Kapitel. 9-1 Innan graflösning används 9-2 Analys av en funktionsgraf

Storlek: px
Starta visningen från sidan:

Download "Kapitel. 9-1 Innan graflösning används 9-2 Analys av en funktionsgraf"

Transkript

1 Kapitel Graflösning Det går att använda följande metoder för att analysera funktionsgrafer och approximera resultat. Beräkning av roten Bestämning av lokalt maximivärde och lokalt minimivärde Bestämning av y-skärningspunkt Bestämning av skärningspunkt för två grafer Bestämning av koordinater vid valfri punkt (y för en given x/ x för en given y) Bestämning av integralen för valfritt intervall 9-1 Innan graflösning används 9-2 Analys av en funktionsgraf 9

2 9-1 Innan graflösning används Använd läget GRAPH för att rita grafen och tryck sedan på! 5 (G-Solv) för att uppvisa en funktionsmeny som innehåller följande poster. {ROOT}/{MAX}/{MIN}/{Y-ICPT}/{ISCT}... {rot}/{lokalt maximivärde}/{lokalt minimivärde}/{y-skärningspunkt}/{skärningspunkt för två grafer} {Y-CAL}/{X-CAL}/{ dx}... {y-koordinat för en given x-koordinat}/{x-koordinat för en given y-koordinat}/{integral för ett givet intervall} 144

3 9-2 Analys av en funktionsgraf De följande två graferna används för alla exempel i detta avsnitt, förutom exemplet för att bestämma skärningspunkter för två grafer. Minnesplats Y1 = x + 1 Y2 = x(x + 2)(x 2) Använd tittfönstret för att specificera följande parametrar. (A) (B) Xmin = 5 Ymin = 5 Xmin = 6.3 Ymin = 3.1 Xmax = 5 Ymax = 5 Xmax = 6.3 Ymax = 3.1 Xscale = 1 Yscale = 1 Xscale = 1 Yscale = 1 k Att bestämma rötter Exempel Bestäm rötterna för y = x(x + 2)(x 2) Tittfönstret: (B) 1(ROOT) (Detta gör att räknaren ställs i beredskapsläge och väntar på val av en graf.) Markören k visas på grafen med det lägsta minnesareanumret. Specificera grafen du vill använda. c Använd f och c för att flytta markören till grafen vars rötter du vill finna. Bestäm roten. Rötter återfinns med början från vänster. 145

4 9-2 Analys av en funktionsgraf Leta upp nästa rot till höger. e Inget händer när e trycks in om det inte finns någon rot till höger. e Använd d för att flytta bakåt till vänster. Om det enbart finns en graf gör ett tryck på 1(ROOT) att roten visas direkt (val av en graf krävs inte). koordinater (Y =) och olikhetsgrafer. k Att bestämma lokala maximivärden och lokala minimivärden Exempel Bestäm lokalt maximivärde och lokalt minimivärde för y = x (x + 2) (x 2) Tittfönstret: (A) 2(MAX) (Detta gör att räknaren ställs i beredskapsläge och väntar på val av en graf.) Specificera en graf och bestäm lokalt maximivärde. c 146

5 Analys av en funktionsgraf 9-2 Specificera en graf och bestäm lokalt minimivärde. 3(MIN) c Om det finns fler än ett lokalt maximi/minimivärde kan d och e användas för att flytta mellan dessa. Om det enbart finns en graf gör ett tryck på 2 (MAX) / 3 (MIN) att lokalt maximi/minimivärde visas direkt (val av en graf krävs inte). koordinater (Y =) och olikhetsgrafer. k Bestämning av y-avskärningar Exempel Att bestämma y-avskärningar för y = x + 1 Tittfönstret: (B) 4(Y-ICPT) (Detta gör att räknaren ställs i beredskapsläge och väntar på val av en graf.) Bestäm y-avskärningen. y-avskärningar är de punkter där grafen skär y-axeln. Om det enbart finns en graf gör ett tryck på 4 (Y-ICPT) att y-avskärningarna visas direkt (val av en graf krävs inte). koordinater (Y =) och olikhetsgrafer. 147

6 9-2 Analys av en funktionsgraf k Att bestämma skärningspunkter för två grafer Exempel Rita följande tre grafer och bestäm sedan skärningspunkterna för graf Y1 och graf Y3. Tittfönstret: (A) Y1 = x + 1 Y2 = x (x + 2) (x 2) Y3 = x 2 5(ISCT) (Detta gör att räknaren ställs i beredskapsläge och väntar på val av en graf.) Specificera graf Y1. Ett tryck på ändrar k till för specificering av den första grafen. Specificera den andra grafen (grafen Y3) för att bestämma skärningspunkterna. c Använd f och c för att flytta k på den andra grafen. Skärningspunkterna återfinns med början från vänster. e Nästa skärningspunkt till höger hittas. Om det inte finns någon skärningspunkt till höger händer inget när detta utförs. Använd d för att flytta bakåt till vänster. Om det enbart finns två grafer gör ett tryck på 5 (ISCT) att skärningspunkterna visas direkt (val av en graf krävs inte). koordinater (Y =) och olikhetsgrafer. 148

7 Analys av en funktionsgraf 9-2 k Att bestämma en koordinat (x för en given y/y för en given x) Exempel Bestäm y-koordinaten för x = 0,5 och x-koordinaten för y = 3,2 i grafen y = x (x + 2) (x 2) Tittfönstret: (B) 6(g)1(Y-CAL) Specificera en graf. c Räknaren väntar nu på inmatning av ett x- koordinatvärde. Mata in x-koordinatvärdet. a.f Bestäm motsvarande y-koordinatvärde. Specificera en graf. 6(g) 2(X-CAL) c Räknaren väntar nu på inmatning av ett y- koordinatvärde. Mata in y-koordinatvärdet d.c Bestäm motsvarande x-koordinatvärde. 149

8 9-2 Analys av en funktionsgraf Om det finns fler än ett x-koordinatvärde för ett givet y-koordinatvärde, eller fler än ett y-koordinatvärde för ett givet x-koordinatvärde, kan e och d användas för att flytta mellan dessa. Skärmen som används för koordinatvärden beror på vilken graftyp det rör sig om, såsom anges nedan. Polär koordinatgraf Parametrisk graf Olikhetsgraf Det går inte att bestämma en y-koordinat för en given x-koordinat med en parametrisk graf. Om det enbart finns en graf gör ett tryck på 1 (Y-CAL) / 2 (X-CAL) att x- koordinaten/y-koordinaten visas direkt (val av en graf krävs inte). k Bestämning av integralen för ett intervall Exempel 1,5 0 x (x + 2) (x 2) dx Tittfönstret: (A) 6(g) 3( dx) (Beredskap för val av graf) Välj önskad graf. c Skärmen uppmanar till inmatning av den nedre gränsen för integreringsintervallet. Flytta pekaren och mata in den nedre gränsen. d~d 150

9 Analys av en funktionsgraf 9-2 Mata in den övre gränsen och bestäm integralen. e~e (Övre gräns; x = 0) Vid specificering av integreringsintervallet måste den nedre gränsen alltid vara mindre än den övre gränsen. koordinater (Y =). k Att observera vid graflösning Beroende på tittfönstrets parameterinställning kan ibland resultaten fela vid diagramlösning. Meddelandet Not Found visas på skärmen om ingen lösning kan finnas för någon av de ovanstående operationerna. Följande förhållanden kan påverka beräkningens exakthet och göra det omöjligt att erhålla en lösning. När lösningen är en beröringspunkt till x-axeln. När lösningen är en beröringspunkt mellan två grafer. 151

Kapitel. 12-1 Före användning av graf-till-tabell 12-2 Användning av graf-till-tabell

Kapitel. 12-1 Före användning av graf-till-tabell 12-2 Användning av graf-till-tabell Kapitel Graf-till-tabell Denna funktion gör att skärmen uppvisar både en graf och en tabell. Det går att flytta en pekare runt grafen och lagra dess nuvarande koordinater i tabellen närhelst du önskar.

Läs mer

Kapitel. 10-1 Innan skissfunktionen används 10-2 Grafritning med skissfunktionen

Kapitel. 10-1 Innan skissfunktionen används 10-2 Grafritning med skissfunktionen Kapitel Skissfunktion Skissfunktionen gör det möjligt att rita linjer och grafer på en existerande graf. Tänk på att användning av skissfunktionen i läget STAT, GRAPH, TABLE, RECUR och CONICS skiljer sig

Läs mer

11-1 Innan dubbelgraf används

11-1 Innan dubbelgraf används Kapitel Dubbelgraf Funktionen för dubbelgraf gör att du kan dela upp skärmen i två halvor och därmed titta på två olika grafer samtidigt. Detta ger dig möjlighet att jämföra och analysera graferna i detalj.

Läs mer

Kapitel Grafer för koniska sektioner

Kapitel Grafer för koniska sektioner Kapitel 14 Grafer för koniska sektioner Det går att rita en graf över följande koniska sektioner med hjälp av räknarens inbyggda funktioner. Parabelgraf Cirkelgraf Elliptisk graf Hyperbelgraf 14-1 Före

Läs mer

8-1 Före ritning av en graf

8-1 Före ritning av en graf Kapitel Grafritning En samling effektiva grafritningsverktyg plus en stor skärm på 127 63 punkter gör det möjligt att rita ett flertal olika funktionsgrafer snabbt och enkelt. Denna räknare kan rita följande

Läs mer

Kapitel Tabell & graf

Kapitel Tabell & graf Kapitel 15 Tabell & graf Tabell & graf används för att framställa tabeller över diskreta data från funktioner och rekursionsformler och sedan använda värdena för grafritning. Tabell & graf gör det därför

Läs mer

varandra. Vi börjar med att behandla en linjes ekvation med hjälp av figur 7 och dess bildtext.

varandra. Vi börjar med att behandla en linjes ekvation med hjälp av figur 7 och dess bildtext. PASS 8 EKVATIONSSYSTEM OCH EN LINJES EKVATION 8 En linjes ekvation En linjes ekvation kan framställas i koordinatsystemet Koordinatsystemet består av x-axeln och yaxeln X-axeln är vågrät och y-axeln lodrät

Läs mer

Kapitel Rekursionstabell och graf

Kapitel Rekursionstabell och graf Kapitel 16 Rekursionstabell och graf Det går att mata in två formler för de tre typerna av rekursion nedan och sedan använda dem för att framställa en tabell och rita grafer. Generell term av sekvensen

Läs mer

Kapitel Tabell & graf

Kapitel Tabell & graf Kapitel Menyn för tabell & graf gör det möjligt att framställa siffertabeller från funktioner som lagrats i minnet. Det går även att använda flera funktioner för att framställa tabeller. Eftersom tabell

Läs mer

Tangenter till tredjegradsfunktioner

Tangenter till tredjegradsfunktioner Tangenter till tredjegradsfunktioner I bilden intill ser du grafen av en tredjegradsfunktion som har tre nollställen nämligen x = 2, x = 1 och x = -1. Om man ritar en tangent till funktionsgrafen kommer

Läs mer

9-1 Koordinatsystem och funktioner. Namn:

9-1 Koordinatsystem och funktioner. Namn: 9- Koordinatsystem och funktioner. Namn: Inledning I det här kapitlet skall du lära dig vad ett koordinatsystem är och vilka egenskaper det har. I ett koordinatsystem kan man representera matematiska funktioner

Läs mer

Detta kapitel förklarar lösning av de fyra typer av differentialekvationer som anges nedan.

Detta kapitel förklarar lösning av de fyra typer av differentialekvationer som anges nedan. Kapitel Differentialekvationer Detta kapitel förklarar lösning av de fyra typer av differentialekvationer som anges nedan. 3 Differentialekvationer av första ordningen Linjära differentialekvationer av

Läs mer

GRAFRÄKNARE. Snabbguide för

GRAFRÄKNARE. Snabbguide för GRAFRÄKNARE Snabbguide för användning av FX-7400GII Förord Grafräknare är kraftfulla verktyg för den moderna matematikundervisningen och den här snabbguiden behandlar de viktigaste programmen och funktionerna

Läs mer

Introduktion. Exempel Övningar Lösningar 1 Lösningar 2 Översikt

Introduktion. Exempel Övningar Lösningar 1 Lösningar 2 Översikt KTHs Sommarmatematik 2002 Exempel Övningar Lösningar 1 Lösningar 2 Översikt 1.1Introduktion Introduktion Avsnitt 1 handlar till att börja med om hantering av bråkstreck. Samtidigt ges exempel och övningar

Läs mer

Kapitel 12: Plotta polärekvationer

Kapitel 12: Plotta polärekvationer Kapitel 12: Plotta polärekvationer 12 Översikt över polärplottning...228 Översikt över stegen i att plotta polärekvationer...229 Skillnader mellan polär- och funktionsplottning...230 I det här kapitlet

Läs mer

Kort introduktion till Casio fx-9750 GII. Knappsats

Kort introduktion till Casio fx-9750 GII. Knappsats Kort introduktion till Casio fx-9750 GII Knappsats För ytterligare information kontakta Viweka Palm Viweka.palm@casio.se Tel 08-442 70 25 1 De vanligaste programmen: RUN- MAT Vanliga beräkningar och matrisberäkning

Läs mer

Funktionsstudier med derivata

Funktionsstudier med derivata Funktionsstudier med derivata Derivatan ett kraftfullt verktyg för att studera och tolka funktioner Det här avsnittet handlar om att man kan använda derivatan till att bestämma en funktions egenskaper

Läs mer

Precis som var fallet med förra artikeln, Geogebra för de yngre i Nämnaren

Precis som var fallet med förra artikeln, Geogebra för de yngre i Nämnaren Publicerad med tillstånd av Nämnaren Thomas Lingefjärd Geogebra i gymnasieskolan En tilltalande egenskap med Geogebra är att programmet kan användas tvärs över stora delar av utbildningssystemets matematikkurser.

Läs mer

Kapitel Ekvationsräkning

Kapitel Ekvationsräkning Kapitel Ekvationsräkning Din grafiska räknare kan lösa följande tre typer av beräkningar: Linjära ekvationer med två till sex okända variabler Högregradsekvationer (kvadratiska, tredjegrads) Lösningsräkning

Läs mer

GeoGebra i matematikundervisningen - Inspirationsdagar för gymnasielärare. Karlstads universitet 19-20 april. Liten introduktionsguide för nybörjare

GeoGebra i matematikundervisningen - Inspirationsdagar för gymnasielärare. Karlstads universitet 19-20 april. Liten introduktionsguide för nybörjare GeoGebra i matematikundervisningen - Inspirationsdagar för gymnasielärare 19-20 april Liten introduktionsguide för nybörjare GeoGebra 0 Introduktionsövningar till GeoGebra När man startar GeoGebra är det

Läs mer

Institutionen för matematik och datavetenskap Karlstads universitet. GeoGebra. ett digitalt verktyg för framtidens matematikundervisning

Institutionen för matematik och datavetenskap Karlstads universitet. GeoGebra. ett digitalt verktyg för framtidens matematikundervisning Karlstads GeoGebrainstitut Institutionen för matematik och datavetenskap Karlstads universitet Mats Brunström Maria Fahlgren GeoGebra ett digitalt verktyg för framtidens matematikundervisning Invigning

Läs mer

Begrepp Uttryck, värdet av ett uttryck, samband, formel, graf, linje, diagram, spridningsdiagram.

Begrepp Uttryck, värdet av ett uttryck, samband, formel, graf, linje, diagram, spridningsdiagram. Aktivitetsbeskrivning Denna aktivitet samlar ett antal olika sätt att göra procentuella beräkningar på grafräknare. Dessa metoder finns som uppgifter eller som en samling tips i en lathund. Matematiskt

Läs mer

Kapitel Att lära känna räknaren Läs detta först! Sid. 000

Kapitel Att lära känna räknaren Läs detta först! Sid. 000 Kapitel 1 Läs detta först! Symbolerna i denna bruksanvisning anger följande meddelanden. : Viktiga anmärkningar : Anmärkningar Sid. 000 : Referenssidor Kapitel 1 1. Hur du använder huvudmenyn Huvudmenyn

Läs mer

Kapitel E-CON. 4-1 Överblick av E-CON 4-2 Uppställning av EA-100 4-3 Uppställningsminne 4-4 Programomvandling 4-5 Att starta provtagning

Kapitel E-CON. 4-1 Överblick av E-CON 4-2 Uppställning av EA-100 4-3 Uppställningsminne 4-4 Programomvandling 4-5 Att starta provtagning Kapitel E-CON 4-1 Överblick av E-CON 4-2 Uppställning av EA-100 4-3 Uppställningsminne 4-4 Programomvandling 4-5 Att starta provtagning 4 Alla förklaringar i detta kapitel förutsätter att du redan är bekant

Läs mer

Kapitel Datakommunikation Anslutning av två enheter Anslutning av enheten till en persondator Anslutning av enheten till en CASIO etikettskrivare

Kapitel Datakommunikation Anslutning av två enheter Anslutning av enheten till en persondator Anslutning av enheten till en CASIO etikettskrivare Kapitel I detta kapitel får du veta allt du behöver känna till för att överföra program mellan fx-7400g PLUS och vissa grafiska räknarmodeller frän CASIO som kan anslutas med extra tillbehöret SB-62 kabeln.

Läs mer

Matematik 3 Digitala övningar med TI-82 Stats, TI-84 Plus och TI-Nspire CAS

Matematik 3 Digitala övningar med TI-82 Stats, TI-84 Plus och TI-Nspire CAS Matematik 3 Digitala övningar med TI-8 Stats, TI-84 Plus och TI-Nspire CAS Matematik 3 digitala övningar med TI-8 Stat, TI-84 Plus och TI Nspire CAS Vi ger här korta instruktioner där man med fördel kan

Läs mer

När vi ritar grafen kan vi bestämma om funktionen har globalt maximum ( =största värde)

När vi ritar grafen kan vi bestämma om funktionen har globalt maximum ( =största värde) GRAFRITNING För att skissera (rita) grafen till en funktion y f () undersöker vi först några viktiga egenskaper: definitionsmängd, eventuella skärningspunkter med och y-aeln, gränsvärdena f ( ), f ( )

Läs mer

NATIONELLT KURSPROV I MATEMATIK KURS E VÅREN Tidsbunden del

NATIONELLT KURSPROV I MATEMATIK KURS E VÅREN Tidsbunden del Skolverket hänvisar generellt beträffande provmaterial till bestämmelsen om sekretess i 4 kap. sekretesslagen. För detta material gäller sekretessen till och med utgången av november 1998. Anvisningar

Läs mer

MATEMATIK 5 veckotimmar

MATEMATIK 5 veckotimmar EUROPEISK STUDENTEXAMEN 2010 MATEMATIK 5 veckotimmar DATUM : 4 Juni 2010 SKRIVNINGSTID : 4 timmar (240 minuter) TILLÅTNA HJÄLPMEDEL : Skolans formelsamling Icke-programmerbar, icke-grafritande räknedosa

Läs mer

Exempel. Vi skall bestämma koordinaterna för de punkter som finns i bild 3. OBS! Varje ruta motsvarar 1mm

Exempel. Vi skall bestämma koordinaterna för de punkter som finns i bild 3. OBS! Varje ruta motsvarar 1mm Koordinatsystem Koordinatsystem För att verktygen i en CNC-maskin skall kunna styras exakt till samtliga punkter i maskinens arbetsrum, använder man sig av ett koordinatsystem. Den enklaste formen av koordinatsystem

Läs mer

Optimala vinkeln av bortklippt cirkelsektor fo r maximal volym pa glasstrut

Optimala vinkeln av bortklippt cirkelsektor fo r maximal volym pa glasstrut Optimala vinkeln av bortklippt cirkelsektor fo r maximal volym pa glasstrut Frågeställning Av en cirkulär pappersskiva kan en cirkelsektor med en viss vinkel klippas bort. Med den resterande sektorn går

Läs mer

10x 3 4x 2 + x. 4. Bestäm eventuella extrempunkter, inflexionspunkter samt horizontella och vertikala asymptoter. y = x 1 x + 1

10x 3 4x 2 + x. 4. Bestäm eventuella extrempunkter, inflexionspunkter samt horizontella och vertikala asymptoter. y = x 1 x + 1 TM-Matematik Mikael Forsberg Pär Hemström Övningstenta Envariabelanalys ma034a ovnt--vt0 Skrivtid: 5 timmar. Inga hjälpmedel. Lösningarna skall vara fullständiga och lätta att följa. Börja varje ny uppgift

Läs mer

Matematik 1 Digitala övningar med TI-82 Stats, TI-84 Plus och TI-Nspire CAS

Matematik 1 Digitala övningar med TI-82 Stats, TI-84 Plus och TI-Nspire CAS Matematik 1 Digitala övningar med TI-82 Stats, TI-84 Plus och TI-Nspire CAS Matematik 1 digitala övningar med TI-82 Stat, TI-84 Plus och TI Nspire CAS Vi ger här korta instruktioner där man med fördel

Läs mer

Matematik 5 Kap 3 Derivator och Integraler

Matematik 5 Kap 3 Derivator och Integraler Matematik 5 Kap 3 Derivator och Integraler Inledning I kap 4 Differentialekvationer behövs derivator (och integraler) och i kap 5 Omfångsrika problemsituationer finns intressanta problem med användning

Läs mer

Frågorna 1 till 6 ska svaras med sant eller falskt och ger vardera 1

Frågorna 1 till 6 ska svaras med sant eller falskt och ger vardera 1 ATM-Matematik Mikael Forsberg 6-64 89 6 Matematik med datalogi, mfl. Skrivtid:. Inga hjälpmedel. Lösningarna skall vara fullständiga och lätta att följa. Börja varje ny uppgift på ny sida. Använd ej baksidor.

Läs mer

LABORATION cos (3x 2 ) dx I =

LABORATION cos (3x 2 ) dx I = SF1518,SF1519,numpbd14 LABORATION 2 Trapetsregeln, ekvationer, ekvationssystem, MATLAB-funktioner Studera kapitel 6 och avsnitt 5.2.1, 1.3 och 3.8 i NAM parallellt med arbetet på denna laboration. Genomför

Läs mer

Beräkningsmetoder för superellipsens omkrets

Beräkningsmetoder för superellipsens omkrets Beräkningsmetoder för superellipsens omkrets Frågeställning Svar 1. Vi förväntades ta reda på olika metoder för att beräkna en superellips eller en ellips omkrets. o Givet var ellipsens ekvation:. (Källa

Läs mer

LABORATION 2. Trapetsregeln, MATLAB-funktioner, ekvationer, numerisk derivering

LABORATION 2. Trapetsregeln, MATLAB-funktioner, ekvationer, numerisk derivering SF1518,SF1519,numpbd15 LABORATION 2 Trapetsregeln, MATLAB-funktioner, ekvationer, numerisk derivering - Genomför laborationen genom att göra de handräkningar och MATLAB-program som begärs. Var noga med

Läs mer

SF1625 Envariabelanalys Lösningsförslag till tentamen DEL A

SF1625 Envariabelanalys Lösningsförslag till tentamen DEL A SF1625 Envariabelanalys Lösningsförslag till tentamen 214-1-24 DEL A 1. Låt f(x) = e x sin x. A. Bestäm alla kritiska (stationära) punkter till funktionen f. B. Avgör vilka av de kritiska punkterna som

Läs mer

Matematik 3c Kap 3 Kurvor, derivator och integraler

Matematik 3c Kap 3 Kurvor, derivator och integraler Matematik 3c Kap 3 Kurvor, derivator och integraler Inledning Konkretisering av ämnesplan (länk) http://www.ioprog.se/public_html/ämnesplan_matematik/struktur_äm nesplan_matematik/struktur_ämnesplan_matematik.html

Läs mer

UPPSALA UNIVERSITET Matematiska institutionen Michael Melgaard. Prov i matematik Prog: Datakand., Frist. kurser Derivator o integraler 1MA014

UPPSALA UNIVERSITET Matematiska institutionen Michael Melgaard. Prov i matematik Prog: Datakand., Frist. kurser Derivator o integraler 1MA014 UPPSALA UNIVERSITET Matematiska institutionen Michael Melgaard Jörgen Östensson Prov i matematik Prog: Datakand., Frist. kurser Derivator o integraler 1MA1 8 3 31 Skrivtid: 8: 13:. Tillåtna hjälpmedel:

Läs mer

Problemet löd: Är det möjligt att på en sfär färga varje punkt på ett sådant sätt att:

Problemet löd: Är det möjligt att på en sfär färga varje punkt på ett sådant sätt att: Problemet löd: Är det möjligt att på en sfär färga varje punkt på ett sådant sätt att: 1. Om två punkter befinner sig på avståndet pi/2 från varandra så skall de ha olika färg. 2. Endast tre färger används.

Läs mer

Funktioner. Räta linjen

Funktioner. Räta linjen Sidor i boken 14-143, 145-147 Funktioner. Räta linjen Här följer en dialog mellan studenten Tor-Björn (hädanefter kallad TB) och hans lärare i matematik Karl-Ture Hansson (nedan kallad KTH). När vi möter

Läs mer

Institutionen för Matematik, KTH Lösningar till tentamen i Analys i en variabel för I och K (SF1644) 1/ e x h. (sin x) 2 1 cos x.

Institutionen för Matematik, KTH Lösningar till tentamen i Analys i en variabel för I och K (SF1644) 1/ e x h. (sin x) 2 1 cos x. Institutionen för Matematik, KTH Lösningar till tentamen i Analys i en variabel för I och K (SF644) /6 29. Bestäm med derivatans definition d dx ex. Derivatans definition är f (x) = lim h h ( f(x + h)

Läs mer

Uppgift 1a (Aktiekurser utan poster)

Uppgift 1a (Aktiekurser utan poster) Uppgift 1a (Aktiekurser utan poster) Vi har lite olika upplägg i de kurser vi håller och i vissa kurser finns det med något som vi kallar "poster" (eng. "record"). I andra har vi inte med detta. Vi har

Läs mer

ClassPad 330 Plus studentexamen Hösten 2012 lång matematik. Mer tid för matematik och mindre tid för att lära sig räknaren.

ClassPad 330 Plus studentexamen Hösten 2012 lång matematik. Mer tid för matematik och mindre tid för att lära sig räknaren. ClassPad 330 Plus studentexamen Hösten 2012 lång matematik Mer tid för matematik och mindre tid för att lära sig räknaren. Kära läsare! Användningen av CAS-beräkningar i studentexamen är ännu i ett tidigt

Läs mer

SF1625 Envariabelanalys

SF1625 Envariabelanalys Modul 4: Tillämpningar av derivata Institutionen för matematik KTH 22-23 september 2015 Översikt över några viktiga derivatatillämningar 1. Förändringstakt. Derivata mäter förändringstakt, till exemel

Läs mer

Konsultarbete, Hitta maximal volym fo r en la da

Konsultarbete, Hitta maximal volym fo r en la da Konsultarbete, Hitta maximal volym fo r en la da Uppgift 2. Maximal låda. I de fyra hörnen på en rektangulär pappskiva klipper man bort lika stora kvadrater. Flikarna viks sedan upp så att vi får en öppen

Läs mer

SF1625 Envariabelanalys Tentamen Måndagen den 11 januari 2016

SF1625 Envariabelanalys Tentamen Måndagen den 11 januari 2016 SF625 Envariabelanalys Tentamen Måndagen den januari 206 Skrivtid: 08:00-3:00 Tillåtna hjälpmedel: inga Examinator: Lars Filipsson Tentamen består av nio uppgifter som vardera ger maximalt fyra poäng.

Läs mer

Namn Klass Personnummer (ej fyra sista)

Namn Klass Personnummer (ej fyra sista) Prövning matematik 6 feb 16 (prövningstillfälle ) Namn Klass Personnummer (ej fyra sista) Mobiltelefonnummer e-post SKRIV TYDLIGT! Alla papper ska förses med namn och återlämnas Skriv tydligt. Oläsliga

Läs mer

Mälardalens högskola Akademin för utbildning, kultur och kommunikation

Mälardalens högskola Akademin för utbildning, kultur och kommunikation Mälardalens högskola Akademin för utbildning, kultur och kommunikation MAA24 Grundläggande kalkyl ÖVN2 Lösningsförslag 202.08.09 08.30 0.30 Hjälpmedel: Endast skrivmaterial. (Gradskiva är tillåtet.) Poäng:

Läs mer

2. Förkorta bråket så långt som möjligt 1001/

2. Förkorta bråket så långt som möjligt 1001/ Nästan vanliga tal 1. Beräkna1 2+3 4+5 2000+2001 Lösning. 1 + ( 2 + 3) + ( 4 + 5) +... + ( 2000 + 2001) = 1+ 142 +... 43 + 1 = 1001 2. Förkorta bråket så långt som möjligt 1001/10000001 1000 gnr Lösning.

Läs mer

Kap Dubbelintegraler.

Kap Dubbelintegraler. Kap 4. 4.. ubbelintegraler. A. Beräkna följande dubbelintegraler a. d. (x + y) dxdy, över kvadraten x 3, y. (sin y + y cos x) dxdy, då ges av x π, y π. x cos xy dxdy, då ges av x π, y. xy cos (x + y )

Läs mer

Kapitel Datakommunikation

Kapitel Datakommunikation Kapitel Datakommunikation I detta kapitel får du veta allt du behöver känna till för att överföra program mellan din Power Graphic enhet och en annan CASIO Power Graphic enhet som kan anslutas med extra

Läs mer

Mälardalens högskola Akademin för utbildning, kultur och kommunikation

Mälardalens högskola Akademin för utbildning, kultur och kommunikation Mälardalens högskola Akademin för utbildning, kultur och kommunikation MAA Grundläggande kalkyl ÖVN Lösningsförslag.8. 8.. Hjälpmedel: Endast skrivmaterial. (Gradskiva är tillåtet.) Poäng: Denna tentamen

Läs mer

Programmeringsolympiaden 2011 Kvalificering

Programmeringsolympiaden 2011 Kvalificering Programmeringsolympiaden 2011 Kvalificering TÄVLINGSREGLER Tävlingen äger rum på ett av skolan bestämt datum under sex timmar effektiv tid. Tävlingen består av sex uppgifter som samtliga ska lösas genom

Läs mer

Räknarinstruktioner för CASIO FX-9750GII till Matematik Origo 2b

Räknarinstruktioner för CASIO FX-9750GII till Matematik Origo 2b Räknarinstruktioner för CASIO FX-9750GII till Matematik Origo 2b Sidan 21 Funktionen f bestäms av uttrycket. a) Rita grafen med hjälp av din grafritande räknare. b) Bestäm det största värdet till funktionen

Läs mer

Algebra & Ekvationer. Svar: Sammanfattning Matematik 2

Algebra & Ekvationer. Svar: Sammanfattning Matematik 2 Algebra & Ekvationer Algebra & Ekvationer Parenteser En parentes När man multiplicerar en term med en parentes måste man multiplicera båda talen i parentesen. Förenkla uttrycket 42 9. 42 9 4 2 4 9 8 36

Läs mer

Kapitel 7 Skorsten, trappa och inredning... 3

Kapitel 7 Skorsten, trappa och inredning... 3 2014.02.21 1 Kapitel Innehåll... Sida Kapitel 7 Skorsten, trappa och inredning... 3 Skorsten... 3 Trappa... 5 Möbler... 8 Automatisk rotation... 10 Köksinredning polyline [F2]... 14 Köksinredning Skåpsfigur...

Läs mer

Kompletterande lösningsförslag och ledningar, Matematik 3000 kurs B, kapitel 2

Kompletterande lösningsförslag och ledningar, Matematik 3000 kurs B, kapitel 2 Kapitel.1 101, 10 Exempel som löses i boken. 103 Testa genom att lägga linjalen lodrätt och föra den över grafen. Om den på något ställe skär grafen i mer än en punkt så visar grafen inte en funktion.

Läs mer

x 2 + x 2 b.) lim x 15 8x + x 2 c.) lim x 2 5x + 6 x 3 + y 3 xy = 7

x 2 + x 2 b.) lim x 15 8x + x 2 c.) lim x 2 5x + 6 x 3 + y 3 xy = 7 TM-Matematik Mikael Forsberg 0734-41331 Pär Hemström 06-64896 För ingenjörs och distansstudenter Envariabelanalys ma034a 01 10 01 Skrivtid: 09:00-14:00. Inga hjälpmedel. Lösningarna skall vara fullständiga

Läs mer

MATEMATIK Datum: 2015-08-19 Tid: eftermiddag Hjälpmedel: inga. Mobiltelefoner är förbjudna. A.Heintz Telefonvakt: Tim Cardilin Tel.

MATEMATIK Datum: 2015-08-19 Tid: eftermiddag Hjälpmedel: inga. Mobiltelefoner är förbjudna. A.Heintz Telefonvakt: Tim Cardilin Tel. MATEMATIK Datum: 0-08-9 Tid: eftermiddag Chalmers Hjälmedel: inga. Mobiltelefoner är förbjudna. A.Heintz Telefonvakt: Tim Cardilin Tel.: 0703-088304 Lösningar till tenta i TMV036 Analys och linjär algebra

Läs mer

Växande och avtagande

Växande och avtagande Växande och avtagande Innehåll 1 Växande och avtagande 1 Andraderivatan.1 Andraderivatan och acceleration................... Andrederivatans tecken.........................1 Andraderivatans nollställen:

Läs mer

cos( x ) I 1 = x 2 ln xdx I 2 = x + 1 (x 1)(x 2 2x + 2) dx

cos( x ) I 1 = x 2 ln xdx I 2 = x + 1 (x 1)(x 2 2x + 2) dx TM-Matematik Mikael Forsberg DistansAnalys Envariabelanalys Distans ma4a ot-nummer Inga hjälpmedel. Lösningarna skall vara fullständiga och lätta att följa. Börja varje ny uppgift på ny sida. Använd ej

Läs mer

GeoGebra i matematikundervisningen - Inspirationsdagar för gymnasielärare. Karlstads universitet 19-20 april

GeoGebra i matematikundervisningen - Inspirationsdagar för gymnasielärare. Karlstads universitet 19-20 april GeoGebra i matematikundervisningen - Inspirationsdagar för gymnasielärare Karlstads universitet 19-0 april Exempel på elevaktiviteter framtagna i skolutvecklingsprojektet IKT och lärande i matematik 1

Läs mer

Kap 5.7, Beräkning av plana areor, rotationsvolymer, rotationsareor, båglängder.

Kap 5.7, Beräkning av plana areor, rotationsvolymer, rotationsareor, båglängder. Kap 5.7, 7. 7.. Beräkning av plana areor, rotationsvolymer, rotationsareor, båglängder. 8. (A) Beräkna arean av det ändliga område som begränsas av kurvorna x a. y = + x och y = b. y = x e x och y = x

Läs mer

Avsnitt 3, introduktion.

Avsnitt 3, introduktion. KTHs Sommarmatematik Introduktion 3:1 3:1 Avsnitt 3, introduktion. Teckenstudium Här tränas teckenstudium av polynom och rationella funktioner (som är kvoter av polynom). Metoden går ut på att man faktoriserar

Läs mer

Np MaB vt Låt k = 0 och rita upp de båda linjerna. Bestäm skärningspunkten mellan linjerna.

Np MaB vt Låt k = 0 och rita upp de båda linjerna. Bestäm skärningspunkten mellan linjerna. Vid bedömning av ditt arbete med uppgift nummer 17 kommer läraren att ta hänsyn till: Hur väl du beräknar och jämför trianglarnas areor Hur väl du motiverar dina slutsatser Hur väl du beskriver hur arean

Läs mer

SF1658 Trigonometri och funktioner Lösningsförslag till tentamen den 19 oktober 2009

SF1658 Trigonometri och funktioner Lösningsförslag till tentamen den 19 oktober 2009 KTH Matematik SF1658 Trigonometri och funktioner Lösningsförslag till tentamen den 19 oktober 9 1. a) Visa att sin(6 ) = /. () b) En triangel har sidor av längd 5 och 7, och en vinkel är 6 grader. Bestäm

Läs mer

Tillämpningar av integraler: Area, skivformeln för volymberäkning, båglängd, rotationsarea, integraler och summor

Tillämpningar av integraler: Area, skivformeln för volymberäkning, båglängd, rotationsarea, integraler och summor Tillämpningar av integraler: Area, skivformeln för volymberäkning, båglängd, rotationsarea, integraler och summor Areaberäkningar En av huvudtillämpningar av integraler är areaberäkning. Nedan följer ett

Läs mer

En typisk medianmorot

En typisk medianmorot Karin Landtblom En typisk medianmorot I artikeln Läget? Tja det beror på variablerna! i Nämnaren 1:1 beskrivs en del av problematiken kring lägesmått och variabler med några vanliga missförstånd som lätt

Läs mer

Del I Denna del består av 8 uppgifter och är avsedd att genomföras utan miniräknare.

Del I Denna del består av 8 uppgifter och är avsedd att genomföras utan miniräknare. Del I Denna del består av 8 uppgifter och är avsedd att genomföras utan miniräknare. Dina lösningar på denna del görs på separat papper som ska lämnas in innan du får tillgång till din miniräknare. Observera

Läs mer

Newtons metod och arsenik på lekplatser

Newtons metod och arsenik på lekplatser Newtons metod och arsenik på lekplatser Karin Kraft och Stig Larsson Beräkningsmatematik Chalmers tekniska högskola 1 november 2004 Introduktion Denna övning ingår i Lärardag på Chalmers för kemilärare

Läs mer

Blandade A-uppgifter Matematisk analys

Blandade A-uppgifter Matematisk analys TEKNISKA HÖGSKOLAN Matematik Blandade A-uppgifter Matematisk analys 1 Låt u = i och v = 1 + i Skriv det komplexa talet z = u/v på den polära formen re iϕ Svar: e i π Bestäm de reella tal x för vilka x

Läs mer

UPPGIFTER KAPITEL 2 ÄNDRINGSKVOT OCH DERIVATA KAPITEL 3 DERIVERINGSREGLER

UPPGIFTER KAPITEL 2 ÄNDRINGSKVOT OCH DERIVATA KAPITEL 3 DERIVERINGSREGLER UPPGIFTER KAPITEL 2 ÄNDRINGSKVOT OCH DERIVATA KAPITEL 3 DERIVERINGSREGLER 1. Figuren visar grafen till funktionen f där f(x) = x 3 3x 2. I punkter där xkoordinaterna är 1 respektive 3 är tangenter till

Läs mer

Moment Viktiga exempel Övningsuppgifter I

Moment Viktiga exempel Övningsuppgifter I Moment Viktiga eempel Övningsuppgifter I Inga Inga Inga Grafritning Vi använder en sjustegsprocess Funktionens definitionsmängd 2 Funktionens skärningspunkter med alarna Asymptoter 4 Stationära punkter

Läs mer

GeoGebra i matematikundervisningen - Inspirationsdagar för gymnasielärare. Karlstads universitet 19-20 april. Utforskande aktivitet med GeoGebra

GeoGebra i matematikundervisningen - Inspirationsdagar för gymnasielärare. Karlstads universitet 19-20 april. Utforskande aktivitet med GeoGebra GeoGebra i matematikundervisningen - Inspirationsdagar för gymnasielärare 19-20 april Utforskande aktivitet med GeoGebra GeoGebra 0 Utforskande aktivitet med GeoGebra 1 Börja med att ta bort koordinataxlarna

Läs mer

2301 OBS! x används som beteckning för både vinkeln x och som x-koordinat

2301 OBS! x används som beteckning för både vinkeln x och som x-koordinat 2301 OBS! x används som beteckning för både vinkeln x och som x-koordinat A Punkten P har koordinaterna x och y P = (x, y) i enhetscirkeln gäller att { x = cos x y = sin x P = (cos x, sin x) För vinkeln

Läs mer

Betygskriterier Matematik D MA p. Respektive programmål gäller över kurskriterierna

Betygskriterier Matematik D MA p. Respektive programmål gäller över kurskriterierna Betygskriterier Matematik D MA04 00p Respektive programmål gäller över kurskriterierna MA04 är en nationell kurs och skolverkets kurs- och betygskriterier finns på http://www3.skolverket.se/ Detta är vår

Läs mer

för Tekniskt/Naturvetenskapligt Basår

för Tekniskt/Naturvetenskapligt Basår Institutionen för Fysik och Astronomi Tentamen i Matematik D 21-8-16 för Tekniskt/Naturvetenskapligt Basår lärare : Filip Heijkenskjöld, Susanne Mirbt, Lars Nordström Skrivtid: 8.-12. Hjälpmedel: Miniräknare

Läs mer

MMA127 Differential och integralkalkyl II

MMA127 Differential och integralkalkyl II Mälardalens högskola Akademin för utbildning, kultur och kommunikation MMA127 Differential och integralkalkyl II Tentamen Lösningsförslag 211.8.11 14.3 17.3 Hjälpmedel: Endast skrivmaterial (gradskiva

Läs mer

Tentamen i Matematik 2: M0030M.

Tentamen i Matematik 2: M0030M. Tentamen i Matematik 2: M0030M. Datum: 203-0-5 Skrivtid: 09:00 4:00 Antal uppgifter: 2 ( 30 poäng ). Examinator: Norbert Euler Tel: 0920-492878 Tillåtna hjälpmedel: Inga Betygsgränser: 4p 9p = 3; 20p 24p

Läs mer

Studio 6: Dubbelintegral.

Studio 6: Dubbelintegral. Studio 6: Dubbelintegral. Analys och Linjär Algebra, del C, K1/Kf1/Bt1, vt09 20 februari 2009 1 Repetition av enkelintegral I ALA B skrev du en MATLAB-funktion minintegral som beräknar integralen av en

Läs mer

MATMAT01b (Matematik 1b)

MATMAT01b (Matematik 1b) Sida 1 av 6 MATMAT01b (Matematik 1b) ATT KUNNA TILL PROV MATMAT01b1 - Öka, respektive minska temperaturer - Skriva tal skrivna med text med siffror, Ex två tiondelar = 0,2 - Hitta på två bråk som ger en

Läs mer

a3 bc 5 a 5 b 7 c 3 3 a2 b 4 c 4. Förklara vad ekvationen (2y + 3x) = 16(x + 1)(x 1) beskriver, och skissa grafen.

a3 bc 5 a 5 b 7 c 3 3 a2 b 4 c 4. Förklara vad ekvationen (2y + 3x) = 16(x + 1)(x 1) beskriver, och skissa grafen. MMA Matematisk grundkurs TEN Datum: 4 juni Skrivtid: timmar Hjälpmedel: Penna, linjal och radermedel Denna tentamen TEN består av nio stycken om varannat slumpmässigt ordnade uppgifter som vardera kan

Läs mer

Repetitionsuppgifter i matematik

Repetitionsuppgifter i matematik Repetitionsuppgifter i matematik De fyra enkla räknesätten Här övar vi på de fyra räknesätten för hela tal (positiva och negativa), tal i bråkform och tal i decimalform Bestäm de tal på tallinjen, som

Läs mer

Komma igång med TI-Nspire CX/ TI-Nspire CX CASräknaren

Komma igång med TI-Nspire CX/ TI-Nspire CX CASräknaren Komma igång med TI-Nspire CX/ TI-Nspire CX CASräknaren Denna handbok avser TI-Nspire programvara version 3.2. För att erhålla den senaste versionen av dokumentationen, besök education.ti.com/guides. Viktigt

Läs mer

Denna tentamen består av två delar. Först sex enklare uppgifter, som vardera ger maximalt 2 poäng. Andra delen består av tre uppgifter, som

Denna tentamen består av två delar. Först sex enklare uppgifter, som vardera ger maximalt 2 poäng. Andra delen består av tre uppgifter, som Akademin för utbildning, kultur och kommunikation Avdelningen för tillämpad matematik Eaminator: Jan Eriksson sin( + ) sin + + n 6 LÖSNINGAR TILL TENTAMEN I MATEMATIK MAA1 och MMA1 Basutbildning II i matematik

Läs mer

Svensk översättning: Viweka Palm

Svensk översättning: Viweka Palm Svensk översättning: Viweka Palm FÖRORD Den här boken kan användas till flera av CASIOs grafräknarmodeller. Men knapptrycken som beskrivs och displayerna som visas är hämtade från fx-7400gii. Ofta är det

Läs mer

Intoduktion till FX Graph 4. 2010 Efofex Software

Intoduktion till FX Graph 4. 2010 Efofex Software Intoduktion till FX Graph 4 2010 Efofex Software Intoduction to FX Graph 4 2010 Efofex Software All rights reserved. No parts of this work may be reproduced in any form or by any means - graphic, electronic,

Läs mer

5 Om f (r) = 0 kan andraderivatan inte avgöra vilken typ av extrempunkt det handlar om. Återstår att avgöra punktens typ med teckenstudium.

5 Om f (r) = 0 kan andraderivatan inte avgöra vilken typ av extrempunkt det handlar om. Återstår att avgöra punktens typ med teckenstudium. Så här hittar man extrempunkter, max-, min eller terrasspunkter, till en kurva y = f(x) med hjälp av i första hand f (x) 1 Bestäm f (x) och f (x) 2 Lös ekvationen f (x) = 0. Om ekvationen saknar rötter

Läs mer

x 4 a b X c d Figur 1. Funktionsgrafen y = f (x).

x 4 a b X c d Figur 1. Funktionsgrafen y = f (x). Konveitet En funktionsgraf, som inte är en rät linje, böjer ofta av åt ett bestämt håll i ett visst intervall. För en funktion som är deriverbar två gånger kan man med hjälp av andraderivatan ta reda på

Läs mer

Anvisningar. 240 minuter utan rast. Miniräknare och Formler till nationellt prov i matematik

Anvisningar. 240 minuter utan rast. Miniräknare och Formler till nationellt prov i matematik Skolverket hänvisar generellt beträffande provmaterial till bestämmelsen om sekretess i 4 kap. 3 sekretesslagen. För detta material gäller sekretessen fram till utgången av december 00. Anvisningar Provtid

Läs mer

Kapitel 13: Plotta talföljder

Kapitel 13: Plotta talföljder Kapitel 13: Plotta talföljder 13 Översikt över plottning av talföljder...234 Översikt över stegen i plottning av talföljder...235 Skillnader mellan plottning av talföljder och funktioner...236 Ställa in

Läs mer

UPPGIFT 1 V75 FIGUR 1.

UPPGIFT 1 V75 FIGUR 1. UPPGIFT 1 V75 FIGUR 1. Varje lördag året om spelar tusentals svenskar på travspelet V75. Spelet går ut på att finna sju vinnande hästar i lika många lopp. Lopp 1: 5 7 Lopp 2: 1 3 5 7 8 11 Lopp 3: 2 9 Lopp

Läs mer

Kapitel 1: Komma igång

Kapitel 1: Komma igång Kapitel 1: Komma igång 1 Innan du börjar använda TI.92...2 Utföra beräkningar...4 Plotta en funktion...7 Konstruera geometriska objekt...9 I det här kapitlet får du hjälp med att snabbt komma igång med

Läs mer

Ansvariga lärare: Yury Shestopalov, rum 3A313, tel 054-7001856 (a) Problem 1. Använd Eulers metod II (tre steg) och lös begynnelsevärdesproblemet

Ansvariga lärare: Yury Shestopalov, rum 3A313, tel 054-7001856 (a) Problem 1. Använd Eulers metod II (tre steg) och lös begynnelsevärdesproblemet FACIT: Numeriska metoder Man måste lösa tre problem. Problemen 1 och är obligatoriska, och man kan välja Problemet 3 eller 4 som den tredje. Hjälp medel: Miniräknare (med Guidebook för miniräknare) och

Läs mer

Linjärisering och Newtons metod

Linjärisering och Newtons metod CTH/GU STUDIO 5 TMV36a - 214/215 Matematiska vetenskaper 1 Inledning Linjärisering och Newtons metod Vi skall fortsätta med att lösa ekvationer. I förra studioövningen såg vi på intervallhalveringsmetoden.

Läs mer

fx-9750g PLUS CFX-9850GB PLUS CFX-9850GC PLUS CFX-9950GB PLUS

fx-9750g PLUS CFX-9850GB PLUS CFX-9850GC PLUS CFX-9950GB PLUS 1 fx-9750g PLUS CFX-9850GB PLUS CFX-9850GC PLUS CFX-9950GB PLUS Instruktionshäfte Sw http://world.casio.com/edu/ För ägare av fx-9750g PLUS... Denna bruksanvisning täcker användning av ett flertal räknarmodeller.

Läs mer

Mälardalens högskola Akademin för utbildning, kultur och kommunikation

Mälardalens högskola Akademin för utbildning, kultur och kommunikation Mälardalens högskola Akademin för utbildning, kultur och kommunikation MAA4 Grundläggande kalkyl ÖVN3 Lösningsförslag 0.03.30 4.30 6.30 Hjälpmedel: Endast skrivmaterial. (Gradskiva är tillåtet.) Poäng:

Läs mer