Kapitel. 9-1 Innan graflösning används 9-2 Analys av en funktionsgraf
|
|
- Emma Axelsson
- för 9 år sedan
- Visningar:
Transkript
1 Kapitel Graflösning Det går att använda följande metoder för att analysera funktionsgrafer och approximera resultat. Beräkning av roten Bestämning av lokalt maximivärde och lokalt minimivärde Bestämning av y-skärningspunkt Bestämning av skärningspunkt för två grafer Bestämning av koordinater vid valfri punkt (y för en given x/ x för en given y) Bestämning av integralen för valfritt intervall 9-1 Innan graflösning används 9-2 Analys av en funktionsgraf 9
2 9-1 Innan graflösning används Använd läget GRAPH för att rita grafen och tryck sedan på! 5 (G-Solv) för att uppvisa en funktionsmeny som innehåller följande poster. {ROOT}/{MAX}/{MIN}/{Y-ICPT}/{ISCT}... {rot}/{lokalt maximivärde}/{lokalt minimivärde}/{y-skärningspunkt}/{skärningspunkt för två grafer} {Y-CAL}/{X-CAL}/{ dx}... {y-koordinat för en given x-koordinat}/{x-koordinat för en given y-koordinat}/{integral för ett givet intervall} 144
3 9-2 Analys av en funktionsgraf De följande två graferna används för alla exempel i detta avsnitt, förutom exemplet för att bestämma skärningspunkter för två grafer. Minnesplats Y1 = x + 1 Y2 = x(x + 2)(x 2) Använd tittfönstret för att specificera följande parametrar. (A) (B) Xmin = 5 Ymin = 5 Xmin = 6.3 Ymin = 3.1 Xmax = 5 Ymax = 5 Xmax = 6.3 Ymax = 3.1 Xscale = 1 Yscale = 1 Xscale = 1 Yscale = 1 k Att bestämma rötter Exempel Bestäm rötterna för y = x(x + 2)(x 2) Tittfönstret: (B) 1(ROOT) (Detta gör att räknaren ställs i beredskapsläge och väntar på val av en graf.) Markören k visas på grafen med det lägsta minnesareanumret. Specificera grafen du vill använda. c Använd f och c för att flytta markören till grafen vars rötter du vill finna. Bestäm roten. Rötter återfinns med början från vänster. 145
4 9-2 Analys av en funktionsgraf Leta upp nästa rot till höger. e Inget händer när e trycks in om det inte finns någon rot till höger. e Använd d för att flytta bakåt till vänster. Om det enbart finns en graf gör ett tryck på 1(ROOT) att roten visas direkt (val av en graf krävs inte). koordinater (Y =) och olikhetsgrafer. k Att bestämma lokala maximivärden och lokala minimivärden Exempel Bestäm lokalt maximivärde och lokalt minimivärde för y = x (x + 2) (x 2) Tittfönstret: (A) 2(MAX) (Detta gör att räknaren ställs i beredskapsläge och väntar på val av en graf.) Specificera en graf och bestäm lokalt maximivärde. c 146
5 Analys av en funktionsgraf 9-2 Specificera en graf och bestäm lokalt minimivärde. 3(MIN) c Om det finns fler än ett lokalt maximi/minimivärde kan d och e användas för att flytta mellan dessa. Om det enbart finns en graf gör ett tryck på 2 (MAX) / 3 (MIN) att lokalt maximi/minimivärde visas direkt (val av en graf krävs inte). koordinater (Y =) och olikhetsgrafer. k Bestämning av y-avskärningar Exempel Att bestämma y-avskärningar för y = x + 1 Tittfönstret: (B) 4(Y-ICPT) (Detta gör att räknaren ställs i beredskapsläge och väntar på val av en graf.) Bestäm y-avskärningen. y-avskärningar är de punkter där grafen skär y-axeln. Om det enbart finns en graf gör ett tryck på 4 (Y-ICPT) att y-avskärningarna visas direkt (val av en graf krävs inte). koordinater (Y =) och olikhetsgrafer. 147
6 9-2 Analys av en funktionsgraf k Att bestämma skärningspunkter för två grafer Exempel Rita följande tre grafer och bestäm sedan skärningspunkterna för graf Y1 och graf Y3. Tittfönstret: (A) Y1 = x + 1 Y2 = x (x + 2) (x 2) Y3 = x 2 5(ISCT) (Detta gör att räknaren ställs i beredskapsläge och väntar på val av en graf.) Specificera graf Y1. Ett tryck på ändrar k till för specificering av den första grafen. Specificera den andra grafen (grafen Y3) för att bestämma skärningspunkterna. c Använd f och c för att flytta k på den andra grafen. Skärningspunkterna återfinns med början från vänster. e Nästa skärningspunkt till höger hittas. Om det inte finns någon skärningspunkt till höger händer inget när detta utförs. Använd d för att flytta bakåt till vänster. Om det enbart finns två grafer gör ett tryck på 5 (ISCT) att skärningspunkterna visas direkt (val av en graf krävs inte). koordinater (Y =) och olikhetsgrafer. 148
7 Analys av en funktionsgraf 9-2 k Att bestämma en koordinat (x för en given y/y för en given x) Exempel Bestäm y-koordinaten för x = 0,5 och x-koordinaten för y = 3,2 i grafen y = x (x + 2) (x 2) Tittfönstret: (B) 6(g)1(Y-CAL) Specificera en graf. c Räknaren väntar nu på inmatning av ett x- koordinatvärde. Mata in x-koordinatvärdet. a.f Bestäm motsvarande y-koordinatvärde. Specificera en graf. 6(g) 2(X-CAL) c Räknaren väntar nu på inmatning av ett y- koordinatvärde. Mata in y-koordinatvärdet d.c Bestäm motsvarande x-koordinatvärde. 149
8 9-2 Analys av en funktionsgraf Om det finns fler än ett x-koordinatvärde för ett givet y-koordinatvärde, eller fler än ett y-koordinatvärde för ett givet x-koordinatvärde, kan e och d användas för att flytta mellan dessa. Skärmen som används för koordinatvärden beror på vilken graftyp det rör sig om, såsom anges nedan. Polär koordinatgraf Parametrisk graf Olikhetsgraf Det går inte att bestämma en y-koordinat för en given x-koordinat med en parametrisk graf. Om det enbart finns en graf gör ett tryck på 1 (Y-CAL) / 2 (X-CAL) att x- koordinaten/y-koordinaten visas direkt (val av en graf krävs inte). k Bestämning av integralen för ett intervall Exempel 1,5 0 x (x + 2) (x 2) dx Tittfönstret: (A) 6(g) 3( dx) (Beredskap för val av graf) Välj önskad graf. c Skärmen uppmanar till inmatning av den nedre gränsen för integreringsintervallet. Flytta pekaren och mata in den nedre gränsen. d~d 150
9 Analys av en funktionsgraf 9-2 Mata in den övre gränsen och bestäm integralen. e~e (Övre gräns; x = 0) Vid specificering av integreringsintervallet måste den nedre gränsen alltid vara mindre än den övre gränsen. koordinater (Y =). k Att observera vid graflösning Beroende på tittfönstrets parameterinställning kan ibland resultaten fela vid diagramlösning. Meddelandet Not Found visas på skärmen om ingen lösning kan finnas för någon av de ovanstående operationerna. Följande förhållanden kan påverka beräkningens exakthet och göra det omöjligt att erhålla en lösning. När lösningen är en beröringspunkt till x-axeln. När lösningen är en beröringspunkt mellan två grafer. 151
Kapitel. 12-1 Före användning av graf-till-tabell 12-2 Användning av graf-till-tabell
Kapitel Graf-till-tabell Denna funktion gör att skärmen uppvisar både en graf och en tabell. Det går att flytta en pekare runt grafen och lagra dess nuvarande koordinater i tabellen närhelst du önskar.
Läs merKapitel. 10-1 Innan skissfunktionen används 10-2 Grafritning med skissfunktionen
Kapitel Skissfunktion Skissfunktionen gör det möjligt att rita linjer och grafer på en existerande graf. Tänk på att användning av skissfunktionen i läget STAT, GRAPH, TABLE, RECUR och CONICS skiljer sig
Läs mer11-1 Innan dubbelgraf används
Kapitel Dubbelgraf Funktionen för dubbelgraf gör att du kan dela upp skärmen i två halvor och därmed titta på två olika grafer samtidigt. Detta ger dig möjlighet att jämföra och analysera graferna i detalj.
Läs merKapitel Grafer för koniska sektioner
Kapitel 14 Grafer för koniska sektioner Det går att rita en graf över följande koniska sektioner med hjälp av räknarens inbyggda funktioner. Parabelgraf Cirkelgraf Elliptisk graf Hyperbelgraf 14-1 Före
Läs mer8-1 Före ritning av en graf
Kapitel Grafritning En samling effektiva grafritningsverktyg plus en stor skärm på 127 63 punkter gör det möjligt att rita ett flertal olika funktionsgrafer snabbt och enkelt. Denna räknare kan rita följande
Läs merKapitel Dynamisk graf
Kapitel 13 Dynamisk graf Läget för dynamisk graf på denna räknare ger dig framställning i realtid av ändringar i en graf efter hand som koefficienter och termer ändras. Du kan således se vad som händer
Läs merKapitel Tabell & graf
Kapitel 15 Tabell & graf Tabell & graf används för att framställa tabeller över diskreta data från funktioner och rekursionsformler och sedan använda värdena för grafritning. Tabell & graf gör det därför
Läs mervarandra. Vi börjar med att behandla en linjes ekvation med hjälp av figur 7 och dess bildtext.
PASS 8 EKVATIONSSYSTEM OCH EN LINJES EKVATION 8 En linjes ekvation En linjes ekvation kan framställas i koordinatsystemet Koordinatsystemet består av x-axeln och yaxeln X-axeln är vågrät och y-axeln lodrät
Läs merKapitel Rekursionstabell och graf
Kapitel 16 Rekursionstabell och graf Det går att mata in två formler för de tre typerna av rekursion nedan och sedan använda dem för att framställa en tabell och rita grafer. Generell term av sekvensen
Läs merMinimanual CASIO fx-9750gii
Minimanual CASIO fx-9750gii Vanliga beräkningar Vanliga beräkningar görs som vanligt, fast du trycker EXE istället för lika med. Innehåll 3 maj 2017 1 Skriver du fel i en beräkning kan du radera med DEL.
Läs merKapitel Tabell & graf
Kapitel Menyn för tabell & graf gör det möjligt att framställa siffertabeller från funktioner som lagrats i minnet. Det går även att använda flera funktioner för att framställa tabeller. Eftersom tabell
Läs merDetta kapitel förklarar lösning av de fyra typer av differentialekvationer som anges nedan.
Kapitel Differentialekvationer Detta kapitel förklarar lösning av de fyra typer av differentialekvationer som anges nedan. 3 Differentialekvationer av första ordningen Linjära differentialekvationer av
Läs merTangenter till tredjegradsfunktioner
Tangenter till tredjegradsfunktioner I bilden intill ser du grafen av en tredjegradsfunktion som har tre nollställen nämligen x = 2, x = 1 och x = -1. Om man ritar en tangent till funktionsgrafen kommer
Läs mer9-1 Koordinatsystem och funktioner. Namn:
9- Koordinatsystem och funktioner. Namn: Inledning I det här kapitlet skall du lära dig vad ett koordinatsystem är och vilka egenskaper det har. I ett koordinatsystem kan man representera matematiska funktioner
Läs merINVERSA FUNKTIONER DEFINITION. (invers funktion) Låt ff vara en funktion av en reell variabel med definitionsmängden DD ff och värdemängden VV ff. Vi säger att funktionen ff är inverterbar om ekvationen
Läs merIntroduktion. Exempel Övningar Lösningar 1 Lösningar 2 Översikt
KTHs Sommarmatematik 2002 Exempel Övningar Lösningar 1 Lösningar 2 Översikt 1.1Introduktion Introduktion Avsnitt 1 handlar till att börja med om hantering av bråkstreck. Samtidigt ges exempel och övningar
Läs merGRAFRÄKNARE. Snabbguide för
GRAFRÄKNARE Snabbguide för användning av FX-7400GII Förord Grafräknare är kraftfulla verktyg för den moderna matematikundervisningen och den här snabbguiden behandlar de viktigaste programmen och funktionerna
Läs merKort introduktion till Casio fx-9750 GII. Knappsats
Kort introduktion till Casio fx-9750 GII Knappsats För ytterligare information kontakta Viweka Palm Viweka.palm@casio.se Tel 08-442 70 25 1 De vanligaste programmen: RUN- MAT Vanliga beräkningar och matrisberäkning
Läs merKapitel 12: Plotta polärekvationer
Kapitel 12: Plotta polärekvationer 12 Översikt över polärplottning...228 Översikt över stegen i att plotta polärekvationer...229 Skillnader mellan polär- och funktionsplottning...230 I det här kapitlet
Läs merEndast kommenterade svar!!! OBS: Inte alla delsteg är redovisade!
MATEMATISKA INSTITUTIONEN STOCKHOLMS UNIVERSITET Avd. Matematik Examinator: Annemarie Luger Lösningsförslag Anals, problemlösning, 7.5 hp Matematik I den 5 februari 4 Endast kommenterade svar!!! OBS: Inte
Läs merAvsnitt 2, introduktion.
KTHs Sommarmatematik Introduktion 2:1 2:1 Bråkstreck Avsnitt 2, introduktion. Gemensamt bråkstreck. Två fall: Ingen gemensam faktor i nämnarna (Ex: ) Se Exempel 1 Gemensam faktor i nämnarna (Ex: ) Se Exempel
Läs merFrågorna 1 till 6 ska svaras med sant eller falskt och ger vardera 1
ATM-Matematik Mikael Forsberg OvnTenta Matematik Skrivtid. Inga hjälpmedel. Lösningarna skall vara fullständiga och lätta att följa. Börja varje ny uppgift på ny sida. Använd ej baksidor. Skriv namn på
Läs merInstitutionen för matematik och datavetenskap Karlstads universitet. GeoGebra. ett digitalt verktyg för framtidens matematikundervisning
Karlstads GeoGebrainstitut Institutionen för matematik och datavetenskap Karlstads universitet Mats Brunström Maria Fahlgren GeoGebra ett digitalt verktyg för framtidens matematikundervisning Invigning
Läs merFunktionsstudier med derivata
Funktionsstudier med derivata Derivatan ett kraftfullt verktyg för att studera och tolka funktioner Det här avsnittet handlar om att man kan använda derivatan till att bestämma en funktions egenskaper
Läs merKapitel Ekvationsräkning
Kapitel Ekvationsräkning Din grafiska räknare kan lösa följande tre typer av beräkningar: Linjära ekvationer med två till sex okända variabler Högregradsekvationer (kvadratiska, tredjegrads) Lösningsräkning
Läs merGeoGebra i matematikundervisningen - Inspirationsdagar för gymnasielärare. Karlstads universitet 19-20 april. Liten introduktionsguide för nybörjare
GeoGebra i matematikundervisningen - Inspirationsdagar för gymnasielärare 19-20 april Liten introduktionsguide för nybörjare GeoGebra 0 Introduktionsövningar till GeoGebra När man startar GeoGebra är det
Läs merPrecis som var fallet med förra artikeln, Geogebra för de yngre i Nämnaren
Publicerad med tillstånd av Nämnaren Thomas Lingefjärd Geogebra i gymnasieskolan En tilltalande egenskap med Geogebra är att programmet kan användas tvärs över stora delar av utbildningssystemets matematikkurser.
Läs merSF1625 Envariabelanalys Lösningsförslag till tentamen DEL A
SF1625 Envariabelanalys Lösningsförslag till tentamen 215-1-27 DEL A 4 1. Betrakta funktionen f som ges av f(x) = 1 + x + (x 2). 2 A. Bestäm definitionsmängden till f. B. Bestäm alla intervall där f är
Läs merSF1625 Envariabelanalys Lösningsförslag till tentamen
SF1625 Envariabelanalys Lösningsförslag till tentamen 216-6-1 1. Derivera nedanstående funktioner med avseende på x och ange för vilka x derivatan existerar. Endast svar krävs. A. f(x) = arctan 1 x B.
Läs merBegrepp Uttryck, värdet av ett uttryck, samband, formel, graf, linje, diagram, spridningsdiagram.
Aktivitetsbeskrivning Denna aktivitet samlar ett antal olika sätt att göra procentuella beräkningar på grafräknare. Dessa metoder finns som uppgifter eller som en samling tips i en lathund. Matematiskt
Läs merTentamen i Matematisk analys, HF1905 exempel 1 Datum: xxxxxx Skrivtid: 4 timmar Examinator: Armin Halilovic
Tentamen i Matematisk analys, HF95 exempel atum: xxxxxx Skrivtid: timmar Examinator: Armin Halilovic För godkänt betyg krävs av max poäng Betygsgränser: För betyg A, B, C,, E krävs, 9, 6, respektive poäng
Läs merKapitel E-CON. 4-1 Överblick av E-CON 4-2 Uppställning av EA-100 4-3 Uppställningsminne 4-4 Programomvandling 4-5 Att starta provtagning
Kapitel E-CON 4-1 Överblick av E-CON 4-2 Uppställning av EA-100 4-3 Uppställningsminne 4-4 Programomvandling 4-5 Att starta provtagning 4 Alla förklaringar i detta kapitel förutsätter att du redan är bekant
Läs merKapitel Datakommunikation Anslutning av två enheter Anslutning av enheten till en persondator Anslutning av enheten till en CASIO etikettskrivare
Kapitel I detta kapitel får du veta allt du behöver känna till för att överföra program mellan fx-7400g PLUS och vissa grafiska räknarmodeller frän CASIO som kan anslutas med extra tillbehöret SB-62 kabeln.
Läs merNär vi ritar grafen kan vi bestämma om funktionen har globalt maximum ( =största värde)
GRAFRITNING För att skissera (rita) grafen till en funktion y f () undersöker vi först några viktiga egenskaper: definitionsmängd, eventuella skärningspunkter med och y-aeln, gränsvärdena f ( ), f ( )
Läs merMatematik 3 Digitala övningar med TI-82 Stats, TI-84 Plus och TI-Nspire CAS
Matematik 3 Digitala övningar med TI-8 Stats, TI-84 Plus och TI-Nspire CAS Matematik 3 digitala övningar med TI-8 Stat, TI-84 Plus och TI Nspire CAS Vi ger här korta instruktioner där man med fördel kan
Läs merLösa ekvationer på olika sätt
Lösa ekvationer på olika sätt I denna aktivitet ska titta närmare på hur man kan lösa ekvationer på olika sätt. I kurserna lär du dig att lösa första- och andragradsekvationer exakt med algebraiska metoder.
Läs mervux GeoGebraexempel 1b/1c Attila Szabo Niclas Larson Gunilla Viklund Mikael Marklund Daniel Dufåker
matematik Attila Szabo Niclas Larson Gunilla Viklund Mikael Marklund Daniel Dufåker vux 1b/1c GeoGebraexempel Till läsaren i elevböckerna i serien matematik origo finns uppgifter där vi rekommenderar användning
Läs merAttila Szabo Niclas Larson Gunilla Viklund Mikael Marklund Daniel Dufåker. GeoGebraexempel
matematik Attila Szabo Niclas Larson Gunilla Viklund Mikael Marklund Daniel Dufåker 3b GeoGebraexempel Till läsaren I elevböckerna i serien Matematik Origo finns uppgifter där vi rekommenderar användning
Läs merMATEMATIK 5 veckotimmar
EUROPEISK STUDENTEXAMEN 2010 MATEMATIK 5 veckotimmar DATUM : 4 Juni 2010 SKRIVNINGSTID : 4 timmar (240 minuter) TILLÅTNA HJÄLPMEDEL : Skolans formelsamling Icke-programmerbar, icke-grafritande räknedosa
Läs merNATIONELLT KURSPROV I MATEMATIK KURS E VÅREN Tidsbunden del
Skolverket hänvisar generellt beträffande provmaterial till bestämmelsen om sekretess i 4 kap. sekretesslagen. För detta material gäller sekretessen till och med utgången av november 1998. Anvisningar
Läs merKapitel Att lära känna räknaren Läs detta först! Sid. 000
Kapitel 1 Läs detta först! Symbolerna i denna bruksanvisning anger följande meddelanden. : Viktiga anmärkningar : Anmärkningar Sid. 000 : Referenssidor Kapitel 1 1. Hur du använder huvudmenyn Huvudmenyn
Läs merMathematica. Utdata är Mathematicas svar på dina kommandon. Här ser vi svaret på kommandot från. , x
Mathematica Första kapitlet kommer att handla om Mathematica det matematiska verktyg, som vi ska lära oss hantera under denna kurs. Indata När du arbetar med Mathematica ger du indata i form av kommandon
Läs merAttila Szabo Niclas Larson Gunilla Viklund Mikael Marklund Daniel Dufåker. GeoGebraexempel
matematik Attila Szabo Niclas Larson Gunilla Viklund Mikael Marklund Daniel Dufåker 1c GeoGebraexempel Till läsaren i elevböckerna i serien matematik origo finns uppgifter där vi rekommenderar användning
Läs merSF1625 Envariabelanalys Lösningsförslag till tentamen DEL A. e 50k = k = ln 1 2. k = ln = ln 2
SF625 Envariabelanalys Lösningsförslag till tentamen 23--24 DEL A. Den :a januari 26 låstes kg av ett visst radioaktivt ämne in i en källare. Ämnet sönderfaller i en takt som är direkt proportionell mot
Läs merx sin(x 2 )dx I 1 = x arctan xdx I 2 = x (x + 1)(x 2 2x + 1) dx
TM-Matematik Mikael Forsberg XXX-XXX DistansAnalys Envariabelanalys Distans ma034a ot-nummer 3 Skrivtid: 09:00-4:00. Inga hjälpmedel. Lösningarna skall vara fullständiga och lätta att följa. Börja varje
Läs merRita även grafen till Fourierserien på intervallet [ 2π, 4π]. (5) 1 + cos(2t),
Institutionen för matematik KTH Tentamensskrivning, 24-1-13, kl. 14. 19.. 5B122/2 Diff och Trans 2 del 2, för F, E, T. Hjälpmedel: BETA, Mathematics Handbook. För godkänt betyg 3 krävs 18 poäng, medan
Läs merMAA7 Derivatan. 2. Funktionens egenskaper. 2.1 Repetition av grundbegerepp
MAA7 Derivatan 2. Funktionens egenskaper 2.1 Repetition av grundbegerepp - Det finns vissa begrepp som återkommer i nästan alla kurser i matematik. Några av dessa är definitionsmängd, värdemängd, största
Läs merFrågorna 1 till 6 ska svaras med sant eller falskt och ger vardera 1
ATM-Matematik Mikael Forsberg 6-64 89 6 Matematik med datalogi, mfl. Skrivtid:. Inga hjälpmedel. Lösningarna skall vara fullständiga och lätta att följa. Börja varje ny uppgift på ny sida. Använd ej baksidor.
Läs merNewtons metod. 1 Inledning. 2 Newtons metod. CTH/GU LABORATION 6 MVE /2013 Matematiska vetenskaper
CTH/GU LABORATION 6 MVE011-2012/2013 Matematiska vetenskaper 1 Inledning Newtons metod Vi skall fortsätta med att lösa ekvationer. I förra veckan såg vi på intervallhalveringsmetoden. Den är pålitlig men
Läs merLektion 1, Envariabelanalys den 8 september ε < 1 < ε för alla x > N. ( ) I vårt exempel är f(x) = 1/x, så vi ska alltså ta fram ett N så att
Lektion, Envariabelanals den 8 september 999 = 0 Låt oss rita ut alla punkter i talplanet som har -koordinat nära det förmodade gränsvärdet 0 Vi får då en mängd som i figuren till höger Med nära 0 menar
Läs merSidor i boken f(x) = a x 2 +b x+c
Sidor i boken 18-151 Andragradsfunktioner Här ska vi studera andragradsfunktionen som skrivs f(x) = ax +bx+c där a, b, c är konstanter (reella tal) och där a 0. Grafen (kurvan) till f(x), y = ax + bx +
Läs merOptimala vinkeln av bortklippt cirkelsektor fo r maximal volym pa glasstrut
Optimala vinkeln av bortklippt cirkelsektor fo r maximal volym pa glasstrut Frågeställning Av en cirkulär pappersskiva kan en cirkelsektor med en viss vinkel klippas bort. Med den resterande sektorn går
Läs merMMA127 Differential och integralkalkyl II
Mälardalens högskola Akademin för utbildning, kultur och kommunikation MMA17 Differential och integralkalkyl II Tentamen Lösningsförslag 9..19 8. 11. Hjälpmedel: Endast skrivmaterial (gradskiva tillåten).
Läs mervux GeoGebraexempel 3b/3c Attila Szabo Niclas Larson Gunilla Viklund Mikael Marklund Daniel Dufåker
matematik Attila Szabo Niclas Larson Gunilla Viklund Mikael Marklund Daniel Dufåker vux 3b/3c GeoGebraexempel Till läsaren i elevböckerna i serien matematik origo finns uppgifter där vi rekommenderar användning
Läs merSådana avbildningar kallar vi bijektioner mellan A och B (eller från A till B).
BIJEKTION, INJEKTION, SURJEKTION Allmän terminologi. I samband med variabelbyte vid beräkning av integraler har vi en avbildning mellan två mängder A och B, dvs en funktion f : A B. Vi har oftast krav
Läs merExempel. Vi skall bestämma koordinaterna för de punkter som finns i bild 3. OBS! Varje ruta motsvarar 1mm
Koordinatsystem Koordinatsystem För att verktygen i en CNC-maskin skall kunna styras exakt till samtliga punkter i maskinens arbetsrum, använder man sig av ett koordinatsystem. Den enklaste formen av koordinatsystem
Läs merFinansiell Statistik (GN, 7,5 hp,, HT 2008) Föreläsning 3
Finansiell Statistik (GN, 7,5 hp,, HT 2008) Föreläsning 3 Kontinuerliga sannolikhetsfördelningar (LLL Kap 7 & 9) Department of Statistics (Gebrenegus Ghilagaber, PhD, Associate Professor) Financial Statistics
Läs mer6. Samband mellan derivata och monotonitet
34 6 SAMBAND MELLAN DERIVATA OCH MONOTONITET 6. Samband mellan derivata och monotonitet Antag att funktionen f är deriverbar på ]a,b[. Vi vet att derivatan f ( 0 ) i 0 ]a,b[ är riktningskoefficienten för
Läs merf(x) = x 2 g(x) = x3 100 h(x) = x 4 x x 2 x 3 100
8 Skissa grafer 8.1 Dagens Teori När vi nu ska lära oss att skissa kurvor är det bra att ha en känsla för vad som händer med kurvan när vi sätter in stora tal. Inledningsvis är det ju polynom vi ska studera.
Läs merRäknarinstruktioner för CASIO FX-9750GII till Matematik Origo 2c
Räknarinstruktioner för CASIO FX-9750GII till Matematik Origo 2c Sidan 17 Lös ekvationen med hjälp av den grafritande räknaren Vi löser uppgiften med hjälp av grafprogrammet GRAPH. Skriv först om ekvationen
Läs mer10x 3 4x 2 + x. 4. Bestäm eventuella extrempunkter, inflexionspunkter samt horizontella och vertikala asymptoter. y = x 1 x + 1
TM-Matematik Mikael Forsberg Pär Hemström Övningstenta Envariabelanalys ma034a ovnt--vt0 Skrivtid: 5 timmar. Inga hjälpmedel. Lösningarna skall vara fullständiga och lätta att följa. Börja varje ny uppgift
Läs merEnvariabelanalys 5B1147 MATLAB-laboration Derivator
Envariabelanalys 5B1147 MATLAB-laboration Derivator Sanna Eskelinen eskelinen.sanna@gmail.com Sonja Hiltunen sonya@gmail.com Handledare: Karim Dao Uppgift 15 Problem: Beräkna numeriskt derivatan till arctan
Läs merNamn Klass Personnummer (ej fyra sista)
Prövning matematik 4 april 06 (prövningstillfälle 6) Namn Klass Personnummer (ej fyra sista) Mobiltelefonnummer e-post SKRIV TYDLIGT! Alla papper ska förses med namn och återlämnas Skriv tydligt. Oläsliga
Läs merMatematik 3c Kap 3 Kurvor, derivator och integraler
Matematik 3c Kap 3 Kurvor, derivator och integraler Inledning Konkretisering av ämnesplan (länk) http://www.ioprog.se/public_html/ämnesplan_matematik/struktur_äm nesplan_matematik/struktur_ämnesplan_matematik.html
Läs merMatematik 5 Kap 3 Derivator och Integraler
Matematik 5 Kap 3 Derivator och Integraler Inledning I kap 4 Differentialekvationer behövs derivator (och integraler) och i kap 5 Omfångsrika problemsituationer finns intressanta problem med användning
Läs merAttila Szabo Niclas Larson Gunilla Viklund Mikael Marklund Daniel Dufåker. GeoGebraexempel
matematik Attila Szabo Niclas Larson Gunilla Viklund Mikael Marklund Daniel Dufåker 3c GeoGebraexempel Till läsaren I elevböckerna i serien Matematik Origo finns uppgifter där vi rekommenderar användning
Läs merMATEMATIK Datum: 2015-08-19 Tid: eftermiddag Hjälpmedel: inga. Mobiltelefoner är förbjudna. A.Heintz Telefonvakt: Tim Cardilin Tel.
MATEMATIK Datum: 0-08-9 Tid: eftermiddag Chalmers Hjälmedel: inga. Mobiltelefoner är förbjudna. A.Heintz Telefonvakt: Tim Cardilin Tel.: 0703-088304 Lösningar till tenta i TMV036 Analys och linjär algebra
Läs merMatematik 1 Digitala övningar med TI-82 Stats, TI-84 Plus och TI-Nspire CAS
Matematik 1 Digitala övningar med TI-82 Stats, TI-84 Plus och TI-Nspire CAS Matematik 1 digitala övningar med TI-82 Stat, TI-84 Plus och TI Nspire CAS Vi ger här korta instruktioner där man med fördel
Läs merTentamen del 1 SF1546, , , Numeriska metoder, grundkurs
KTH Matematik Tentamen del 1 SF154, 1-3-3, 8.-11., Numeriska metoder, grundkurs Namn:... Bonuspoäng. Ange dina bonuspoäng från kursomgången läsåret HT15/VT1 här: Max antal poäng är. Gränsen för godkänt/betyg
Läs merUppgifter till praktiska tentan, del A. (7 / 27)
Uppgifter till praktiska tentan, del A. (7 / 27) I. Sortering/Sökning: III II. Representation/Omvandling/format/protokoll: II III. Strukturering: II I alla problem, där bokstäver förekommer, antar vi att
Läs merUppgift 1a (Aktiekurser utan poster)
Uppgift 1a (Aktiekurser utan poster) Vi har lite olika upplägg i de kurser vi håller och i vissa kurser finns det med något som vi kallar "poster" (eng. "record"). I andra har vi inte med detta. Vi har
Läs merSF1625 Envariabelanalys
Modul 4: Tillämpningar av derivata Institutionen för matematik KTH 22-23 september 2015 Översikt över några viktiga derivatatillämningar 1. Förändringstakt. Derivata mäter förändringstakt, till exemel
Läs merFunktioner. Räta linjen
Sidor i boken 14-143, 145-147 Funktioner. Räta linjen Här följer en dialog mellan studenten Tor-Björn (hädanefter kallad TB) och hans lärare i matematik Karl-Ture Hansson (nedan kallad KTH). När vi möter
Läs merSF1625 Envariabelanalys
Föreläsning 10 Institutionen för matematik KTH 19 september 2016 Översikt över några viktiga derivatatillämningar 1. Förändringstakt. Derivata mäter förändringstakt, till exemel (men inte bara) hastighet.
Läs merBlandade A-uppgifter Matematisk analys
TEKNISKA HÖGSKOLAN Matematik Blandade A-uppgifter Matematisk analys 1 Låt u = i och v = 1 + i Skriv det komplexa talet z = u/v på den polära formen re iϕ Svar: e i π Bestäm de reella tal x för vilka x
Läs merRäknarinstruktioner för CASIO FX-9750GII till Matematik Origo 3b
Räknarinstruktioner för CASIO FX-9750GII till Matematik Origo 3b Sidan 19 Lös ekvationen grafiskt. Genom att rita upp vänster- och högerled i samma koordinatsystem, så kan vi lösa uppgiften grafiskt. Vi
Läs merf(x) = x 2 g(x) = x3 100
När vi nu ska lära oss att skissa kurvor är det bra att ha en känsla för vad som händer med kurvan när vi sätter in stora tal. Inledningsvis är det ju polynom vi ska studera. Här ska vi se vad som händer
Läs merExponentiell och annan utveckling -exempel med konsumentpriser
Exponentiell och annan utveckling -exempel med konsumentpriser Konsumentprisindex (KPI) är det mest använda måttet för prisutveckling och används bl.a. som inflationsmått. KPI avser att visa hur konsumentpriserna
Läs merKonsultarbete, Hitta maximal volym fo r en la da
Konsultarbete, Hitta maximal volym fo r en la da Uppgift 2. Maximal låda. I de fyra hörnen på en rektangulär pappskiva klipper man bort lika stora kvadrater. Flikarna viks sedan upp så att vi får en öppen
Läs merNamn Klass Personnummer (ej fyra sista)
Prövning matematik 6 feb 16 (prövningstillfälle ) Namn Klass Personnummer (ej fyra sista) Mobiltelefonnummer e-post SKRIV TYDLIGT! Alla papper ska förses med namn och återlämnas Skriv tydligt. Oläsliga
Läs merSF1625 Envariabelanalys Lösningsförslag till tentamen DEL A
SF165 Envariabelanalys Lösningsförslag till tentamen 15-4-7 DEL A 1. Låt f(x) = arcsin x + 1 x. A. Bestäm definitionsmängden till funktionen f. B. Bestäm funktionens största och minsta värde. (Om du har
Läs merLABORATION cos (3x 2 ) dx I =
SF1518,SF1519,numpbd14 LABORATION 2 Trapetsregeln, ekvationer, ekvationssystem, MATLAB-funktioner Studera kapitel 6 och avsnitt 5.2.1, 1.3 och 3.8 i NAM parallellt med arbetet på denna laboration. Genomför
Läs merLABORATION 2. Trapetsregeln, MATLAB-funktioner, ekvationer, numerisk derivering
SF1518,SF1519,numpbd15 LABORATION 2 Trapetsregeln, MATLAB-funktioner, ekvationer, numerisk derivering - Genomför laborationen genom att göra de handräkningar och MATLAB-program som begärs. Var noga med
Läs merKap Dubbelintegraler.
Kap 4. 4.. ubbelintegraler. A. Beräkna följande dubbelintegraler a. d. (x + y) dxdy, över kvadraten x 3, y. (sin y + y cos x) dxdy, då ges av x π, y π. x cos xy dxdy, då ges av x π, y. xy cos (x + y )
Läs merMälardalens högskola Akademin för utbildning, kultur och kommunikation
Mälardalens högskola Akademin för utbildning, kultur och kommunikation MAA24 Grundläggande kalkyl ÖVN2 Lösningsförslag 202.08.09 08.30 0.30 Hjälpmedel: Endast skrivmaterial. (Gradskiva är tillåtet.) Poäng:
Läs merKOKBOKEN 1. Håkan Strömberg KTH STH
KOKBOKEN 1 Håkan Strömberg KTH STH Hösten 2006 Håkan Strömberg 2 KTH Syd Innehåll Olikheter.................................... 6................................. 6 Uppgift 2.................................
Läs merProblemet löd: Är det möjligt att på en sfär färga varje punkt på ett sådant sätt att:
Problemet löd: Är det möjligt att på en sfär färga varje punkt på ett sådant sätt att: 1. Om två punkter befinner sig på avståndet pi/2 från varandra så skall de ha olika färg. 2. Endast tre färger används.
Läs mer2. Förkorta bråket så långt som möjligt 1001/
Nästan vanliga tal 1. Beräkna1 2+3 4+5 2000+2001 Lösning. 1 + ( 2 + 3) + ( 4 + 5) +... + ( 2000 + 2001) = 1+ 142 +... 43 + 1 = 1001 2. Förkorta bråket så långt som möjligt 1001/10000001 1000 gnr Lösning.
Läs merKapitel Grafritning GRPH TBL CONICS RUN MAT DYNA RECUR
Kapitel 5 Grafritning Avsnitt 5-1 och 5-2 i detta kapitel ger grundläggande information som krävs för att kunna rita en graf. De övriga avsnitten beskriver mera avancerade egenskaper och funktioner för
Läs merMatematisk analys för ingenjörer Matlabövning 2 Numerisk ekvationslösning och integration
10 februari 2017 Matematisk analys för ingenjörer Matlabövning 2 Numerisk ekvationslösning och integration Syfte med övningen: Introduktion till ett par numeriska metoder för lösning av ekvationer respektive
Läs merSF1625 Envariabelanalys Lösningsförslag till tentamen DEL A
SF625 Envariabelanalys Lösningsförslag till tentamen 206-0- DEL A. Betrakta funktionen f som ges av f(x) = x 2 arctan x. A. Bestäm definitionsmängden till f. B. Bestäm de intervall där f är växande respektive
Läs merBeräkningsmetoder för superellipsens omkrets
Beräkningsmetoder för superellipsens omkrets Frågeställning Svar 1. Vi förväntades ta reda på olika metoder för att beräkna en superellips eller en ellips omkrets. o Givet var ellipsens ekvation:. (Källa
Läs merx ( f u 2y + f v 2x) xy = 24 och C = f
Institutionen för Matematik, KTH Torbjörn Kolsrud SF160, Differential- och integralkalkyl II, del 2, flervariabel, för F1. Tentamen onsdag 0 maj 2012, 8.00-1.00 Förslag till lösningar 1. Bestäm tangentplanet
Läs merSF1625 Envariabelanalys Lösningsförslag till tentamen DEL A
SF1625 Envariabelanalys Lösningsförslag till tentamen 214-1-24 DEL A 1. Låt f(x) = e x sin x. A. Bestäm alla kritiska (stationära) punkter till funktionen f. B. Avgör vilka av de kritiska punkterna som
Läs merNATIONELLT PROV I MATEMATIK KURS E VÅREN Tidsbunden del
Skolverket hänvisar generellt beträffande provmaterial till bestämmelsen om sekretess i 4 kap. 3 sekretesslagen. För detta material gäller sekretessen till och med utgången av november 1997. NATIONELLT
Läs merClassPad 330 Plus studentexamen Hösten 2012 lång matematik. Mer tid för matematik och mindre tid för att lära sig räknaren.
ClassPad 330 Plus studentexamen Hösten 2012 lång matematik Mer tid för matematik och mindre tid för att lära sig räknaren. Kära läsare! Användningen av CAS-beräkningar i studentexamen är ännu i ett tidigt
Läs mercos( x ) I 1 = x 2 ln xdx I 2 = x + 1 (x 1)(x 2 2x + 2) dx
TM-Matematik Mikael Forsberg DistansAnalys Envariabelanalys Distans ma4a ot-nummer Inga hjälpmedel. Lösningarna skall vara fullständiga och lätta att följa. Börja varje ny uppgift på ny sida. Använd ej
Läs merTräff 1 Skissa & Extrudera
Skapa en folder Jag rekommenderar att samla filer och övningar i en egen folder som man har full kontroll på. Muff-foldern som vi delar är tänkt som en gemensam övningsyta. Innehåll som du vill komma åt
Läs merHantera andragradskurvor del 2
Hantera andragradskurvor del I den första aktiviteten om andragradsfunktioner tittade vi på hur utseendet på kurvorna när vi hade olika värden på k, a och b i ut- trcket k ( x a) b. Se nedan. Vi ser att
Läs merANDRAGRADSKURVOR Vi betraktar ekvationen
ANDRAGRADSKURVOR Vi betraktar ekvationen Ax + Bxy + Cy + Dx + Fy + G 0 (ekv) där minst en av A,B, eller C är skild från 0 En andragradskurva är mängden av alla punkter vilkas koordinater satisfierar en
Läs mer