Föreläsning 14: Termodynamiska processer, värmemaskiner: motor, kylskåp och värmepump; verkningsgrad, Carnot-cykeln.

Storlek: px
Starta visningen från sidan:

Download "Föreläsning 14: Termodynamiska processer, värmemaskiner: motor, kylskåp och värmepump; verkningsgrad, Carnot-cykeln."

Transkript

1 Föreläsning 14: Termodynamiska processer, värmemaskiner: motor, kylskåp och värmepump; verkningsgrad, Carnot-cykeln. Maj 7, 2013, KoK kap. 6 sid ) och kap. 8 Centrala ekvationer i statistisk mekanik Mikrokanonisk ensemble U,V,N konst):p s = 1/g, σu,v,n) = lng, Totalaσ ökar med max i jämvikt näru, V,N konst. Kanonisk ensemble τ,v, N konst):p s = 1 Z e ǫs/τ, Z = s e ǫs/τ Fτ,V,N) := U τσ = nz, SystemetsF min i jämvikt, τ,v, N konst. Storkanonisk ensemble τ,v,µkonst):p N,sN) = 1 ζ eµn ǫ N,sN))/τ, ζ = ASN eµn ǫ sn))/τ Ωτ,V,µ) := U τσ µn = nζ, SystemetsΩmin i jämvikt,τ, V,µkonst. Egenskaper är ensemblemedelvärden över alla elementj i ensemblen: f = f = j f jp j Gibbs entropi:σ = j lnp j)p j. Temperatur: 1 τ := ) σ U V,N, Tryck:p := τ ) σ V U,N, Termodynamiska identiteter: du = τ dσ pdv + µdn df = σdτ pdv +µdn, dω = σdτ pdv Ndµ Kemisk potential:µ := τ ) σ N U,V Tillbakablick, termodynamik-terminologi system, omgivning, avgränsning eng. boundary ), termodynamiskt tillstånd, process, termodynamisk jämvikt. Tillståndsfunktioner. Exakta och inexakta differentialer,du vs. dq. Extensiva storheter: Beror linjärt på storleken av systemet / antal partiklar:u,v,n,σ. Intensiva storheter: Egenskaper som inte direkt påverkas av storleken på systemet:τ,p,µ. Reversibla och icke-reversibla processer. Vi börjar föreläsningen med att besvara en fråga: vad är värme i termodynamiken? Energiöverföring uppdelad i värme och arbete Symmetrier ger bevarade storheter: translationssymmetri i rummet rörelsemängd, rotation i rummet rörelsemängdsmoment, tid energi. Totala energin är alltid bevarad. Notera: gäller bara riktig energi, ej fri energi, etc.) Att energi är bevarad man kan prata om energiöverföring. Överförd energi delas upp i två typer: Arbete: energiöverföring i en användbar energiform såsom tryck/volymsarbete som kan driva en generator och åt andra hållet skapas av en motor.), ett slags generaliserat mekaniskt arbete. Formellt: överföring av energi där systemets parametrar förändras, t.ex. systemets volym, ett yttre magnetiskt eller elektriskt fält, systemets yta energi via ytspänning), etc. 83

2 Värme: resten av energiöverförigen, sker genom termiska processer som värmeledning, värmestrålning. Energiprincipen ger då: Termodynamikens första huvudsats: }{{} du = dq }{{} Ändring i Inre energi Tillförd värme dw }{{} Uträttat arbete av systemet på omgivningen Vi betecknar dq och dw för värmeöverföring i ett infinitesimalt segment längs en process. Dessa summeras tillq = dq ochw = dw för den totala energiöverföringen i processen. Dessa beror på vilken väg processen tar, eftersomqoch W ej är tillståndsfunktioner. Var försiktig med tecknen! Håll alltid koll på vilka energibidrag som är definierade som positiva inåt i systemet resp. utåt ifrån systemet! Rita figur med riktningar! Tänk: beskriver ändringen i balans på systemets bankkonto U) = pengar in - pengar ut. Gäller alltid, oavsett jämvikt eller inte, reversibla och icke-reversibla processer. Obs: arbete och värme handlar alltid om energiöverföring!. Det går inte att dela upp U i värmeenergi och arbetsenergi! Men vad är dq? Man kan tycka att det borde ha något att göra med förändringen av entropin. Vi ger oss nu på att relatera dq till τ och σ som vi känner till ifrån statistisk mekanik. Icke-jämvikts-tillstånd, kvasi-statiska och reversibla processer Hittills har vi har främst tittat på system i jämviktstillstånd. Den termodynamiska identiteten du = τdσ pdv +µdn relaterar exakta differentialer för två jämviktstillstånd oberoende av vägen mellan dem, och kan därför integreras längs valfri väg, även om systemet egentligen går via icke-jämviktstillstånd. Men hur hanterar vi en inexakt differential som dq? Om vägen är via icke-jämviktstillstånd så kan vi inte använda ekvationen ovan, vad ska man sättaptill i ett system där t.ex. trycket inte har hunnit jämna ut sig? Definiera en kvasi-statisk process som en serie av små infinitesimala steg mellan jämviktstillstånd; tänk: långsam process, så att systemet i varje steg i processen tillåts hitta sitt jämviktstillstånd, t.ex. trycket jämnar ut sig, osv. Sådana processer kan ritas som linjer i ett tillståndsdiagram eftersom kvantiteter som, t.ex., p, µ, τ är väldefinierade längs hela vägen, och våra ekvationer som relaterar jämviktstillstånd gäller längs hela processens väg. Reversibla processer nämndes på föreläsning 3) kräver att totala entropin i universum inte ökar hur ska man annars kunna gå tillbaka?). Vi tar att reversibla processer också är kvasi-statiska, eftersom i ett system som inte är i jämvikt är inte entropin maximal, vilket normalt medför en spontan förändring av systemet mot ökad entropi. Notera dock att entropin i ett delsystem, eller ett system i kontakt med omgivning, får dock ändras i en reversibel process. 84

3 Arbete och värme för reversibla processer Betrakta en reversibel expansion / kompression. Tryck-volymarbetet blir: dw = pdv i princip kraft väg.) Låt partikelantalet vara konstant. Överförd värme är det som blir över efter att vi har betraktat tryck-volymarbetet. Första huvudsatsen ger: { } Termodynaiska identiteten,dn = 0 dq = du + }{{} dw = = τdσ du = τdσ pdv pdv För en kvasi-statisk) reversibel process med konstant partikelantal: dq rev = τdσ, dw rev = pdv Så, för reversibla processer råder en nära parallell mellan termodynamiska identiteten och energiprincipen du = }{{} τdσ pdv [ev. andra energi-termer för andra typer av arbete] } {{ } dq rev dw rev Uppdelningen av energiöverföring i värme och arbete har sin grund i att termodynamik utvecklades för att förstå sk. värmemaskiner som omvandlar mellan arbete och värme. Nu har vi tillräcklig bakgrund för att förstå och beskriva sådana maskiner. Värmemaskiner: cyklisk process som omvandlar mellan värme och arbete En cyklisk process återför systemet till ursprungstillståndet Entropiändringen σ i systemet måste bli 0 över en cykel, samma sak för skillnaden i inre energi, osv. Några exempel på värmemaskiner: Bilmotor, elkraftverk, ångmaskin: Varm kropp i kall omgivning, vi utvinner nyttigt arbete. Kallas värmemotor eng. heat engine ). Kylskåp, luftkonditionering: Kall kropp i varm omgivning, vi tillför arbete för att ytterligare kyla kroppen. Värmepump: Varm kropp i kall omgivning, vi tillför arbete för att värma kroppen.? : Kall kropp i varm omgivning, vi utvinner nyttigt arbete. LoR problem 8.2b) Reversibel värmemaskin, Carnot-verkningsgraden Se diagram. Vi ser varför man inte bara direkt kan ta värme-energi ur luften och omvandla till arbete. Det skulle nödvändigtvis bryta mot lagen om ökande entropi / termodynamikens andra huvudsats, eftersom vi i så fall skulle sätta = 0 och då bara minska entropin på den varma sidan total entropi i universum minskar. Men så länge vi betalar entropi-skatten genom att öka entropin i den kallare reservoaren minst lika mycket som vi minskar den i den varmare reservoaren så är det teoretiskt möjligt att använda återstående energi som arbete. Vi säger ännu inget om hur man bygger en sådan maskin, mer om det senare.) 85

4 En perfekt värmemaskin opererar helt reversibelt: σ tot = 0, och eftersom den är cyklisk får ingen entropi samlas upp inuti maskinen, så vi måste ha: { Minskning avσ på varm sida: } = Direkt ifrån energiprincipen: W = = {Ökning } avσ på kall sida 1 τ ) l τ }{{} h <1 = Vi får ut arbete, och har räknat ut dess storlek som en fraktion av. Hur avgör man hur bra en omvandlingsprocess mellan värme och arbete är? Reversibel värmemotor Δσ TOT =0 σ h = / σ l = / Resurs vid Genererat Arbete W Omgivning vid Verkningsgrad: η = nyttig energi förbrukad energi i vår resurs η = W = 1 = Vi kallar denna verkningsgrad för Carnot-verkningsgraden:η c. T.ex. resurs vid100 C, omgivning vid20 C = T h T l T h, 0 η < 1 η c = % Icke-reversibel värmemaskin Vad händer om värmemaskinen är irreversibel? σ h = / Resurs vid Låt ineffektiviteter i systemet t.ex. friktion) göra att någonstans i processen ökar entropin tänk: friktion i maskinen). Ska maskinen vara cyklisk så måste vi minska tillbaka maskinens entropi så σ = 0. I så fall måste vi åtminstone öka den kalla reservoarens entropi lika mycket. Men det enda sätt vi kan göra det på är genom att öka mängden energi vi för över i form av värme på den kalla sidan! Irreversibel värmemotor Δσ TOT >0 σ l = / Genererat Arbete W Omgivning vid Energiprincipen: W =. Låt vara samma som i den reversibla värmemaskinen. Om ökar så måste W minska: W < 1 τ ) l η = W < η c 86

5 Man kan alltså inte omvandla värme till arbete bättre än η c! η c sätter en övre gräns för verkningsgraden, oavsett hur fiffiga maskin man bygger. Gränsen sätts direkt av termodynamikens andra huvudsats / principen om ökande entropi. Den övre gränsen för verkningsgrad beror på temperaturskilladen och ökar för större temperaturskillnad. Titta också på LoR 8.2 där en resurs av kyla jämförs med en resurs av värme. Carnots verkningsgrad: η c = T h T l T h Max verkningsgrad för en värmemotor som opererar mellan konventionell temp.t h och T l. Kylskåp / värmepump Kylskåp: kyl den kalla kroppen med tillfört arbete. Alla storheter i den reversibla värmemaskinen byter riktning. Ger precis samma ekvationer: =, W = W = 1 τ ) l Tolkningen av nyttighet ändras!:w är förbrukad energi i vår resurs, producerad nyttighet. η = W = = 1 1 = 1 τl 1 = ; 0 < η Värmepump: värm den varma kroppen med tillfört arbete. Samma ekvationer och riktningar som kylskåp, men nu:w = Förbrukas, = Producerad nyttighet. η = W = = 1 1 Q = 1 l 1 τ = > 1 l Vi får ut mer energi än vi stoppar in! Detta är just poängen med en värmepump! Annars kunde vi värma med el istället, och få verkningsgrad 1. Men hur bygger man en värmemaskin? Hur fungerar den cykliska processen? Viktiga typer av termodynamiska processer Viktiga processer i termodynamik Isoterm: konstant temperatur Isobar: konstant tryck Isokor: konstant volym Isentrop: konstant entropi Adiabat: inget värmeutbyte, dq = 0 Ofta underförstått konstant partikelantal om inte annat sägs.) 87

6 Notera att reversibel adiabat = isentrop: dσ = dq rev τ = 0 τ = 0 Carnot-cykeln En av de mest grundläggande cykliska värmeprocesserna: Carnot-cykel: reversibel cyklisk process sammansatt av Isotermisk expansion + Adiabatisk expansion + Isotermisk kompression + Adiabatisk kompression. Omvandlar mellan värme och arbete med Carnot-effektiviteten bevis i KoK s. 236) Vi kommer titta på denna cykliska process för en monoatomär ideal gas. Först tittar vi på de involverade delprocesserna KoK kap. 6, ), och sedan slår vi ihop dem KoK kap 8, ). Tillbakablick, ideal gas: Carnot-Cykeln p V 4 V 3 V Ideala gaslagen:pv = Nτ Ingen potentiell energi mellan atomerna betyder att U ej beror på volym. Monoatomär gas U = 3 2 Nτ Värmekapaciteter:C p = C v +N Typiskt tillvägagångssätt för att beräkna arbete / värme som ju beskrivs av inexakta differentialer: i) förstå start och sluttillstånd, ii) förstå vilken väg processen tagit. iii) räkna ut storheten som en integral över vägen. För en exakt differential, t.ex.dσ kan man däremot ta valfri väg istället, jmfr. föreläsning 3. Har man ett uttryck för tillståndsfunktionen σu, V, N) kan man direkt räkna skillnaden.) Reversibel isotermisk expansion / kompression för ideal gas av en ideal gas, start vid tryckp 1. Sluttillstånd? Trycket efter expansionen? p 1 = Nτ, p 2 = Nτ p 2 = p 1 Arbete gasen utfört på omgivningen KoK ekv tarw åt andra hållet.) W = 2) 1) dw = { } Reversibel isoterm: V2 V2 Nτ = pdv = dw = pdv V dv = Nn Värme tillförd till gasen ifrån omgivningen: { } Ideal gas: du = dq dw = U ober. av volymen,τ,n konst. = 0 dq = dw Q = Nn 88

7 Reversibel adiabatisk expansion / kompression för monoatomär ideal gas, start vid tempτ 1. Sluttillstånd?: vad blir temperaturen efter expansionen? Vi har härlett tidigare finns på formelbladet): σ = Nln n Q n ), n Qτ) τ 3/2, n = N/V Nln n Qτ 1 ) N Arbete gasen utfört på omgivningen: W = 2) 1) ) = Nln n Qτ 2 ) N τ 3/2 1 = τ 3/2 2 τ 3/2 2 = τ 3/2 1 Reversibel adiabat dw = du = dq dw }{{} = 0 2) 1) du = ) { } Monoatomär ideal gas U = 3 2 Nτ = 3 2 Nτ 2 τ 1 ) = 3 2 Nτ 1 τ 2 ) Värme tillförd gasen ifrån omgivningen: Adiabatisk process Q = 0. Ovan härledde vi att τ 3/2 V = konst. för en monoatomär ideal gas. Detta är ett specialfall av ett viktigt generellt resultat för ideala gaser med frihetsgrader. Adiabatisk expansion för ideal gas med inre frihetsgrader pv γ = konst. Används tillsammans med ideala gaslagen för att hitta sluttillståndet för en adiabatisk process för en ideal gas likt hur ideala gaslagen ger sluttillståndet för en isotermisk process.) Bevis nedan: Kan vi skriva du på något sätt för en generell ideal gas? Eftersom U är en funktion av bara N,τ och ej V ) så gäller i en process med konstant partikelantal: ) U C v = du = C v dτ τ Och därför ifrån termodynamiska identiteten för en isoentropisk process N,V du = τ }{{} dσ +pdv +µ }{{} dn 0 0 C v dτ = pdv = Nτ V dv dτ τ = N dv C v V 89

8 Trick: N = C p C v N C v = γ 1 medγ = C p /C v dτ τ = γ 1)dV V Integrera båda sidor över processenτ 1 τ 2,, ln τ 1 τ 0 = ln V1 V 0 ) γ 1 τ 1 V γ 1 1 = τ 0 V γ 1 0 τv γ 1 = konst Och,pV = Nτ pv γ = konst Nu har vi verktygen för att ge oss på hela Carnot-cykeln. Carnot-cykel i monoatomär ideal gas Vi härleder först en relation mellan volymerna ifrån att τ/3 = konst. för båda de reversibla adiabaterna: /3 2 = /3 3, /3 4 = /3 1 V 4 = Summera bidragen för totalt arbete: W 12 = N ln W 23 = 3 2 N ) τh W 34 = N ln V 4 V 3 = N ln W 41 = 3 2 N ) Summa:W = N )ln Tillförd värme: = W 12 = N ln / ) ) 3/2 = V 3 V 4 V 3 = Verkningsgrad:η = W = = Carnot-verkningsgraden! Övningsuppgifter som passar denna föreläsning LoR 8.2, 8.5,

Föreläsning 12: Ideal gas i klassiska gränsen med inre frihetsgrader, ekvipartitionsprincipen

Föreläsning 12: Ideal gas i klassiska gränsen med inre frihetsgrader, ekvipartitionsprincipen Föreläsning 12: Ideal gas i klassiska gränsen med frihetsgrader, ekvipartitionsprincipen April 26, 2013, KoK kap. 6 Centrala ekvationer i statistisk mekanik Mikrokanonisk ensemble (U,,N konst):p s = 1/g,

Läs mer

Två system, bägge enskilt i termisk jämvikt med en tredje, är i jämvikt sinsemellan

Två system, bägge enskilt i termisk jämvikt med en tredje, är i jämvikt sinsemellan Termodynamikens grundlagar Nollte grundlagen Termodynamikens 0:e grundlag Två system, bägge enskilt i termisk jämvikt med en tredje, är i jämvikt sinsemellan Temperatur Temperatur är ett mått på benägenheten

Läs mer

Föreläsning 3: Termodynamik, Tillståndsfunktioner, Differentialer, Värmekapacitet

Föreläsning 3: Termodynamik, Tillståndsfunktioner, Differentialer, Värmekapacitet Föreläsning 3: Termodnamik, Tillståndsfunktioner, Differentialer, Värmekapacitet April 5, 2013, i viss mån KoK kapitel 1 och 2 (och i viss mån utspritt i boken). Repetition Entropi (i isolerat sstem):σ

Läs mer

7. Inre energi, termodynamikens huvudsatser

7. Inre energi, termodynamikens huvudsatser 7. Inre energi, termodynamikens huvudsatser Sedan 1800 talet har man forskat i hur energi kan överföras och omvandlas så effektivt som möjligt. Denna forskning har resulterat i ett antal begrepp som bör

Läs mer

Kapitel III. Klassisk Termodynamik in action

Kapitel III. Klassisk Termodynamik in action Kapitel III Klassisk Termodynamik in action Termodynamikens andra grundlag Observation: värme flödar alltid från en varm kropp till en kall, och den motsatta processen sker aldrig spontant (kräver arbete!)

Läs mer

Termodynamik FL7 ENTROPI. Inequalities

Termodynamik FL7 ENTROPI. Inequalities Termodynamik FL7 ENTROPI Varför är den termiska verkningsgraden hos värmemaskiner begränsad? Varför uppstår den maximala verkningsgraden hos reversibla processer? Varför går en del av energin till spillvärme?

Läs mer

Kapitel I. Introduktion och första grundlagen. Kursmaterialet: Jens Pomoell 2011, Mikael Ehn 2013-2014

Kapitel I. Introduktion och första grundlagen. Kursmaterialet: Jens Pomoell 2011, Mikael Ehn 2013-2014 Kapitel I Introduktion och första grundlagen Kursmaterialet: Jens Pomoell 2011, Mikael Ehn 2013-2014 Introduktion Vad är Termofysik? Termofysiken handlar om att studera system bestående av ett stort antal

Läs mer

Kapitel IV. Partikeltalet som termodynamisk variabel & faser

Kapitel IV. Partikeltalet som termodynamisk variabel & faser Kapitel IV Partikeltalet som termodynamisk variabel & faser Kemiska potentialen Kemiska potentialen I många system kan inte partikelantalet antas vara konstant så som vi hittills antagit Ett exempel är

Läs mer

Termodynamik och inledande statistisk fysik

Termodynamik och inledande statistisk fysik Några grundbegrepp i kursen Termodynamik och inledande statistisk fysik I. INLEDNING Termodynamiken beskriver på en makroskopisk nivå processer där värme och/eller arbete tillförs eller extraheras från

Läs mer

Termodynamik FL6 TERMISKA RESERVOARER TERMODYNAMIKENS 2:A HUVUDSATS INTRODUCTION. Processer sker i en viss riktning, och inte i motsatt riktning.

Termodynamik FL6 TERMISKA RESERVOARER TERMODYNAMIKENS 2:A HUVUDSATS INTRODUCTION. Processer sker i en viss riktning, och inte i motsatt riktning. Termodynamik FL6 TERMODYNAMIKENS 2:A HUVUDSATS INTRODUCTION Värme överförd till en tråd genererar ingen elektricitet. En kopp varmt kaffe blir inte varmare i ett kallt rum. Dessa processer kan inte ske,

Läs mer

Kapitel I. Introduktion och första grundlagen

Kapitel I. Introduktion och första grundlagen Kapitel I Introduktion och första grundlagen Introduktion Vad är Termofysik? Termofysiken handlar om att studera system bestående av ett stort antal partiklar (atomer, molekyler,...) i vilka temperaturen

Läs mer

Termodynamik FL 2 ENERGIÖVERFÖRING VÄRME. Värme Arbete Massa (endast öppna system)

Termodynamik FL 2 ENERGIÖVERFÖRING VÄRME. Värme Arbete Massa (endast öppna system) Termodynamik FL 2 ENERGIÖVERFÖRING, VÄRME, ARBETE, TERMODYNAMIKENS 1:A HUVUDSATS ENERGIBALANS FÖR SLUTNA SYSTEM ENERGIÖVERFÖRING Värme Arbete Massa (endast öppna system) Energiöverföring i ett slutet system

Läs mer

Kretsprocesser. För att se hur långt man skulle kunna komma med en god konstruktion skall vi ändå härleda verkningsgraden i några enkla fall.

Kretsprocesser. För att se hur långt man skulle kunna komma med en god konstruktion skall vi ändå härleda verkningsgraden i några enkla fall. Kretsrocesser Termodynamiken utvecklades i början för att förstå hur bra man kunde bygga olika värmemaskiner, hur man skulle kunna öka maskinernas verkningsgrad d v s hur mycket mekaniskt arbete som kunde

Läs mer

Termodynamik (repetition mm)

Termodynamik (repetition mm) 0:e HS, 1:a HS, 2:a HS Termodynamik (repetition mm) Definition av processer, tillstånd, tillståndsstorheter mm Innehåll och överföring av energi 1: HS öppet system 1: HS slutet system Fö 11 (TMMI44) Fö

Läs mer

OMÖJLIGA PROCESSER. 1:a HS: Q = W Q = Q out < 0 W = W net,out > 0

OMÖJLIGA PROCESSER. 1:a HS: Q = W Q = Q out < 0 W = W net,out > 0 OMÖJLIGA PROCESSER 1:a HS: Q = W Q = Q out < 0 W = W net,out > 0 Q W; GÅR INTE! PMM1 bryter mot 1:a HS 1:a HS: Q in = W net,out ; OK 2:a HS: η th = W net,out /Q in < 1 η th = 1; GÅR INTE! PMM2 bryter mot

Läs mer

Linköpings tekniska högskola Exempeltentamen 2 IKP/Mekaniksystem Mekanisk värmeteori och strömningslära. Exempeltentamen 2

Linköpings tekniska högskola Exempeltentamen 2 IKP/Mekaniksystem Mekanisk värmeteori och strömningslära. Exempeltentamen 2 Exempeltentamen 2 (OBS! Uppgifterna nedan gavs innan kursen delvis bytte innehåll och omfattning. Vissa uppgifter som inte längre är aktuella har därför tagits bort, vilket medför att poängsumman är

Läs mer

Energitekniska formler med kommentarer

Energitekniska formler med kommentarer Energitekniska formler med kommentarer Energiteknik del 2 Anders Bengtsson 19 januari 2011 Sammanfattning Det finns egentligen inga formler som alltid kan användas. Med en formel tänker man sig ofta en

Läs mer

Tentamen i Termodynamik och Statistisk fysik för F3(FTF140)

Tentamen i Termodynamik och Statistisk fysik för F3(FTF140) Chalmers Tekniska Högskola Institutionen för Teknisk Fysik Mats Granath Tentamen i Termodynamik och Statistisk fysik för F3(FTF14) Tid och plats: Tisdag 13/1 9, kl. 8.3-1.3 i V-huset. Examinator: Mats

Läs mer

U = W + Q (1) Formeln (1) kan även uttryckas differentiells, d v s om man betraktar mycket liten tillförsel av energi: du = dq + dw (2)

U = W + Q (1) Formeln (1) kan även uttryckas differentiells, d v s om man betraktar mycket liten tillförsel av energi: du = dq + dw (2) Inre energi Begreppet energi är sannerligen ingen enkel sak att utreda. Den går helt enkelt inte att definiera med några få ord då den förekommer i så många olika former. Man talar om elenergi, rörelseenergi,

Läs mer

Termodynamik Av grekiska θηρµǫ = värme och δυναµiς = kraft

Termodynamik Av grekiska θηρµǫ = värme och δυναµiς = kraft Termodynamik Av grekiska θηρµǫ = värme och δυναµiς = kraft Termodynamik = läran om värmets natur och dess omvandling till andra energiformer (Nationalencyklopedin, band 18, Bra Böcker, Höganäs, 1995) 1

Läs mer

Planering Fysik för V, ht-11, lp 2

Planering Fysik för V, ht-11, lp 2 Planering Fysik för V, ht-11, lp 2 Kurslitteratur: Häfte: Experimentell metodik, Kurslaboratoriet 2011, Fysik i vätskor och gaser, Göran Jönsson, Teach Support 2010 samt föreläsningsanteckningar i Ellära,

Läs mer

Ch. 2-1/2/4 Termodynamik C. Norberg, LTH

Ch. 2-1/2/4 Termodynamik C. Norberg, LTH GRUNDLÄGGANDE BEGREPP System (slutet system) = en viss förutbestämd och identifierbar massa m. System Systemgräns Omgivning. Kontrollvolym (öppet system) = en volym som avgränsar ett visst område. Massa

Läs mer

Kap 6 termodynamikens 2:a lag

Kap 6 termodynamikens 2:a lag Termodynamikens första lag: energins bevarande. Men säger ingenting om riktningen på energiflödet! Men vi vet ju att riktingen spelar roll: En kopp varmt kaffe kan inte värmas upp ytterligare från en kallare

Läs mer

Tentamen i FTF140 Termodynamik och statistisk fysik för F3

Tentamen i FTF140 Termodynamik och statistisk fysik för F3 Chalmers Institutionen för Teknisk Fysik Göran Wahnström Tentamen i FTF4 Termodynamik och statistisk fysik för F3 Tid och plats: Tisdag aug, kl 8.3-.3 i Väg och vatten -salar. Hjälpmedel: Physics Handbook,

Läs mer

Tentamen i Termodynamik och Statistisk fysik för F3(FTF140)

Tentamen i Termodynamik och Statistisk fysik för F3(FTF140) Chalmers Tekniska Högskola Institutionen för Teknisk Fysik Mats Granath Tentamen i Termodynamik och Statistisk fysik för F3(FTF40) Tid och plats: Tisdag 8/8 009, kl. 4.00-6.00 i V-huset. Examinator: Mats

Läs mer

Övningsuppgifter termodynamik ,0 kg H 2 O av 40 C skall värmas till 100 C. Beräkna erforderlig värmemängd.

Övningsuppgifter termodynamik ,0 kg H 2 O av 40 C skall värmas till 100 C. Beräkna erforderlig värmemängd. Övningsuppgifter termodynamik 1 1. 10,0 kg H 2 O av 40 C skall värmas till 100 C. Beräkna erforderlig värmemängd. Svar: Q = 2512 2516 kj beroende på metod 2. 5,0 kg H 2 O av 40 C skall värmas till 200

Läs mer

Mer om kretsprocesser

Mer om kretsprocesser Mer om kretsprocesser Energiteknik Anders Bengtsson 18 mars 2010 Sammanfattning Dessa anteckningar är ett komplement till avsnittet om kretsprocesser i häftet Värmetekniska formler med kommentarer. 1 1

Läs mer

Föreläsning i termodynamik 28 september 2011 Lars Nilsson

Föreläsning i termodynamik 28 september 2011 Lars Nilsson Arbetsgivande gascykler Föreläsning i termodynamik 28 september 211 Lars Nilsson Tryck volym diagram P V diagram Isobar process (konstant tryck)?? Isokor process (konstant volym)?? Isoterm process (konstant

Läs mer

Arbetet beror på vägen

Arbetet beror på vägen VOLYMÄNDRINGSARBETE Volymändringsarbete = arbete p.g.a. normalkrafter mot ytor (tryck) vid volymändring. Beteckning: W b (eng. boundary work); per massenhet w b. δw b = F ds = P b Ads = P b dv Exempel:

Läs mer

ARBETSGIVANDE GASCYKLER

ARBETSGIVANDE GASCYKLER ARBETSGIVANDE GASCYKLER Verkliga processer är oftast mycket komplicerade till sina detaljer; exakt analys omöjlig. Om processen idealiseras som internt reversibel fås en ideal process vars termiska verkningsgrad

Läs mer

Tentamen i Termodynamik, 4p, 8/6 2007, 9-15 med lösningar

Tentamen i Termodynamik, 4p, 8/6 2007, 9-15 med lösningar STOCKHOLMS UNIVERSITET FYSIKUM K.H. Tentamen i Termodynamik, 4p, 8/6 007, 9-15 med lösningar 1.Kan tillgodoräknas ör betyg G av den som presterat godkänt resultat på duggan) a.visasambandet C P /C V =

Läs mer

Föreläsning 1: Introduktion, Mikro och makrotillstånd, Multiplicitet, Entropi

Föreläsning 1: Introduktion, Mikro och makrotillstånd, Multiplicitet, Entropi Version: 16 maj 2013. TFYA12, Rickard Armiento, Föreläsning 1 Föreläsning 1: Introduktion, Mikro och makrotillstånd, Multiplicitet, Entropi April 2, 2013, KoK kap. 1-2 Formalia Föreläsare och kursansvarig:

Läs mer

Lite kinetisk gasteori

Lite kinetisk gasteori Tryck och energi i en ideal gas Lite kinetisk gasteori Statistisk metod att beskriva en ideal gas. En enkel teoretisk modell som bygger på följande antaganden: Varje molekyl är en fri partikel. Varje molekyl

Läs mer

Tentamen i FTF140 Termodynamik och statistisk mekanik för F3

Tentamen i FTF140 Termodynamik och statistisk mekanik för F3 Chalmers Institutionen för Teknisk Fysik Göran Wahnström Tentamen i FTF14 Termodynamik och statistisk mekanik för F3 Tid och plats: Tisdag 25 aug 215, kl 8.3-13.3 i V -salar. Hjälpmedel: Physics Handbook,

Läs mer

Planering Fysik för n och BME, ht-15, lp 1 Kurslitteratur: Göran Jönsson: Fysik i vätskor och gaser, Teach Support 2010 (eller senare). Obs!

Planering Fysik för n och BME, ht-15, lp 1 Kurslitteratur: Göran Jönsson: Fysik i vätskor och gaser, Teach Support 2010 (eller senare). Obs! Planering Fysik för n och BME, ht-15, lp 1 Kurslitteratur: Göran Jönsson: Fysik i vätskor och gaser, Teach Support 2010 (eller senare). Obs! Säljs vid första föreläsningen. markerar mycket viktigt avsnitt,

Läs mer

Tentamen i Termodynamik och Statistisk fysik för F3(FTF140)

Tentamen i Termodynamik och Statistisk fysik för F3(FTF140) Chalmers Tekniska Högskola Institutionen för Teknisk Fysik Mats Granath Tentamen i Termodynamik och Statistisk fysik för F(FTF40) Tid och plats: Torsdag /8 008, kl. 4.00-8.00 i V-huset. Examinator: Mats

Läs mer

X. Repetitia mater studiorum

X. Repetitia mater studiorum X. Repetitia mater studiorum Termofysik, Kai Nordlund 2012 1 X.1. Termofysikens roll Den statistiska fysikens eller mekanikens uppgift är att härleda de fysikaliska egenskaperna hos makroskopiska system

Läs mer

Fysikaliska modeller

Fysikaliska modeller Fysikaliska modeller Olika syften med fysiken Grundforskarens syn Finna förklaringar på skeenden i naturen Ställa upp lagar för fysikaliska skeenden Kritiskt granska uppställda lagar Kontrollera uppställda

Läs mer

Tentamen i FTF140 Termodynamik och statistisk mekanik för F3

Tentamen i FTF140 Termodynamik och statistisk mekanik för F3 Chalmers Institutionen för Teknisk Fysik Göran Wahnström Tentamen i FTF14 Termodynamik och statistisk mekanik för F3 Tid och plats: Onsdag 15 jan 14, kl 8.3-13.3 i Maskin -salar. Hjälpmedel: Physics Handbook,

Läs mer

Föreläsning 1: Introduktion, Mikro och makrotillstånd, Multiplicitet, Entropi

Föreläsning 1: Introduktion, Mikro och makrotillstånd, Multiplicitet, Entropi Version: 16 maj 201. TFYA12, Rickard Armiento, Föreläsning 1 Föreläsning 1: Introduktion, Mikro och makrotillstånd, Multiplicitet, Entropi April 2, 201, KoK kap. 1-2 Formalia Föreläsare och kursansvarig:

Läs mer

Räkneövning 2 hösten 2014

Räkneövning 2 hösten 2014 Termofysikens Grunder Räkneövning 2 hösten 2014 Assistent: Christoffer Fridlund 22.9.2014 1 1. Brinnande processer. Moderna datorers funktion baserar sig på kiselprocessorer. Anta att en modern processor

Läs mer

Räkneövning i termodynamik, hösten 2000

Räkneövning i termodynamik, hösten 2000 October 3, 000 Räkneövning i termodynamik, hösten 000 Räkneövning 1: första huvudsatsen (kapitel 1) Jan Lagerwall E-post: jpf@fy.chalmers.se 1. (1.1) Visa att det för en kvasistatisk, adiabatisk process

Läs mer

Teknisk termodynamik repetition

Teknisk termodynamik repetition Först något om enheter! Teknisk termodynamik repetition Kom ihåg att använda Kelvingrader för temperaturer! Enheter motsvarar vad som efterfrågas! Med konventionen specifika enheter liten bokstav: E Enhet

Läs mer

Linköpings tekniska högskola Exempeltentamen 7 IEI / Mekanisk värmeteori och strömningslära. Exempeltentamen 7. strömningslära, miniräknare.

Linköpings tekniska högskola Exempeltentamen 7 IEI / Mekanisk värmeteori och strömningslära. Exempeltentamen 7. strömningslära, miniräknare. Linköpings tekniska högskola Exempeltentamen 7 IEI / Mekanisk värmeteori och strömningslära Joakim Wren Exempeltentamen 7 Tillåtna hjälpmedel: Allmänt: Formelsamling i Mekanisk värmeteori och strömningslära,

Läs mer

14. Sambandet mellan C V och C P

14. Sambandet mellan C V och C P 14. Sambandet mellan C V och C P Vi skriver tillståndsekvationen i de alternativa formerna V = V (P, T ) och S = S(T, V ) (1) och beräknar ds och dv genom att dela upp dem i partiella derivator ds = (

Läs mer

TERMODYNAMIK? materialteknik, bioteknik, biologi, meteorologi, astronomi,... Ch. 1-2 Termodynamik C. Norberg, LTH

TERMODYNAMIK? materialteknik, bioteknik, biologi, meteorologi, astronomi,... Ch. 1-2 Termodynamik C. Norberg, LTH TERMODYNAMIK? Termodynamik är den vetenskap som behandlar värme och arbete samt de tillståndsförändringar som är förknippade med dessa energiutbyten. Centrala tillståndsstorheter är temperatur, inre energi,

Läs mer

Tentamen i Kemisk Termodynamik 2011-01-19 kl 13-18

Tentamen i Kemisk Termodynamik 2011-01-19 kl 13-18 Tentamen i Kemisk Termodynamik 2011-01-19 kl 13-18 Hjälpmedel: Räknedosa, BETA och Formelsamling för kurserna i kemi vid KTH. Endast en uppgift per blad! Skriv namn och personnummer på varje blad! Alla

Läs mer

Linköpings tekniska högskola IEI / Mekanisk värmeteori och strömningslära. Exempeltentamen 8. strömningslära, miniräknare.

Linköpings tekniska högskola IEI / Mekanisk värmeteori och strömningslära. Exempeltentamen 8. strömningslära, miniräknare. Linköpings tekniska högskola IEI / Mekanisk värmeteori och strömningslära Tentamen Joakim Wren Exempeltentamen 8 Tillåtna hjälpmedel: Allmänt: Formelsamling i Mekanisk värmeteori och strömningslära, miniräknare.

Läs mer

III. Klassisk termodynamik. Termofysik, Kai Nordlund 2006 1

III. Klassisk termodynamik. Termofysik, Kai Nordlund 2006 1 III. Klassisk termodynamik Termofysik, Kai Nordlund 2006 1 III.1. Termodynamikens II grundlag i differentialform Termodynamikens II grundlag var ju Entropin i ett isolerat system kan endast öka och antar

Läs mer

Tentamen i termodynamik. 7,5 högskolepoäng. Namn: (Ifylles av student) Personnummer: (Ifylles av student)

Tentamen i termodynamik. 7,5 högskolepoäng. Namn: (Ifylles av student) Personnummer: (Ifylles av student) Tentamen i termodynamik 7,5 högskolepoäng Provmoment: Ladokkod: Tentamen ges för: Ten01 TT051A Årskurs 1 Namn: (Ifylles av student) Personnummer: (Ifylles av student) Tentamensdatum: Tid: 2012-06-01 9.00-13.00

Läs mer

Hjälpmedel: Valfri miniräknare, Formelsamling: Energiteknik-Formler och tabeller(s O Elovsson och H Alvarez, Studentlitteratur)

Hjälpmedel: Valfri miniräknare, Formelsamling: Energiteknik-Formler och tabeller(s O Elovsson och H Alvarez, Studentlitteratur) ENERGITEKNIK II Provmoment: Ladokkod: Tentamen ges för: Tentamen 41N05B En2 7,5 högskolepoäng TentamensKod: Tentamensdatum: Tisdag 27 oktober Tid: 9.00-13.00 Hjälpmedel: Valfri miräknare, Formelsamlg:

Läs mer

GÖTEBORGS UNIVERSITET Fysiska institutionen april 1983 Hans Linusson, Carl-Axel Sjöblom, Örjan Skeppstedt januari 1993 FY 2400 mars 1998 Distanskurs

GÖTEBORGS UNIVERSITET Fysiska institutionen april 1983 Hans Linusson, Carl-Axel Sjöblom, Örjan Skeppstedt januari 1993 FY 2400 mars 1998 Distanskurs GÖEBORGS UNIERSIE Fysiska institutionen aril 983 Hans Linusson, Carl-Axel Sjöblom, Örjan Skestedt januari 993 FY 400 mars 998 Distanskurs LEKION Delkurs 4 GASER ERMODYNAMIK I detta häfte ingår övningsugifter

Läs mer

Repetition. Termodynamik handlar om energiomvandlingar

Repetition. Termodynamik handlar om energiomvandlingar Repetition Termodynamik handlar om energiomvandlingar Termodynamikens första huvudsats: (Energiprincipen) Energi kan inte skapas och inte förstöras bara omvandlas från en form till en annan!! Termodynamikens

Läs mer

Termodynamik Föreläsning 1

Termodynamik Föreläsning 1 Termodynamik Föreläsning 1 Grundläggande Begrepp Jens Fjelstad 2010 08 30 1 / 35 Klassisk Termodynamik omvandling av energi mellan olika former via värme och arbete (mekaniskt, elektriskt,...) behandlar

Läs mer

Energi- och processtekniker EPP14

Energi- och processtekniker EPP14 Grundläggande energiteknik Provmoment: Tentamen Ladokkod: TH101A 7,5 högskolepoäng Tentamen ges för: Energi- och processtekniker EPP14 Namn: Personnummer: Tentamensdatum: 2015-03-20 Tid: 09:00 13:00 Hjälpmedel:

Läs mer

Omtentamen i teknisk termodynamik (1FA527) för F3,

Omtentamen i teknisk termodynamik (1FA527) för F3, Omtentamen i teknisk termodynamik (1FA527) för F3, 2012 04 13 Tillåtna hjälpmedel: Cengel & Boles: Thermodynamics (eller annan lärobok i termodynamik), ångtabeller, Physics Handbook, miniräknare. Anvisningar:

Läs mer

Lite fakta om proteinmodeller, som deltar mycket i den här tentamen

Lite fakta om proteinmodeller, som deltar mycket i den här tentamen Skriftlig deltentamen, FYTA12 Statistisk fysik, 6hp, 28 Februari 2012, kl 10.15 15.15. Tillåtna hjälpmedel: Ett a4 anteckningsblad, skrivdon. Totalt 30 poäng. För godkänt: 15 poäng. För väl godkänt: 24

Läs mer

TENTAMEN I TERMODYNAMIK för K2, Kf2 och TM2 (KVM091 och KVM090) 2012-01-13 kl. 14.00-18.00

TENTAMEN I TERMODYNAMIK för K2, Kf2 och TM2 (KVM091 och KVM090) 2012-01-13 kl. 14.00-18.00 CHALMERS 1 (3) Energi och Miljö/Värmeteknik och maskinlära Kemi- och bioteknik/fysikalisk kemi ermodynamik (KVM091/KVM090) ENAMEN I ERMODYNAMIK för K2, Kf2 och M2 (KVM091 och KVM090) 2012-01-13 kl. 14.00-18.00

Läs mer

Lösningsanvisningar till tentamen i SI1161 Statistisk fysik, 6 hp, för F3 Onsdagen den 2 juni 2010 kl. 14.00-19.00

Lösningsanvisningar till tentamen i SI1161 Statistisk fysik, 6 hp, för F3 Onsdagen den 2 juni 2010 kl. 14.00-19.00 EOREISK FYSIK KH Lösningsanvisningar till tentamen i SI1161 Statistisk fysik, 6 hp, för F3 Onsdagen den juni 1 kl. 14. - 19. Examinator: Olle Edholm, tel. 5537 8168, epost oed(a)kth.se. Komplettering:

Läs mer

Kapitel V. Praktiska exempel: Historien om en droppe. Baserat på material (Pisaran tarina) av Hanna Vehkamäki

Kapitel V. Praktiska exempel: Historien om en droppe. Baserat på material (Pisaran tarina) av Hanna Vehkamäki Kapitel V Praktiska exempel: Historien om en droppe Baserat på material (Pisaran tarina) av Hanna Vehkamäki Kapitel V - Praktiska exempel: Historien om en droppe Partiklar i atmosfa ren Atmosfa rens sammansa

Läs mer

TENTAMEN I TERMODYNAMIK för K2, Kf2 och TM2 (KVM091 och KVM090) 2015-01-05 kl. 08.30-12.30

TENTAMEN I TERMODYNAMIK för K2, Kf2 och TM2 (KVM091 och KVM090) 2015-01-05 kl. 08.30-12.30 CHALMERS 1 (3) Energi och Miljö/Värmeteknik och maskinlära Kemi- och bioteknik/fysikalisk kemi Termodynamik (KVM091/KVM090) TENTAMEN I TERMODYNAMIK för K2, Kf2 och TM2 (KVM091 och KVM090) 2015-01-05 kl.

Läs mer

TENTAMEN I TERMODYNAMIK för K2 och Kf2 (KVM090) 2009-08-27 kl. 14.00-18.00 i V

TENTAMEN I TERMODYNAMIK för K2 och Kf2 (KVM090) 2009-08-27 kl. 14.00-18.00 i V CHLMERS 1 (3) TENTMEN I TERMODYNMIK för K2 och Kf2 (KVM090) 2009-08-27 kl. 14.00-18.00 i V Hjälpmedel: Kursböckerna Elliott-Lira: Introductory Chemical Engineering Thermodynamics och P. tkins, L. Jones:

Läs mer

Tentamen i teknisk termodynamik (1FA527)

Tentamen i teknisk termodynamik (1FA527) Tentamen i teknisk termodynamik (1FA527) 2016-08-24 Tillåtna hjälpmedel: Cengel & Boles: Thermodynamics (eller annan lärobok i termodynamik), ångtabeller, Physics Handbook, Mathematics Handbook, miniräknare

Läs mer

Planering Fysik för n och BME, ht-16, lp 1 Kurslitteratur: Göran Jönsson: Fysik i vätskor och gaser, Teach Support markerar mycket viktigt

Planering Fysik för n och BME, ht-16, lp 1 Kurslitteratur: Göran Jönsson: Fysik i vätskor och gaser, Teach Support markerar mycket viktigt Planering Fysik för n och BME, ht-16, lp 1 Kurslitteratur: Göran Jönsson: Fysik i vätskor och gaser, Teach Support 2016. markerar mycket viktigt avsnitt, * markerar överkurs. Fem övningstillfällen är rödmarkerade.

Läs mer

Miljöfysik. Föreläsning 3. Värmekraftverk. Växthuseffekten i repris Energikvalitet Exergi Anergi Verkningsgrad

Miljöfysik. Föreläsning 3. Värmekraftverk. Växthuseffekten i repris Energikvalitet Exergi Anergi Verkningsgrad Miljöfysik Föreläsning 3 Växthuseffekten i repris Energikvalitet Exergi Anergi Verkningsgrad Värmekraftverk Växthuseffekten https://phet.colorado.edu/en/simulations/category/physics Simuleringsprogram

Läs mer

Repetition F7. Lunds universitet / Naturvetenskapliga fakulteten / Kemiska institutionen / KEMA00

Repetition F7. Lunds universitet / Naturvetenskapliga fakulteten / Kemiska institutionen / KEMA00 Repetition F7 Intermolekylär växelverkan kortväga repulsion elektrostatisk växelverkan (attraktion och repulsion): jon-jon (långväga), jon-dipol, dipol-dipol medelvärdad attraktion (van der Waals): roterande

Läs mer

MITTHÖGSKOLAN, Härnösand

MITTHÖGSKOLAN, Härnösand MITTHÖGSKOLAN, Härnösand Förslag till lösningar TENTAMEN I TERMODYNAMIK, 5 p Typtewnta Del 1: Räkneuppgifter (20 p) 1 Hångin 2345 Hångut 556 t in 80 t ut 110 hin 335 hut 461 många 20 mv 283,9683 v 0,00104

Läs mer

4. Förhållandet mellan temperatur och rörelseenergi a. Molekyler och atomer rör sig! b. Snabbare rörelse högre rörelseenergi högre temperatur

4. Förhållandet mellan temperatur och rörelseenergi a. Molekyler och atomer rör sig! b. Snabbare rörelse högre rörelseenergi högre temperatur Energi 1. Vad är energi? a. Förmåga att uträtta ett arbete 2. Olika former av energi a. Lägesenergi b. Rörelseenergi c. Värmeenergi d. Strålningsenergi e. Massa f. Kemisk energi g. Elektrisk energi 3.

Läs mer

TENTAMEN I TERMODYNAMIK för K2, Kf2 och TM2 (KVM091 och KVM090) 2014-01-14 kl. 08.30-12.30

TENTAMEN I TERMODYNAMIK för K2, Kf2 och TM2 (KVM091 och KVM090) 2014-01-14 kl. 08.30-12.30 CHALMERS (4) Energi och Miljö/Värmeteknik och maskinlära Kemi- och bioteknik/fysikalisk kemi ermodynamik (KVM09/KVM090) ENAMEN I ERMODYNAMIK för K2, Kf2 och M2 (KVM09 och KVM090) 204-0-4 kl. 08.30-2.30

Läs mer

Tentamen i termodynamik. 7,5 högskolepoäng. Tentamen ges för: Årskurs 1. Namn: (Ifylles av student) Personnummer: (Ifylles av student)

Tentamen i termodynamik. 7,5 högskolepoäng. Tentamen ges för: Årskurs 1. Namn: (Ifylles av student) Personnummer: (Ifylles av student) Tentamen i termodynamik Provmoment: Ten0 Ladokkod: TT05A Tentamen ges för: Årskurs Namn: (Ifylles av student) Personnummer: (Ifylles av student) Tentamensdatum: 202-08-30 Tid: 9.00-3.00 7,5 högskolepoäng

Läs mer

Termo T konc. Tony Burden Institutionen för mekanik, KTH, Stockholm. Version 5.2 mars 2010

Termo T konc. Tony Burden Institutionen för mekanik, KTH, Stockholm. Version 5.2 mars 2010 Termo T konc Tony Burden Institutionen för mekanik, KTH, Stockholm Version 5.2 mars 2010 Förord Termo T konc är en sammanfattning av kursen SG1216 Termodynamik för farkostteknik vid KTH. Den utgör en något

Läs mer

Tentamen i termisk energiteknik 5HP för ES3, 2009, , kl 9-14.

Tentamen i termisk energiteknik 5HP för ES3, 2009, , kl 9-14. Tentamen i termisk energiteknik 5HP för ES3, 2009, 2009-10-19, kl 9-14. Namn:. Personnr: Markera vilka uppgifter som du gjort: ( ) Uppgift 1a (2p). ( ) Uppgift 1b (2p). ( ) Uppgift 2a (1p). ( ) Uppgift

Läs mer

Termodynamik Föreläsning 4

Termodynamik Föreläsning 4 Termodynamik Föreläsning 4 Ideala Gaser & Värmekapacitet Jens Fjelstad 2010 09 08 1 / 14 Innehåll Ideala gaser och värmekapacitet TFS 2:a upplagan (Çengel & Turner) 3.6 3.11 TFS 3:e upplagan (Çengel, Turner

Läs mer

Kap 10 ångcykler: processer i 2-fasområdet

Kap 10 ångcykler: processer i 2-fasområdet Med ångcykler menas att arbetsmediet byter fas under cykeln Den vanligaste typen av ångcykler är med vatten som medium. Vatten är billigt, allmänt tillgängligt och har hög ångbildningsentalpi. Elproducerande

Läs mer

Linköpings tekniska högskola Exempeltentamen 8 IEI / Mekanisk värmeteori och strömningslära. Exempeltentamen 8. strömningslära, miniräknare.

Linköpings tekniska högskola Exempeltentamen 8 IEI / Mekanisk värmeteori och strömningslära. Exempeltentamen 8. strömningslära, miniräknare. Linköpings tekniska högskola Exempeltentamen 8 IEI / Mekanisk värmeteori och strömningslära Joakim Wren Exempeltentamen 8 Tillåtna hjälpmedel: Allmänt: Formelsamling i Mekanisk värmeteori och strömningslära,

Läs mer

Om trycket hålls konstant och temperaturen höjs kommer molekylerna till slut att bryta sig ur detta mönster (sublimation eller smältning).

Om trycket hålls konstant och temperaturen höjs kommer molekylerna till slut att bryta sig ur detta mönster (sublimation eller smältning). EGENSKAPER FÖR ENHETLIGA ÄMNEN Enhetligt ämne (eng. pure substance): ett ämne som är homogent och som har enhetlig kemisk sammansättning, även om fasomvandling sker. Vid jämvikt för ett system av ett enhetligt

Läs mer

Energibegrepp och deras relationer, i fysiken och i samhället

Energibegrepp och deras relationer, i fysiken och i samhället Energibegrepp och deras relationer, i fysiken och i samhället Seminarium Karlstad 7 okt 2010 Mats Areskoug Nya ämnesplaner i fysik för gy Syfte: förståelse av fysikens betydelse i samhället olika tillämpningar

Läs mer

Exempel på statistisk fysik Svagt växelverkande partiklar

Exempel på statistisk fysik Svagt växelverkande partiklar Exempel på statistisk fysik Svagt växelverkande partiklar I kapitlet om kinetisk gasteori behandlades en s k ideal gas där man antog att partiklarna inte växelverkade med varandra och dessutom var punktformiga.

Läs mer

------------------------------------------------------------------------------------------------------- Personnummer:

------------------------------------------------------------------------------------------------------- Personnummer: ENERGITEKNIK II 7,5 högskolepoäng Provmoment: Ladokkod: Tentamen ges för: Tentamen 41N05B En2 Namn: -------------------------------------------------------------------------------------------------------

Läs mer

@

@ Kinetisk gasteori F = area tryck Newtons 2:a lag på impulsformen: dp/dt = F, där p=mv Impulsöverföringen till kolven när en molekyl reflekteras i kolvytan A är p=2mv x. De molekyler som når fram till ytan

Läs mer

Idealgasens begränsningar märks bäst vid högt tryck då molekyler växelverkar mera eller går över i vätskeform.

Idealgasens begränsningar märks bäst vid högt tryck då molekyler växelverkar mera eller går över i vätskeform. Van der Waals gas Introduktion Idealgaslagen är praktisk i teorin men i praktiken är inga gaser idealgaser Den lättaste och vanligaste modellen för en reell gas är Van der Waals gas Van der Waals modell

Läs mer

TENTAMEN I TERMODYNAMIK för K2, Kf2 och TM2 (KVM091 och KVM090) 2011-10-18 kl. 08.30-12.30

TENTAMEN I TERMODYNAMIK för K2, Kf2 och TM2 (KVM091 och KVM090) 2011-10-18 kl. 08.30-12.30 CHALMERS 1 (3) Energi och Miljö/Värmeteknik och maskinlära Kemi- och bioteknik/fysikalisk kemi ermodynamik (KVM091/KVM090) ENAMEN I ERMODYNAMIK för K2, Kf2 och M2 (KVM091 och KVM090) 2011-10-18 kl. 08.30-12.30

Läs mer

14. Sambandet mellan C V och C P

14. Sambandet mellan C V och C P 14. Sambandet mellan C V och C P Vi skriver tillståndsekvationen i de alternativa formerna V = V (P, T ) och S = S(T, V ) (1) och beräknar ds och dv genom att dela upp dem i partiella derivator ds = (

Läs mer

Motorer och kylskåp. Repetition: De tre tillstånden. Värmeöverföring. Fysiken bakom motorer och kylskåp - Termodynamik. Värmeöverföring genom ledning

Motorer och kylskåp. Repetition: De tre tillstånden. Värmeöverföring. Fysiken bakom motorer och kylskåp - Termodynamik. Värmeöverföring genom ledning Motorer och kylskåp Repetition: De tre tillstånden Gas Vätska Solid http://www.aircraftbanking.com/ http://sv.wikipedia.org Föreläsning 3/3, 2010 Plasma det fjärde tillståndet McMurry Chemistry, http://wps.prenhall.com

Läs mer

Föreläsning 2 Vädrets makter

Föreläsning 2 Vädrets makter Föreläsning 2 Vädrets makter Föreläsning 2 Hävning Torradiabatiskt temperaturavtagande Hydrostatisk balans Skiktningen i atmosfären Fuktadiabatiskt temperaturavtagande Skiktningskurvor och hävningskurvor

Läs mer

Man har mycket kläder på sig inomhus för att hålla värmen. Kläderna har man oftast tillverkat själv av ylle, linne & skinn (naturmaterial).

Man har mycket kläder på sig inomhus för att hålla värmen. Kläderna har man oftast tillverkat själv av ylle, linne & skinn (naturmaterial). ENERGI Bondefamiljen för ca 200 år sedan (före industrialismen) i februari månad, vid kvällsmålet : Det är kallt & mörkt inne i timmerhuset. Fönstren är täckta av iskristaller. Det brinner i vedspisen

Läs mer

FAFF35 Medicinsk Fysik

FAFF35 Medicinsk Fysik FAFF35 Medicinsk Fysik Lästips för Energilära och termodynamik i Energi- och miljöfysik (), del 1, ina Reistad Fluiders mekanik, K Eriksson Stenström/ Reistad edan finns en lista på innehållet i del 1

Läs mer

TENTAMEN I TERMODYNAMIK för K2, Kf2 och TM2 (KVM091 och KVM090) 2013-01-15 kl. 08.30-12.30

TENTAMEN I TERMODYNAMIK för K2, Kf2 och TM2 (KVM091 och KVM090) 2013-01-15 kl. 08.30-12.30 CHALMERS 1 (5) Energi och Miljö/Värmeteknik och maskinlära Kemi- och bioteknik/fysikalisk kemi ermodynamik (KVM091/KVM090) ENAMEN I ERMODYNAMIK för K2, Kf2 och M2 (KVM091 och KVM090) 2013-01-15 kl. 08.30-12.30

Läs mer

Införa begreppen ström, strömtäthet och resistans Ohms lag Tillämpningar på enkla kretsar Energi och effekt i kretsar

Införa begreppen ström, strömtäthet och resistans Ohms lag Tillämpningar på enkla kretsar Energi och effekt i kretsar Kapitel: 25 Ström, motstånd och emf (Nu lämnar vi elektrostatiken) Visa under vilka villkor det kan finnas E-fält i ledare Införa begreppet emf (electromotoric force) Beskriva laddningars rörelse i ledare

Läs mer

Innehållsförteckning. I. Introduktion och första grundlagen I.1. Överblick och motivation

Innehållsförteckning. I. Introduktion och första grundlagen I.1. Överblick och motivation Innehållsförteckning Notera: denna förteckning uppdateras under kursens lopp, men stora förändringar är inte att vänta. I. Introduktion och första grundlagen I.1. Överblick och motivation I.1.1. Vad behandlar

Läs mer

10. Kinetisk gasteori

10. Kinetisk gasteori 10. Kinetisk gasteori Alla gaser beter sig på liknande sätt. I slutet av 1800 talet utvecklades matematiska sätt att beskriva gaserna, den så kallade kinetiska gasteorin. Den grundar sig på en modell för

Läs mer

ENERGI? Kylskåpet passar precis i rummets dörröppning. Ställ kylskåpet i öppningen

ENERGI? Kylskåpet passar precis i rummets dörröppning. Ställ kylskåpet i öppningen ENERGI? Energi kan varken skapas eller förstöras, kan endast omvandlas till andra energiformer. Betrakta ett välisolerat, tätslutande rum. I rummet står ett kylskåp med kylskåpsdörren öppen. Kylskåpet

Läs mer

MITTHÖGSKOLAN, Härnösand

MITTHÖGSKOLAN, Härnösand MITTHÖGSKOLAN, Härnösand TENTAMEN I TERMODYNAMIK, 5 p (TYPTENTA) Tid: XX DEN XX/XX - XXXX kl Hjälpmedel: 1. Cengel and Boles, Thermodynamics, an engineering appr, McGrawHill 2. Diagram Propertires of water

Läs mer

Allmän kemi. Läromålen. Viktigt i kap 17. Kap 17 Termodynamik. Studenten skall efter att ha genomfört delkurs 1 kunna:

Allmän kemi. Läromålen. Viktigt i kap 17. Kap 17 Termodynamik. Studenten skall efter att ha genomfört delkurs 1 kunna: Allmän kemi Kap 17 Termodynamik Läromålen Studenten skall efter att ha genomfört delkurs 1 kunna: n - använda de termodynamiska begreppen entalpi, entropi och Gibbs fria energi samt redogöra för energiomvandlingar

Läs mer

III. Klassisk termodynamik

III. Klassisk termodynamik III. Klassisk termodynamik Viktiga målsättningar med detta kapitel Känna till och kunna använda termodynamikens II grundlag i differentialform Känna till de övriga termodynamiska potentialerna Veta hur

Läs mer

Kap 5 mass- och energianalys av kontrollvolymer

Kap 5 mass- och energianalys av kontrollvolymer Kapitel 4 handlade om slutna system! Nu: öppna system (): energi och massa kan röra sig över systemgränsen. Exempel: pumpar, munstycken, turbiner, kondensorer mm Konstantflödesmaskiner (steady-flow devices)

Läs mer

David Wessman, Lund, 30 oktober 2014 Statistisk Termodynamik - Kapitel 5. Sammanfattning av Gunnar Ohléns bok Statistisk Termodynamik.

David Wessman, Lund, 30 oktober 2014 Statistisk Termodynamik - Kapitel 5. Sammanfattning av Gunnar Ohléns bok Statistisk Termodynamik. Sammanfattning av Gunnar Ohléns bok Statistisk Termodynamik. 1 Jämviktsvillkor Om vi har ett stort system som består av ett litet system i kontakt med en värmereservoar. Storheter för det lilla systemet

Läs mer

Miljöfysik. Föreläsning 4

Miljöfysik. Föreläsning 4 Miljöfysik Föreläsning 4 Fossilenergi Energianvändning i Sverige och omvärlden Förbränningsmotorn Miljöaspekter på fossila bränslen Att utnyttja solenergi Definitioner Instrålnings vinkelberoende Uppkomst

Läs mer

Räkneövning/Exempel på tentafrågor

Räkneövning/Exempel på tentafrågor Räkneövning/Exempel på tentafrågor Att lösa problem Ni får en formelsamling Huvudsaken är inte att ni kan komma ihåg en viss den utan att ni kan använda den. Det finns vissa frågor som inte kräver att

Läs mer

FUKTIG LUFT. Fuktig luft = torr luft + vatten m = m a + m v Fuktighetsgrad ω anger massan vatten per kg torr luft. ω = m v /m a m = m a (1 + ω)

FUKTIG LUFT. Fuktig luft = torr luft + vatten m = m a + m v Fuktighetsgrad ω anger massan vatten per kg torr luft. ω = m v /m a m = m a (1 + ω) FUKTIG LUFT Fuktig luft = torr luft + vatten m = m a + m v Fuktighetsgrad ω anger massan vatten per kg torr luft Normalt är ω 1 (ω 0.02) ω = m v /m a m = m a (1 + ω) Luftkonditionering, luftbehandling:

Läs mer