anges i texten.

OBS: Alla mätningar och beräknade värden ska anges i SI-enheter med korrekt antal värdesiffror. Felanalys behövs endast om det anges i texten. Speed of light OBS: Alla mätningar och beräknade värden ska anges i SI-enheter med korrekt antal värdesiffror. Felanalys behövs endast om det anges i texten. 1.0 Inledning Experiment med en laseravståndsmätare

Läs mer

Lästal från förr i tiden

Lästal från förr i tiden Lästal från förr i tiden Nedan presenteras ett antal problem som normalt leder till ekvationer av första graden. Inled din lösning med ett antagande. Teckna sedan ekvationen. Då ekvationen är korrekt uppställt

Läs mer

REPETITION 2 A. a) Är sträckan proportionell mot tiden? b) Beräkna medelhastigheten under de fem första sekunderna.

REPETITION 2 A. a) Är sträckan proportionell mot tiden? b) Beräkna medelhastigheten under de fem första sekunderna. REPETITION Hur mcket är a) 9 b) 00 0 c) 00 På en karta i skala : 0 000 är det, cm mellan två små sjöar. Hur långt är det i verkligheten? Grafen visar hur långt en bil hinner de se första sekunderna efter

Läs mer