Termodynamik FL6 TERMISKA RESERVOARER TERMODYNAMIKENS 2:A HUVUDSATS INTRODUCTION. Processer sker i en viss riktning, och inte i motsatt riktning.

Save this PDF as:
 WORD  PNG  TXT  JPG

Storlek: px
Starta visningen från sidan:

Download "Termodynamik FL6 TERMISKA RESERVOARER TERMODYNAMIKENS 2:A HUVUDSATS INTRODUCTION. Processer sker i en viss riktning, och inte i motsatt riktning."

Transkript

1 Termodynamik FL6 TERMODYNAMIKENS 2:A HUVUDSATS INTRODUCTION Värme överförd till en tråd genererar ingen elektricitet. En kopp varmt kaffe blir inte varmare i ett kallt rum. Dessa processer kan inte ske, även om de inte strider mot 1:a huvudsatsen. Processer sker i en viss riktning, och inte i motsatt riktning. En process måste uppfylla både 1:a och 2:a huvudsatsen för att kunna ske. TERMISKA RESERVOARER En termisk energireservoar är en hypotetisk kropp med hög värmekapacitet (massa x specifik värmekapacitet) som kan tillföra eller absorbera relativt stora mängder värme utan att ändra sin temperatur. En termisk energikälla tillför värme. En termisk sänka absorberar värme. Exempel: stora vattenvolymer, som oceaner och sjöar. atmosfären 1

2 arbete värme värme arbete? Arbete kan alltid omvandlas direkt och fullständigt till värme, men motsatsen är inte sant. För att omvandla värme till arbete behövs en speciell maskin: en värmemaskin. VÄRMEMASKIN En VÄRMEMASKIN omvandlar värme till arbete. 1. Den får värme från en hög temp. källa (T=T H ). 2. Den omvandlar en del av värmen till arbete (t.ex. rotation av en axel.) 3. Den deponerar överskottsvärmen till en lågtemp energisänka (T=T L ). 4. Den fungerar i en kretsprocess. Värmemaskiner och kylmaskiner har oftast en fluid som går runt i en kretsprocess och tar upp och avger värme: working fluid. Exempel: Ångkraftsverk Q in : värme tillfört till ångan från hög-temp energikällan. Q out : värme som ångan avger till låg-temp energisänkan. W out : arbete utfört av ångan när den expanderar i turbinen. W in : arbete som krävs för att komprimera vattnet till trycket i kokaren. 2

3 Ångkraftsverk En del av arbetet som värmemaskinen avger konsumeras internt för att upprätthålla en kontinuerlig operation. Komponenterna involverar massflöde in och ut: öppna system. Komponenterna tillsammans i krets: slutet system. Slutet kretssystem: U=0 W net = Q net Termisk verkningsgrad Definiera: Q H (>0) = mängden värme överförd mellan den cykliska värmemaskinen och hög-t källan vid temp T H. Q L (>0) = mängden värme överförd mellan den cykliska värmemaskinen och låg-t sänkan vid temp T L. Bensinmotor : η th ~25% Dieselmotor : η th ~40% högefficient värmemaskinη th ~60% spillvärmen Q out Kan vi ta bort kondensatorn ur kretsen och spara spillvärmen? Utan kondensatorsteget där värme förs bort till energisänkan, skulle inte kretsen vara fullständig. En del av tillförda värmen behövs för att värma upp gasen. Varje värmemaskin måste ha en del spillvärme som överförs till låg-t reservoaren för att kretsprocessen skall kunna vara kontinuerlig, även under idealiserade omständigheter. 3

4 Ex. 7.2 Exempel En bilmotor med effekt 65 hp har en termisk verkningsgrad av 24%. Bestäm hastigheten för bränsleåtgången om bränslen har ett värmningsvärde på kj/kg (dvs att kj energi frisätts för varje kg bränsle som bränns.) W& net, out hp kw Q& 65 0,75 H = = = 202kW η 0,24 hp th För att leverera värme med denna hastighet måste bränslen förbrännas med hastighet: Q& H m kg & = = 16, kJ h kg Termodynamikens 2:a huvudsats: Kelvin Planck formulering Det är omöjligt för en värmemaskin att producera netto arbete om den i en kretsprocess endast tar emot värme från en termisk reservoar. Ingen värmemaskin kan ha 100% termisk verkningsgrad. Denna begränsning är inte pga friktion eller annan spilleffekt. Denna begränsning gäller både idealiserade och verkliga värmemaskiner. Detta är en värmemaskin som strider mot Kelvin Planck formuleringen av 2:a HS. TILLÄMPNING: KYLMASKINER OCH VÄRMEPUMPAR För att överföra värme från ett lågtemp medium till ett hög-temp medium krävs speciella maskiner: kylskåp eller värmepumpar. 1) Kylskåp: Kylskåp och värmepumpar är kretsprocesser (cykler). 4

5 Kylskåpets effektivitet uttrycks i termer av en köldfaktorε(coefficient of performance, COP R ). Eftersom köldfaktorn kan vara >1 undviker man uttrycket verkningsgrad. Kylskåpets syfte är att föra bort värme Q L från den kylda delen. luftkonditionering? 2) Värmepumpar Värmepumpens effektivitet uttrycks i termer av en värmefaktorε V (coefficient of performance, COP HP ). Värmepumpens syfte är att leverera värme Q H till det varma området (rummet). COP ~ 2 to 3 (air-source värmepump) COP ~ 4 (geothermal, ground-source värmepump) För fasta värden Q L och Q H Termodynamikens 2:a huvudsats: Clausius formulering Det är omöjligt att konstruera en maskin som har en kretsprocess och vars enda aktivitet är värmeöverföring från ett kallt område till ett varmt. Dvs att ett kylskåp inte kan fungera utan att hans kompressor är driven med extern effekt, t.ex. en elektrisk motor. Netto effekten på omgivningen är att, förutom värmeöverföringen från en kallare till en varmare kropp, en del av energin måsta konsumeras som arbete. Ett kylskåp som strider mot Clausius formulering för 2:a HS 5

6 Uttrycken är ekvivalenta Kelvin- Planck Clausius Kelvin Planck och Clausius formuleringar har samma konsekvenser. Var och en av dem kan användas som en formulering av 2:a HS. Varje maskin som violerar Kelvin Planck violerar också Clausius och vice versa. EVIGHETSMASKINER EN EVIGHETSMASKIN: en maskin som violerar TDs 1:a eller 2:a huvudsats. 1:a HS (genom att skapa energi ): PMM1. 2:a HS : PMM2. Trots många försök finns det ingen fungerande evighetsmaskin. A perpetual-motion machine that violates the first law (PMM1). A perpetual-motion machine that violates the second law of thermodynamics (PMM2). REVERSIBLA och IRREVERSIBLA PROCESSER Reversibel process: en process som kan omvändas (reverse) utan att det påverkar omgivningen. Irreversibel process: en process som inte är reversibel. Alla processer som sker i naturen är irreversibla. några processer är mer irreversibla än andra. Varför är vi intresserade av reversibla processer? (1) de är enkla att analysera (2) de är idealmodeller (teoretiska limiter) för de verkliga processerna. Vi försöker approximera de reversibla processerna. Reversibla processer levererar mest och kräver minst arbete. Två reversibla processer 6

7 Irreversibiliteter Irreversibilitet: en faktor som gör att en process blir irreversibel.. Exempel: friktion, okontrollerad expansion, blanda två fluider, värmeöverföring över ett ändligt T- intervall, Elektriskt motstånd, Icke-elastisk deformation hos fasta material, and Kemiska reaktioner. När någon av dessa faktorer finns blir processen irreversibel. Exempel: Värme överförd över en temperaturskillnad är irreversibel. omvända processen är omöjlig. Internt och Externt Reversibla Processer Internt reversibel process: Inga irreversibiliteter sker inom systemets gränser under processen. Externt reversibel process: Inga irreversibiliteter sker utanför systemets gränser under processen. Totalt reversibel process: Inga irreversibiliteter, varken inom systemet eller dess omgivning. En totalt reversibel process har ingen värmeöverföring, ingen förändringar långt ifrån jämvikt, ingen friktion eller annan energispill. CARNOTCYKELN en reversibel cykel 1 Isoterm expansion 2 adiabatisk kompression (Q=0) 4 Isoterm kompression 3 adiabatisk expansion (Q=0) Reversibel Isotermisk Expansion (process 1-2, T=T H = konstant) Reversibel Adiabatisk Expansion (process 2-3, temperatur minskar från T H till T L ) Reversibel Isotermisk Kompression (process 3-4, T=T L = konstant) Reversibel Adiabatisk Kompression (process 4-1, temperatur ökar från T L till T H ) 7

8 Carnot värmemaskinen är en totalt reversibel cykel. Alla processer är därför också omvändbara. En omvänd Carnotcykel är en Carnotkylcykel. P-V diagram för Carnotcykeln. P-V diagram för omvända Carnotcykeln. CARNOTPRINCIPER 1. En irreversibel värmemaskins verkningsgrad är alltid lägre än en reversibel värmemaskin mellan samma två termiska reservoarer. 2. Verkningsgraden för alla reversibla värmemaskiner som fungerar mellan samma två reservoarer är samma. CARNOT VÄRMEMASKIN En Carnot värmemaskin är den mest effektiva värmemaskinen som fungerar mellan samma två termiska reservoarer. värmemaskin Carnot värmemaskin 8

9 Termiska energins kvalitet Carnotvärmemaskinens termiska verkningsgrad: Den högst nåbara termiska verkningsgrad för en värmemaskin varierar med T H när T L är konstant. Ju högre temperatur termisk energi har desto större andel kan omvandlas till arbete (högre kvalitet): Energi är alltid bevarad. Energikvalitet är inte bevarad. Energiförlust betyder oftast att energin omvandlas till en mindre användbar energiform. CARNOTKYLSKÅP ELLER VÄRMEPUMP Any refrigerator or heat pump Carnot refrigerator or heat pump De högst uppnåbara COP-värden! COP minskar för båda med dalande T L. Summary Introduction to the second law Thermal energy reservoirs Heat engines Thermal efficiency The 2 nd law: Kelvin-Planck statement Refrigerators and heat pumps Coefficient of performance (COP) The 2 nd law: Clausius statement Perpetual motion machines Reversible and irreversible processes Irreversibilities, Internally and externally reversible processes The Carnot cycle The reversed Carnot cycle The Carnot principles The Carnot heat engine The quality of energy The Carnot refrigerator and heat pump 9

Termodynamik Föreläsning 6 Termodynamikens 2:a Huvudsats

Termodynamik Föreläsning 6 Termodynamikens 2:a Huvudsats Termodynamik Föreläsning 6 Termodynamikens 2:a Huvudsats Jens Fjelstad 2010 09 14 1 / 30 Innehåll Termodynamikens 2:a huvudsats, värmemaskin, reversibilitet & irreversibilitet TFS 2:a upplagan (Çengel

Läs mer

Kap 6 termodynamikens 2:a lag

Kap 6 termodynamikens 2:a lag Termodynamikens första lag: energins bevarande. Men säger ingenting om riktningen på energiflödet! Men vi vet ju att riktingen spelar roll: En kopp varmt kaffe kan inte värmas upp ytterligare från en kallare

Läs mer

OMÖJLIGA PROCESSER. 1:a HS: Q = W Q = Q out < 0 W = W net,out > 0

OMÖJLIGA PROCESSER. 1:a HS: Q = W Q = Q out < 0 W = W net,out > 0 OMÖJLIGA PROCESSER 1:a HS: Q = W Q = Q out < 0 W = W net,out > 0 Q W; GÅR INTE! PMM1 bryter mot 1:a HS 1:a HS: Q in = W net,out ; OK 2:a HS: η th = W net,out /Q in < 1 η th = 1; GÅR INTE! PMM2 bryter mot

Läs mer

Kap 6 termodynamikens 2:a lag

Kap 6 termodynamikens 2:a lag Termodynamikens första lag: energins bevarande. Men säger ingenting om riktningen på energiflödet! Men vi vet ju att riktingen spelar roll: En kopp varmt kaffe kan inte värmas upp ytterligare från en kallare

Läs mer

Termodynamik FL7 ENTROPI. Inequalities

Termodynamik FL7 ENTROPI. Inequalities Termodynamik FL7 ENTROPI Varför är den termiska verkningsgraden hos värmemaskiner begränsad? Varför uppstår den maximala verkningsgraden hos reversibla processer? Varför går en del av energin till spillvärme?

Läs mer

Vad tror du ökning av entropi innebär från ett tekniskt perspektiv?

Vad tror du ökning av entropi innebär från ett tekniskt perspektiv? Entropi Entropi är ett mått på oordning En process går alltid mot samma eller ökande entropi. För energi gäller energins bevarande. För entropi gäller entropins ökande. Irreversibla processer innebär att

Läs mer

Föreläsning 14: Termodynamiska processer, värmemaskiner: motor, kylskåp och värmepump; verkningsgrad, Carnot-cykeln.

Föreläsning 14: Termodynamiska processer, värmemaskiner: motor, kylskåp och värmepump; verkningsgrad, Carnot-cykeln. Föreläsning 14: Termodynamiska processer, värmemaskiner: motor, kylskåp och värmepump; verkningsgrad, Carnot-cykeln. Maj 7, 2013, KoK kap. 6 sid 171-176) och kap. 8 Centrala ekvationer i statistisk mekanik

Läs mer

Kapitel III. Klassisk Termodynamik in action

Kapitel III. Klassisk Termodynamik in action Kapitel III Klassisk Termodynamik in action Termodynamikens andra grundlag Observation: värme flödar alltid från en varm kropp till en kall, och den motsatta processen sker aldrig spontant (kräver arbete!)

Läs mer

Termodynamik FL 2 ENERGIÖVERFÖRING VÄRME. Värme Arbete Massa (endast öppna system)

Termodynamik FL 2 ENERGIÖVERFÖRING VÄRME. Värme Arbete Massa (endast öppna system) Termodynamik FL 2 ENERGIÖVERFÖRING, VÄRME, ARBETE, TERMODYNAMIKENS 1:A HUVUDSATS ENERGIBALANS FÖR SLUTNA SYSTEM ENERGIÖVERFÖRING Värme Arbete Massa (endast öppna system) Energiöverföring i ett slutet system

Läs mer

Teknisk termodynamik repetition

Teknisk termodynamik repetition Först något om enheter! Teknisk termodynamik repetition Kom ihåg att använda Kelvingrader för temperaturer! Enheter motsvarar vad som efterfrågas! Med konventionen specifika enheter liten bokstav: E Enhet

Läs mer

Kap 7 entropi. Ett medium som värms får ökande entropi Ett medium som kyls förlorar entropi

Kap 7 entropi. Ett medium som värms får ökande entropi Ett medium som kyls förlorar entropi Entropi Är inte så enkelt Vi kan se på det på olika sätt (mikroskopiskt, makroskopiskt, utifrån teknisk design). Det intressanta är förändringen i entropi ΔS. Men det finns en nollpunkt för entropi termodynamikens

Läs mer

Termodynamik Föreläsning 7 Entropi

Termodynamik Föreläsning 7 Entropi ermodynamik Föreläsning 7 Entropi Jens Fjelstad 200 09 5 / 2 Innehåll FS 2:a upplagan (Çengel & urner) 7. 7.9 FS 3:e upplagan (Çengel, urner & Cimbala) 8. 8.9 8.3 D 6:e upplagan (Çengel & Boles) 7. 7.9

Läs mer

Termodynamik Av grekiska θηρµǫ = värme och δυναµiς = kraft

Termodynamik Av grekiska θηρµǫ = värme och δυναµiς = kraft Termodynamik Av grekiska θηρµǫ = värme och δυναµiς = kraft Termodynamik = läran om värmets natur och dess omvandling till andra energiformer (Nationalencyklopedin, band 18, Bra Böcker, Höganäs, 1995) 1

Läs mer

Linköpings tekniska högskola Exempeltentamen 7 IEI / Mekanisk värmeteori och strömningslära. Exempeltentamen 7. strömningslära, miniräknare.

Linköpings tekniska högskola Exempeltentamen 7 IEI / Mekanisk värmeteori och strömningslära. Exempeltentamen 7. strömningslära, miniräknare. Linköpings tekniska högskola Exempeltentamen 7 IEI / Mekanisk värmeteori och strömningslära Joakim Wren Exempeltentamen 7 Tillåtna hjälpmedel: Allmänt: Formelsamling i Mekanisk värmeteori och strömningslära,

Läs mer

Två system, bägge enskilt i termisk jämvikt med en tredje, är i jämvikt sinsemellan

Två system, bägge enskilt i termisk jämvikt med en tredje, är i jämvikt sinsemellan Termodynamikens grundlagar Nollte grundlagen Termodynamikens 0:e grundlag Två system, bägge enskilt i termisk jämvikt med en tredje, är i jämvikt sinsemellan Temperatur Temperatur är ett mått på benägenheten

Läs mer

Omtentamen i teknisk termodynamik (1FA527) för F3,

Omtentamen i teknisk termodynamik (1FA527) för F3, Omtentamen i teknisk termodynamik (1FA527) för F3, 2012 04 13 Tillåtna hjälpmedel: Cengel & Boles: Thermodynamics (eller annan lärobok i termodynamik), ångtabeller, Physics Handbook, miniräknare. Anvisningar:

Läs mer

Linköpings tekniska högskola IEI / Mekanisk värmeteori och strömningslära. Exempeltentamen 8. strömningslära, miniräknare.

Linköpings tekniska högskola IEI / Mekanisk värmeteori och strömningslära. Exempeltentamen 8. strömningslära, miniräknare. Linköpings tekniska högskola IEI / Mekanisk värmeteori och strömningslära Tentamen Joakim Wren Exempeltentamen 8 Tillåtna hjälpmedel: Allmänt: Formelsamling i Mekanisk värmeteori och strömningslära, miniräknare.

Läs mer

ARBETSGIVANDE GASCYKLER

ARBETSGIVANDE GASCYKLER ARBETSGIVANDE GASCYKLER Verkliga processer är oftast mycket komplicerade till sina detaljer; exakt analys omöjlig. Om processen idealiseras som internt reversibel fås en ideal process vars termiska verkningsgrad

Läs mer

Mer om kretsprocesser

Mer om kretsprocesser Mer om kretsprocesser Energiteknik Anders Bengtsson 18 mars 2010 Sammanfattning Dessa anteckningar är ett komplement till avsnittet om kretsprocesser i häftet Värmetekniska formler med kommentarer. 1 1

Läs mer

Termodynamik (repetition mm)

Termodynamik (repetition mm) 0:e HS, 1:a HS, 2:a HS Termodynamik (repetition mm) Definition av processer, tillstånd, tillståndsstorheter mm Innehåll och överföring av energi 1: HS öppet system 1: HS slutet system Fö 11 (TMMI44) Fö

Läs mer

7. Inre energi, termodynamikens huvudsatser

7. Inre energi, termodynamikens huvudsatser 7. Inre energi, termodynamikens huvudsatser Sedan 1800 talet har man forskat i hur energi kan överföras och omvandlas så effektivt som möjligt. Denna forskning har resulterat i ett antal begrepp som bör

Läs mer

Miljöfysik. Föreläsning 3. Värmekraftverk. Växthuseffekten i repris Energikvalitet Exergi Anergi Verkningsgrad

Miljöfysik. Föreläsning 3. Värmekraftverk. Växthuseffekten i repris Energikvalitet Exergi Anergi Verkningsgrad Miljöfysik Föreläsning 3 Växthuseffekten i repris Energikvalitet Exergi Anergi Verkningsgrad Värmekraftverk Växthuseffekten https://phet.colorado.edu/en/simulations/category/physics Simuleringsprogram

Läs mer

Föreläsning i termodynamik 28 september 2011 Lars Nilsson

Föreläsning i termodynamik 28 september 2011 Lars Nilsson Arbetsgivande gascykler Föreläsning i termodynamik 28 september 211 Lars Nilsson Tryck volym diagram P V diagram Isobar process (konstant tryck)?? Isokor process (konstant volym)?? Isoterm process (konstant

Läs mer

Linköpings tekniska högskola Exempeltentamen 8 IEI / Mekanisk värmeteori och strömningslära. Exempeltentamen 8. strömningslära, miniräknare.

Linköpings tekniska högskola Exempeltentamen 8 IEI / Mekanisk värmeteori och strömningslära. Exempeltentamen 8. strömningslära, miniräknare. Linköpings tekniska högskola Exempeltentamen 8 IEI / Mekanisk värmeteori och strömningslära Joakim Wren Exempeltentamen 8 Tillåtna hjälpmedel: Allmänt: Formelsamling i Mekanisk värmeteori och strömningslära,

Läs mer

Kap 10 ångcykler: processer i 2-fasområdet

Kap 10 ångcykler: processer i 2-fasområdet Med ångcykler menas att arbetsmediet byter fas under cykeln Den vanligaste typen av ångcykler är med vatten som medium. Vatten är billigt, allmänt tillgängligt och har hög ångbildningsentalpi. Elproducerande

Läs mer

Tentamen i teknisk termodynamik (1FA527) för F3,

Tentamen i teknisk termodynamik (1FA527) för F3, Tentamen i teknisk termodynamik (1FA527) för F3, 2012 12 17 Tillåtna hjälpmedel: Cengel & Boles: Thermodynamics (eller annan lärobok i termodynamik), ångtabeller, Physics Handbook, Mathematics Handbook,

Läs mer

Tentamen i teknisk termodynamik (1FA527)

Tentamen i teknisk termodynamik (1FA527) Tentamen i teknisk termodynamik (1FA527) 2016-08-24 Tillåtna hjälpmedel: Cengel & Boles: Thermodynamics (eller annan lärobok i termodynamik), ångtabeller, Physics Handbook, Mathematics Handbook, miniräknare

Läs mer

MITTHÖGSKOLAN, Härnösand

MITTHÖGSKOLAN, Härnösand MITTHÖGSKOLAN, Härnösand Förslag till lösningar TENTAMEN I TERMODYNAMIK, 5 p Typtewnta Del 1: Räkneuppgifter (20 p) 1 Hångin 2345 Hångut 556 t in 80 t ut 110 hin 335 hut 461 många 20 mv 283,9683 v 0,00104

Läs mer

Lite kinetisk gasteori

Lite kinetisk gasteori Tryck och energi i en ideal gas Lite kinetisk gasteori Statistisk metod att beskriva en ideal gas. En enkel teoretisk modell som bygger på följande antaganden: Varje molekyl är en fri partikel. Varje molekyl

Läs mer

Tentamen i Termodynamik och Statistisk fysik för F3(FTF140)

Tentamen i Termodynamik och Statistisk fysik för F3(FTF140) Chalmers Tekniska Högskola Institutionen för Teknisk Fysik Mats Granath Tentamen i Termodynamik och Statistisk fysik för F3(FTF40) Tid och plats: Måndag den 4 januari 008, kl. 8.30-.30 i M-huset. Examinator:

Läs mer

MITTHÖGSKOLAN, Härnösand

MITTHÖGSKOLAN, Härnösand MITTHÖGSKOLAN, Härnösand TENTAMEN I TERMODYNAMIK, 5 p (TYPTENTA) Tid: XX DEN XX/XX - XXXX kl Hjälpmedel: 1. Cengel and Boles, Thermodynamics, an engineering appr, McGrawHill 2. Diagram Propertires of water

Läs mer

Kap 9 kretsprocesser med gas som medium

Kap 9 kretsprocesser med gas som medium Termodynamiska cykler Kan klassificera på många olika sätt! Kraftgenererande cykler (värmemotorer) och kylcykler (kylmaskiner/värmepumpar). Exempel på värmemotor är ångkraftverk, bilmotorer. Exempel på

Läs mer

Planering Fysik för V, ht-11, lp 2

Planering Fysik för V, ht-11, lp 2 Planering Fysik för V, ht-11, lp 2 Kurslitteratur: Häfte: Experimentell metodik, Kurslaboratoriet 2011, Fysik i vätskor och gaser, Göran Jönsson, Teach Support 2010 samt föreläsningsanteckningar i Ellära,

Läs mer

Termodynamik FL5. Konserveringslag för materie. Massflöde (Mass Flow Rate) MASSABALANS och ENERGIBALANS I ÖPPNA SYSTEM. Massflöde:

Termodynamik FL5. Konserveringslag för materie. Massflöde (Mass Flow Rate) MASSABALANS och ENERGIBALANS I ÖPPNA SYSTEM. Massflöde: Termodynamik FL5 MASSABALANS och ENERGIBALANS I ÖPPNA SYSTEM Konserveringslag för materie Massabalans (materiebalans): Massa är konserverad och kan varken skapas eller förstöras under en process. Slutna

Läs mer

Teknisk termodynamik 5 hp

Teknisk termodynamik 5 hp Teknisk termodynamik 5 hp Välkomna till teknisk termodynamik! Period 3, VT-2016 Cecilia Gustavsson Ralph Scheicher Federico Binda/Jacob Eriksson Sebastian Geroge/Sotirios Droulias examinator och kursansvarig

Läs mer

PTG 2015 Övning 4. Problem 1

PTG 2015 Övning 4. Problem 1 PTG 015 Övning 4 1 Problem 1 En frys avger 10 W värme till ett rum vars temperatur är C. Frysens temperatur är 3 C. En isbricka som innehåller 0,5 kg flytande vatten vid 0 C placeras i frysen där den fryser

Läs mer

Tentamen i termisk energiteknik 5HP för ES3, 2009, , kl 9-14.

Tentamen i termisk energiteknik 5HP för ES3, 2009, , kl 9-14. Tentamen i termisk energiteknik 5HP för ES3, 2009, 2009-10-19, kl 9-14. Namn:. Personnr: Markera vilka uppgifter som du gjort: ( ) Uppgift 1a (2p). ( ) Uppgift 1b (2p). ( ) Uppgift 2a (1p). ( ) Uppgift

Läs mer

Kretsprocesser. För att se hur långt man skulle kunna komma med en god konstruktion skall vi ändå härleda verkningsgraden i några enkla fall.

Kretsprocesser. För att se hur långt man skulle kunna komma med en god konstruktion skall vi ändå härleda verkningsgraden i några enkla fall. Kretsrocesser Termodynamiken utvecklades i början för att förstå hur bra man kunde bygga olika värmemaskiner, hur man skulle kunna öka maskinernas verkningsgrad d v s hur mycket mekaniskt arbete som kunde

Läs mer

Hjälpmedel: Valfri miniräknare, Formelsamling: Energiteknik-Formler och tabeller(s O Elovsson och H Alvarez, Studentlitteratur)

Hjälpmedel: Valfri miniräknare, Formelsamling: Energiteknik-Formler och tabeller(s O Elovsson och H Alvarez, Studentlitteratur) ENERGITEKNIK II Provmoment: Ladokkod: Tentamen ges för: Tentamen 41N05B En2 7,5 högskolepoäng TentamensKod: Tentamensdatum: Tisdag 27 oktober Tid: 9.00-13.00 Hjälpmedel: Valfri miräknare, Formelsamlg:

Läs mer

Övningsuppgifter termodynamik ,0 kg H 2 O av 40 C skall värmas till 100 C. Beräkna erforderlig värmemängd.

Övningsuppgifter termodynamik ,0 kg H 2 O av 40 C skall värmas till 100 C. Beräkna erforderlig värmemängd. Övningsuppgifter termodynamik 1 1. 10,0 kg H 2 O av 40 C skall värmas till 100 C. Beräkna erforderlig värmemängd. Svar: Q = 2512 2516 kj beroende på metod 2. 5,0 kg H 2 O av 40 C skall värmas till 200

Läs mer

------------------------------------------------------------------------------------------------------- Personnummer:

------------------------------------------------------------------------------------------------------- Personnummer: ENERGITEKNIK II 7,5 högskolepoäng Provmoment: Ladokkod: Tentamen ges för: Tentamen 41N05B En2 Namn: -------------------------------------------------------------------------------------------------------

Läs mer

Tentamen i Termodynamik och Statistisk fysik för F3(FTF140)

Tentamen i Termodynamik och Statistisk fysik för F3(FTF140) Chalmers Tekniska Högskola Institutionen för Teknisk Fysik Mats Granath Tentamen i Termodynamik och Statistisk fysik för F3(FTF40) Tid och plats: Tisdag 8/8 009, kl. 4.00-6.00 i V-huset. Examinator: Mats

Läs mer

Termodynamik Föreläsning 5

Termodynamik Föreläsning 5 Termodynamik Föreläsning 5 Energibalans för Öppna System Jens Fjelstad 2010 09 09 1 / 19 Innehåll TFS 2:a upplagan (Çengel & Turner) 4.5 4.6 5.3 5.5 TFS 3:e upplagan (Çengel, Turner & Cimbala) 6.1 6.5

Läs mer

6. Värme, värmekapacitet, specifik värmekapacitet (s. 93 105)

6. Värme, värmekapacitet, specifik värmekapacitet (s. 93 105) 6. Värme, värmekapacitet, specifik värmekapacitet (s. 93 105) Termodynamikens nollte huvudsats säger att temperaturskillnader utjämnas i isolerade system. Med andra ord strävar system efter termisk jämvikt

Läs mer

Man har mycket kläder på sig inomhus för att hålla värmen. Kläderna har man oftast tillverkat själv av ylle, linne & skinn (naturmaterial).

Man har mycket kläder på sig inomhus för att hålla värmen. Kläderna har man oftast tillverkat själv av ylle, linne & skinn (naturmaterial). ENERGI Bondefamiljen för ca 200 år sedan (före industrialismen) i februari månad, vid kvällsmålet : Det är kallt & mörkt inne i timmerhuset. Fönstren är täckta av iskristaller. Det brinner i vedspisen

Läs mer

Linköpings tekniska högskola Exempeltentamen 6 IEI / Mekanisk värmeteori och strömningslära. Exempeltentamen 6. strömningslära, miniräknare.

Linköpings tekniska högskola Exempeltentamen 6 IEI / Mekanisk värmeteori och strömningslära. Exempeltentamen 6. strömningslära, miniräknare. Linköpings tekniska högskola Exempeltentamen 6 IEI / Mekanisk värmeteori och strömningslära Joakim Wren Exempeltentamen 6 Tillåtna hjälpmedel: Allmänt: Formelsamling i Mekanisk värmeteori och strömningslära,

Läs mer

Energi- och processtekniker EPP14

Energi- och processtekniker EPP14 Grundläggande energiteknik Provmoment: Tentamen Ladokkod: TH101A 7,5 högskolepoäng Tentamen ges för: Energi- och processtekniker EPP14 Namn: Personnummer: Tentamensdatum: 2015-03-20 Tid: 09:00 13:00 Hjälpmedel:

Läs mer

Kap 4 energianalys av slutna system

Kap 4 energianalys av slutna system Slutet system: energi men ej massa kan röra sig över systemgränsen. Exempel: kolvmotor med stängda ventiler 1 Volymändringsarbete (boundary work) Exempel: arbete med kolv W b = Fds = PAds = PdV 2 W b =

Läs mer

Laborations-PM Termodynamik (KVM091) lp /2015. Omfattning: Fyra obligatoriska laborationer ingår i kursen:

Laborations-PM Termodynamik (KVM091) lp /2015. Omfattning: Fyra obligatoriska laborationer ingår i kursen: Chalmers, Kemi- och bioteknik & Energi och miljö 1 Laborations-PM Termodynamik (KVM091) lp 1 2014/2015 Omfattning: Fyra obligatoriska laborationer ingår i kursen: TD1: Jämvikt mellan ånga och vätska hos

Läs mer

Termodynamik FL3. Fasomvandlingsprocesser. FASER hos ENHETLIGA ÄMNEN. FASEGENSKAPER hos ENHETLIGA ÄMNEN. Exempel: Koka vatten under konstant tryck:

Termodynamik FL3. Fasomvandlingsprocesser. FASER hos ENHETLIGA ÄMNEN. FASEGENSKAPER hos ENHETLIGA ÄMNEN. Exempel: Koka vatten under konstant tryck: Termodynamik FL3 FASEGENSKAPER hos ENHETLIGA ÄMNEN FASER hos ENHETLIGA ÄMNEN Enhetligt ämne: ämne med välbestämd och enhetlig kemisk sammansättning. (även luft och vätske-gasblandningar kan betraktas som

Läs mer

Grundläggande energibegrepp

Grundläggande energibegrepp Grundläggande energibegrepp 1 Behov 2 Tillförsel 3 Distribution 4 Vad är energi? Försök att göra en illustration av Energi. Hur skulle den se ut? Kanske solen eller. 5 Vad är energi? Energi används som

Läs mer

Kap 10 ångcykler: processer i 2-fasområdet

Kap 10 ångcykler: processer i 2-fasområdet Med ångcykler menas att arbetsmediet byter fas under cykeln Den vanligaste typen av ångcykler är med vatten som medium. Vatten är billigt, allmänt tillgängligt och har hög ångbildningsentalpi. Elproducerande

Läs mer

Motorer och kylskåp. Repetition: De tre tillstånden. Värmeöverföring. Fysiken bakom motorer och kylskåp - Termodynamik. Värmeöverföring genom ledning

Motorer och kylskåp. Repetition: De tre tillstånden. Värmeöverföring. Fysiken bakom motorer och kylskåp - Termodynamik. Värmeöverföring genom ledning Motorer och kylskåp Repetition: De tre tillstånden Gas Vätska Solid http://www.aircraftbanking.com/ http://sv.wikipedia.org Föreläsning 3/3, 2010 Plasma det fjärde tillståndet McMurry Chemistry, http://wps.prenhall.com

Läs mer

4. Förhållandet mellan temperatur och rörelseenergi a. Molekyler och atomer rör sig! b. Snabbare rörelse högre rörelseenergi högre temperatur

4. Förhållandet mellan temperatur och rörelseenergi a. Molekyler och atomer rör sig! b. Snabbare rörelse högre rörelseenergi högre temperatur Energi 1. Vad är energi? a. Förmåga att uträtta ett arbete 2. Olika former av energi a. Lägesenergi b. Rörelseenergi c. Värmeenergi d. Strålningsenergi e. Massa f. Kemisk energi g. Elektrisk energi 3.

Läs mer

Termodynamik FL4. 1:a HS ENERGIBALANS VÄRMEKAPACITET IDEALA GASER ENERGIBALANS FÖR SLUTNA SYSTEM

Termodynamik FL4. 1:a HS ENERGIBALANS VÄRMEKAPACITET IDEALA GASER ENERGIBALANS FÖR SLUTNA SYSTEM Termodynamik FL4 VÄRMEKAPACITET IDEALA GASER 1:a HS ENERGIBALANS ENERGIBALANS FÖR SLUTNA SYSTEM Energibalans när teckenkonventionen används: d.v.s. värme in och arbete ut är positiva; värme ut och arbete

Läs mer

Linköpings tekniska högskola Exempeltentamen 5 IEI / Mekanisk värmeteori och strömningslära. Exempeltentamen 5. strömningslära, miniräknare.

Linköpings tekniska högskola Exempeltentamen 5 IEI / Mekanisk värmeteori och strömningslära. Exempeltentamen 5. strömningslära, miniräknare. Linköpings tekniska högskola Exempeltentamen 5 IEI / Mekanisk värmeteori och strömningslära Joakim Wren Exempeltentamen 5 Tillåtna hjälpmedel: Allmänt: Formelsamling i Mekanisk värmeteori och strömningslära,

Läs mer

Tentamen i FTF140 Termodynamik och statistisk mekanik för F3

Tentamen i FTF140 Termodynamik och statistisk mekanik för F3 Chalmers Institutionen för Teknisk Fysik Göran Wahnström Tentamen i FTF14 Termodynamik och statistisk mekanik för F3 Tid och plats: Onsdag 15 jan 14, kl 8.3-13.3 i Maskin -salar. Hjälpmedel: Physics Handbook,

Läs mer

Teorin för denna laboration hittar du i föreläsningskompendiet kapitlet om värmemaskiner. Läs detta ordentligt!

Teorin för denna laboration hittar du i föreläsningskompendiet kapitlet om värmemaskiner. Läs detta ordentligt! Kretsprocesser Inledning I denna laboration får Du experimentera med en Stirlingmotor och studera en värmepump. Litteraturhänsvisning Teorin för denna laboration hittar du i föreläsningskompendiet kapitlet

Läs mer

Tentamen i Termodynamik och Statistisk fysik för F3(FTF140)

Tentamen i Termodynamik och Statistisk fysik för F3(FTF140) Chalmers Tekniska Högskola Institutionen för Teknisk Fysik Mats Granath Tentamen i Termodynamik och Statistisk fysik för F(FTF40) Tid och plats: Torsdag /8 008, kl. 4.00-8.00 i V-huset. Examinator: Mats

Läs mer

TERMODYNAMIK? materialteknik, bioteknik, biologi, meteorologi, astronomi,... Ch. 1-2 Termodynamik C. Norberg, LTH

TERMODYNAMIK? materialteknik, bioteknik, biologi, meteorologi, astronomi,... Ch. 1-2 Termodynamik C. Norberg, LTH TERMODYNAMIK? Termodynamik är den vetenskap som behandlar värme och arbete samt de tillståndsförändringar som är förknippade med dessa energiutbyten. Centrala tillståndsstorheter är temperatur, inre energi,

Läs mer

Linköpings tekniska högskola Exempeltentamen 2 IKP/Mekaniksystem Mekanisk värmeteori och strömningslära. Exempeltentamen 2

Linköpings tekniska högskola Exempeltentamen 2 IKP/Mekaniksystem Mekanisk värmeteori och strömningslära. Exempeltentamen 2 Exempeltentamen 2 (OBS! Uppgifterna nedan gavs innan kursen delvis bytte innehåll och omfattning. Vissa uppgifter som inte längre är aktuella har därför tagits bort, vilket medför att poängsumman är

Läs mer

Tentamen i FTF140 Termodynamik och statistisk fysik för F3

Tentamen i FTF140 Termodynamik och statistisk fysik för F3 Chalmers Institutionen för Teknisk Fysik Göran Wahnström Tentamen i FTF4 Termodynamik och statistisk fysik för F3 Tid och plats: Tisdag aug, kl 8.3-.3 i Väg och vatten -salar. Hjälpmedel: Physics Handbook,

Läs mer

ENERGI? Kylskåpet passar precis i rummets dörröppning. Ställ kylskåpet i öppningen

ENERGI? Kylskåpet passar precis i rummets dörröppning. Ställ kylskåpet i öppningen ENERGI? Energi kan varken skapas eller förstöras, kan endast omvandlas till andra energiformer. Betrakta ett välisolerat, tätslutande rum. I rummet står ett kylskåp med kylskåpsdörren öppen. Kylskåpet

Läs mer

Kap 5 mass- och energianalys av kontrollvolymer

Kap 5 mass- och energianalys av kontrollvolymer Kapitel 4 handlade om slutna system! Nu: öppna system (): energi och massa kan röra sig över systemgränsen. Exempel: pumpar, munstycken, turbiner, kondensorer mm Konstantflödesmaskiner (steady-flow devices)

Läs mer

Tentamen i termodynamik. 7,5 högskolepoäng. Tentamen ges för: Årskurs 1. Namn: (Ifylles av student) Personnummer: (Ifylles av student)

Tentamen i termodynamik. 7,5 högskolepoäng. Tentamen ges för: Årskurs 1. Namn: (Ifylles av student) Personnummer: (Ifylles av student) Tentamen i termodynamik Provmoment: Ten0 Ladokkod: TT05A Tentamen ges för: Årskurs Namn: (Ifylles av student) Personnummer: (Ifylles av student) Tentamensdatum: 202-08-30 Tid: 9.00-3.00 7,5 högskolepoäng

Läs mer

Laborations-PM Termodynamik (KVM091) lp 1 2015/2016 version 3 (med sidhänvisningar även till inbunden upplaga 2)

Laborations-PM Termodynamik (KVM091) lp 1 2015/2016 version 3 (med sidhänvisningar även till inbunden upplaga 2) Chalmers, Kemi och kemiteknik & Energi och milj 1 Laborations-PM Termodynamik (KVM091) lp 1 2015/2016 version 3 (med sidhänvisningar även till inbunden upplaga 2) Omfattning: Fyra obligatoriska laborationer

Läs mer

Tentamen i Termodynamik och Statistisk fysik för F3(FTF140)

Tentamen i Termodynamik och Statistisk fysik för F3(FTF140) Chalmers Tekniska Högskola Institutionen för Teknisk Fysik Mats Granath Tentamen i Termodynamik och Statistisk fysik för F3(FTF14) Tid och plats: Tisdag 13/1 9, kl. 8.3-1.3 i V-huset. Examinator: Mats

Läs mer

Tentamen i termodynamik. 7,5 högskolepoäng. Namn: (Ifylles av student) Personnummer: (Ifylles av student)

Tentamen i termodynamik. 7,5 högskolepoäng. Namn: (Ifylles av student) Personnummer: (Ifylles av student) Tentamen i termodynamik 7,5 högskolepoäng Provmoment: Ladokkod: Tentamen ges för: Ten01 TT051A Årskurs 1 Namn: (Ifylles av student) Personnummer: (Ifylles av student) Tentamensdatum: Tid: 2012-06-01 9.00-13.00

Läs mer

Kapitel I. Introduktion och första grundlagen. Kursmaterialet: Jens Pomoell 2011, Mikael Ehn 2013-2014

Kapitel I. Introduktion och första grundlagen. Kursmaterialet: Jens Pomoell 2011, Mikael Ehn 2013-2014 Kapitel I Introduktion och första grundlagen Kursmaterialet: Jens Pomoell 2011, Mikael Ehn 2013-2014 Introduktion Vad är Termofysik? Termofysiken handlar om att studera system bestående av ett stort antal

Läs mer

Termodynamik, lp 2, lå 2003/04

Termodynamik, lp 2, lå 2003/04 5C1201 Strömningslära med Termodynamik för T Termodynamik, lp 2, lå 2003/04 Syfte; kursdelen introducerar de grundläggande begreppen inom klassisk termodynamik och ger en grund för vidare studier inom

Läs mer

Kapitel I. Introduktion och första grundlagen

Kapitel I. Introduktion och första grundlagen Kapitel I Introduktion och första grundlagen Introduktion Vad är Termofysik? Termofysiken handlar om att studera system bestående av ett stort antal partiklar (atomer, molekyler,...) i vilka temperaturen

Läs mer

Slutet på början p.1

Slutet på början p.1 Slutet på början Rudolf Diesel En man och hans vision Per Andersson peran@isy.liu.se Linköpings Universitet Slutet på början p.1 Introduktion Rudolf Diesels vision var att bygga en motor som förbrukade

Läs mer

Linköpings tekniska högskola Exempeltentamen 1 IEI Mekanisk värmeteori och strömningslära. Exempeltentamen 1

Linköpings tekniska högskola Exempeltentamen 1 IEI Mekanisk värmeteori och strömningslära. Exempeltentamen 1 Exempeltentamen 1 (OBS! Uppgifterna nedan gavs innan kursen delvis bytte innehåll och omfattning. Vissa uppgifter som inte längre är aktuella har därför tagits bort, vilket medför att poängsumman är

Läs mer

Teknisk termodynamik repetition

Teknisk termodynamik repetition Teknisk termodynamik repetition Repetitionsgenomgång Slutna och öppna system Isentrop verkningsgrad Värmemotor och värmepump; Carnot Kretsprocesser med ånga (Rankine och kylcykel) Ångtabeller Kretsprocesser

Läs mer

Så fungerar en värmepump,

Så fungerar en värmepump, Så fungerar en värmepump, och så kan vi göra dem bättre Björn Palm, Avd. Tillämpad termodynamik och kylteknik, Inst Energiteknik, KTH Så fungerar en värmepump, Principen för ett värmepumpande system Värmesänka

Läs mer

TENTAMEN I TERMODYNAMIK för K2, Kf2 och TM2 (KVM091 och KVM090) 2011-10-18 kl. 08.30-12.30

TENTAMEN I TERMODYNAMIK för K2, Kf2 och TM2 (KVM091 och KVM090) 2011-10-18 kl. 08.30-12.30 CHALMERS 1 (3) Energi och Miljö/Värmeteknik och maskinlära Kemi- och bioteknik/fysikalisk kemi ermodynamik (KVM091/KVM090) ENAMEN I ERMODYNAMIK för K2, Kf2 och M2 (KVM091 och KVM090) 2011-10-18 kl. 08.30-12.30

Läs mer

Räkneövning/Exempel på tentafrågor

Räkneövning/Exempel på tentafrågor Räkneövning/Exempel på tentafrågor Att lösa problem Ni får en formelsamling Huvudsaken är inte att ni kan komma ihåg en viss den utan att ni kan använda den. Det finns vissa frågor som inte kräver att

Läs mer

U = W + Q (1) Formeln (1) kan även uttryckas differentiells, d v s om man betraktar mycket liten tillförsel av energi: du = dq + dw (2)

U = W + Q (1) Formeln (1) kan även uttryckas differentiells, d v s om man betraktar mycket liten tillförsel av energi: du = dq + dw (2) Inre energi Begreppet energi är sannerligen ingen enkel sak att utreda. Den går helt enkelt inte att definiera med några få ord då den förekommer i så många olika former. Man talar om elenergi, rörelseenergi,

Läs mer

Värmepumpens verkningsgrad

Värmepumpens verkningsgrad 2012-01-14 Värmepumpens verkningsgrad Rickard Berg 1 2 Innehåll 1. Inledning... 3 2. Coefficient of Performance, COP... 3 3. Primary Energi Ratio, PER... 4 4. Energy Efficiency Ratio, EER... 4 5. Heating

Läs mer

a) Vi kan betrakta luften som ideal gas, så vi kan använda allmänna gaslagen: PV = mrt

a) Vi kan betrakta luften som ideal gas, så vi kan använda allmänna gaslagen: PV = mrt Lösningsförslag till tentamen Energiteknik 060213 Uppg 1. BA Trycket i en luftfylld pistong-cylinder är från början 100 kpa och temperaturen är 27C. Volymen är 125 l. Pistongen, som har diametern 3 dm,

Läs mer

Kapitel 4 Arbete, energi och effekt

Kapitel 4 Arbete, energi och effekt Arbete När en kraft F verkar på ett föremål och föremålet flyttar sig sträckan s i kraftens riktning säger vi att kraften utför ett arbete på föremålet. W = F s Enheten blir W = F s = Nm = J (joule) (enheten

Läs mer

Kap 9 kretsprocesser med gas som medium

Kap 9 kretsprocesser med gas som medium Ottocykeln den ideala cykeln för tändstifts /bensinmotorer (= vanliga bilar!) Består av fyra internt reversibla processer: 1 2: Isentrop kompression 2 3: Värmetillförsel vid konstant volym 3 4: Isentrop

Läs mer

Energitekniska formler med kommentarer

Energitekniska formler med kommentarer Energitekniska formler med kommentarer Energiteknik del 2 Anders Bengtsson 19 januari 2011 Sammanfattning Det finns egentligen inga formler som alltid kan användas. Med en formel tänker man sig ofta en

Läs mer

Termodynamik. Dr Mikael Höök,

Termodynamik. Dr Mikael Höök, Termodynamik Dr Mikael Höök, 2011-10-12 Termodynamik Läran om energins generella egenskaper Värme och dess omvandlingar mellan olika former studeras speciellt Nära släkt med statistisk mekanik (många grundläggande

Läs mer

Projektarbete Kylska p

Projektarbete Kylska p Projektarbete Kylska p Kursnamn Termodynamik, TMMI44 Grupptillhörighet MI 1A grupp 2 Inlämningsdatum Namn Personummer E-postadress Ebba Andrén 950816 ebban462@student.liu.se Kajsa-Stina Hedback 940816

Läs mer

Miljöfysik. Föreläsning 4

Miljöfysik. Föreläsning 4 Miljöfysik Föreläsning 4 Fossilenergi Energianvändning i Sverige och omvärlden Förbränningsmotorn Miljöaspekter på fossila bränslen Att utnyttja solenergi Definitioner Instrålnings vinkelberoende Uppkomst

Läs mer

Repetition F7. Lunds universitet / Naturvetenskapliga fakulteten / Kemiska institutionen / KEMA00

Repetition F7. Lunds universitet / Naturvetenskapliga fakulteten / Kemiska institutionen / KEMA00 Repetition F7 Intermolekylär växelverkan kortväga repulsion elektrostatisk växelverkan (attraktion och repulsion): jon-jon (långväga), jon-dipol, dipol-dipol medelvärdad attraktion (van der Waals): roterande

Läs mer

Rapport av projektarbete Kylskåp

Rapport av projektarbete Kylskåp Rapport av projektarbete Kylskåp Klass: Mi1a Gruppnummer: Mi1a 6 Datum för laboration: 1/10 4/10 2014 Datum för rapportinlämning: 2014 10 12 Labbhandledare: Joakim Wren Namn Personnumer E postadress Taulant

Läs mer

Stirlingmotorn. Värmepumpen. Förberedelser. Verkningsgrad, s 222. Termodynamikens andra huvudsats, s 217. Stirlingprocessen, s 235.

Stirlingmotorn. Värmepumpen. Förberedelser. Verkningsgrad, s 222. Termodynamikens andra huvudsats, s 217. Stirlingprocessen, s 235. ... Kretsprocesser Stirlingmotorn och värmepumpen Avsikten med laborationen är att Du ska få en djupare teoretisk och praktisk förståelse för begreppen energiomvandling, arbete, värme och verkningsgrad.

Läs mer

Vätskors volymökning

Vätskors volymökning Värmelära Värme Värme är rörelse hos atomer och molekyler. Ju varmare ett föremål är desto kraftigare är atomernas eller molekylernas rörelse (tar mer utrymme). Fast Flytande Gas Atomerna har bestämda

Läs mer

Föreläsning i termodynamik 11 oktober 2011 Lars Nilsson

Föreläsning i termodynamik 11 oktober 2011 Lars Nilsson Ångkraftsprocessen (Rankinecykeln) Föreläsning i termodynamik 11 oktober 2011 Lars Nilsson Ångkraftsprocessens roll i svensk elproduktion Ångtabellen: mättad vätska och mättad ånga efter tryck Ångtabellen:

Läs mer

Bioenergi för värme och elproduktion i kombination 2012-03-21

Bioenergi för värme och elproduktion i kombination 2012-03-21 Bioenergi för värme och elproduktion i kombination 2012-03-21 Johan.Hellqvist@entrans.se CEO El, värme eller kyla av lågvärdig värme Kan man göra el av varmt vatten? Min bilmotor värmer mycket vatten,för

Läs mer

FUKTIG LUFT. Fuktig luft = torr luft + vatten m = m a + m v Fuktighetsgrad ω anger massan vatten per kg torr luft. ω = m v /m a m = m a (1 + ω)

FUKTIG LUFT. Fuktig luft = torr luft + vatten m = m a + m v Fuktighetsgrad ω anger massan vatten per kg torr luft. ω = m v /m a m = m a (1 + ω) FUKTIG LUFT Fuktig luft = torr luft + vatten m = m a + m v Fuktighetsgrad ω anger massan vatten per kg torr luft Normalt är ω 1 (ω 0.02) ω = m v /m a m = m a (1 + ω) Luftkonditionering, luftbehandling:

Läs mer

Bergvärme & Jordvärme. Isac Lidman, EE1b Kaplanskolan, Skellefteå

Bergvärme & Jordvärme. Isac Lidman, EE1b Kaplanskolan, Skellefteå Bergvärme & Jordvärme Isac Lidman, EE1b Kaplanskolan, Skellefteå Innehållsförteckning Sid 2-3 - Historia Sid 4-5 - utvinna energi - Bergvärme Sid 6-7 - utvinna energi - Jordvärme Sid 8-9 - värmepumpsprincipen

Läs mer

2-52: Blodtrycket är övertryck (gage pressure).

2-52: Blodtrycket är övertryck (gage pressure). Kortfattad ledning till vissa lektionsuppgifter Termodynamik, 4:e upplagan av kursboken 2-37: - - Kolvarna har cirkulära ytor i kontakt med vätskan. Kraftjämvikt måste råda 2-52: Blodtrycket är övertryck

Läs mer

Räkneövning 2 hösten 2014

Räkneövning 2 hösten 2014 Termofysikens Grunder Räkneövning 2 hösten 2014 Assistent: Christoffer Fridlund 22.9.2014 1 1. Brinnande processer. Moderna datorers funktion baserar sig på kiselprocessorer. Anta att en modern processor

Läs mer

Kap 6: Termokemi. Energi:

Kap 6: Termokemi. Energi: Kap 6: Termokemi Energi: Definition: Kapacitet att utföra arbete eller producera värme Termodynamikens första huvudsats: Energi är oförstörbar kan omvandlas från en form till en annan men kan ej förstöras.

Läs mer

Planering Fysik för n och BME, ht-16, lp 1 Kurslitteratur: Göran Jönsson: Fysik i vätskor och gaser, Teach Support markerar mycket viktigt

Planering Fysik för n och BME, ht-16, lp 1 Kurslitteratur: Göran Jönsson: Fysik i vätskor och gaser, Teach Support markerar mycket viktigt Planering Fysik för n och BME, ht-16, lp 1 Kurslitteratur: Göran Jönsson: Fysik i vätskor och gaser, Teach Support 2016. markerar mycket viktigt avsnitt, * markerar överkurs. Fem övningstillfällen är rödmarkerade.

Läs mer

Tentamen i Kemisk Termodynamik 2011-01-19 kl 13-18

Tentamen i Kemisk Termodynamik 2011-01-19 kl 13-18 Tentamen i Kemisk Termodynamik 2011-01-19 kl 13-18 Hjälpmedel: Räknedosa, BETA och Formelsamling för kurserna i kemi vid KTH. Endast en uppgift per blad! Skriv namn och personnummer på varje blad! Alla

Läs mer

- Rörfriktionskoefficient d - Diameter (m) g gravitation (9.82 m/s 2 ) 2 (Tryckform - Pa) (Total rörfriktionsförlust (m))

- Rörfriktionskoefficient d - Diameter (m) g gravitation (9.82 m/s 2 ) 2 (Tryckform - Pa) (Total rörfriktionsförlust (m)) Formelsamling för kurserna Grundläggande och Tillämpad Energiteknik Hydromekanik, pumpar och fläktar - Engångsförlust V - Volymflöde (m 3 /s) - Densitet (kg/m 3 ) c - Hastighet (m/s) p - Tryck (Pa) m Massa

Läs mer