Kap Dubbelintegraler.

Storlek: px
Starta visningen från sidan:

Download "Kap Dubbelintegraler."

Transkript

1 Kap ubbelintegraler. A. Beräkna följande dubbelintegraler a. d. (x + y) dxdy, över kvadraten x 3, y. (sin y + y cos x) dxdy, då ges av x π, y π. x cos xy dxdy, då ges av x π, y. xy cos (x + y ) dxdy, över x π, y π. C. Låt vara kvadraten x, y. Ange en Riemannsumma för xy dxdy, svarande mot en indelning av i kvadrater med sidan n och valet av (x k, y k ) punkter i kvadratens hörn. Beräkna integralen genom att låta n gå mot. A 3. Man beräknar en dubbelintegral f(x,y) dxdy och integrerar först med avseende på y. etta leder till beräkning av två enkelintegraler. Bestäm integrationsgränserna i dessa om a. ges av y x y och x begränsas av kurvorna y = x och y = x 4 är triangeln med hörnen i punkterna (,), (,) och (,) d. definieras genom x + y 5 och y x.

2 A 4. Följande upprepade enkelintegraler kan uppfattas som dubbelintegraler över ett område. Ange. x a. dx x / f(x,y) dy 4 x dx f(x,y) dy. x dx x f(x,y) dy A 5. Samma uppgift som i 3, men nu sker integrationen först i x-led. 6. Kasta om integrationsordningen x A a. dx f(x,y) dy x 3 e ln x A dx f (x,y) dy B 6 x dx B d. dy x 4 f(x,y) dy y f(x,y) dx + y dy y f(x,y) dx. y A 7. Beräkna följande dubbelintegraler: a. (xy + y ) dxdy, ges av x, y x + x + y dxdy, är den del av första kvadranten som begränsas av parabeln y = x samt linjerna y = och x = e x y dxdy, över triangeln med hörnen i punkterna (, ), (,) och (,)

3 A 7 d. dxdy, definieras genom x + y 6, x y och x e. xy dxdy, över fyrhörningen med hörnen i punkterna (,), (,), (,) och (,4) f. dxdy, då är triangeln med hörnen i punkterna + y 4 (,), (,) och (,) g. ( + x + y) dxdy, då begränsas av linjerna y = x, y = x och x = ± h. x y ey dxdy, då är fyrhörningen med hörnen i punkterna (,), (,), (,) och (,) i. y x dxdy, då begränsas av linjerna y + x =, x = och y = 4 j. dy y cos x 5 dx y k. (y x 8) dxdy, begränsas av y = x, y = (x ) och y = (x 4) l. ( x + y ) dxdy, definieras genom x + y m. (x + y) e y dxdy, över triangeln med hörnen i punkterna (,), (,) och (,) n. o. x dxdy, begränsas av hyperbeln xy = och linjerna y x =, y = x x y x 3 y 3 dxdy, begränsas av kurvan x 3 + y 3 = och koordinataxlarna 3

4 A 7 p. dx y sin y cos x y dy x q. r. y x dxdy, ges av x, y x och y x ( + x + y) dxdy, är triangeln med hörnen i punkterna (,), (,) och (,) s. e y dxdy, ges av x y t. x e xy dxdy, över området x, xy u. x 3 y dxdy, är cirkelskivan x + y r. B 8. Beräkna följande dubbelintegraler: a. d. x + y dxdy, definieras genom x y + y x + x 4 dxdy, ges av x och xy y x + xy dxdy, ges av y x x 3 ( + y) dxdy, över området x + y, x och y e. cos (x + y) dxdy, över kvadraten x π och y π f. x dxdy, då begränsas av parablerna y = x x och x = y y y g. dy y y y x + x 3 dx + y dxdy, då ges av x, + x3 4

5 B 8 h. cos yx dxdy, begränsas av kurvan yx 3 = π samt linjerna x =, x = och y = i. j. k. 3 y x dxdy, begränsas av y = x + x och y = x 3 + x (x y y 5 ) dxdy, över området y x y, y x + x dxdy, över triangeln med hörnen i punkterna 3 + x y (,), (,) och (, ) l. cos x y dxdy, ges av y x πy, y π m. dxdy, ges av y 3x 3y 9 (x + y) x n. x dxdy, då begränsas av y-axeln samt linjerna y =, x + y3 y = och y = x. B 9. Låt f(x,y) vara det största av talen 9y 4x och 8y 3x. Beräkna dubbelintegralen f(x,y) dxdy, då är rektangeln x, y. B. B. Beräkna x dxdy, över det område som begränsas av hyperbeln xy =, där x >, och dess normaler i punkterna (,) och (,). Bestäm, så att (x x y ) dxdy antar största möjliga värdet och bestäm detta värde. B. Låt f(a,b) = x 3 b + y3 a dxdy, där är rektangeln < x < a, < y < Bestäm eventuella lokala extrempunkter (och deras karaktär) till f. 5

6 B 3. Beräkna följande dubbelintegraler: a. ( heltalsdelen av (x + y) ) dxdy, då ges av x och y ( tecken av (x y + ) ) dxdy, då ges av x + y 4. B 4. Visa att lim r πr f(x,y) dxdy = f(,), där r är cirkelskivan r x + y r och f är en kontinuerlig funktion. 5. Bestäm projektionen på xy-planet av den kropp som begränsas av A a. paraboloiden z = x + y och planet z = x + y A paraboliska cylindrarna z = x och z = y A paraboloiden z = x + y och paraboliska cylindern z = y A d. paraboliska cylindern y = x samt planen x + y + z = 4 och z = A e. cylindrarna x + y = x och x + y = y samt planen z = och z = x + y A f. hyperboliska paraboloiden z = xy, planen x = och y = samt ytan xyz =. A g. paraboliska cylindern x = y samt planen x + y + z = och 3x + z = A h. ytan z = ( + y ) x samt planen x = y, x =, y =, z = A i. ytan z = (y x)(x y ) A j. ytan z = (y x) (y x + ) A k. planet z = och den del av klotet x + y + z = där z B l. ellipsoiden x + y + z xz =. 6

7 Ledningar till uppgifterna 5. a. (x + y) dxdy = dx 3 = x + dx =. 3 3 (x + y) dy = xy + y = y y = dx = (sin y + y cos x) dxdy = dy (sin y + y cos x) dx = = π/[(x sin y + y sin x)] x = π/ π/ x = dy = π sin y + y dy =. π x cos xy dxdy = dx x cos xy dy = [sin xy] y = y = dx = π = sin x dx =. π/ π/ π π d. xy cos(x + y ) dxdy = π dx xy cos(x + y ) dy = π = x sin(x + y ) y π = π dx = x y = sin(x + π) x sin x dx. e valda punkterna är på formen (m,l) och man behöver beräkna summan av termer ml, där m och l varierar mellan n n4 och n. 3 a-d. Skissera. 4 a- Integrationsgränserna i den inre integralen beskriver begränsningskurvorna y = y(x). 7

8 5 Jämför med 3. 6 a. x 3 y x, x y x 3 y, y. y ln x, x e e y x e, y. x 4 y x, 6 x + y x + y, y eller + y x y, y 8. d. y x y, y eller y x y, x x y x, y. 7 a. (xy + y ) dxdy = dx = x x3 dx =. x (xy + y ) dy = xy + y = x 3 y3 y = dx = + x + y dxdy = dy + x + y dx = [(ln( + x + y))] dy x = y y = (ln ln( + y)) dy =. x = e x y = e x e y. d. ela upp i två delmängder med linjen x =. Integrera över var och en av dessa delmängder. e. Integrera först i y-led. f. Integrera först i x-led. g. Skissera. ela upp i två delmängder. h. Skissera. Integrera först i x-led. i. ela upp i två delmängder A och B, på vilka y x är respektive : A = den del av som ligger under linjen y x. y x dxdy = A (y x) dxdy + B (x y) dxdy. j. Kasta om integrationsordningen. k. ela upp i två delmängder med linjen x =. Integrera först i y- led. l. På grund av symmetrin räcker det att integrera över första kvadranten. Resultatet multipliceras med 4. 8

9 7 m. Integrera först i x-led. Partialintegrera. n. Skissera. Integrera först i y-led. o. Om man börjar integrera i y-led kan y 3 = t substitueras. p. Kasta om integrationsordningen. q. Skissera. Integrera först i y-led. r. Integrera först i x-led. s. Integrera först i x-led. t. Integrera först i y-led. u. Grafen är symmetrisk med avseende på origo. 8 a. Integrera först i x-led. Substituera y = t. Integrera först i y-led. Substituera x y = t. Integrera först i y-led. Substituera y x = t. d. Integrera först i x-led. Observera att täljaren får faktorn ( + y). e. ela upp i delområden på vilka cos (x + y) har konstant tecken. f. Hur ligger kurvorna i förhållande till linjen y = x? ela upp i två delområden. g. Skissera det totala integrationsområdet. Uttryck summan som en integral. h. Integrera först i y-led. Substituera π x = t. i. Sök kurvornas skärningspunkter och undersök hur kurvorna ligger i förhållande till varandra. j. Grafen är symmetrisk med avseende på x-axeln. k. Grafen är symmetrisk med avseende på xz-planet. Integrera först i x-led. Substituera y = sin t. Observera att cos t = + cos t. l. Integrera först i x-led. Partiell integration i y-led. m. Integrera först i x-led. Substituera x = t. n. Integrera först i x-led. Partiell integration i y-led. 9 ela upp i två delar A och B på vilka 9y 4x 8y 3x respektive 9y 4x 8y 3x. A = den del av där y x. Skissera området. ela upp i två dubbelintegraler. Största värdet fås då integranden är i alla punkter på. 9

10 Beräkna integralen. Man får en stationär punkt (a,b) = (,). 3 a. Undersök på vilka delar av integranden är =, =, osv. Undersök på vilka delar av integranden är =, =. 4. Använd medelvärdessatsen. 5 a-h. Eliminera z. en erhållna ekvationen samt de kvarvarande sambanden (i defgh) beskriver randkurvorna till den sökta mängden. i-l. Andragradsekvationen definierar två kontinuerliga funktioner z = z(x,y) av typen z = ±. eras grafer utgör kroppens begränsning i z led (i 95 k är planet z = en del av begränsning). Identifiering av dessa funktioner ( = ) ger ekvationen för projektionens rand.

11 Svar till uppgifterna 5. a. 3. π + π 8.. d.. 3 a. d. 4. dx dx dx 5 x x / f(x,y) dy. x f(x,y) dy. x 5 x f(x,y) dy + 5 x dx x dx 5 x f(x,y) dy. x f(x,y) dy. x 4 4 a. x, x y x. x y, x. x y 4 x, x. 5 a. d. y dy f(x,y) dx + y y dy f(x,y) dx + 4 y dy dy y y f(x,y) dx + y 5 y dy f(x,y) dx. y 4 y dy f(x,y) dx. y dy y 5 f(x,y) dx + dy f(x,y) dx. 5 y f(x,y) dx. 5 y

12 6 a. d. 3 y dy y dy dx f(x,y) dx. + y + y x f(x,y) dx + x f(x,y) dy. 8 dy y + y e dye y f(x,y) dx. f(x,y) dx. 7 a. e. 5. ln. 4 (e + e ). d. 4 9 ( 8 ). f. g.. h ln ( + ). e. i j. sin 3. k. 8 ( ln ). l m.. n o. 4. p. ( cos ) sin. 35 q. 6. r. ln 3 3. s. (e ). t. e e. u.. 8 a. 3 ( ln ). arctan π 4 ln 5. π ln. d.. e. π. f g. 4 ln 3. h. π.

13 8 i.. j.. k. π 3 3. l. π. m. π 3 ( 3 ). n. ln x x y ; π 3. Lokalt minimum i punkten (,). 3 a. 6. 4π ln ( + 3) 4 ln. 5 a. (x ) + (y ). x + y. x + 4y. d. y x, x + y 4. e. x + y x, x + y y. f. xy, x, y. g. y x, x + y. h. y x. i. y x y. j. y x (y + ). k. x + y. l. 3x + 4y 4. 3

Kap Generaliserade multipelintegraler.

Kap Generaliserade multipelintegraler. Kap 4.3. Generaliserade multipelintegraler. 50. Beräkna följande generaliserade multipelintegraler: A a. dxdy, ges av x, 0 xy x A b. A c. A d. A e. K x ( + x 2 )( + x 2 y 2 ) dxdy, ges av x > 0, xy x dxdy,

Läs mer

1. Bestäm definitionsmängden och värdemängden till funktionen f(x,y) = 1 2x 2 3y 2. Skissera definitionsmängden, nivålinjerna och grafen till f.

1. Bestäm definitionsmängden och värdemängden till funktionen f(x,y) = 1 2x 2 3y 2. Skissera definitionsmängden, nivålinjerna och grafen till f. 1. Bestäm definitionsmängden och värdemängden till funktionen f(x,y) = 1 2x 2 3y 2. Skissera definitionsmängden, nivålinjerna och grafen till f. 2. Beräkna gränsvärdet (eller visa att det inte finns):

Läs mer

) 2 = 1, där a 1. x + b 2. y + c 2

) 2 = 1, där a 1. x + b 2. y + c 2 ap 7 Användningar av multipelintegraler Arean av ett plant område 0 Beräkna arean av det område som begränsas av följande kurvor: A a (x y) 2 + x 2 = a 2 A b xy =, xy = 8, y = x och y = 2x (x > ) A c y

Läs mer

Visa att vektorfältet F har en potential och bestäm denna. a. F = (3x 2 y 2 + y, 2x 3 y + x) b. F = (2x + y, x + 2z, 2y 2z)

Visa att vektorfältet F har en potential och bestäm denna. a. F = (3x 2 y 2 + y, 2x 3 y + x) b. F = (2x + y, x + 2z, 2y 2z) Kap. 15.1 15.2, 15.4, 16.3. Vektorfält, integralkurva, konservativa fält, potential, linjeintegraler av vektorfält, enkelt sammanhängande område, oberoendet av vägen, Greens formel. A 1701. Undersök om

Läs mer

Kontrollskrivning 1A

Kontrollskrivning 1A Kontrollskrivning 1A i 5B1147 Flervariabelanalys för E, vt 2007. 1. Låt g(t) vara en deriverbar envariabelsfunktion. Visa att tvåvariabelsfunktionen f(x, y) = g(2x y 2 ) satisfierar den partiella differentialekvationen

Läs mer

1. Beräkna hastigheten, farten och accelerationen vid tiden t för en partikel vars rörelse beskrivs av r(t) = (2 sin t + cos t, 2 cos t sin t, 2t).

1. Beräkna hastigheten, farten och accelerationen vid tiden t för en partikel vars rörelse beskrivs av r(t) = (2 sin t + cos t, 2 cos t sin t, 2t). Repetition, analys.. Beräkna hastigheten, farten och accelerationen vid tiden t för en partikel vars rörelse beskrivs av r(t) = (2 sin t + cos t, 2 cos t sin t, 2t). 2. Beräkna längden av kurvan r(t) =

Läs mer

Kap Globala extremvärden, extremproblem med bivillkor.

Kap Globala extremvärden, extremproblem med bivillkor. Kap 13.2 13.3. Globala extremvärden, extremproblem med bivillkor. A 1001. Sök det största och minsta värdet av funktionen f(x,y) = x 2 + 2y 2 x på cirkeln x 2 + y 2 = 1. A 1002. Vilka värden kan funktionen

Läs mer

Kap 5.7, Beräkning av plana areor, rotationsvolymer, rotationsareor, båglängder.

Kap 5.7, Beräkning av plana areor, rotationsvolymer, rotationsareor, båglängder. Kap 5.7, 7. 7.. Beräkning av plana areor, rotationsvolymer, rotationsareor, båglängder. 8. (A) Beräkna arean av det ändliga område som begränsas av kurvorna x a. y = + x och y = b. y = x e x och y = x

Läs mer

SF1626 Flervariabelanalys Lösningsförslag till tentamen DEL A

SF1626 Flervariabelanalys Lösningsförslag till tentamen DEL A SF1626 Flervariabelanalys Lösningsförslag till tentamen 213-8-22 DEL A 1. Betrakta funktionen f(x, y) ln(x 2 + xy 2 4). a) Bestäm tangentplanet till funktionsytan z f(x, y) i den punkt på ytan där x 1

Läs mer

x ( f u 2y + f v 2x) xy = 24 och C = f

x ( f u 2y + f v 2x) xy = 24 och C = f Institutionen för Matematik, KTH Torbjörn Kolsrud SF160, Differential- och integralkalkyl II, del 2, flervariabel, för F1. Tentamen onsdag 0 maj 2012, 8.00-1.00 Förslag till lösningar 1. Bestäm tangentplanet

Läs mer

SF1626 Flervariabelanalys Lösningsförslag till tentamen DEL A

SF1626 Flervariabelanalys Lösningsförslag till tentamen DEL A SF1626 Flervariabelanalys Lösningsförslag till tentamen 215-3-16 DEL A 1. Låt f(x, y) = 1 x 2 y 2. (a) Skissa nivåkurvorna f(x, y) = c till f för c =, c = 1 och c = 2. (1 p) (b) Beräkna gradf(x, y) i de

Läs mer

Låt vara en reell funktion av en reell variabel med definitionsmängden som är symmetrisk i origo.

Låt vara en reell funktion av en reell variabel med definitionsmängden som är symmetrisk i origo. UDDA FUNKTIONER OCH DUBBELINTEGRALER. Från en variabelanalys vet vi att integral över ett symetrisk intervall, av en udda funktion är lika med 0. 0 om är udda. T ex 0 Här upprepar vi def. av udda ( och

Läs mer

Lösning till kontrollskrivning 1A

Lösning till kontrollskrivning 1A KTH Matematik Olle Stormark Lösning till kontrollskrivning 1A i SF1626 Flervariabelanalys för E, vt 28. Varje uppgift ger maximalt 3 poäng. För godkänt krävs minst 5 poäng sammanlagt. 1. Funktionen f(x,

Läs mer

SF1626 Flervariabelanalys

SF1626 Flervariabelanalys 1 / 19 SF1626 Flervariabelanalys Föreläsning 1 Henrik Shahgholian Vid Institutionen för matematik, KTH VT 218, Period 3 2 / 19 SF1626 Flervariabelanalys agens Lektion ubbelintegraler: Avsnitt 14.1-14.2

Läs mer

Inlämningsuppgift nr 2, lösningar

Inlämningsuppgift nr 2, lösningar UPPALA UNIVRITT MATMATIKA INTITUTIONN Bo tyf Flervariabelanalys K, X m.fl. Höstterminen 8 Inlämningsuppgift nr, lösningar. Visa att ekvationen x + x(y ) + (y ) + z + sin(yz) definierar z som en funktion

Läs mer

har ekvation (2, 3, 4) (x 1, y 1, z 1) = 0, eller 2x + 3y + 4z = 9. b) Vi söker P 1 = F (1, 1, 1) + F (1, 1, 1) (x 1, y 1, z 1) = 2x + 3y + 4z.

har ekvation (2, 3, 4) (x 1, y 1, z 1) = 0, eller 2x + 3y + 4z = 9. b) Vi söker P 1 = F (1, 1, 1) + F (1, 1, 1) (x 1, y 1, z 1) = 2x + 3y + 4z. Institutionen för Matematik, KTH Torbjörn Kolsrud SF163, ifferential- och integralkalkyl II, del, flervariabel, för F1. Tentamen onsdag 7 maj 9, 1.-19. 1. Låt F (x, y, z) sin(x + y z) + x + y + 6z. a)

Läs mer

SF1625 Envariabelanalys Lösningsförslag till tentamen

SF1625 Envariabelanalys Lösningsförslag till tentamen SF1625 Envariabelanalys Lösningsförslag till tentamen 216-6-1 1. Derivera nedanstående funktioner med avseende på x och ange för vilka x derivatan existerar. Endast svar krävs. A. f(x) = arctan 1 x B.

Läs mer

Tentamen SF1626, Analys i flera variabler, Svar och lösningsförslag. 2. en punkt på randkurvan förutom hörnen, eller

Tentamen SF1626, Analys i flera variabler, Svar och lösningsförslag. 2. en punkt på randkurvan förutom hörnen, eller Tentamen SF66, Analys i flera variabler, --8 Svar och lösningsförslag. Låt fx, y) = ye x y. Bestäm största och minsta värde till f på den slutna kvadraten med hörn i, ),, ),, ) och, ). Lösning. f är kontinuerlig

Läs mer

DUBBELINTEGRALER. Rektangulära (xy) koordinater

DUBBELINTEGRALER. Rektangulära (xy) koordinater ubbelintegraler. -koordinater UBBELINTEGRALER. Rektangulära ( koordinater efinition. Låt zf(, vara en reell funktion av två variabler och. Vi delar integrationsområde (definitionsområde) i ändligt antal

Läs mer

Dubbelintegraler och volymberäkning

Dubbelintegraler och volymberäkning ubbelintegraler och volymberäkning Volym och dubbelintegraler över en rektangel Alla funktioner nedan antas vara kontinuerliga. Om f (x) i intervallet [a, b], så är arean av mängden {(x, y) : y f (x),

Läs mer

SF1626 Flervariabelanalys Lösningsförslag till tentamen DEL A

SF1626 Flervariabelanalys Lösningsförslag till tentamen DEL A SF166 Flervariabelanalys Lösningsförslag till tentamen 16-8-18 DEL A 1 Låt D vara det område ovanför x-axeln i xy-planet som begränsas av cirkeln x + y = 1 samt linjerna y = x oc y = x Beräkna x-koordinaten

Läs mer

SF1626 Flervariabelanalys Tentamen 18 augusti 2011, Svar och lösningsförslag

SF1626 Flervariabelanalys Tentamen 18 augusti 2011, Svar och lösningsförslag SF166 Flervariabelanalys entamen 18 augusti 11, 14. - 19. Svar och lösningsförslag 1) Låt fx, y) = xy lnx + y ). I vilken riktning är riktningsderivatan till f i punkten 1, ) som störst, och hur stor är

Läs mer

SF1626 Flervariabelanalys

SF1626 Flervariabelanalys Föreläsning 11 Institutionen för matematik KTH VT 2018 1 agens program Variabelsubstitution i dubbelintegraler Något om generaliserade integraler och medelvärden Bokens kapitel 14.4 och i någon mån också

Läs mer

Övningar till Matematisk analys III Erik Svensson

Övningar till Matematisk analys III Erik Svensson MATEMATISKA INSTITUTIONEN STOCKHOLMS UNIVERSITET Avd. Matematik -8-8 Övningar till Matematisk analys III Erik Svensson. För varje gränsvärde nedan bestäm gränsvärdet eller visa att gränsvärdet inte existerar.

Läs mer

Repetition, Matematik 2 för lärare. Ï x + 2y - 3z = 1 Ô Ì 3x - y + 2z = a Ô Á. . Beräkna ABT. Beräkna (AB) T

Repetition, Matematik 2 för lärare. Ï x + 2y - 3z = 1 Ô Ì 3x - y + 2z = a Ô Á. . Beräkna ABT. Beräkna (AB) T Repetition, Matematik 2 för lärare Ï -2x + y + 2z = 3 1. Ange för alla reella a lösningsmängden till ekvationssystemet Ì ax + 2y + z = 1. Ó x + 3y - z = 4 2. Vad är villkoret på talet a för att ekvationssystemet

Läs mer

SF1626 Flervariabelanalys Tentamen Måndagen den 16 mars 2015

SF1626 Flervariabelanalys Tentamen Måndagen den 16 mars 2015 Institutionen för matematik SF1626 Flervariabelanalys Tentamen Måndagen den 16 mars 215 Skrivtid: 8:-13: Tillåtna hjälpmedel: inga Examinator: Mats Boij Tentamen består av nio uppgifter som vardera ger

Läs mer

(x + 1) dxdy där D är det ändliga område som begränsas av kurvorna

(x + 1) dxdy där D är det ändliga område som begränsas av kurvorna UPPSALA UNIVERSITET Matematiska institutionen Anders Källström Prov i matematik ES, W Flervariabelanalys 8 1 1 Skrivtid: 9-1. Inga hjälpmedel. Lösningarna skall åtföljas av förklarande text/figurer. Varje

Läs mer

= 0. Båda skärningsvinklarna är således π/2 (ortogonala riktningsvektorer).

= 0. Båda skärningsvinklarna är således π/2 (ortogonala riktningsvektorer). Institutionen för Matematik, KTH Torbjörn Kolsrud SF163, ifferential- och integralkalkyl II, del 2, flervariabel, för F1. Tentamen torsdag 19 augusti 21, 14. - 19. Inga hjälpmedel är tillåtna. Svar och

Läs mer

Lösningsförslag till tentamen Torsdag augusti 16, 2018 DEL A

Lösningsförslag till tentamen Torsdag augusti 16, 2018 DEL A Institutionen för matematik SF1626 Flervariabelanalys Torsdag augusti 16, 2018 DEL A 1. Givet funktionen f(x, y) = ln(x 2 y 2 ). a) Bestäm definitionsmängden D för f. Rita även en bild av D. (2 p) b) Bestäm

Läs mer

SF1626 Flervariabelanalys Tentamen Torsdagen den 18 augusti 2016

SF1626 Flervariabelanalys Tentamen Torsdagen den 18 augusti 2016 Institutionen för matematik SF166 Flervariabelanalys Tentamen Torsdagen den 18 augusti 16 Skrivtid: 8:-1: Tillåtna jälpmedel: inga Examinator: Mats Boij Tentamen består av nio uppgifter som vardera ger

Läs mer

SF1626 Flervariabelanalys Lösningsförslag till tentamen DEL A. 1. En svängningsrörelse beskrivs av

SF1626 Flervariabelanalys Lösningsförslag till tentamen DEL A. 1. En svängningsrörelse beskrivs av SF166 Flervariabelanalys Lösningsförslag till tentamen 13-3-1 DEL A 1. En svängningsrörelse beskrivs av ( πx ) u(x, t) = A cos λ πft där amplituden A, våglängden λ och frekvensen f är givna konstanter.

Läs mer

SF1626 Flervariabelanalys Lösningsförslag till tentamen DEL A

SF1626 Flervariabelanalys Lösningsförslag till tentamen DEL A Institutionen för matematik SF66 Flervariabelanalys Lösningsförslag till tentamen 4-9-6 DEL A. Betrakta följande tre områden i planet: D = {(x, y): x y < 4}, D = {(x, y): x + y }, D 3 = {(x, y): 4x + 3y

Läs mer

SF1626 Flervariabelanalys Lösningsförslag till tentamen DEL A

SF1626 Flervariabelanalys Lösningsförslag till tentamen DEL A SF626 Flervariabelanalys Lösningsförslag till tentamen 23-- DEL A. Bestäm en ekvation för tangentplanet i punkten (,, 2 till ellipsoiden 2x 2 +3y 2 +z 2 = 9. (4 p Lösning. Vi uppfattar ytan som nivåytan

Läs mer

Bestäm ekvationen för det plan som går genom punkten (1,1, 2 ) på kurvan och som spänns

Bestäm ekvationen för det plan som går genom punkten (1,1, 2 ) på kurvan och som spänns UPPSALA UNIVERSITET Matematiska institutionen Anders Källström Prov i matematik Q Flervariabelanalys 8--1 Skrivtid: 8-1. Inga hjälpmedel. Lösningarna skall åtföljas av förklarande text/figurer. Tentand

Läs mer

Institutionen för Matematik, KTH Torbjörn Kolsrud

Institutionen för Matematik, KTH Torbjörn Kolsrud Institutionen för Matematik, KTH Torbjörn Kolsrud B 7, ifferential- och integralkalkyl II, del, flervariabel, för F. Tentamen tisdag 8 augusti 7, 4.-9. Förslag till lösningar.. Om F (x, y, z) x y + y z

Läs mer

Institutionen för Matematik, KTH Torbjörn Kolsrud

Institutionen för Matematik, KTH Torbjörn Kolsrud Institutionen för Matematik, KTH Torbjörn Kolsrud 5B 7, ifferential- och integralkalkyl II, del 2, flervariabel, för F. Tentamen fredag 25 maj 27, 8.-3. Förslag till lösningar (ändrat 28/5-7, 29/5-7).

Läs mer

Tentamen i Matematisk analys, HF1905 exempel 1 Datum: xxxxxx Skrivtid: 4 timmar Examinator: Armin Halilovic

Tentamen i Matematisk analys, HF1905 exempel 1 Datum: xxxxxx Skrivtid: 4 timmar Examinator: Armin Halilovic Tentamen i Matematisk analys, HF95 exempel atum: xxxxxx Skrivtid: timmar Examinator: Armin Halilovic För godkänt betyg krävs av max poäng Betygsgränser: För betyg A, B, C,, E krävs, 9, 6, respektive poäng

Läs mer

SF1646 Analys i flera variabler Tentamen 18 augusti 2011, Svar och lösningsförslag

SF1646 Analys i flera variabler Tentamen 18 augusti 2011, Svar och lösningsförslag SF1646 Analys i flera variabler Tentamen 18 augusti 11, 14. - 19. Svar och lösningsförslag (1) Låt f(x, y) = xy ln(x + y ). I vilken riktning är riktningsderivatan till f i punkten (1, ) som störst, och

Läs mer

Högskolan i Skövde (SK, JS) Svensk version Tentamen i matematik Lösningsförslag till del I

Högskolan i Skövde (SK, JS) Svensk version Tentamen i matematik Lösningsförslag till del I Högskolan i Skövde (SK, JS) Svensk version Tentamen i matematik Lösningsförslag till del I Kurs: MA15G Matematisk Analys MA13G Matematisk analys för ingenjörer MA71A Matematik för lärare C, delkurs Matematisk

Läs mer

Tentan , lösningar

Tentan , lösningar UPPALA UNIVERITET MATEMATIKA INTITUTIONEN Bo tyf Flervariabelanalys K, X m.fl. Höstterminen 2008 Tentan 2008-12-16, lösningar 1. Avgör om det finns någon punkt på ytan (x 1) 2 + 2(y 1) 2 + 2z 8 som är

Läs mer

4x 2 dx = [polynomdivision] 2x x + 1 dx. (sin 2 (x) ) 2. = cos 2 (x) ) 2. t = cos(x),

4x 2 dx = [polynomdivision] 2x x + 1 dx. (sin 2 (x) ) 2. = cos 2 (x) ) 2. t = cos(x), Lunds Tekniska Högskola Matematik Helsingborg Lösningar Analys, FMAA5 9-8-9. a) e sinx) cosx) dx e sinx) + C. b) 4x dx polynomdivision] x + x + x + dx x x + ] ln x + + ) ln) + ) ln) ln). c) Trigonometriska

Läs mer

MVE465. Innehållsförteckning

MVE465. Innehållsförteckning Lösningar på övningsuppgifter Detta dokument innehåller mina renskrivna lösningar på övningsuppgifter i kursen Linjär algebra och analys fortsättning (). Jag kan inte lova att samtliga lösningar är välformulerade

Läs mer

Tentamen: Lösningsförslag

Tentamen: Lösningsförslag Tentamen: Lösningsförslag Onsdag 5 mars 7 8:-3: SF674 Flervariabelanalys Inga hjälpmedel är tillåtna. Max: 4 poäng. 4 poäng Avgör om följande gränsvärde existerar och beräkna gränsvärdet om det existerar:

Läs mer

SF1625 Envariabelanalys Lösningsförslag till tentamen DEL A

SF1625 Envariabelanalys Lösningsförslag till tentamen DEL A SF1625 Envariabelanalys Lösningsförslag till tentamen 2015-01-12 DEL A 1. Betrakta funktionen f som ges av f(x) = xe 1/x. A. Bestäm definitionsmängden till f. B. Beräkna de fyra gränsvärdena lim x ± f(x)

Läs mer

= 0 genom att införa de nya

= 0 genom att införa de nya UPPSALA UNIVERSITET Matematiska institutionen Anders Källström Prov i matematik ES, IT, W Flervariabelanals 9 1 19 Skrivtid: 8 13. Inga hjälpmedel. Lösningarna skall åtföljas av förklarande text/figurer.

Läs mer

Institutionen för matematik KTH. Tentamensskrivning, , kl B1119, Vektoranalys, för Open.

Institutionen för matematik KTH. Tentamensskrivning, , kl B1119, Vektoranalys, för Open. Institutionen för matematik KTH Tentamensskrivning, 25 6 3, kl 8 3 5B9, Vektoranalys, för Open Uppgifterna 4 5 svarar mot varsitt moment i den kontinuerliga examinationen Av dessa uppgifter skall man bara

Läs mer

5B1134 Matematik och modeller Lösningsförslag till tentamen den 11 oktober 2004

5B1134 Matematik och modeller Lösningsförslag till tentamen den 11 oktober 2004 KTH Matematik 5B4 Matematik och modeller Lösningsförslag till tentamen den oktober 4. Två av sidlängderna i en triangel är 8 m och m. En av vinklarna är 6. a) Bestäm alla möjliga värden för den tredje

Läs mer

Tentamen i Analys B för KB/TB (TATA09/TEN1) kl 08 13

Tentamen i Analys B för KB/TB (TATA09/TEN1) kl 08 13 LINKÖPINGS UNIVERSITET Matematiska Institutionen Joakim Arnlind Tentamen i Analys B för KB/TB (TATA9/TEN1) 212-5-22 kl 8 13 Inga hjälpmedel är tillåtna. Varje uppgift kan ge maximalt 3 poäng. Betygsgränser:

Läs mer

Flervariabelanalys och Matlab Kapitel 3

Flervariabelanalys och Matlab Kapitel 3 Flervariabelanalys och Matlab Kapitel 3 Thomas Wernstål Matematiska Vetenskaper 28 september 2012 3 Multipelintegraler 3.1 ubbelintegraler I detta kapitel skall vi studera olika sätt på vilket man kan

Läs mer

SF1625 Envariabelanalys Lösningsförslag till tentamen DEL A

SF1625 Envariabelanalys Lösningsförslag till tentamen DEL A SF1625 Envariabelanalys Lösningsförslag till tentamen 215-1-27 DEL A 4 1. Betrakta funktionen f som ges av f(x) = 1 + x + (x 2). 2 A. Bestäm definitionsmängden till f. B. Bestäm alla intervall där f är

Läs mer

SF1626 Flervariabelanalys Lösningsförslag till tentamen DEL A

SF1626 Flervariabelanalys Lösningsförslag till tentamen DEL A SF626 Flervariabelanalys Lösningsförslag till tentamen 24-8-2 DEL A. Bestäm och skissera definitionsmängden till funktionen fx, y) = x 2 + y 2 + 2x 4y + + x. Är definitionsmängden kompakt? 4 p) Lösning.

Läs mer

Tentamen i matematik. f(x) = ln(ln(x)),

Tentamen i matematik. f(x) = ln(ln(x)), Lösningsförslag Högskolan i Skövde (SK, JS) Tentamen i matematik Kurs: MA52G Matematisk Analys MA23G Matematisk analys för ingenjörer Tentamensdag: 203-05- kl 4.30-9.30 Hjälpmedel : Inga hjälpmedel utöver

Läs mer

x 2 = lim x 2 x 2 x 2 x 2 x x+2 (x + 3)(x + x + 2) = lim x 2 (x + 1)

x 2 = lim x 2 x 2 x 2 x 2 x x+2 (x + 3)(x + x + 2) = lim x 2 (x + 1) Matematik Hjälpmedel: Inga Chalmers Tekniska Högskola Tentamen 5--7 kl. 4: 8: Telefonvakt: Samuel Bengmark ankn.: 7-87644 Betygsgränser :a poäng, 4:a poäng, 5:a 4 poäng, max: 5 poäng Tentamensgranskning

Läs mer

( ) = 2x + y + 2 cos( x + 2y) omkring punkten ( 0, 0), och använd sedan detta ( ).

( ) = 2x + y + 2 cos( x + 2y) omkring punkten ( 0, 0), och använd sedan detta ( ). KTH matematik Tentamen i SF66 Flervariabelanalys den 7 juni kl 8.3. Tillåtet hjälpmedel: Endast Beta Mathematics Handbook. Tydliga lösningar med fullständiga meningar och utförliga motiveringar krävs för

Läs mer

10 Beräkning av dubbelintegraler

10 Beräkning av dubbelintegraler Nr,7april-,Amelia Beräkning av dubbelintegraler. Bte av integrationsordning Eempel (96) Kasta om integrationsordningen i a) b) c) Z Z e Z 6 Z d d d Z ln Z f(, )d f(, )d f(, )d. Lösning: Med hjälp av figurer

Läs mer

1 x. SF1626 Flervariabelanalys Lösningsförslag till tentamen DEL A

1 x. SF1626 Flervariabelanalys Lösningsförslag till tentamen DEL A SF626 Flervariabelanalys Lösningsförslag till tentamen 26-3-2 DEL A. Låt D vara fyrhörningen med hörn i punkterna, ), 6, ),, 5) och 4, 5). a) Skissera fyrhörningen D och beräkna dess area. p) b) Bestäm

Läs mer

SF1625 Envariabelanalys Tentamen Måndagen den 12 januari 2015

SF1625 Envariabelanalys Tentamen Måndagen den 12 januari 2015 SF1625 Envariabelanalys Tentamen Måndagen den 12 januari 2015 Skrivtid: 08:00-13:00 Tillåtna hjälpmedel: inga Examinator: Lars Filipsson Tentamen består av nio uppgifter som vardera ger maximalt fyra poäng.

Läs mer

Tentamen i Envariabelanalys 2

Tentamen i Envariabelanalys 2 Linköpings universitet Matematiska institutionen Kurskod: TATA42 Provkod: TEN Tentamen i Envariabelanalys 2 206 0 8, 4 9 Inga hjälpmedel. Lösningarna ska vara fullständiga, välmotiverade, ordentligt skrivna

Läs mer

SF1626 Flervariabelanalys Lösningsförslag till tentamen DEL A

SF1626 Flervariabelanalys Lösningsförslag till tentamen DEL A SF66 Flervariabelanalys Lösningsförslag till tentamen 4-3-7 EL A. Betrakta funktionen f, y y. a Beräkna riktningsderivatan av f i punkten, i den riktning som ges av vektorn 4, 3. p b Finns det någon riktning

Läs mer

IV, SF1636(5B1210,5B1230).

IV, SF1636(5B1210,5B1230). Lösningar till tentamensskrivning i Matematik I, F636(5B,5B3) Tisdagen den 9 augusti 8, kl 4-9 Hjälpmedel: BETA, Mathematics Handbook Redovisa lösningarna på ett sådant sätt att beräkningar och resonemang

Läs mer

Studiehandledning till MMA128. Differential- och integralkalkyl III. Version

Studiehandledning till MMA128. Differential- och integralkalkyl III. Version Studiehandledning till MMA128 ifferential- och integralkalkyl III läsåret 2012/13 Version 2013-06-07 ursinformation för MMA128 Mål Avsikten med kursen MMA128 ifferential- och integralkalkyl III är att

Läs mer

UPPSALA UNIVERSITET Matematiska institutionen Michael Melgaard. Prov i matematik Prog: Datakand., Frist. kurser Derivator o integraler 1MA014

UPPSALA UNIVERSITET Matematiska institutionen Michael Melgaard. Prov i matematik Prog: Datakand., Frist. kurser Derivator o integraler 1MA014 UPPSALA UNIVERSITET Matematiska institutionen Michael Melgaard Jörgen Östensson Prov i matematik Prog: Datakand., Frist. kurser Derivator o integraler 1MA1 8 3 31 Skrivtid: 8: 13:. Tillåtna hjälpmedel:

Läs mer

SF1669 Matematisk och numerisk analys II Bedömningskriterier till tentamen Måndagen den 16 mars 2015

SF1669 Matematisk och numerisk analys II Bedömningskriterier till tentamen Måndagen den 16 mars 2015 SF1669 Matematisk och numerisk analys II Bedömningskriterier till tentamen Måndagen den 16 mars 2015 Allmänt gäller följande: För full poäng på en uppgift krävs att lösningen är väl presenterad och lätt

Läs mer

Typexempel med utförliga lösningar TMV130. Matem. Analys i En Var.. V, AT.

Typexempel med utförliga lösningar TMV130. Matem. Analys i En Var.. V, AT. Typexempel med utförliga lösningar TMV3. Matem. Analys i En Var.. V, AT. Försök alltid att lösa exemplen själv först. Integration. ([AE, Adams&Essex] Ex. 5.6. ) Beräkna integralen x + 6x + 3 dx LSN (Lösning).

Läs mer

Kap Funktioner av flera variabler, definitionsmängd, värdemängd, graf, nivåkurva. Gränsvärden, kontinuitet.

Kap Funktioner av flera variabler, definitionsmängd, värdemängd, graf, nivåkurva. Gränsvärden, kontinuitet. Kap. 2. 2.2. Funktioner av flera variabler, definitionsmängd, värdemängd, graf, nivåkurva. Gränsvärden, kontinuitet. 20. Skissera definitionsmängden till följande funktioner: A a. f(,) = ln ( 2 2 ) A b.

Läs mer

= ( 1) xy 1. x 2y. y e

= ( 1) xy 1. x 2y. y e Lösningsförslag, Matematik, B, E, I, IT, M, Media och T, -8- Den sista raden är nästan lika med den första raden med omvänt tecken Om vi därför adderar den första raden till den sista raden får vi en rad

Läs mer

SF1625 Envariabelanalys Lösningsförslag till tentamen DEL A

SF1625 Envariabelanalys Lösningsförslag till tentamen DEL A SF165 Envariabelanalys Lösningsförslag till tentamen 01-1-10 DEL A 1. Låt funktionen f ha definitionsmängden D f =]0, [ och ges av f(x) = e x 1 x. (a) Finn f:s invers f 1. ( p) (b) Finn inversens värdemängd

Läs mer

SF1626 Flervariabelanalys Tentamen Tisdagen den 12 januari 2016

SF1626 Flervariabelanalys Tentamen Tisdagen den 12 januari 2016 Institutionen för matematik SF626 Flervariabelanalys Tentamen Tisdagen den 2 januari 26 Skrivtid: 8:-3: Tillåtna hjälpmedel: inga Examinator: Mats Boij Tentamen består av nio uppgifter som vardera ger

Läs mer

5B1134 Matematik och modeller Lösningsförslag till tentamen den 29 augusti 2005

5B1134 Matematik och modeller Lösningsförslag till tentamen den 29 augusti 2005 KTH Matematik 5B114 Matematik och modeller Lösningsförslag till tentamen den 29 augusti 2005 1. a) Om två av sidorna i en triangel är 5 meter respektive 6 meter. Vilka längder på den tredje sidans längd

Läs mer

av envariabelfunktionen g(t) och flervariabelfunktionen t = h(x, y) = x 2 + e y.)

av envariabelfunktionen g(t) och flervariabelfunktionen t = h(x, y) = x 2 + e y.) Lösningsskisser till TATA69 Flervariabelanalys 16-1- 1 Stationära punkter ges av f (4x 3 + 4x, 3y + 6z, z + 6y (,,, dvs (x, y, z (,, eller (x, y, z (, 6, 18 Ur andraderivatorna fås de kvadratiska formerna

Läs mer

4. Bestäm eventuella extrempunkter, inflexionspunkter samt horisontella och vertikala asymptoter till y = 1 x 1 + x, och rita funktionens graf.

4. Bestäm eventuella extrempunkter, inflexionspunkter samt horisontella och vertikala asymptoter till y = 1 x 1 + x, och rita funktionens graf. TM-Matematik Mikael Forsberg 73 1 3 31 Pär Hemström 7 3 57 För ingenjörs och distansstudenter Envariabelanalys ma3a 1 8 Skrivtid: 9:-1:. Inga hjälpmedel. Lösningarna skall vara fullständiga och lätta att

Läs mer

SF1626 Flervariabelanalys Tentamen Måndagen den 16 mars 2015

SF1626 Flervariabelanalys Tentamen Måndagen den 16 mars 2015 Institutionen för matematik SF1626 Flervariabelanalys Tentamen Måndagen den 16 mars 2015 Skrivtid: 08:00-13:00 Tillåtna hjälpmedel: inga Examinator: Mats Boij Tentamen består av nio uppgifter som vardera

Läs mer

SF1625 Envariabelanalys Lösningsförslag till tentamen DEL A

SF1625 Envariabelanalys Lösningsförslag till tentamen DEL A SF165 Envariabelanalys Lösningsförslag till tentamen 15-4-7 DEL A 1. Låt f(x) = arcsin x + 1 x. A. Bestäm definitionsmängden till funktionen f. B. Bestäm funktionens största och minsta värde. (Om du har

Läs mer

Blandade A-uppgifter Matematisk analys

Blandade A-uppgifter Matematisk analys TEKNISKA HÖGSKOLAN Matematik Blandade A-uppgifter Matematisk analys 1 Låt u = i och v = 1 + i Skriv det komplexa talet z = u/v på den polära formen re iϕ Svar: e i π Bestäm de reella tal x för vilka x

Läs mer

TMV036 Analys och Linjär Algebra K Kf Bt, del C

TMV036 Analys och Linjär Algebra K Kf Bt, del C MATEMATIK Hjälpmedel: Inga Chalmers tekniska högskola Datum: -- kl 4 8 Tentamen Telefonvakt: Richard Lärkäng tel 3-8834 TMV36 Analys och Linjär Algebra K Kf Bt, del C Tentan rättas och bedöms anonymt Skriv

Läs mer

Tentamen i tmv036c och tmv035c, Analys och linjär algebra C för K, Kf och Bt A =, = det(a λi) = e 2t + c 2. x(t) = c 1. = c 1.

Tentamen i tmv036c och tmv035c, Analys och linjär algebra C för K, Kf och Bt A =, = det(a λi) = e 2t + c 2. x(t) = c 1. = c 1. Institutionen för matematiska vetenskaper Chalmers tekniska högskola Niklas Eriksen Tentamen i tmv6c och tmv5c, Analys och linjär algebra C för K, Kf och Bt Lösningar 9--6. Lös initialvärdesproblemet x

Läs mer

x (t) = 2 1 u = Beräkna riktnings derivatan av f i punkten a i riktningen u, dvs.

x (t) = 2 1 u = Beräkna riktnings derivatan av f i punkten a i riktningen u, dvs. MATEMATIK Chalmers tekniska högskola Tentamen -8-8, kl. 4.-8. TMV6 Analys och linjär algebra K Kf Bt, del C Telefonvakt: Adam Andersson, telefon: 7-884 Hjälpmedel: Inga, bara papper och penna. För full

Läs mer

SF1626 Flervariabelanalys Tentamen Måndagen den 21 mars 2016

SF1626 Flervariabelanalys Tentamen Måndagen den 21 mars 2016 Institutionen för matematik SF626 Flervariabelanalys Tentamen Måndagen den 2 mars 26 Skrivtid: 8:-3: Tillåtna hjälpmedel: inga Examinator: Mats Boij Tentamen består av nio uppgifter som vardera ger maximalt

Läs mer

SF1626 Flervariabelanalys Bedömningskriterier till tentamen Måndagen den 16 mars 2015

SF1626 Flervariabelanalys Bedömningskriterier till tentamen Måndagen den 16 mars 2015 SF1626 Flervariabelanalys Bedömningskriterier till tentamen Måndagen den 16 mars 2015 Allmänt gäller följande: För full poäng på en uppgift krävs att lösningen är väl presenterad och lätt att följa. Det

Läs mer

Tentamen i Analys B för KB/TB (TATA09/TEN1) kl 14 19

Tentamen i Analys B för KB/TB (TATA09/TEN1) kl 14 19 LINKÖPINGS UNIVERSITET Matematiska Institutionen Joakim Arnlind Tentamen i Analys B för KB/TB (TATA9/TEN) 23-8-22 kl 4 9 Inga hjälpmedel är tillåtna. Varje uppgift kan ge maximalt 3 poäng. Betygsgränser:

Läs mer

Institutionen för Matematik, KTH Lösningar till tentamen i Analys i en variabel för I och K (SF1644) 1/ e x h. (sin x) 2 1 cos x.

Institutionen för Matematik, KTH Lösningar till tentamen i Analys i en variabel för I och K (SF1644) 1/ e x h. (sin x) 2 1 cos x. Institutionen för Matematik, KTH Lösningar till tentamen i Analys i en variabel för I och K (SF644) /6 29. Bestäm med derivatans definition d dx ex. Derivatans definition är f (x) = lim h h ( f(x + h)

Läs mer

SF1669 Matematisk och numerisk analys II Lösningsförslag till tentamen DEL A

SF1669 Matematisk och numerisk analys II Lösningsförslag till tentamen DEL A SF1669 Matematisk och numerisk analys II Lösningsförslag till tentamen 16-8-18 DEL A 1. Låt D vara det område ovanför x-axeln i xy-planet som begränsas av cirkeln x + y = 1 samt linjerna y = x och y =

Läs mer

Lösningar till Matematisk analys

Lösningar till Matematisk analys Lösningar till Matematisk analys 685. Sätt fx x. Rotationskroppens volym är π fx dx π ] x 6 dx π 7 x7 π 7. Rotationskroppens area är summan av arean av kroppens mantelyta och arean av kroppens cirkulära

Läs mer

Repetitionsuppgifter

Repetitionsuppgifter MVE5 H5 MATEMATIK Chalmers Repetitionsuppgifter Integraler och tillämpningar av integraler. (a) Beräkna (b) Avgör om den generaliserade integralen arctan(x) ( + x) dx. dx x x är konvergent eller divergent.

Läs mer

Problem inför KS 2. Problem i matematik CDEPR & CDMAT Flervariabelanalys. KTH -matematik

Problem inför KS 2. Problem i matematik CDEPR & CDMAT Flervariabelanalys. KTH -matematik KTH -matematik Problem i matematik EPR & MAT Flervariabelanalys Problem inför KS.. Låt F(, y, z) + y 3z + och G(, y, z) 3 + y 3 4z +. Visa att i en omgivning av punkten (,, ) definieras genom ekvationerna

Läs mer

1. För vilka värden på konstanterna a och b är de tre vektorerna (a,b,b), (b,a,b) och (b,b,a) linjärt beroende.

1. För vilka värden på konstanterna a och b är de tre vektorerna (a,b,b), (b,a,b) och (b,b,a) linjärt beroende. Institutionen för matematik KTH MOELLTENTAMEN Tentamensskrivning, år månad dag, kl. x. (x + 5).. 5B33, Analytiska metoder och linjär algebra. Uppgifterna 5 svarar mot varsitt moment i den kontinuerliga

Läs mer

Lösningar till MVE017 Matematisk analys i en variabel för I x 3x y = x. 3x2 + 4.

Lösningar till MVE017 Matematisk analys i en variabel för I x 3x y = x. 3x2 + 4. Lösningar till MVE07 Matematisk analys i en variabel för I 8-0-0. (a Division ger y + 5x x 2 + 4 y x x2 + 4. 5x x 2 + 4 dx 5 2 ln(x2 + 4, vilket ger den integrerande faktorn (x 2 + 4 5/2. Ekvationen multipliceras

Läs mer

Lösningsförslag till tentamen Tisdagen den 10 januari 2017 DEL A

Lösningsförslag till tentamen Tisdagen den 10 januari 2017 DEL A Institutionen för matematik SF66 Flervariabelanalys Lösningsförslag till tentamen Tisdagen den januari 7 DEL A. En partikel rör sig så att positionen efter starten ges av (x, y, z (t cos t, t sin t, t

Läs mer

Studietips inför kommande tentamen TEN1 inom kursen TNIU23

Studietips inför kommande tentamen TEN1 inom kursen TNIU23 Studietips inför kommande tentamen TEN1 inom kursen TNIU23 Lämplig ordning på sammanfattande studier inom denna kurs: Inled med att grundligt studera föreläsningsanteckningarna Därefter läs tillhörande

Läs mer

Lösningsförslag till tentamen TMA043 Flervariabelanalys E2

Lösningsförslag till tentamen TMA043 Flervariabelanalys E2 Lösningsförslag till tentamen TMA43 Flervariabelanalys E 4-8-3 kl. 8.3.3 Examinator: Peter Hegarty, Matematiska vetenskaper, Chalmers Telefonvakt: Åse Fahlander, telefon: 73 88 34 Hjälpmedel: bifogat formelblad,

Läs mer

Lösningsförslag, preliminär version 0.1, 23 januari 2018

Lösningsförslag, preliminär version 0.1, 23 januari 2018 Lösningsförslag, preinär version 0., 3 januari 08 Högskolan i Skövde Tentamen i matematik Kurs: MA5G Matematisk analys MA3G Matematisk analys för ingenjörer Tentamensdag: 08-0-03 kl 4:30-9:30 Hjälpmedel

Läs mer

1. Beräkna volymen av det område som begränsas av paraboloiden z = 4 x 2 y 2 och xy-planet. Lösning: Volymen erhålles som V = dxdydz.

1. Beräkna volymen av det område som begränsas av paraboloiden z = 4 x 2 y 2 och xy-planet. Lösning: Volymen erhålles som V = dxdydz. Lösningsförslag till tentamensskrivning i Matematik IV, F636(5B0,5B30). Tisdagen den januari 0, kl 400-900. Hjälpmedel: BETA, Mathematics Handbook. Redovisa lösningarna på ett sådant sätt att beräkningar

Läs mer

TENTAMEN. Ten2, Matematik 1 Kurskod HF1903 Skrivtid 13:15-17:15 Fredagen 25 oktober 2013 Tentamen består av 4 sidor

TENTAMEN. Ten2, Matematik 1 Kurskod HF1903 Skrivtid 13:15-17:15 Fredagen 25 oktober 2013 Tentamen består av 4 sidor TENTAMEN Ten, Matematik Kurskod HF93 Skrivtid 3:5-7:5 Fredagen 5 oktober 3 Tentamen består av sidor Hjälpmedel: Utdelat formelblad. Räknedosa ej tillåten. Tentamen består av uppgifter som totalt kan ge

Läs mer

SF1669 Matematisk och numerisk analys II Lösningsförslag till modelltentamen DEL A

SF1669 Matematisk och numerisk analys II Lösningsförslag till modelltentamen DEL A Institutionen för matematik SF1669 Matematisk och numerisk analys II Lösningsförslag till modelltentamen DEL A 1. Betrakta funktionen fx, y = x + y och området D som ges av olikheterna x, y och x + y 1.

Läs mer

Lektion 3. Partiella derivator, differentierbarhet och tangentplan till en yta, normalen i en punkt till en yta, kedjeregeln

Lektion 3. Partiella derivator, differentierbarhet och tangentplan till en yta, normalen i en punkt till en yta, kedjeregeln Lektion 3 Partiella derivator, differentierbarhet och tangentplan till en yta, normalen i en punkt till en yta, kedjeregeln Innehål 1. Partiella derivator (12.3) 2. Differentierbarhet och tangentplan till

Läs mer

LUNDS TEKNISKA HÖGSKOLA MATEMATIK. LÖSNINGAR FLERDIMENSIONELL ANALYS, FMA kl 8 13

LUNDS TEKNISKA HÖGSKOLA MATEMATIK. LÖSNINGAR FLERDIMENSIONELL ANALYS, FMA kl 8 13 LUNS TEKNISKA HÖGSKOLA MATEMATIK LÖSNINGAR FLERIMENSIONELL ANALYS, FMA40 04-0- kl 8. Vi börjar med att rita triangelskivan. Linjen genom, och, har ekvationen y x+, linjen genom, och, har ekvationen y 4

Läs mer

v0.2, Högskolan i Skövde Tentamen i matematik

v0.2, Högskolan i Skövde Tentamen i matematik v0., 08-03-3 Högskolan i Skövde Tentamen i matematik Kurs: MA5G Matematisk analys MA3G Matematisk analys för ingenjörer Tentamensdag: 08-0-03 kl 4:30-9:30 Hjälpmedel : Inga hjälpmedel utöver bifogat formelblad.

Läs mer

Chalmers tekniska högskola Datum: kl Telefonvakt: Jonny Lindström MVE475 Inledande Matematisk Analys

Chalmers tekniska högskola Datum: kl Telefonvakt: Jonny Lindström MVE475 Inledande Matematisk Analys MATEMATIK Hjälpmedel: inga Chalmers tekniska högskola Datum: 1715 kl. 14. - 18. Tentamen Telefonvakt: Jonny Lindström 733 674 MVE475 Inledande Matematisk Analys Tentan rättas och bedöms anonymt. Skriv

Läs mer

Kap Implicit givna funktioner

Kap Implicit givna funktioner Kap 12.8. Implicit givna funktioner A 701. Betrakta ekvationen x 2 y 2 = 0 och funktioner y = y(x). a. Hur många funktioner satisfierar ekvationen? b. Hur många kontinuerliga funktioner satisfierar ekvationen?

Läs mer

Institutionen för matematik SF1626 Flervariabelanalys. Lösningsförslag till tentamen Måndagen den 5 juni 2017 DEL A

Institutionen för matematik SF1626 Flervariabelanalys. Lösningsförslag till tentamen Måndagen den 5 juni 2017 DEL A Institutionen för matematik SF66 Flervariabelanalys Lösningsförslag till tentamen Måndagen den 5 juni 7 DEL A. En kulles höjd ges av z 6,x,y där enheten är meter på alla tre koordinataxlar. (a) I vilken

Läs mer