Varje laborant ska vid laborationens början lämna renskrivna lösningar till handledaren för kontroll.

Storlek: px
Starta visningen från sidan:

Download "Varje laborant ska vid laborationens början lämna renskrivna lösningar till handledaren för kontroll."

Transkript

1 Kretsprocesser Förberedelser Under laborationen ska du jobba med en Stirlingmotor och en värmepump. Båda inns beskrivna lägre ram i texten men örst ska du läsa genom de avsnitt i kurslitteraturen som behandlar kretsprocesser. Läs i "Fysik i vätskor och gaser" om värme (sid 31 41), termodynamikens örsta huvudsats (sid ), kretsprocesser (sid ) och värmemaskiner, kylskåp och värmepumpar (sid ). Läs däreter genom laborationsinstruktionen. Gör öljande uppgiter arje laborant ska vid laborationens början lämna renskrivna lösningar till handledaren ör kontroll. 1. I en kretsprocess ör en värmemotor representeras nettoarbetet under ett varv av den inneslutna arean i ett p-diagram. En motor genomlöper en yrkantig kretsprocess enligt diagrammet i iguren till höger. a) ilken enhet har p? b) ur stort arbete uträttar motorn under ett varv i kretsprocessen? c) ilken eekt avger motorn om det tar 0,20 s ör kretsprocessen att genomlöpa ett varv? Svar: b) 1,6 kj c) 8,0 kw 2. I iguren till höger visas ett schematiskt p-diagram ör en Stirlingmotor. Rita av diagrammet och markera var värme tillörs och avges under kretsprocessen. Under vilken del av kretsprocessen tar regeneratorn upp respektive avger värme? Tänk på att diagrammet visar tillståndet hos arbetsgasen. Kretsprocesser N1 ht

2 3. Den högsta teoretiska verkningsgraden η ör en motor är T η = T T C där T är den högsta och T C den lägsta temperaturen under kretsprocessen. I en testbil med en Stirlingmotor är den högsta temperaturen under kretsprocessen 700 C och den lägsta temperaturen 100 C. Beräkna den högsta möjliga teoretiska verkningsgraden. Svar: 61,7 % 4. För en värmepump deinieras värmeaktorn som kvoten mellan den energi som avges rån den varma sidan Q ut och den energi W som måste tillöras kompressorn som driver kretsprocessen. Man kan visa att den högsta teoretiska värmeaktorn ör en värmepump ges av T = T T C där T är den högsta och T C den lägsta temperaturen under kretsprocessen. En värmepump som tar värme rån utomhusluten antas ha en praktisk värmeaktor som är ungeär hälten av det teoretiskt högsta värdet. Beräkna denna värmepumps praktiska värmeaktor ör öljande två all. a) Utelutens temperatur är 20 C och värmepumpen lämnar varmvatten med temperaturen 50 C. b) Utelutens temperatur är 0 C och värmepumpen lämnar varmvatten med temperaturen 40 C. Svar: a) 2,3 b) 3,9 5. I en demonstrationsvärmepump, enligt igur 1 på nästa sida, tas värme Q in, rån en kall reservoar som innehåller 10 liter vatten-glykolblandning. ärme Q ut, avges till en varm reservoar som innehåller 10 liter vatten. Q in är den värmemängd som man normalt tar gratis rån en lämplig reservoar och Q ut är den nyttiga värmemängd som vi normalt använder till uppvärmning. Kompressorn tillör arbetet W, som vi betalar ör via elräkningen. a) Temperaturen i den varma reservoaren höjs 25,8 C på tiden 1616 s. ur stor medeleekt har lämnats till den varma reservoaren? b) Diagrammet i igur 2 visar hur temperaturen i den varma reservoaren, varierar med tiden t. Mätningen började då värmepumpen startades. För enkelhetens skull anpassar vi en rät linje till mätpunkterna med hjälp av minsta kvadratmetoden. Det ger T = a t + b Kretsprocesser N1 ht

3 Figur 1. En schematisk bild av en värmepump. De viktigaste delarna är kompressor, expansionsventil, kall och varm reservoar. Figur 2. Temperaturens variation med tiden i den varma reservoaren. där a = 0,0163 C/s och b = 25,7 C. i har då en approximation till hur temperaturen varierar med tiden i den varma reservoaren när temperaturen ökar rån runt 26 C till 52 C. Kompressorns eekt approximeras till att vara konstant 158 W under mättiden. Beräkna värmeaktorn ör värmepumpen då temperaturen varierar enligt ovan. Du ska å lite hjälp på vägen. ärmeaktorn kan momentant deinieras som dq dw ut dvs. kvoten mellan den värme som avges till den varma reservoaren och den energi som tillörs kompressorn momentant. Etersom vi mäter eekter skriver vi om uttrycket som dq dq dt P = = = dw dt dw P ut ut ut komp Kretsprocesser N1 ht

4 där P ut är avgiven eekt i den varma behållaren och P komp är kompressorns eekt. Med hjälp av kedjeregeln kan vi skriva P ut dqut dqut dt = = dt dt dt Till sist kan du utnyttja att vattnets värmekapacitet kan skrivas dq ut dt = mc (Jämör med Q ut = m c ΔT) där m är massan och c den speciika värmekapaciteten. Svar: a) 0,67 kw b) 4,3 Stirlingmotorn Genom åren har det utvecklats lera Stirlingmotorer i undervisningssyte. Det inns t ex en solstirlingmotor som är örsedd med en parabolspegel ör att kunna drivas med solljus. Stirlingmotorn du ska arbeta med har en cylinder av glas så att man tydligt kan se de olika delarna, se igur 3. Motorn har två kolvar, en arbetskolv och en örlyttningskolv, som löper i samma cylinder. Arbetskolven ändrar gasens volym och tryck i cylindern genom att komprimera eller expandera gasen. Förlyttningskolvens rörelser ändrar inte cylinderns volym utan lyttar bara gasen ram och tillbaka mellan det varma och det kalla området. Då örlyttningskolven t ex rör sig uppåt i cylindern lyttas gasen rån den övre till den nedre volymen. Gasen passerar då genom ett hål i kolvens mitt som omges av regeneratorn. Regeneratorn består av kopparull som har till uppgit att så eektivt som möjligt mellanlagra värme då gasen passerar åt ena eller andra hållet ärmespiral 2. arma utrymmet 3. Kylvattenutlopp 4. Regenerator (kopparull) 5. Kalla utrymmet 6. Förlyttningskolv 7. Kylvatteninlopp 8. Arbetskolv 9. Till p-indikator 10. Svänghjul 11. Kolvstänger 12. evstakslager 13. Kylvatteninlopp 14. Kylvattenutlopp Figur 3. Den Stirlingmotor som du ska använda under laborationen. Kretsprocesser N1 ht

5 Figur 4 nedan visar de yra delprocesser som ingår i Stirlingcykeln. Förutsatt att regeneratorn ungerar perekt kan dess arbetssätt beskrivas på öljande sätt. När gasen passerar regeneratorn rån motorns övre varma del, värms regeneratorn upp och gasen kyls av. Gasen kommer då till motorns nedre del kyld till en temperatur, T C. Då gasen passerar regeneratorn rån motorns nedre kalla del, kyls regeneratorn av och gasen värms upp. Det medör att gasen kommer till motorns övre del uppvärmd till en temperatur, T. I den nedre delen av motorn transporteras värme bort (under den isoterma kompressionen) med hjälp av kylvatten rån en kran. Om vi låter lödet vara tillräckligt stort kommer kylvattnets temperatur T C att vara konstant oavsett variationer hos den borttransporterade eekten. Det betyder att vi har en kall värmereservoar. i kan då anta att gasen i motorns nedre del hela tiden har samma temperatur T C som kylvattnet. Observera att det bara är i en ideal maskin som gasen år samma temperatur T C som kylvattnet. Figur 4. Stirlingmotorns unktion. Diagrammet ovanör respektive bild visar vilken tillståndsändring som bilden avser att visa. Bilden visar startläget ör tillståndsändringen och pilarna visar hur kolvarna skall röra sig ör att komma till tillståndsändringens slutläge. T ex visar iguren ovanör a b kolvarnas lägen i tillståndet a och pilarna visar hur kolvarna skall röra sig ör att komma till tillstånd b. Se även tabellen på nästa sida. Kretsprocesser N1 ht

6 Tabell 1. Sammanattning av tillståndsändringarna. Tillståndsändring Gasens temperatur Gasens volym Arbetskolv Förlyttnings- kolv a b Ökar Konstant och liten Stilla i övre vändläget Uppirån och ner b c Konstant och hög Ökar Uppirån och nedåt Fortsätter nedåt c d Minskar Konstant och stor Stilla i nedre vändläget Nerirån och upp d a Konstant och låg Minskar Nerirån och upp Stilla i övre vändläget I motorns övre volym tillörs elektrisk energi under den isoterma expansionen via ett värmeelement *. I en ideal maskin sker denna värmetillörsel vid den konstanta temperaturen T. En ökning av den tillörda elektriska eekten resulterar i att motorn arbetar vid en högre temperatur T, vilket i sin tur ger upphov till ett större nyttigt arbete (den inneslutna arean i p-diagrammet ökar). När Stirlingmotorn varit igång en stund har temperaturen T stabiliserats och vi har ått ett stationärt tillstånd. Motorn hålls då igång genom att värme tillörs den övre delen av motorn (så att expansionen sker isotermt) och värme bortörs rån den nedre delen av motorn (så att kompressionen sker isotermt). Arbetet som gasen uträttar under den isoterma expansionen används dels till att uträtta nyttigt arbete (rån maskinanvändarens synpunkt) och dels till att lagra rörelseenergi hos ett svänghjul. Se igur 3. En del av denna energi örsvinner också genom t ex riktion och strålningsörluster, men det bortser vi irån. Det arbete som tillörs gasen under den isoterma kompressionen tas rån svänghjulet, som därmed örlorar rörelseenergi. Nettoarbetet ör processen blir skillnaden mellan det arbete gasen uträttar under den isoterma expansionen och det arbete gasen tillörs (rån svänghjulet) under den isoterma kompressionen. I den schematiska beskrivningen i igur 4 är det bara en kolv åt gången som rör sig. I praktiken är det inte riktigt så etersom den mekaniska konstruktionen gör att båda kolvarna rör sig (mer eller mindre) samtidigt. p-indikatorn Arbetskolvens läge är ett mått på den inneslutna lutens volym. På laborationens Stirlingmotor överörs arbetskolvens rörelse via ett snöre och några * Tänk på att det är en demonstrationsmaskin! I verkligheten kanske motorn drivs med solenergi som är gratis. (Med elektrisk energi kan man ju driva en elmotor med betydligt högre verkningsgrad än en Stirlingmotor.) Kretsprocesser N1 ht

7 hävarmar till en spegel som vrids i sidled. Spegeln belyses med en laser och relexen syns på en whiteboardtavla. När volymen ändras rör sig laserläcken horisontellt över tavlan. Trycket kan mätas genom att spegelupphängningen via en slang är ansluten till luten i motorn. Tryckändringar i motorn tvingar spegeln att röra sig kring en horisontell axel så att laserläcken lyttas i vertikalled. På tavlan projiceras alltså ett p-diagram över kretsprocessen. ärmepump En värmepump överör, precis som en kylmaskin, värme rån ett kallare område till ett varmare område. För en värmepump är vi intresserade av den värmemängd (Q ut ) som kan avges vid den höga temperaturen, medan vi ör en kylanläggning är intresserade av den värmemängd (Q in ) som tas upp rån det kalla området. I en värmepump eller en kylmaskin utnyttjar man asövergångar i ett köldmedium. I institutionens värmepumpar är det tetraluoretan * som medör att vi år kokning och kondensering vid lämpliga temperaturer och rimliga tryck. I en praktisk värmepump tar man värme rån en sjö, rån marken eller rån uteluten, och låter detta örånga köldmediumet i örångaren. I kondensorn kondenseras köldmediumet varvid det omgivande vattnet upptar värme, som kan användas ör att t.ex. värma upp ett hus. När örhållandena väl stabiliserats kommer kretsprocessens högsta och lägsta temperatur (T respektive T C ) att vara konstanta. Laborationens värmepump har s.k. koaxialörångare och koaxialkondensor (se igur 5). Både örångaren och kondensorn består av ett inre rör (böjt som en spiral) i vilket köldmediumet strömmar. Runt om detta rör inns ett grövre rör i vilket en glykol-vattenblandning (eller bara vatten) strömmar. Förångare D C B A Kondensor Figur 5. ärmepumpsanläggning med örångare och kondensor. * Tetraluoretan har den kemiska ormeln C22F4 och som köldmedium brukar det betecknas R134a. Kretsprocesser N1 ht

8 Kretsloppet enligt igur 5 Process D A: Köldmedium i gasas vid lågt tryck och låg temperatur komprimeras adiabatiskt (nästan) av kompressorn till högt tryck ( 12 atm) och hög temperatur ( 70 C). Process A B: I kondensorn kyls gasormigt köldmedium av vatten som leds genom kondensorn. Köldmediumet övergår då rån gasas till vätskeas. Den värmemängd, som rigörs vid denna asövergång, tas upp av vattnet, som kommer uppvärmt ut ur kondensorn. Process B C: Expansionsventilen ungerar huvudsakligen som en mekanisk strypventil. Köldmediumets tryck, och därmed temperatur minskar kratigt vid passagen av expansionsventilen. Process C D: I örångaren övergår köldmediumet rån vätskeas till gasas. Kokningen är möjlig genom att köldmediumet tar upp värme rån en glykolvattenblandning, som leds genom örångaren. Glykol-vattenblandningen kommer alltså kyld ut ur örångaren. ärmeaktorn (godhetstalet ör en värmepump) deinieras som Q W ut För en ideal kretsprocess (t.ex. Stirlingprocessen, om regeneratorn ungerar idealt) kan man visa att T = T T C där T och T C är temperaturerna i de båda värmereservoarerna. På laborationen har vi två 10 liters spannar med vatten, som år representera de båda temperaturreservoarerna. Med så små volymer kommer temperaturen att ändras kratigt med tiden. Etersom värmepumpen tar värme rån den ena spannen och lämnar värme till den andra kommer temperaturen (T C ) att sjunka i den örsta spannen och temperaturen (T ) att stiga i den andra. När temperaturerna ändras med tiden varierar även värmeaktorn. Se sambandet ovan. i kan skriva den momentana värmeaktorn som dq dq dt P = = dw dt dw P ut ut ut in där P ut är den värmeeekt som överörs till den varma behållaren och P in är den elektriska eekt som kompressorn använder. Kretsprocesser N1 ht

9 Utörande Uppgit 1: Undersökning av Stirlingmotorn Dra sakta runt motorns svänghjul ör hand (åt rätt håll) och övertyga dig om hur de yra tillståndsändringarna kommer till stånd. Fundera över hur energiutbytet med omgivningen går till ör de olika tillståndsändringarna. Uppgit 2: Stirlingmotorns verkningsgrad Bestäm Stirlingmotorns verkningsgrad då den används som värmemotor. Tänk örst ut vilka storheter som måste mätas ör att uträttat arbete och tillörd energi, ska kunna beräknas. Utör däreter mätningarna. OBS. Stirlingmotorn är ömtålig (och dyr). Den år inte startas utan handledarens medverkan! ar också örsiktig med lasern. Titta inte in i laserstrålen! Figur 6. Svänghjulet på Stirlingmotorn kan drivas runt av en elektrisk motor. arje gång kretsprocessen genomlöps tar arbetsgasen upp värme som sedan antingen avges till kylvattnet eller till den del där termometern sitter. Uppgit 3: Stirlingprocessen som kylskåp eller värmepump andledaren kommer att visa hur man kan köra en Stirlingmaskin med hjälp av ett yttre arbete. Motorn dras runt med en drivrem rån en annan motor. attenkylningen, är som vanligt i maskinens nedre del men glödtråden är ersatt med en termometer. Se igur 6. a) Stirlingmotorns drivhjul dras örst runt åt samma håll som det roterade när motorn kördes som värmemotor. Rita kretsprocessen schematiskt i ett p-diagram och markera den isoterm som bestäms av kylvattnets temperatur T kyl. Ange kretsprocessens omloppsriktning och var arbetsgasen tar upp respektive avger värme. ad brukar en maskin av denna typ kallas? b) Riktningen på den drivande motorn vänds, så att Stirlingmotorns svänghjul dras runt åt andra hållet. Rita åter kretsprocessen schematiskt i ett pdiagram och markera den isoterm som bestäms av kylvattnets temperatur T kyl. Ange kretsprocessens omloppsriktning och var arbetsgasen tar upp respektive avger värme. ilken typ av maskin har vi nu? Uppgit 4a: Fasövergångar i värmepumpen Inled med att örsäkra dig om att du vet hur köldmedium och kylvatten cirkulerar i värmepumpen. Identiiera var de åtta termometrar som mäter det cirkulerande köldmediumets temperatur sitter. De är numrerade 1-8 och du Kretsprocesser N1 ht

10 ska ylla i sirorna i den schematiska bild över värmepumpen som du ått. Dessa åtta termometrar avläser du, tillsammans med två tryckmätare, manuellt. Två termometrar mäter också kontinuerligt temperaturen på kylvattnet i den varma respektive kalla behållaren. Dessa båda temperaturer (T, TC) samt den tillörda elektriska energin (W) ska under hela mätningen registreras av datainsamlingsprogrammet PASCO Capstone. Starta programmet och börja med att klicka på ardware setup. Du år då ram en bild av den box till vilken de tre sensorerna är kopplade. Koppla in en räknare genom att klicka på ingången och välja rätt sensor, dvs. General counter. Räknaren registrerar antal energipaket som levereras till kompressorn. Koppla sedan in två termometrar, Temperature sensor, som registrerar temperaturerna. Ett lämpligt samplingsintervall är 10 s, och detta ställer du in i den nedre delen av panelen som visas på skärmen. Du ska ha samma intervall ör alla mätningarna (ställ in Common rate ). Se till att alla mätdata löpande visas till exempel i ett diagram. Klicka och dra Graph rån den högra panelen och ut på skrivbordet. Klicka på y-axeln och lägg in vilka mätdata du vill visa. andledaren hjälper dig! Starta värmepumpen (kompressorn) och datainsamlingssystemet ( Record ) och samla data i ca 20 minuter. Avläs vid två tidpunkter (eter ca 5 respektive ca 15 minuter) tryck och temperatur på samtliga åtta ställen som mäter temperaturen på köldmediumet. Observera att de avlästa trycken är övertryck, dvs Pa måste adderas ör att å köldmediumets totaltryck. För att värmepumpen ska ungera tillredsställande krävs det att asövergångarna sker där de ska. Studera detta genom att öra in alla mätpunkterna i det ärdigtryckta pt-diagrammet som du år av handledaren. Markera var asövergångarna sker. Figur 7. Laborationens värmepumpsanläggning med inkopplat mätsystem. Uppgit 4b: ärmepumpens värmeaktor som unktion av tiden När du tagit upp en mätserie med T, TC och W under ca 20 minuter ska du spara resultaten i en il och analysera dina data med hjälp av Capstone. (För dig som behärskar Matlab är det också möjligt att göra analysen av data med hjälp av att du själv skriver några rutiner i det programmet. Det är också möjligt att exportera mätdata till Excel.) Kretsprocesser N1 ht

11 Börja med att låta programmet rita temperaturerna T och TC som unktion av tiden. Graen över den tillörda energin W ser lite märklig ut och din uppgit blir nu att illustrera hur den tillörda energin ökar med tiden. Avsätt kompressorns örbrukade energi som unktion av tiden. arje energipaket motsvarar 4,5 kj och i graen ska du alltså addera dessa paket. Det gör du enklast genom att gå in under Data summary, klicka på räknaren, sedan på equations. är ska du göra en beräkning och under rubriken statistics inner du unktionen Σsum. Det du ska summera är mätserien med energisnäpp. Denna dataserie hittar du under ikonen med den ärgade triangeln. Du ska nu beräkna den experimentella värmeaktorn i början och i slutet av mätserien. För att göra det måste du komma åt eekterna Put respektive Pin, dvs tidsderivatorna av Qut och W. Gör detta genom att anpassa räta linjer, dels till graen som illustrerar W som unktion av tiden, dels i början och slutet av graen som illustrerar Q som unktion av tiden. arör ändras värmeaktorn med tiden? ad betyder det att den praktiska värmeaktorn är lika med ett? ur ändras den teoretiska värmeaktorn med tiden? ad betyder det när den teoretiska värmeaktorn närmar sig ett? I mån av tid kan nedanstående uppgit också göras: För att mer i detalj studera hur värmeaktorn ändrar sig med tiden kan man derivera unktionen som visar hur temperaturen ändrar sig med tiden i den varma behållaren. När man har dt/dt kan dq /dt beräknas (se örberedelseuppgit 5) och med hjälp av kompressorns eekt kan till sist plottas som unktion av t. Det inns lera sätt att inna derivatan dt/dt. Det bästa är att anpassa ett polynom till mätpunkterna och sedan derivera detta polynom, beräkna dq /dt och plotta kvoten som unktion av tiden. Du kan också låta programmet Capstone numeriskt derivera dina upptagna mätdata och till denna deriverade unktion anpassa ett polynom. T Det är också intressant att plotta den ideala värmeaktorn = ör T T dina registrerade temperaturer. Och ör att göra en jämörelse mellan just den ideala och den verkliga värmeaktorn kan du till sist plotta kvoten mellan den verkliga värmeaktorn och den teoretiska. C Kretsprocesser N1 ht

Läs därefter genom laborationsinstruktionen fram till det ställe där utförandedelen

Läs därefter genom laborationsinstruktionen fram till det ställe där utförandedelen Kretsprocesser Förberedelser Under laborationen ska du jobba med en Stirlingmotor och en värmepump. Båda inns beskrivna lägre ram i texten men örst ska du läsa genom de avsnitt i kurslitteraturen som behandlar

Läs mer

Läs i i Statistisk Termodynamik kapitel 4 om värmemaskiner. Läs därefter genom laborationsinstruktionen fram till det ställe där utförandedelen

Läs i i Statistisk Termodynamik kapitel 4 om värmemaskiner. Läs därefter genom laborationsinstruktionen fram till det ställe där utförandedelen Kretsprocesser Förberedelser Under laborationen ska du jobba med en Stirlingmotor och en värmepump. Båda inns beskrivna lägre ram i texten men örst ska du läsa genom de avsnitt i kurslitteraturen som behandlar

Läs mer

Laboration: Kretsprocesser

Laboration: Kretsprocesser Laboration: Kretsprocesser Under laborationen ska du jobba med en Stirlingmotor och en värmepump. Förberedelser Repetera först i kursboken (Çengel & Boles, Thermodynamics An Engineering Approach ) om värme

Läs mer

Teorin för denna laboration hittar du i föreläsningskompendiet kapitlet om värmemaskiner. Läs detta ordentligt!

Teorin för denna laboration hittar du i föreläsningskompendiet kapitlet om värmemaskiner. Läs detta ordentligt! Kretsprocesser Inledning I denna laboration får Du experimentera med en Stirlingmotor och studera en värmepump. Litteraturhänsvisning Teorin för denna laboration hittar du i föreläsningskompendiet kapitlet

Läs mer

Kretsprocesser. Inledning. Förberedelseuppgifter

Kretsprocesser. Inledning. Förberedelseuppgifter Kretsprocesser Inledning Under laborationen ska du jobba med en Stirlingmotor och en värmepump. Båda finns beskrivna lägre fram i texten men först ska du läsa igenom de avsnitt i kurslitteraturen som behandlar

Läs mer

Stirlingmotorn. Värmepumpen. Förberedelser. Verkningsgrad, s 222. Termodynamikens andra huvudsats, s 217. Stirlingprocessen, s 235.

Stirlingmotorn. Värmepumpen. Förberedelser. Verkningsgrad, s 222. Termodynamikens andra huvudsats, s 217. Stirlingprocessen, s 235. ... Kretsprocesser Stirlingmotorn och värmepumpen Avsikten med laborationen är att Du ska få en djupare teoretisk och praktisk förståelse för begreppen energiomvandling, arbete, värme och verkningsgrad.

Läs mer

LABORATION - KRETSPROCESSER

LABORATION - KRETSPROCESSER MMVF01 Termodynamik och Strömningslära LABORATION - KRETSPROCESSER Under laborationen ska du jobba med en Stirlingmotor och en värmepump. Förberedelser Repetera först i kursboken (Çengel & Boles, "Thermodynamics

Läs mer

UMEÅ UNIVERSITET Fysiska institutionen Leif Hassmyr VARMLUFTSMASKIN TYP STIRLING

UMEÅ UNIVERSITET Fysiska institutionen Leif Hassmyr VARMLUFTSMASKIN TYP STIRLING UMEÅ UNIERSITET 2004-05-11 Fysiska institutionen Leif Hassmyr ARMLUFTSMASKIN TYP STIRLING 1 ARMLUFTSMASKIN TYP STIRLING Avsikten med laorationen är att göra dig förtrogen med kretsprocesser, p-diagram,

Läs mer

Övningsuppgifter termodynamik ,0 kg H 2 O av 40 C skall värmas till 100 C. Beräkna erforderlig värmemängd.

Övningsuppgifter termodynamik ,0 kg H 2 O av 40 C skall värmas till 100 C. Beräkna erforderlig värmemängd. Övningsuppgifter termodynamik 1 1. 10,0 kg H 2 O av 40 C skall värmas till 100 C. Beräkna erforderlig värmemängd. Svar: Q = 2512 2516 kj beroende på metod 2. 5,0 kg H 2 O av 40 C skall värmas till 200

Läs mer

Laborationshandledning Fysik för n

Laborationshandledning Fysik för n Laborationshandledning Fysik för n Termodynamik, våglära, optik och atomfysik höstterminen 2011 Kurslaboratoriet, fysik LTH Innehållsförteckning Laborationsregler 2 Experimentell metodik 4 Svängande stavar

Läs mer

Linköpings tekniska högskola Exempeltentamen 7 IEI / Mekanisk värmeteori och strömningslära. Exempeltentamen 7. strömningslära, miniräknare.

Linköpings tekniska högskola Exempeltentamen 7 IEI / Mekanisk värmeteori och strömningslära. Exempeltentamen 7. strömningslära, miniräknare. Linköpings tekniska högskola Exempeltentamen 7 IEI / Mekanisk värmeteori och strömningslära Joakim Wren Exempeltentamen 7 Tillåtna hjälpmedel: Allmänt: Formelsamling i Mekanisk värmeteori och strömningslära,

Läs mer

Linköpings tekniska högskola IEI / Mekanisk värmeteori och strömningslära. Exempeltentamen 8. strömningslära, miniräknare.

Linköpings tekniska högskola IEI / Mekanisk värmeteori och strömningslära. Exempeltentamen 8. strömningslära, miniräknare. Linköpings tekniska högskola IEI / Mekanisk värmeteori och strömningslära Tentamen Joakim Wren Exempeltentamen 8 Tillåtna hjälpmedel: Allmänt: Formelsamling i Mekanisk värmeteori och strömningslära, miniräknare.

Läs mer

UMEÅ UNIVERSITET 2012-03-13 Fysiska institutionen Leif Hassmyr VARMLUFTSMASKIN TYP STIRLING

UMEÅ UNIVERSITET 2012-03-13 Fysiska institutionen Leif Hassmyr VARMLUFTSMASKIN TYP STIRLING UMEÅ UNIVERSITET 2012-03-13 Fysiska institutionen Leif Hassmyr VARMLUFTSMASKIN TYP STIRLING VARMLUFTSMASKIN TYP STIRLING INLEDNING: 1 Stirlingmotorn är en värmemotor som kan ha utvändig förbränning. Motorn

Läs mer

Till alla övningar finns facit. För de övningar som är markerade med * finns dessutom lösningar som du hittar efter facit!

Till alla övningar finns facit. För de övningar som är markerade med * finns dessutom lösningar som du hittar efter facit! Övningsuppgifter Till alla övningar finns facit. För de övningar som är markerade med * finns dessutom lösningar som du hittar efter facit! 1 Man har en blandning av syrgas och vätgas i en behållare. eräkna

Läs mer

Övrigt: Uppgifterna 1-3 är på mekanik, uppgifterna 4-5 är på värmelära/termodynamik

Övrigt: Uppgifterna 1-3 är på mekanik, uppgifterna 4-5 är på värmelära/termodynamik Institutionen för teknikvetenskap och matematik Kurskod/kursnamn: F0004T, Fysik 1 Tentamen datum: 2018-01-12 Skrivtid: 15.00 20.00 Totala antalet uppgifter: 5 Jourhavande lärare: Magnus Gustafsson, 0920-491983

Läs mer

3. En konvergerande-divergerande dysa har en minsta sektion på 6,25 cm 2 och en utloppssektion

3. En konvergerande-divergerande dysa har en minsta sektion på 6,25 cm 2 och en utloppssektion Betygstentamen, SG1216 Termodynamik för T2 26 augusti 2010, kl. 14:00-18:00 SCI, Mekanik, KTH 1 Hjälpmedel: Den av institutionen framtagna formelsamlingen, matematisk tabell- och/eller formelsamling (typ

Läs mer

Analys av funktioner och dess derivata i Matlab.

Analys av funktioner och dess derivata i Matlab. Analys av unktioner oc dess derivata i Matlab. 5B47 Envariabelanalys Ludvig Adlercreutz, ME Hans Lindgren, IT Stockolm den 7 mars 7 Kursledare: Karim Dao Inneåll Uppgit 5...3 Uppgit 6...5 Uppgit 7...7

Läs mer

Tentamen i FTF140 Termodynamik och statistisk mekanik för F3

Tentamen i FTF140 Termodynamik och statistisk mekanik för F3 Chalmers Institutionen för Teknisk Fysik Göran Wahnström Tentamen i FTF14 Termodynamik och statistisk mekanik för F3 Tid och plats: Onsdag 15 jan 14, kl 8.3-13.3 i Maskin -salar. Hjälpmedel: Physics Handbook,

Läs mer

Linköpings tekniska högskola Exempeltentamen 8 IEI / Mekanisk värmeteori och strömningslära. Exempeltentamen 8. strömningslära, miniräknare.

Linköpings tekniska högskola Exempeltentamen 8 IEI / Mekanisk värmeteori och strömningslära. Exempeltentamen 8. strömningslära, miniräknare. Linköpings tekniska högskola Exempeltentamen 8 IEI / Mekanisk värmeteori och strömningslära Joakim Wren Exempeltentamen 8 Tillåtna hjälpmedel: Allmänt: Formelsamling i Mekanisk värmeteori och strömningslära,

Läs mer

Linköpings tekniska högskola Exempeltentamen 6 IEI / Mekanisk värmeteori och strömningslära. Exempeltentamen 6. strömningslära, miniräknare.

Linköpings tekniska högskola Exempeltentamen 6 IEI / Mekanisk värmeteori och strömningslära. Exempeltentamen 6. strömningslära, miniräknare. Linköpings tekniska högskola Exempeltentamen 6 IEI / Mekanisk värmeteori och strömningslära Joakim Wren Exempeltentamen 6 Tillåtna hjälpmedel: Allmänt: Formelsamling i Mekanisk värmeteori och strömningslära,

Läs mer

Grundläggande kylprocess, teori och praktik

Grundläggande kylprocess, teori och praktik Kyl & Värmepumptekniker Höstterminen 201 8 Grundläggande kylprocess, teori och praktik HÄFTE 2 Köldmediediagrammet Lärare: Lars Hjort Lars Hjort 2018-08-10 Övning på köldmediediagrammet Läs sidan 55-57

Läs mer

Tentamen i Termodynamik, 4p, 8/6 2007, 9-15 med lösningar

Tentamen i Termodynamik, 4p, 8/6 2007, 9-15 med lösningar STOCKHOLMS UNIVERSITET FYSIKUM K.H. Tentamen i Termodynamik, 4p, 8/6 007, 9-15 med lösningar 1.Kan tillgodoräknas ör betyg G av den som presterat godkänt resultat på duggan) a.visasambandet C P /C V =

Läs mer

Mer om kretsprocesser

Mer om kretsprocesser Mer om kretsprocesser Energiteknik Anders Bengtsson 18 mars 2010 Sammanfattning Dessa anteckningar är ett komplement till avsnittet om kretsprocesser i häftet Värmetekniska formler med kommentarer. 1 1

Läs mer

Tentamen i termisk energiteknik 5HP för ES3, 2009, , kl 9-14.

Tentamen i termisk energiteknik 5HP för ES3, 2009, , kl 9-14. Tentamen i termisk energiteknik 5HP för ES3, 2009, 2009-10-19, kl 9-14. Namn:. Personnr: Markera vilka uppgifter som du gjort: ( ) Uppgift 1a (2p). ( ) Uppgift 1b (2p). ( ) Uppgift 2a (1p). ( ) Uppgift

Läs mer

Entropi. Det är omöjligt att överföra värme från ett "kallare" till ett "varmare" system utan att samtidigt utföra arbete.

Entropi. Det är omöjligt att överföra värme från ett kallare till ett varmare system utan att samtidigt utföra arbete. Entropi Vi har tidigare sett hur man kunde definiera entropi som en funktion (en konstant gånger naturliga logaritmen) av antalet sätt att tilldela ett system en viss mängd energi. Att ifrån detta förstå

Läs mer

Kap 6 termodynamikens 2:a lag

Kap 6 termodynamikens 2:a lag Termodynamikens första lag: energins bevarande. Men säger ingenting om riktningen på energiflödet! Men vi vet ju att riktingen spelar roll: En kopp varmt kaffe kan inte värmas upp ytterligare från en kallare

Läs mer

Laboration: Värmepump, Stirlingmotor och Kroppens Effekt

Laboration: Värmepump, Stirlingmotor och Kroppens Effekt FYSA15 Laboration: Värmepump, Stirlingmotor och Kroppens Effekt 1 2 Teori: Termodynamiska system och jämvikt Bild 1: En gas uppdelad i två delsystem A och B, skilda åt av en vägg. Ett termodynamiskt system,

Läs mer

Linköpings tekniska högskola Exempeltentamen 2 IKP/Mekaniksystem Mekanisk värmeteori och strömningslära. Exempeltentamen 2

Linköpings tekniska högskola Exempeltentamen 2 IKP/Mekaniksystem Mekanisk värmeteori och strömningslära. Exempeltentamen 2 Exempeltentamen 2 (OBS! Uppgifterna nedan gavs innan kursen delvis bytte innehåll och omfattning. Vissa uppgifter som inte längre är aktuella har därför tagits bort, vilket medför att poängsumman är

Läs mer

Tentamen i teknisk termodynamik (1FA527)

Tentamen i teknisk termodynamik (1FA527) Tentamen i teknisk termodynamik (1FA527) 2016-08-24 Tillåtna hjälpmedel: Cengel & Boles: Thermodynamics (eller annan lärobok i termodynamik), ångtabeller, Physics Handbook, Mathematics Handbook, miniräknare

Läs mer

Teknisk termodynamik repetition

Teknisk termodynamik repetition Först något om enheter! Teknisk termodynamik repetition Kom ihåg att använda Kelvingrader för temperaturer! Enheter motsvarar vad som efterfrågas! Med konventionen specifika enheter liten bokstav: E Enhet

Läs mer

Tentamen i FTF140 Termodynamik och statistisk fysik för F3

Tentamen i FTF140 Termodynamik och statistisk fysik för F3 Chalmers Institutionen för Teknisk Fysik Göran Wahnström Tentamen i FTF4 Termodynamik och statistisk fysik för F3 Tid och plats: Tisdag aug, kl 8.3-.3 i Väg och vatten -salar. Hjälpmedel: Physics Handbook,

Läs mer

Wilma kommer ut från sitt luftkonditionerade hotellrum bildas genast kondens (imma) på hennes glasögon. Uppskatta

Wilma kommer ut från sitt luftkonditionerade hotellrum bildas genast kondens (imma) på hennes glasögon. Uppskatta TENTAMEN I FYSIK FÖR V1, 18 AUGUSTI 2011 Skrivtid: 14.00-19.00 Hjälpmedel: Formelblad och räknare. Börja varje ny uppgift på nytt blad. Lösningarna ska vara väl motiverade och försedda med svar. Kladdblad

Läs mer

Termodynamik FL6 TERMISKA RESERVOARER TERMODYNAMIKENS 2:A HUVUDSATS INTRODUCTION. Processer sker i en viss riktning, och inte i motsatt riktning.

Termodynamik FL6 TERMISKA RESERVOARER TERMODYNAMIKENS 2:A HUVUDSATS INTRODUCTION. Processer sker i en viss riktning, och inte i motsatt riktning. Termodynamik FL6 TERMODYNAMIKENS 2:A HUVUDSATS INTRODUCTION Värme överförd till en tråd genererar ingen elektricitet. En kopp varmt kaffe blir inte varmare i ett kallt rum. Dessa processer kan inte ske,

Läs mer

Kap 10 ångcykler: processer i 2-fasområdet

Kap 10 ångcykler: processer i 2-fasområdet Med ångcykler menas att arbetsmediet byter fas under cykeln Den vanligaste typen av ångcykler är med vatten som medium. Vatten är billigt, allmänt tillgängligt och har hög ångbildningsentalpi. Elproducerande

Läs mer

Lite kinetisk gasteori

Lite kinetisk gasteori Tryck och energi i en ideal gas Lite kinetisk gasteori Statistisk metod att beskriva en ideal gas. En enkel teoretisk modell som bygger på följande antaganden: Varje molekyl är en fri partikel. Varje molekyl

Läs mer

ARBETSGIVANDE GASCYKLER

ARBETSGIVANDE GASCYKLER ARBETSGIVANDE GASCYKLER Verkliga processer är oftast mycket komplicerade till sina detaljer; exakt analys omöjlig. Om processen idealiseras som internt reversibel fås en ideal process vars termiska verkningsgrad

Läs mer

Varje laborant ska vid laborationens början lämna renskrivna lösningar till handledaren för kontroll.

Varje laborant ska vid laborationens början lämna renskrivna lösningar till handledaren för kontroll. Strömning Förberedelser Läs i "Fysik i vätskor och gaser" om strömmande gaser och vätskor (sid 141-160). Titta därefter genom utförandedelen på laborationen så att du vet vilka moment som ingår. Om du

Läs mer

a) Vi kan betrakta luften som ideal gas, så vi kan använda allmänna gaslagen: PV = mrt

a) Vi kan betrakta luften som ideal gas, så vi kan använda allmänna gaslagen: PV = mrt Lösningsförslag till tentamen Energiteknik 060213 Uppg 1. BA Trycket i en luftfylld pistong-cylinder är från början 100 kpa och temperaturen är 27C. Volymen är 125 l. Pistongen, som har diametern 3 dm,

Läs mer

Kap 7 entropi. Ett medium som värms får ökande entropi Ett medium som kyls förlorar entropi

Kap 7 entropi. Ett medium som värms får ökande entropi Ett medium som kyls förlorar entropi Entropi Är inte så enkelt Vi kan se på det på olika sätt (mikroskopiskt, makroskopiskt, utifrån teknisk design). Det intressanta är förändringen i entropi ΔS. Men det finns en nollpunkt för entropi termodynamikens

Läs mer

T / C +17. c) När man andas utomhus en kall dag ser man sin andedräkt som rök ur munnen. Vad beror det på?

T / C +17. c) När man andas utomhus en kall dag ser man sin andedräkt som rök ur munnen. Vad beror det på? TENTAMEN I FYSIK FÖR V1, 11 JANUARI 2011 Skrivtid: 08.00-13.00 Hjälpmedel: Formelblad och räknare. Börja varje ny uppgift på nytt blad. Lösningarna ska vara väl motiverade och försedda med svar. Kladdblad

Läs mer

Värmemotor. 30 mars 2009

Värmemotor. 30 mars 2009 Värmemotor 30 mars 2009 1 Laborationens innehåll Laborationen målsättning är att på ett enkelt och åskådligt sätt visa omvandlingen av värme till arbete i en cyklisk process (en sk värmemotor). Värmemotorn

Läs mer

Kretsprocesser. För att se hur långt man skulle kunna komma med en god konstruktion skall vi ändå härleda verkningsgraden i några enkla fall.

Kretsprocesser. För att se hur långt man skulle kunna komma med en god konstruktion skall vi ändå härleda verkningsgraden i några enkla fall. Kretsrocesser Termodynamiken utvecklades i början för att förstå hur bra man kunde bygga olika värmemaskiner, hur man skulle kunna öka maskinernas verkningsgrad d v s hur mycket mekaniskt arbete som kunde

Läs mer

Tentamen i Kemisk Termodynamik 2011-01-19 kl 13-18

Tentamen i Kemisk Termodynamik 2011-01-19 kl 13-18 Tentamen i Kemisk Termodynamik 2011-01-19 kl 13-18 Hjälpmedel: Räknedosa, BETA och Formelsamling för kurserna i kemi vid KTH. Endast en uppgift per blad! Skriv namn och personnummer på varje blad! Alla

Läs mer

Kap 6 termodynamikens 2:a lag

Kap 6 termodynamikens 2:a lag Termodynamikens första lag: energins bevarande. Men säger ingenting om riktningen på energiflödet! Men vi vet ju att riktingen spelar roll: En kopp varmt kaffe kan inte värmas upp ytterligare från en kallare

Läs mer

Linköpings tekniska högskola Exempeltentamen 5 IEI / Mekanisk värmeteori och strömningslära. Exempeltentamen 5. strömningslära, miniräknare.

Linköpings tekniska högskola Exempeltentamen 5 IEI / Mekanisk värmeteori och strömningslära. Exempeltentamen 5. strömningslära, miniräknare. Linköpings tekniska högskola Exempeltentamen 5 IEI / Mekanisk värmeteori och strömningslära Joakim Wren Exempeltentamen 5 Tillåtna hjälpmedel: Allmänt: Formelsamling i Mekanisk värmeteori och strömningslära,

Läs mer

Betygstentamen, SG1216 Termodynamik för T2 25 maj 2010, kl. 9:00-13:00

Betygstentamen, SG1216 Termodynamik för T2 25 maj 2010, kl. 9:00-13:00 Betygstentamen, SG1216 Termodynamik för T2 25 maj 2010, kl. 9:00-13:00 SCI, Mekanik, KTH 1 Hjälpmedel: Den av institutionen framtagna formelsamlingen, matematisk tabell- och/eller formelsamling typ Beta),

Läs mer

Fysik. Laboration 1. Specifik värmekapacitet och glödlampas verkningsgrad

Fysik. Laboration 1. Specifik värmekapacitet och glödlampas verkningsgrad Fysik Laboration 1 Specifik värmekapacitet och glödlampas verkningsgrad Laborationens syfte: Visa hur man kan med enkla experimentella anordningar studera fysikaliska effekter och bestämma i) specifik

Läs mer

CHALMERS TEKNISKA HÖGSKOLA GÖTEBORGS UNIVERSITET Sektionen för Fysik och Teknisk Fysik Oktober 2000

CHALMERS TEKNISKA HÖGSKOLA GÖTEBORGS UNIVERSITET Sektionen för Fysik och Teknisk Fysik Oktober 2000 CHALMERS TEKNISKA HÖGSKOLA 18 sidor GÖTEBORGS UNIVERSITET Sektionen för Fysik och Teknisk Fysik Oktober 2000 PM utarbetat av Johan Åman, Jonas Enger, Ernest Karawacki, Alf Sjölander och Göran Wahnström.

Läs mer

Räkneövning 2 hösten 2014

Räkneövning 2 hösten 2014 Termofysikens Grunder Räkneövning 2 hösten 2014 Assistent: Christoffer Fridlund 22.9.2014 1 1. Brinnande processer. Moderna datorers funktion baserar sig på kiselprocessorer. Anta att en modern processor

Läs mer

Linköpings tekniska högskola Exempeltentamen 1 IEI Mekanisk värmeteori och strömningslära. Exempeltentamen 1

Linköpings tekniska högskola Exempeltentamen 1 IEI Mekanisk värmeteori och strömningslära. Exempeltentamen 1 Exempeltentamen 1 (OBS! Uppgifterna nedan gavs innan kursen delvis bytte innehåll och omfattning. Vissa uppgifter som inte längre är aktuella har därför tagits bort, vilket medför att poängsumman är

Läs mer

7. Inre energi, termodynamikens huvudsatser

7. Inre energi, termodynamikens huvudsatser 7. Inre energi, termodynamikens huvudsatser Sedan 1800 talet har man forskat i hur energi kan överföras och omvandlas så effektivt som möjligt. Denna forskning har resulterat i ett antal begrepp som bör

Läs mer

Octopus för en hållbar framtid

Octopus för en hållbar framtid EN MILJÖVÄNLIG VÄRMEPUMP FÖR IDAG OCH IMORGON Octopus har utvecklat och tillverkat värmepumpar sedan 1981 och har genom flera års utveckling tagit fram det bästa för miljön och kunden. Den senaste produkten

Läs mer

Omtentamen i teknisk termodynamik (1FA527) för F3,

Omtentamen i teknisk termodynamik (1FA527) för F3, Omtentamen i teknisk termodynamik (1FA527) för F3, 2012 04 13 Tillåtna hjälpmedel: Cengel & Boles: Thermodynamics (eller annan lärobok i termodynamik), ångtabeller, Physics Handbook, miniräknare. Anvisningar:

Läs mer

Kap 6 termodynamikens 2:a lag

Kap 6 termodynamikens 2:a lag Termodynamikens första lag: energins bevarande. Men säger ingenting om riktningen på energiflödet! Men vi vet ju att riktingen spelar roll: En kopp varmt kaffe kan inte värmas upp ytterligare från en kallare

Läs mer

Planering Fysik för V, ht-11, lp 2

Planering Fysik för V, ht-11, lp 2 Planering Fysik för V, ht-11, lp 2 Kurslitteratur: Häfte: Experimentell metodik, Kurslaboratoriet 2011, Fysik i vätskor och gaser, Göran Jönsson, Teach Support 2010 samt föreläsningsanteckningar i Ellära,

Läs mer

Kap 4 energianalys av slutna system

Kap 4 energianalys av slutna system Slutet system: energi men ej massa kan röra sig över systemgränsen. Exempel: kolvmotor med stängda ventiler 1 Volymändringsarbete (boundary work) Exempel: arbete med kolv W b = Fds = PAds = PdV 2 W b =

Läs mer

Miljöfysik. Föreläsning 3. Värmekraftverk. Växthuseffekten i repris Energikvalitet Exergi Anergi Verkningsgrad

Miljöfysik. Föreläsning 3. Värmekraftverk. Växthuseffekten i repris Energikvalitet Exergi Anergi Verkningsgrad Miljöfysik Föreläsning 3 Växthuseffekten i repris Energikvalitet Exergi Anergi Verkningsgrad Värmekraftverk Växthuseffekten https://phet.colorado.edu/en/simulations/category/physics Simuleringsprogram

Läs mer

Tentamen i termodynamik. 7,5 högskolepoäng. Namn: (Ifylles av student) Personnummer: (Ifylles av student)

Tentamen i termodynamik. 7,5 högskolepoäng. Namn: (Ifylles av student) Personnummer: (Ifylles av student) Tentamen i termodynamik 7,5 högskolepoäng Provmoment: Ladokkod: Tentamen ges för: Ten01 TT051A Årskurs 1 Namn: (Ifylles av student) Personnummer: (Ifylles av student) Tentamensdatum: Tid: 2012-06-01 9.00-13.00

Läs mer

Godkänt-del. Hypotetisk tentamen för Termodynamik och ytkemi, KFKA10

Godkänt-del. Hypotetisk tentamen för Termodynamik och ytkemi, KFKA10 Hypotetisk tentamen för Termodynamik och ytkemi, KFKA10 Tillåtna hjälpmedel: Miniräknare, utdelat formelblad och tabellblad. Godkänt-del För uppgift 1 9 krävs endast svar. För övriga uppgifter ska slutsatser

Läs mer

Arbete är ingen tillståndsstorhet!

Arbete är ingen tillståndsstorhet! VOLYMÄNDRINGSARBETE Volymändringsarbete = arbete p.g.a. normalkrafter mot ytor (tryck) vid volymändring. Beteckning: W b (eng. boundary work); per massenhet w b. δw b = F ds = P b Ads = P b dv Exempel:

Läs mer

Applicera 1:a H.S. på det kombinerade systemet:

Applicera 1:a H.S. på det kombinerade systemet: (Çengel, 998) Applicera :a H.S. på det kombinerade systemet: E in E out E c på differentialform: δw δw + δw δ Q R δwc dec där C rev sys Kretsprocessen är (totalt) reversibel och då ger ekv. (5-8): R R

Läs mer

Miljöfysik. Föreläsning 4

Miljöfysik. Föreläsning 4 Miljöfysik Föreläsning 4 Fossilenergi Energianvändning i Sverige och omvärlden Förbränningsmotorn Miljöaspekter på fossila bränslen Att utnyttja solenergi Definitioner Instrålnings vinkelberoende Uppkomst

Läs mer

Fysikalisk kemi KEM040. Clausius-Clapeyronekvationen Bestämning av ångtryck och ångbildningsentalpi för en ren vätska (Lab2)

Fysikalisk kemi KEM040. Clausius-Clapeyronekvationen Bestämning av ångtryck och ångbildningsentalpi för en ren vätska (Lab2) GÖTEBORGS UNIVERSITET INSTITUTIONEN FÖR KEMI Fysikalisk kemi KEM040 Laboration i fysikalisk kemi Clausius-Clapeyronekvationen Bestämning av ångtryck och ångbildningsentalpi för en ren vätska (Lab2) ifylls

Läs mer

Termodynamik Föreläsning 2 Värme, Arbete, och 1:a Huvudsatsen

Termodynamik Föreläsning 2 Värme, Arbete, och 1:a Huvudsatsen Termodynamik Föreläsning 2 Värme, Arbete, och 1:a Huvudsatsen Jens Fjelstad 2010 09 01 1 / 23 Energiöverföring/Energitransport Värme Arbete Masstransport (massflöde, endast öppna system) 2 / 23 Värme Värme

Läs mer

En bijektion mellan två mängder A och B som har ändligt antal element kan finnas endast om mängderna har samma antal element.

En bijektion mellan två mängder A och B som har ändligt antal element kan finnas endast om mängderna har samma antal element. Inversa unktion BIJEKTION, INJEKTION, SURJEKTION Allmän terminologi I samband med variabelbyte vid beräkning av integraler har vi en avbildning mellan två mängder A och B, dvs en unktion : A B Vi har otast

Läs mer

TENTAMEN I TERMODYNAMIK för K2 och Kf2 (KVM090) 2009-08-27 kl. 14.00-18.00 i V

TENTAMEN I TERMODYNAMIK för K2 och Kf2 (KVM090) 2009-08-27 kl. 14.00-18.00 i V CHLMERS 1 (3) TENTMEN I TERMODYNMIK för K2 och Kf2 (KVM090) 2009-08-27 kl. 14.00-18.00 i V Hjälpmedel: Kursböckerna Elliott-Lira: Introductory Chemical Engineering Thermodynamics och P. tkins, L. Jones:

Läs mer

Octopus för en hållbar framtid

Octopus för en hållbar framtid EN MILJÖVÄNLIG VÄRMEPUMP FÖR IDAG OCH IMORGON Octopus har utvecklat och tillverkat värmepumpar sedan 1981 och har genom flera års utveckling tagit fram det bästa för miljön och kunden. Den senaste produkten

Läs mer

Planering Fysik för V, ht-10, lp 2

Planering Fysik för V, ht-10, lp 2 Planering Fysik för V, ht-10, lp 2 Kurslitteratur: Häfte Experimentell metodik och föreläsningsanteckningar, Kurslaboratoriet 2010 samt Göran Jönsson: Fysik i vätskor och gaser, Teach Support 2009. markerar

Läs mer

MITTHÖGSKOLAN, Härnösand

MITTHÖGSKOLAN, Härnösand MITTHÖGSKOLAN, Härnösand TENTAMEN I TERMODYNAMIK, 5 p (TYPTENTA) Tid: XX DEN XX/XX - XXXX kl Hjälpmedel: 1. Cengel and Boles, Thermodynamics, an engineering appr, McGrawHill 2. Diagram Propertires of water

Läs mer

Termodynamik Föreläsning 6 Termodynamikens 2:a Huvudsats

Termodynamik Föreläsning 6 Termodynamikens 2:a Huvudsats Termodynamik Föreläsning 6 Termodynamikens 2:a Huvudsats Jens Fjelstad 2010 09 14 1 / 30 Innehåll Termodynamikens 2:a huvudsats, värmemaskin, reversibilitet & irreversibilitet TFS 2:a upplagan (Çengel

Läs mer

Tentamen i Kemisk Termodynamik kl 14-19

Tentamen i Kemisk Termodynamik kl 14-19 Tentamen i Kemisk Termodynamik 2010-12-14 kl 14-19 Hjälpmedel: Räknedosa, BETA och Formelsamling för kurserna i kemi vid KTH. Endast en uppgift per blad! Skriv namn och personnummer på varje blad! Alla

Läs mer

LABORATION 2 TERMODYNAMIK BESTÄMNING AV C p /C v

LABORATION 2 TERMODYNAMIK BESTÄMNING AV C p /C v Fysikum FK4005 - Fristående kursprogram Laborationsinstruktion (1 april 2008) LABORATION 2 TERMODYNAMIK BESTÄMNING AV C p /C v Mål Denna laboration är uppdelad i två delar. I den första bestäms C p /C

Läs mer

ENERGIPROCESSER, 15 Hp

ENERGIPROCESSER, 15 Hp UMEÅ UNIVERSITET Tillämpad fysik och elektronik Mohsen Soleimani-Mohseni Robert Eklund Umeå 10/3 2012 ENERGIPROCESSER, 15 Hp Tid: 09.00-15.00 den 10/3-2012 Hjälpmedel: Alvarez Energiteknik del 1 och 2,

Läs mer

SG1216. Termodynamik för T2

SG1216. Termodynamik för T2 SG1216 Termodynamik för T2 Klassisk termodynamik med kompressibel strömning. rörelseenergi och arbete inom mekanik rörströmning inom strömningslära integralkalkyl inom envariabelsanalys differentialkalkyl

Läs mer

Hjälpmedel: Valfri miniräknare, Formelsamling: Energiteknik-Formler och tabeller(s O Elovsson och H Alvarez, Studentlitteratur)

Hjälpmedel: Valfri miniräknare, Formelsamling: Energiteknik-Formler och tabeller(s O Elovsson och H Alvarez, Studentlitteratur) ENERGITEKNIK II Provmoment: Ladokkod: Tentamen ges för: Tentamen 41N05B En2 7,5 högskolepoäng TentamensKod: Tentamensdatum: Måndag 24 oktober Tid: 9.00-13.00 Hjälpmedel: Valfri miräknare, Formelsamlg:

Läs mer

Tentamen i Termodynamik och Statistisk fysik för F3(FTF140)

Tentamen i Termodynamik och Statistisk fysik för F3(FTF140) Chalmers Tekniska Högskola Institutionen för Teknisk Fysik Mats Granath Tentamen i Termodynamik och Statistisk fysik för F3(FTF40) Tid och plats: Tisdag 8/8 009, kl. 4.00-6.00 i V-huset. Examinator: Mats

Läs mer

Kap 10 ångcykler: processer i 2-fasområdet

Kap 10 ångcykler: processer i 2-fasområdet Med ångcykler menas att arbetsmediet byter fas under cykeln Den vanligaste typen av ångcykler är med vatten som medium. Vatten är billigt, allmänt tillgängligt och har hög ångbildningsentalpi. Elproducerande

Läs mer

Godkänt-del A (uppgift 1 10) Endast svar krävs, svara direkt på provbladet.

Godkänt-del A (uppgift 1 10) Endast svar krävs, svara direkt på provbladet. Tentamen för Termodynamik och ytkemi, KFKA10, 2018-01-08 Tillåtna hjälpmedel: Miniräknare, utdelat formelblad och tabellblad. Godkänt-del A (endast svar): Max 14 poäng Godkänt-del B (motiveringar krävs):

Läs mer

Y=konstant V 1. x=konstant. TANGENTPLAN OCH NORMALVEKTOR TILL YTAN z = f ( x, LINEARISERING NORMALVEKTOR (NORMALRIKTNING) TILL YTAN.

Y=konstant V 1. x=konstant. TANGENTPLAN OCH NORMALVEKTOR TILL YTAN z = f ( x, LINEARISERING NORMALVEKTOR (NORMALRIKTNING) TILL YTAN. Tangentplan Linjära approimationer TANGENTPLAN OCH NORMALVEKTOR TILL YTAN z LINEARISERING NORMALVEKTOR NORMALRIKTNING TILL YTAN Låt z vara en dierentierbar unktion i punkten a b Då är N a b a b en normalvektor

Läs mer

Tentamen i : Värme- och ventilationsteknik Kod/Linje: MTM437. Totala antalet uppgifter: 5 st Datum:

Tentamen i : Värme- och ventilationsteknik Kod/Linje: MTM437. Totala antalet uppgifter: 5 st Datum: Tentamen i : ärme- och ventilationsteknik Kod/Linje: MTM437 Totala antalet uppgifter: 5 st Datum: 010831 Examinator/Tfn: Lars Westerlund 1223 Skrivtid: 9.00-15.00 Jourhavande lärare/tfn: Lars Westerlund

Läs mer

Motorer och kylskåp. Repetition: De tre tillstånden. Värmeöverföring. Fysiken bakom motorer och kylskåp - Termodynamik. Värmeöverföring genom ledning

Motorer och kylskåp. Repetition: De tre tillstånden. Värmeöverföring. Fysiken bakom motorer och kylskåp - Termodynamik. Värmeöverföring genom ledning Motorer och kylskåp Repetition: De tre tillstånden Gas Vätska Solid http://www.aircraftbanking.com/ http://sv.wikipedia.org Föreläsning 3/3, 2010 Plasma det fjärde tillståndet McMurry Chemistry, http://wps.prenhall.com

Läs mer

Projektarbete Kylska p

Projektarbete Kylska p Projektarbete Kylska p Kursnamn Termodynamik, TMMI44 Grupptillhörighet MI 1A grupp 2 Inlämningsdatum Namn Personummer E-postadress Ebba Andrén 950816 ebban462@student.liu.se Kajsa-Stina Hedback 940816

Läs mer

Vad tror du ökning av entropi innebär från ett tekniskt perspektiv?

Vad tror du ökning av entropi innebär från ett tekniskt perspektiv? Entropi Entropi är ett mått på oordning En process går alltid mot samma eller ökande entropi. För energi gäller energins bevarande. För entropi gäller entropins ökande. Irreversibla processer innebär att

Läs mer

Arbetet beror på vägen

Arbetet beror på vägen VOLYMÄNDRINGSARBETE Volymändringsarbete = arbete p.g.a. normalkrafter mot ytor (tryck) vid volymändring. Beteckning: W b (eng. boundary work); per massenhet w b. δw b = F ds = P b Ads = P b dv Exempel:

Läs mer

------------------------------------------------------------------------------------------------------- Personnummer:

------------------------------------------------------------------------------------------------------- Personnummer: ENERGITEKNIK II 7,5 högskolepoäng Provmoment: Ladokkod: Tentamen ges för: Tentamen 41N05B En2 Namn: -------------------------------------------------------------------------------------------------------

Läs mer

Tentamen i teknisk termodynamik (1FA527) för F3,

Tentamen i teknisk termodynamik (1FA527) för F3, Tentamen i teknisk termodynamik (1FA527) för F3, 2012 12 17 Tillåtna hjälpmedel: Cengel & Boles: Thermodynamics (eller annan lärobok i termodynamik), ångtabeller, Physics Handbook, Mathematics Handbook,

Läs mer

Tentamen i Termodynamik Q, F, MNP samt Värmelära för kursen Värmelära och Miljöfysik 20/8 2002

Tentamen i Termodynamik Q, F, MNP samt Värmelära för kursen Värmelära och Miljöfysik 20/8 2002 UPPSALA UNIVERSITET Fysiska institutionen Sveinn Bjarman Tentamen i Termodynamik Q, F, MNP samt Värmelära för kursen Värmelära och Miljöfysik 20/8 2002 Skrivtid: 9-14 Hjälpmedel: Räknedosa, Physics Handbook

Läs mer

MEKANIK KTH Forslag till losningar till Sluttentamen i 5C1201 Stromningslara och termodynamik for T2 den 30 augusti Stromfunktionen for den ho

MEKANIK KTH Forslag till losningar till Sluttentamen i 5C1201 Stromningslara och termodynamik for T2 den 30 augusti Stromfunktionen for den ho MEKNK KH Forslag till losningar till Sluttentamen i 5C0 Stromningslara och termodynamik for den 30 augusti 00. Stromfunktionen for den homogena fristrommen och kallan ar ;Vy; m dar den forsta termen (fristrommen)

Läs mer

Energi- och processtekniker EPP14

Energi- och processtekniker EPP14 Grundläggande energiteknik Provmoment: Tentamen Ladokkod: TH101A 7,5 högskolepoäng Tentamen ges för: Energi- och processtekniker EPP14 Namn: Personnummer: Tentamensdatum: 2015-03-20 Tid: 09:00 13:00 Hjälpmedel:

Läs mer

7,5 högskolepoäng ENERGITEKNIK II. Provmoment: Ladokkod: Tentamen ges för: Tentamen 41N05B. TentamensKod:

7,5 högskolepoäng ENERGITEKNIK II. Provmoment: Ladokkod: Tentamen ges för: Tentamen 41N05B. TentamensKod: ENERGITEKNIK II Provmoment: Ladokkod: Tentamen ges för: Tentamen 41N05B En2 7,5 högskolepoäng TentamensKod: Tentamensdatum: Måndagen 23 oktober 2017 Tid: 9.00-13.00 Hjälpmedel: Valfri miräknare, Formelsamlg:

Läs mer

Kapitel 4 Arbete, energi och effekt

Kapitel 4 Arbete, energi och effekt Arbete När en kraft F verkar på ett föremål och föremålet flyttar sig sträckan s i kraftens riktning säger vi att kraften utför ett arbete på föremålet. W = F s Enheten blir W = F s = Nm = J (joule) (enheten

Läs mer

Repetition. Termodynamik handlar om energiomvandlingar

Repetition. Termodynamik handlar om energiomvandlingar Repetition Termodynamik handlar om energiomvandlingar Termodynamikens första huvudsats: (Energiprincipen) Energi kan inte skapas och inte förstöras bara omvandlas från en form till en annan!! Termodynamikens

Läs mer

PTG 2015 Övning 4. Problem 1

PTG 2015 Övning 4. Problem 1 PTG 015 Övning 4 1 Problem 1 En frys avger 10 W värme till ett rum vars temperatur är C. Frysens temperatur är 3 C. En isbricka som innehåller 0,5 kg flytande vatten vid 0 C placeras i frysen där den fryser

Läs mer

PTG 2015 övning 1. Problem 1

PTG 2015 övning 1. Problem 1 PTG 2015 övning 1 1 Problem 1 Enligt mätningar i fortfarighetstillstånd producerar en destillationsanläggning 12,5 /s destillat innehållande 87 vikt % alkohol och 19,2 /s bottenprodukt innehållande 7 vikt

Läs mer

Svängningar. Innehåll. Inledning. Litteraturhänvisning. Förberedelseuppgifter. Svängningar

Svängningar. Innehåll. Inledning. Litteraturhänvisning. Förberedelseuppgifter. Svängningar Svängningar Innehåll Inledning Inledning... 1 Litteraturhänvisning... 1 Förberedelseuppgifter... 1 Utförande... 3 Det dämpade men odrivna systemet... 3 Det drivna systemet... 4 Några praktiska tips...

Läs mer

Energitekniska formler med kommentarer

Energitekniska formler med kommentarer Energitekniska formler med kommentarer Energiteknik del 2 Anders Bengtsson 19 januari 2011 Sammanfattning Det finns egentligen inga formler som alltid kan användas. Med en formel tänker man sig ofta en

Läs mer

Värmepumpens verkningsgrad

Värmepumpens verkningsgrad 2012-01-14 Värmepumpens verkningsgrad Rickard Berg 1 2 Innehåll 1. Inledning... 3 2. Coefficient of Performance, COP... 3 3. Primary Energi Ratio, PER... 4 4. Energy Efficiency Ratio, EER... 4 5. Heating

Läs mer

Repetition Energi & Värme Heureka Fysik 1: kap version 2013

Repetition Energi & Värme Heureka Fysik 1: kap version 2013 Repetition Energi & Värme Heureka Fysik 1: kap. 5 + 9 version 2013 Mekanisk energi Arbete Arbete är den energi som omsätts när en kropp förflyttas. Arbete ges av W = F s, där kraften F måste vara parallell

Läs mer

Energiomvandling Ottomotor, Energi A 7,5 hp

Energiomvandling Ottomotor, Energi A 7,5 hp Institutionen för Tillämpad fysik och Elektronik Energiomvandling Ottomotor, Energi A 7,5 hp Reviderad:?????? AS 160125 AÅ Allmänt Ottomotorn har stor flexibilitet och används i många sammanhang. Men hur

Läs mer

Tentamen i KFK080 Termodynamik kl 08-13

Tentamen i KFK080 Termodynamik kl 08-13 Tentamen i KFK080 Termodynamik 091020 kl 08-13 Tillåtna hjälpmedel: Miniräknare (med tillhörande handbok), utdelat formelblad med tabellsamling. Slutsatser skall motiveras och beräkningar redovisas. För

Läs mer