LABORATION 2 TERMODYNAMIK BESTÄMNING AV C p /C v

Storlek: px
Starta visningen från sidan:

Download "LABORATION 2 TERMODYNAMIK BESTÄMNING AV C p /C v"

Transkript

1 Fysikum FK Fristående kursprogram Laborationsinstruktion (1 april 2008) LABORATION 2 TERMODYNAMIK BESTÄMNING AV C p /C v Mål Denna laboration är uppdelad i två delar. I den första bestäms C p /C v vid rumstemperatur för de tre gaserna argon, kväve och koldioxid genom att studera en svängningsrörelse orsakad av adiabatiska expansioner och kompressioner av respektive gas. I den andra delen bestäms ångbildningsvärmet för kväve. Du skall ställa samman dina observationer i en individuellt skriven, kortfattad rapport. Presentation av data och databehandlingen skall, så långt som möjligt, ske med hjälp av de metoder som du har fått lära dig i årskurs 1.

2 . 2

3 LABORATION 2: Bestämning av C p /C v 1 1 Allmän teori Värmekapaciteten per mol vid konstant volym, C v, definierar vi som den värmemängd som åtgår per mol för att höja temperaturen 1 K när volymen hålls konstant, dvs C v = 1 N ( Q ) = 1 T v N ( U ) T v (1.1) där N är substansmängden och U inre energin. Värmekapaciteten per mol vid konstant tryck C p definieras på motsvarande sätt C p = 1 N ( Q ) = 1 T p N ( H ) T p (1.2) där H = U + pv är entalpin. C p och C v är temperaturberoende och olika för olika ämnen. Den inre energin växer med temperaturen enligt en formel som kan motiveras med principen om likafördelning av energin mellan olika frihetsgrader U = 1 mnrt + konstant (1.3) 2 där m är antalet frihetsgrader, R den allmänna gaskonstanten 1 och där den konstanta termen beror på temperaturområdet. Härav följer att För en ideal gas är C v = 1 N ( U ) = 1 mr (1.4) T v 2 C p = R + C v = 1 (m + 2)R 2 (1.5) γ = C p /C v = m + 2 m (1.6) Detta kan antas gälla för naturliga gaser när deras tillståndsekvation kan approximeras med ekvationen för en ideal gas: pv = NRT. Inre energin kan delas upp i translations-, rotations- och vibrationsenergi. Med translationsenergin är tre frihetsgrader associerade. Antalet rotationsfrihetsgrader beror på molekylens geometri. För linjära molekyler, dit de tvåatomiga hör, är antalet två, för de övriga molekylerna tre. Antalet vibrationsfrihetsgrader är 2x (x är antalet sätt varmed molekylen kan vibrera). Faktorn 2 beror på att vibrationsenergin kan uppdelas i kinetisk och potentiell energi. Alla molekyler i en gas har translationsenergi. För att det stora flertalet atomer skall rotera krävs att absoluta temperaturen T är mycket större än den karakteristiska rotationstemperaturen θ r = h 2 (I är molekylens tröghetsmoment, k är Boltzmanns konstant och 2Ik h Plancks konstant dividerad med 2π). På samma sätt måste T vara mycket större än den 1 R har värdet 8,314 J/mol K.

4 2 LABORATION 2: Bestämning av C p /C v karakteristiska vibrationstemperaturen θ v = h ω k vibrationsfrihetsgraderna skall bidraga till C v. ( ω 2π är vibrationsfrekvensen) för att För tvåatomiga molekyler erhålls en variation av C v och γ med temperaturen enligt nedanstående schematiska figur (se även diagram 1 (figur 4) på sidan 6 för väte och kväve). C V γ 7 R 2 5 R 2 3 R 2 R R 1, 67R 1, 40R 1, 29R T Figur 1: C v och γ som funktion av absoluta temperaturen T. T Adiabatiska processer i en ideal gas ger möjlighet att bestämma γ. Här gäller p V γ = konstant (1.7) En adiabatisk process är en process utan värmeutbyte med omgivningen. Detta kan i praktiken realiseras med en mycket god värmeisolering eller genom så snabba processer att inget värmeutbyte hinner ske.

5 LABORATION 2: Bestämning av C p /C v 3 2 Bestämning av C p /C v för argon, kväve och koldioxid γ bestäms genom att studera den odämpade svängningen hos en liten PVC-plastcylinder. Cylindern svänger odämpat kring ett jämviktsläge i ett vertikalt precisionsglasrör (1) (se figur 2) med inre diametern 15,95 mm, som med en gummislang (3) sitter fäst på en kolv med ungefär 2 liters volym (4). Mitt på det vertikala glasröret har borrats ett litet hål (2). Genom ständig tillförsel av gas (5) hålls gasen i kolven vid ett litet övertryck. Plastcylindern bringas att svänga kring ett jämviktsläge som sammanfaller med hålet i glasröret. Gasvolymen i kolven och därmed trycket varierar med cylinderns läge i glasröret. På grund av den ständiga svaga tillförseln av gas finns en svag tryckkomponent som överlagras de periodiska tryckvariationerna på grund av cylinderns svängning. När cylindern befinner sig under hålet stiger gastrycket sakta med tiden och när cylindern är ovanför hålet sjunker trycket med tiden på grund av läckning genom hålet. Det är dessa svaga överlagrade tryckvariationer som kompenserar friktionskrafterna och får cylindern att svänga odämpat. De periodiska tryck- och volymvariationerna antas ske adiabatiskt. Figur 2: Försöksanordning för bestämning av γ. Ur en analys av svängningsrörelsen kan ett uttryck för γ härledas. Vi inför följande beteckningar (se figur 3): m = cylinderns massa D = cylinderns diameter p 0 = jämviktstrycket i kolven V 0 = gasvolymen under hålet p = periodiskt övertryck V = periodisk volymändring x = cylinderns utslag från jämviktsläget b = barometerståndet T = svängningstiden Figur 3: Analys av det fysikaliska förloppet.

6 4 LABORATION 2: Bestämning av C p /C v Vid jämvikt gäller mg + πd2 4 b = πd2 4 p 0 Cylinderns rörelse ges av (x räknas positiv nedåt): m d2 x πd2 = mg dt2 4 (p 0 + p) + πd2 4 b = πd2 p (2.8) 4 Ur Poissons ekvation för en adiabat, p V γ = konstant fås med logaritmisk differentiering: Detta ger: p p + γ V V = 0 V ges av (se figur 3): p = γ V p V γ V p 0 V 0 (2.9) Ur (2.8), (2.9) och (2.10) fås nu V = πd2 4 x (2.10) d 2 x dt + 2 ω2 x = 0 med ω 2 = γp 0π 2 D 4 16V 0 m Detta är en harmonisk svängningsrörelse med periodtiden T = 2π/ω. Vi bryter ut γ och erhåller slutligen: där p 0 = b + 4mg/(πD 2 ). 2.1 Förberedande uppgifter γ = 64mV 0 /(p 0 T 2 D 4 ) (2.11) Det är till hjälp att före laborationen ha besvarat dessa frågor. 1. I formel (2.11) är trycket p 0 uttryckt i N/m 2. Under laborationen avläses trycket på en kvicksilverbarometer och således i mm Hg. Vilket samband finns mellan mm Hg och N/m 2? 2. Bestäm relativa felet ( γ/γ) i γ. Varifrån kommer det största bidraget till felet? Är detta bidrag eventuellt dominerande? Gör en uppskattning med hjälp av följande värden från ett experiment med syrgas. m = (1, 130 ± 0, 001) 10 2 kg V 0 = (2, 270 ± 0, 005) 10 3 m 2 D = (1, 595 ± 0, 003) 10 2 m p 0 = (1, 036 ± 0, 001) 10 5 Pa T = (0, 4192 ± 0, 0003) s

7 LABORATION 2: Bestämning av C p /C v 5 3. Vid härledningen av formel (2.11) antogs att processen var adiabatisk, dvs att inget värmeutbyte hinner ske med omgivningen. Däremot ändras gasens temperatur. a) Vilket samband finns mellan volym och temperatur vid en sådan process? b) Hur stor blir temperaturändringen i gasen om kolvens förflyttning orsakar en volymändring på 1% och om gasen är kvävgas vid rumstemperqatur? c) Med vilken gas (Ar, N 2 eller CO 2 ) erhålles den största temperaturändringen? 2.2 Utförande Svängningstiden bestäms för argon, kväve och koldioxid med tre olika massor för varje gas. Massan hos plastcylindern kan varieras genom att olika tunga skruvar skruvas i den. För varje sådan kombination bestäms periodtiden ett tiotal gånger. Lämpligen betäms varje gång tiden för flera svängningar för att minska effekten av tillfälliga störningar. Periodtiden för svängningarna bestäms, med hjälp av en elektronisk tidmätare kopplad till en fotocell som registrerar svängningarna. Cylindern vägs på en elektronisk våg. Lufttrycket mäts med en kvicksilverbarometer. Volymen finns angiven på glaskolven och diametern hos glasröret är D = 1, 595 ± 0, 003 cm. VARNING VAR FÖRSIKTIG MED GASTUBERNA RÖR DEM INTE FÖRÄN DU FÅTT INFORMATION PÅ PLATSEN 2.3 Redogörelsen Redogörelsen skall innehålla mätdata och resultat. Felkalkyl skall göras. Diskutera resultatens överensstämmelse med teorin på sid. 1 2 och eventuella avvikelser.

8 6 LABORATION 2: Bestämning av C p /C v γ = C p /C v * vätgas o kvävgas Temperatur T (K). Figur 4: C p /C v som funktion av temperaturen. Data ur Amer. J. Phys., 32, 700(64).

9 LABORATION 2: Bestämning av C p /C v 7 3 Bestämning av ångbildningsvärmet för kväve 3.1 Mål Experimentet har som mål att ge en ökad förståelse av begreppet latent värme vid fasövergång samt beräkna detta för en viss övergång. Vid gränsen mellan två faser, t.ex. mellan vätska och gas, behöver man tillföra värme för att gå från en fas (här vätska) till en annan (här gas), även om temperaturen hålls konstant. Energin som krävs för att få till stånd fasomvandlingen brukar kallas latent värme (latent heat) och i fallet vätska till ånga, ångbildningsvärme. Ångbildningsvärmet för kväve bestäms genom att tillföra en bestämd energi. Den värmemängd som krävs kommer i det aktuella fallet att tas från en metallbit, varvid denna kyls ned till kvävetemperaturen. Man får då tillfälle att också bekanta sig med begreppet värmekapacitet i en direkt experimentell tillämpning. Som vid alla laborativa inslag gäller förstås även här att tillfälle ges att öva handhavande av experimentell utrustning samt bedömning av den experimentella osäkerheten, dvs felbehandling. 3.2 Teori Vid en första ordningens fasövergång kommer substansens specifika volym att förändras. För att genomföra en sådan fasövergång krävs dessutom tillförsel av en viss energimängd (per massenhet), generellt benämnd latent värme. Just för övergången från vätska till gas (ånga) benämns denna ångbildningsvärmet. Det gäller alltså att på något sätt tillföra värme. I vårt experiment kommer värme att tillföras det flytande kvävet genom att en bit aluminium läggs ner i en behållare som innehåller kvävet. Värmekapacitet c p (J/gram/K) för Aluminium Temperatur T (K) Figur 5: Värmekapacitet för aluminium. Data ur Handbook of Chemistry and Physics 44th Edition. Kurvan anges av funktionen (3.12) i texten. Värme från aluminiumbiten kommer då att genom temperaturskillnaden ledas över till kvävet som befinner sig vid kokpunkten för kväve vid det aktuella lufttrycket. Den överförda värmemängden kommer härvid att förånga en viss kvantitet kväve, som alltså kokar bort. Detta fortgår sedan till dess hela aluminiumbiten antagit samma temperatur som kvävet, dvs då jämvikt råder mellan resterande kväve och aluminiumbiten. Om man nu kan beräkna den energi som aluminiumbiten avgivit och dessutom känner det bortkokade kvävets massa, kan ångbildningsvärmet för kväve beräknas. Vi behöver således mäta det bortkokade kvävets massa samt begyn-

10 8 LABORATION 2: Bestämning av C p /C v nelsetemperatur (=rumstemperaturen) och sluttemperatur (=kokpunkten för flytande kväve vid det aktuella trycket, dvs lufttrycket i rummet) för aluminiumbiten. Vi har fått lära oss att värmekapaciteten för en gas är konstant, oberoende av temperaturen, vid såväl konstant tryck som konstant volym. Hur är det nu med ett fast ämne som vår aluminiumbit? Vid tillräckligt hög temperatur och inom ett begränsat temperaturintervall kan detta se ut att gälla här också, men tyvärr inte över större områden eller vid lägre temperaturer. Vi måste skaffa oss en modell för hur C p beror av T. Experiment har visat att värmekapacitetens (C p ) temperaturberoende följer C p (T) = a + (b 10 3 )T + (c 10 6 )T 2 + d 103 T 2 (3.12) där a, b, c och d är experimentellt bestämda konstanter. Detta samband syns i figur 5. För aluminium har konstanterna bestämts till: a = 0, 303 ± 0, 027 J/g b = 3, 2 ± 0, 2 J/(g K) c = 4, 0 ± 0, 4 J/(g K 2 ) d = 1, 09 ± 0, 09 J/(g K 2 ) Värmeinnehållet eller entalpin (H) är bestämt från värmekapaciteten genom en enkel integration över temperaturområdet där (3.12) gäller. Om rumstemperaturen (t.ex. 298 K) tas som referenstemperatur gäller H T H 298 = T 298 C p dt Entalpin som skall bestämmas i laborationen bestäms enklast genom numerisk integration av funktionen ovan. 3.3 Mätningar En frigolitbägare fylls till hälften med flytande kväve och placeras på en våg som skall ha en känslighet på minst 0,1 g. För att bestämma hur fort kvävet kokar bort i rumstemperatur mäts massan som funktion av tiden i ett antal punkter. Sedan läggs en bit aluminium ner i kvävet och massan hos bägaren med det flytande kvävet och aluminiumbiten mäts som funktion av tiden medan aluminiumbiten kyls ner. Sedan aluminiumbiten antagit flytande kvävets temperatur mäts ytterligare ett antal punkter. Även detta för att bestämma bortkokningshastigheten hos kväve i rumstemperatur. Hela detta förlopp mäts med flygande avläsning av vågens mätvärde och ett tidtagarur som kan stoppas och återstartas utan att tidmätningen avbryts 2. Ur dessa mätningar kan massan av kvävet som kokat bort pga aluminiumbiten beräknas. Mätningarna görs på minst fem aluminiumbitar med olika vikt för att ge statistik till analysen. 2 Vågens utslag ändras långsammare än klockan och klockan kan lämpligen stoppas då vågens display just har slagit om till ett nytt värde. Vikt och tid noteras och klockan kan därefter startas igen.

11 LABORATION 2: Bestämning av C p /C v Tips för analysen Tänk på att bortkokningshastigheten för kvävet i rummet, även utan inverkan av aluminiumbiten, inte är helt konstant utan beroende av arean på bortkokningsytan. Därför kommer hastigheten att variera om kvävets nivå ändras, hur påverkar detta mätningarna? Inom vilket område kan hastigheten anses konstant? Hur beräknas felet på det bortkokade kvävets massa? 3.5 Redovisning Mätvärden med mätfel. Diagram över minst en mätserie med beskrivning av hur det bortkokade kvävets massa bestäms. Jämförelse med litteraturvärdet. Diskussion om felkällor, mätningens utförande och resultaten. Samt som vanligt en kort beskrivning av försöket och av den använda teorin.

BESTÄMNING AV C P /C V FÖR LUFT

BESTÄMNING AV C P /C V FÖR LUFT FYSIK Institutionen för ingenjörsvetenska, fysik och matematik Se00 BESTÄMNING A C P /C FÖR LUFT En av de viktigare storheterna i termodynamiken är värmekaacitetskvoten γ, vilken är kvoten mellan den isobar

Läs mer

Termodynamik Föreläsning 4

Termodynamik Föreläsning 4 Termodynamik Föreläsning 4 Ideala Gaser & Värmekapacitet Jens Fjelstad 2010 09 08 1 / 14 Innehåll Ideala gaser och värmekapacitet TFS 2:a upplagan (Çengel & Turner) 3.6 3.11 TFS 3:e upplagan (Çengel, Turner

Läs mer

Arbetet beror på vägen

Arbetet beror på vägen VOLYMÄNDRINGSARBETE Volymändringsarbete = arbete p.g.a. normalkrafter mot ytor (tryck) vid volymändring. Beteckning: W b (eng. boundary work); per massenhet w b. δw b = F ds = P b Ads = P b dv Exempel:

Läs mer

Kinetisk Gasteori. Daniel Johansson January 17, 2016

Kinetisk Gasteori. Daniel Johansson January 17, 2016 Kinetisk Gasteori Daniel Johansson January 17, 2016 I kursen har vi under två lektioner diskuterat kinetisk gasteori. I princip allt som sades på dessa lektioner sammanfattas i texten nedan. 1 Lektion

Läs mer

Övningsuppgifter termodynamik ,0 kg H 2 O av 40 C skall värmas till 100 C. Beräkna erforderlig värmemängd.

Övningsuppgifter termodynamik ,0 kg H 2 O av 40 C skall värmas till 100 C. Beräkna erforderlig värmemängd. Övningsuppgifter termodynamik 1 1. 10,0 kg H 2 O av 40 C skall värmas till 100 C. Beräkna erforderlig värmemängd. Svar: Q = 2512 2516 kj beroende på metod 2. 5,0 kg H 2 O av 40 C skall värmas till 200

Läs mer

Kap 4 energianalys av slutna system

Kap 4 energianalys av slutna system Slutet system: energi men ej massa kan röra sig över systemgränsen. Exempel: kolvmotor med stängda ventiler 1 Volymändringsarbete (boundary work) Exempel: arbete med kolv W b = Fds = PAds = PdV 2 W b =

Läs mer

@

@ Kinetisk gasteori F = area tryck Newtons 2:a lag på impulsformen: dp/dt = F, där p=mv Impulsöverföringen till kolven när en molekyl reflekteras i kolvytan A är p=2mv x. De molekyler som når fram till ytan

Läs mer

Wilma kommer ut från sitt luftkonditionerade hotellrum bildas genast kondens (imma) på hennes glasögon. Uppskatta

Wilma kommer ut från sitt luftkonditionerade hotellrum bildas genast kondens (imma) på hennes glasögon. Uppskatta TENTAMEN I FYSIK FÖR V1, 18 AUGUSTI 2011 Skrivtid: 14.00-19.00 Hjälpmedel: Formelblad och räknare. Börja varje ny uppgift på nytt blad. Lösningarna ska vara väl motiverade och försedda med svar. Kladdblad

Läs mer

Lite kinetisk gasteori

Lite kinetisk gasteori Tryck och energi i en ideal gas Lite kinetisk gasteori Statistisk metod att beskriva en ideal gas. En enkel teoretisk modell som bygger på följande antaganden: Varje molekyl är en fri partikel. Varje molekyl

Läs mer

KVÄVETS ÅNGBILDNINGSVÄRME

KVÄVETS ÅNGBILDNINGSVÄRME LABORATION (2B1111) KVÄVETS ÅNGBILDNINGSVÄRME Thomas Claesson KTH, IMIT, Materialfysik E-post: tcl@kth.se 060321/tc MÅLSÄTTNING 1. att bestämma ångbildningsvärmet, ångbildningsentalpin, experimentellt

Läs mer

Temperatur T 1K (Kelvin)

Temperatur T 1K (Kelvin) Temperatur T 1K (Kelvin) Makroskopiskt: mäts med termometer (t.ex. volymutvidgning av vätska) Mikroskopiskt: molekylers genomsnittliga kinetiska energi Temperaturskalor Celsius 1 o C: vattens fryspunkt

Läs mer

Tentamen i Kemisk Termodynamik 2011-01-19 kl 13-18

Tentamen i Kemisk Termodynamik 2011-01-19 kl 13-18 Tentamen i Kemisk Termodynamik 2011-01-19 kl 13-18 Hjälpmedel: Räknedosa, BETA och Formelsamling för kurserna i kemi vid KTH. Endast en uppgift per blad! Skriv namn och personnummer på varje blad! Alla

Läs mer

Fysikalisk kemi KEM040. Clausius-Clapeyronekvationen Bestämning av ångtryck och ångbildningsentalpi för en ren vätska (Lab2)

Fysikalisk kemi KEM040. Clausius-Clapeyronekvationen Bestämning av ångtryck och ångbildningsentalpi för en ren vätska (Lab2) GÖTEBORGS UNIVERSITET INSTITUTIONEN FÖR KEMI Fysikalisk kemi KEM040 Laboration i fysikalisk kemi Clausius-Clapeyronekvationen Bestämning av ångtryck och ångbildningsentalpi för en ren vätska (Lab2) ifylls

Läs mer

Idealgasens begränsningar märks bäst vid högt tryck då molekyler växelverkar mera eller går över i vätskeform.

Idealgasens begränsningar märks bäst vid högt tryck då molekyler växelverkar mera eller går över i vätskeform. Van der Waals gas Introduktion Idealgaslagen är praktisk i teorin men i praktiken är inga gaser idealgaser Den lättaste och vanligaste modellen för en reell gas är Van der Waals gas Van der Waals modell

Läs mer

Linnéuniversitetet Institutionen för fysik och elektroteknik

Linnéuniversitetet Institutionen för fysik och elektroteknik Linnéuniversitetet Institutionen för fysik och elektroteknik Ht2015 Program: Naturvetenskapligt basår Kurs: Fysik Bas 1 delkurs 1 Laborationsinstruktion 1 Densitet Namn:... Lärare sign. :. Syfte: Träna

Läs mer

Om trycket hålls konstant och temperaturen höjs kommer molekylerna till slut att bryta sig ur detta mönster (sublimation eller smältning).

Om trycket hålls konstant och temperaturen höjs kommer molekylerna till slut att bryta sig ur detta mönster (sublimation eller smältning). EGENSKAPER FÖR ENHETLIGA ÄMNEN Enhetligt ämne (eng. pure substance): ett ämne som är homogent och som har enhetlig kemisk sammansättning, även om fasomvandling sker. Vid jämvikt för ett system av ett enhetligt

Läs mer

EGENSKAPER FÖR ENHETLIGA ÄMNEN

EGENSKAPER FÖR ENHETLIGA ÄMNEN EGENSKAPER FÖR ENHETLIGA ÄMNEN Enhetligt ämne (eng. pure substance): ett ämne som är homogent och som har enhetlig kemisk sammansättning, även om fasomvandling sker. Vid jämvikt för ett system av ett enhetligt

Läs mer

Repetition F4. Lunds universitet / Naturvetenskapliga fakulteten / Kemiska institutionen / KEMA00

Repetition F4. Lunds universitet / Naturvetenskapliga fakulteten / Kemiska institutionen / KEMA00 Repetition F4 VSEPR-modellen elektronarrangemang och geometrisk form Polära (dipoler) och opolära molekyler Valensbindningsteori σ-binding och π-bindning hybridisering Molekylorbitalteori F6 Gaser Materien

Läs mer

Tentamen i Termodynamik och Statistisk fysik för F3(FTF140)

Tentamen i Termodynamik och Statistisk fysik för F3(FTF140) Chalmers Tekniska Högskola Institutionen för Teknisk Fysik Mats Granath Tentamen i Termodynamik och Statistisk fysik för F3(FTF40) Tid och plats: Tisdag 8/8 009, kl. 4.00-6.00 i V-huset. Examinator: Mats

Läs mer

Linköpings tekniska högskola Exempeltentamen 7 IEI / Mekanisk värmeteori och strömningslära. Exempeltentamen 7. strömningslära, miniräknare.

Linköpings tekniska högskola Exempeltentamen 7 IEI / Mekanisk värmeteori och strömningslära. Exempeltentamen 7. strömningslära, miniräknare. Linköpings tekniska högskola Exempeltentamen 7 IEI / Mekanisk värmeteori och strömningslära Joakim Wren Exempeltentamen 7 Tillåtna hjälpmedel: Allmänt: Formelsamling i Mekanisk värmeteori och strömningslära,

Läs mer

4 rörelsemängd. en modell för gaser. Innehåll

4 rörelsemängd. en modell för gaser. Innehåll 4 rörelsemängd. en modell för gaser. Innehåll 8 Allmänna gaslagen 4: 9 Trycket i en ideal gas 4:3 10 Gaskinetisk tolkning av temperaturen 4:6 Svar till kontrolluppgift 4:7 rörelsemängd 4:1 8 Allmänna gaslagen

Läs mer

Tentamen i FTF140 Termodynamik och statistisk mekanik för F3

Tentamen i FTF140 Termodynamik och statistisk mekanik för F3 Chalmers Institutionen för Teknisk Fysik Göran Wahnström Tentamen i FTF14 Termodynamik och statistisk mekanik för F3 Tid och plats: Onsdag 15 jan 14, kl 8.3-13.3 i Maskin -salar. Hjälpmedel: Physics Handbook,

Läs mer

U = W + Q (1) Formeln (1) kan även uttryckas differentiells, d v s om man betraktar mycket liten tillförsel av energi: du = dq + dw (2)

U = W + Q (1) Formeln (1) kan även uttryckas differentiells, d v s om man betraktar mycket liten tillförsel av energi: du = dq + dw (2) Inre energi Begreppet energi är sannerligen ingen enkel sak att utreda. Den går helt enkelt inte att definiera med några få ord då den förekommer i så många olika former. Man talar om elenergi, rörelseenergi,

Läs mer

Omtentamen i teknisk termodynamik (1FA527) för F3,

Omtentamen i teknisk termodynamik (1FA527) för F3, Omtentamen i teknisk termodynamik (1FA527) för F3, 2012 04 13 Tillåtna hjälpmedel: Cengel & Boles: Thermodynamics (eller annan lärobok i termodynamik), ångtabeller, Physics Handbook, miniräknare. Anvisningar:

Läs mer

SVÄNGNINGSTIDEN FÖR EN PENDEL

SVÄNGNINGSTIDEN FÖR EN PENDEL Institutionen för fysik 2012-05-21 Umeå universitet SVÄNGNINGSTIDEN FÖR EN PENDEL SAMMANFATTNING Ändamålet med experimentet är att undersöka den matematiska modellen för en fysikalisk pendel. Vi har mätt

Läs mer

MEKANIK LABORATION 2 KOPPLADE SVÄNGNINGAR. FY2010 ÅK2 Vårterminen 2007

MEKANIK LABORATION 2 KOPPLADE SVÄNGNINGAR. FY2010 ÅK2 Vårterminen 2007 I T E T U N I V E R S + T O C K H O L M S S FYSIKUM Stockholms universitet Fysikum 3 april 007 MEKANIK LABORATION KOPPLADE SVÄNGNINGAR FY010 ÅK Vårterminen 007 Mål Laborationen avser att ge allmän insikt

Läs mer

Linköpings tekniska högskola IEI / Mekanisk värmeteori och strömningslära. Exempeltentamen 8. strömningslära, miniräknare.

Linköpings tekniska högskola IEI / Mekanisk värmeteori och strömningslära. Exempeltentamen 8. strömningslära, miniräknare. Linköpings tekniska högskola IEI / Mekanisk värmeteori och strömningslära Tentamen Joakim Wren Exempeltentamen 8 Tillåtna hjälpmedel: Allmänt: Formelsamling i Mekanisk värmeteori och strömningslära, miniräknare.

Läs mer

Enligt termodynamiken svarar differensen av idealgasers molära värmekapacitet mot den allmänna gaskonstanten R

Enligt termodynamiken svarar differensen av idealgasers molära värmekapacitet mot den allmänna gaskonstanten R ADIABATKONSTANTEN 1 Inledning Med ett ämnes specifika värmekapacitet c avses den mängd värme per massenhet som krävs för att värma upp ämnet. För ämnen i fast eller flytande form beror den specifika värmekapacitetet

Läs mer

Tentamen i Termodynamik och Statistisk fysik för F3(FTF140)

Tentamen i Termodynamik och Statistisk fysik för F3(FTF140) Chalmers Tekniska Högskola Institutionen för Teknisk Fysik Mats Granath Tentamen i Termodynamik och Statistisk fysik för F3(FTF14) Tid och plats: Tisdag 13/1 9, kl. 8.3-1.3 i V-huset. Examinator: Mats

Läs mer

Homogen gasjämvikt: FYSIKALISK KEMI. Laboration 2. Dissociation av dikvävetetraoxid. N2O4(g) 2 NO2(g)

Homogen gasjämvikt: FYSIKALISK KEMI. Laboration 2. Dissociation av dikvävetetraoxid. N2O4(g) 2 NO2(g) Linköpings universitet 2013-10-03 IFM / Kemi Fysikalisk kemi Termodynamik FYSIKALISK KEMI Laboration 2 Homogen gasjämvikt: Dissociation av dikvävetetraoxid N2O4(g) 2 NO2(g) Linköpings Universitet Kemi

Läs mer

Tentamen i FTF140 Termodynamik och statistisk fysik för F3

Tentamen i FTF140 Termodynamik och statistisk fysik för F3 Chalmers Institutionen för Teknisk Fysik Göran Wahnström Tentamen i FTF4 Termodynamik och statistisk fysik för F3 Tid och plats: Onsdagen den /, kl 4.-8. i Maskin -salar. Hjälpmedel: Physics Handbook,

Läs mer

Tentamen i termodynamik. 7,5 högskolepoäng. Namn: (Ifylles av student) Personnummer: (Ifylles av student)

Tentamen i termodynamik. 7,5 högskolepoäng. Namn: (Ifylles av student) Personnummer: (Ifylles av student) Tentamen i termodynamik 7,5 högskolepoäng Provmoment: Ladokkod: Tentamen ges för: Ten01 TT051A Årskurs 1 Namn: (Ifylles av student) Personnummer: (Ifylles av student) Tentamensdatum: Tid: 2012-06-01 9.00-13.00

Läs mer

Kinetik. Föreläsning 2

Kinetik. Föreläsning 2 Kinetik Föreläsning 2 Reaktioner som går mot ett jämviktsläge ALLA reaktioner går mot jämvikt, här avses att vid jämvikt finns mätbara mängder av alla i summaformeln ingående ämnen. Exempel: Reaktion i

Läs mer

4. Kemisk jämvikt när motsatta reaktioner balanserar varandra

4. Kemisk jämvikt när motsatta reaktioner balanserar varandra 4. Kemisk jämvikt när motsatta reaktioner balanserar varandra 4.1. Skriv fullständiga formler för följande reaktioner som kan gå i båda riktningarna (alla ämnen är i gasform): a) Kolmonoxid + kvävedioxid

Läs mer

Termodynamik FL3. Fasomvandlingsprocesser. FASER hos ENHETLIGA ÄMNEN. FASEGENSKAPER hos ENHETLIGA ÄMNEN. Exempel: Koka vatten under konstant tryck:

Termodynamik FL3. Fasomvandlingsprocesser. FASER hos ENHETLIGA ÄMNEN. FASEGENSKAPER hos ENHETLIGA ÄMNEN. Exempel: Koka vatten under konstant tryck: Termodynamik FL3 FASEGENSKAPER hos ENHETLIGA ÄMNEN FASER hos ENHETLIGA ÄMNEN Enhetligt ämne: ämne med välbestämd och enhetlig kemisk sammansättning. (även luft och vätske-gasblandningar kan betraktas som

Läs mer

LABORATION 3 FYSIKLINJEN AK1. Denna laboration gar ut pa att studera sambandet mellan tryck och temperatur,

LABORATION 3 FYSIKLINJEN AK1. Denna laboration gar ut pa att studera sambandet mellan tryck och temperatur, I I V E R S U N + C K H O L M S FYSIKUM Stockholms universitet EXPERIMENTELLA METODER LABORATION 3 GASTERMOMETERN FYSIKLINJEN AK1 Varterminen 2001 1 Mal. Denna laboration gar ut pa att studera sambandet

Läs mer

6. Värme, värmekapacitet, specifik värmekapacitet (s. 93 105)

6. Värme, värmekapacitet, specifik värmekapacitet (s. 93 105) 6. Värme, värmekapacitet, specifik värmekapacitet (s. 93 105) Termodynamikens nollte huvudsats säger att temperaturskillnader utjämnas i isolerade system. Med andra ord strävar system efter termisk jämvikt

Läs mer

Tentamen i Termodynamik och Statistisk fysik för F3(FTF140)

Tentamen i Termodynamik och Statistisk fysik för F3(FTF140) Chalmers Tekniska Högskola Institutionen för Teknisk Fysik Mats Granath Tentamen i Termodynamik och Statistisk fysik för F(FTF40) Tid och plats: Torsdag /8 008, kl. 4.00-8.00 i V-huset. Examinator: Mats

Läs mer

Kap 3 egenskaper hos rena ämnen

Kap 3 egenskaper hos rena ämnen Rena ämnen/substanser Kap 3 egenskaper hos rena ämnen Har fix kemisk sammansättning! Exempel: N 2, luft Även en fasblandning av ett rent ämne är ett rent ämne! Blandningar av flera substanser (t.ex. olja

Läs mer

Räkneövning 2 hösten 2014

Räkneövning 2 hösten 2014 Termofysikens Grunder Räkneövning 2 hösten 2014 Assistent: Christoffer Fridlund 22.9.2014 1 1. Brinnande processer. Moderna datorers funktion baserar sig på kiselprocessorer. Anta att en modern processor

Läs mer

Jämviktsuppgifter. 2. Kolmonoxid och vattenånga bildar koldioxid och väte enligt följande reaktionsformel:

Jämviktsuppgifter. 2. Kolmonoxid och vattenånga bildar koldioxid och väte enligt följande reaktionsformel: Jämviktsuppgifter Litterarum radices amarae, fructus dulces 1. Vid upphettning sönderdelas etan till eten och väte. Vid en viss temperatur har följande jämvikt ställt in sig i ett slutet kärl. C 2 H 6

Läs mer

7. Inre energi, termodynamikens huvudsatser

7. Inre energi, termodynamikens huvudsatser 7. Inre energi, termodynamikens huvudsatser Sedan 1800 talet har man forskat i hur energi kan överföras och omvandlas så effektivt som möjligt. Denna forskning har resulterat i ett antal begrepp som bör

Läs mer

Linköpings tekniska högskola Exempeltentamen 6 IEI / Mekanisk värmeteori och strömningslära. Exempeltentamen 6. strömningslära, miniräknare.

Linköpings tekniska högskola Exempeltentamen 6 IEI / Mekanisk värmeteori och strömningslära. Exempeltentamen 6. strömningslära, miniräknare. Linköpings tekniska högskola Exempeltentamen 6 IEI / Mekanisk värmeteori och strömningslära Joakim Wren Exempeltentamen 6 Tillåtna hjälpmedel: Allmänt: Formelsamling i Mekanisk värmeteori och strömningslära,

Läs mer

WALLENBERGS FYSIKPRIS

WALLENBERGS FYSIKPRIS WALLENBERGS FYSIKPRIS KVALIFICERINGSTÄVLING 23 januari 2014 SVENSKA FYSIKERSAMFUNDET LÖSNINGSFÖRSLAG 1. (a) När bilens fart är 50 km/h är rörelseenergin W k ( ) 2 1,5 10 3 50 3,6 2 J 145 10 3 J. Om verkningsgraden

Läs mer

Termodynamik Av grekiska θηρµǫ = värme och δυναµiς = kraft

Termodynamik Av grekiska θηρµǫ = värme och δυναµiς = kraft Termodynamik Av grekiska θηρµǫ = värme och δυναµiς = kraft Termodynamik = läran om värmets natur och dess omvandling till andra energiformer (Nationalencyklopedin, band 18, Bra Böcker, Höganäs, 1995) 1

Läs mer

Linköpings tekniska högskola Exempeltentamen 5 IEI / Mekanisk värmeteori och strömningslära. Exempeltentamen 5. strömningslära, miniräknare.

Linköpings tekniska högskola Exempeltentamen 5 IEI / Mekanisk värmeteori och strömningslära. Exempeltentamen 5. strömningslära, miniräknare. Linköpings tekniska högskola Exempeltentamen 5 IEI / Mekanisk värmeteori och strömningslära Joakim Wren Exempeltentamen 5 Tillåtna hjälpmedel: Allmänt: Formelsamling i Mekanisk värmeteori och strömningslära,

Läs mer

ENERGI? Kylskåpet passar precis i rummets dörröppning. Ställ kylskåpet i öppningen

ENERGI? Kylskåpet passar precis i rummets dörröppning. Ställ kylskåpet i öppningen ENERGI? Energi kan varken skapas eller förstöras, kan endast omvandlas till andra energiformer. Betrakta ett välisolerat, tätslutande rum. I rummet står ett kylskåp med kylskåpsdörren öppen. Kylskåpet

Läs mer

Vetenskaplig Metod och Statistik. Maja Llena Garde Fysikum, SU Vetenskapens Hus

Vetenskaplig Metod och Statistik. Maja Llena Garde Fysikum, SU Vetenskapens Hus Vetenskaplig Metod och Statistik Maja Llena Garde Fysikum, SU Vetenskapens Hus 2010 10 20 Innehåll Hur ska man lägga upp ett experiment? Hur hanterar man felkällor? Hur ska man tolka resultatet från experimentet?

Läs mer

Kap 7 entropi. Ett medium som värms får ökande entropi Ett medium som kyls förlorar entropi

Kap 7 entropi. Ett medium som värms får ökande entropi Ett medium som kyls förlorar entropi Entropi Är inte så enkelt Vi kan se på det på olika sätt (mikroskopiskt, makroskopiskt, utifrån teknisk design). Det intressanta är förändringen i entropi ΔS. Men det finns en nollpunkt för entropi termodynamikens

Läs mer

Fysikaliska modeller. Skapa modeller av en fysikalisk verklighet med hjälp av experiment. Peter Andersson IFM fysik, adjunkt

Fysikaliska modeller. Skapa modeller av en fysikalisk verklighet med hjälp av experiment. Peter Andersson IFM fysik, adjunkt Fysikaliska modeller Skapa modeller av en fysikalisk verklighet med hjälp av experiment Peter Andersson IFM fysik, adjunkt På denna föreläsning Vad är en fysikalisk modell? Linjärisering med hjälp av logaritmer

Läs mer

Laboration Svängningar

Laboration Svängningar Laboration Svängningar Laboranter: Fredrik Olsen Roger Persson Utförande datum: 2007-11-22 Inlämningsdatum: 2007-11-29 Fjäder Högtalarmembran Stativ Fjäder Ultraljudssensor Försökets avsikt Syftet med

Läs mer

T / C +17. c) När man andas utomhus en kall dag ser man sin andedräkt som rök ur munnen. Vad beror det på?

T / C +17. c) När man andas utomhus en kall dag ser man sin andedräkt som rök ur munnen. Vad beror det på? TENTAMEN I FYSIK FÖR V1, 11 JANUARI 2011 Skrivtid: 08.00-13.00 Hjälpmedel: Formelblad och räknare. Börja varje ny uppgift på nytt blad. Lösningarna ska vara väl motiverade och försedda med svar. Kladdblad

Läs mer

Inlupp 3 utgörs av i Bedford-Fowler med obetydligt ändrade data. B

Inlupp 3 utgörs av i Bedford-Fowler med obetydligt ändrade data. B Inlupp Sommarkurs 20 Mekanik II En trissa (ett svänghjul) har radie R 0.6 m och är upphängd i en horisontell friktionsfri axel genom masscentrum.. Ett snöre lindas på trissans utsida och en konstant kraft

Läs mer

Repetition. Termodynamik handlar om energiomvandlingar

Repetition. Termodynamik handlar om energiomvandlingar Repetition Termodynamik handlar om energiomvandlingar Termodynamikens första huvudsats: (Energiprincipen) Energi kan inte skapas och inte förstöras bara omvandlas från en form till en annan!! Termodynamikens

Läs mer

Termodynamik FL 2 ENERGIÖVERFÖRING VÄRME. Värme Arbete Massa (endast öppna system)

Termodynamik FL 2 ENERGIÖVERFÖRING VÄRME. Värme Arbete Massa (endast öppna system) Termodynamik FL 2 ENERGIÖVERFÖRING, VÄRME, ARBETE, TERMODYNAMIKENS 1:A HUVUDSATS ENERGIBALANS FÖR SLUTNA SYSTEM ENERGIÖVERFÖRING Värme Arbete Massa (endast öppna system) Energiöverföring i ett slutet system

Läs mer

Experiment Swedish (Sweden) Studsande kulor - En modell för fasövergångar och instabiliteter

Experiment Swedish (Sweden) Studsande kulor - En modell för fasövergångar och instabiliteter Q2-1 Studsande kulor - En modell för fasövergångar och instabiliteter (10 poäng) Läs de allmänna anvisningarna i det separata kuvertet innan du börjar. Inledning Många ämnen, exempelvis vatten, kan förekomma

Läs mer

Kemisk jämvikt. Kap 3

Kemisk jämvikt. Kap 3 Kemisk jämvikt Kap 3 En reaktionsformel säger vilka ämnen som reagerar vilka som bildas samt förhållandena mellan ämnena En reaktionsformel säger inte hur mycket som reagerar/bildas Ingen reaktion ger

Läs mer

FUKTIG LUFT. Fuktig luft = torr luft + vatten m = m a + m v Fuktighetsgrad ω anger massan vatten per kg torr luft. ω = m v /m a m = m a (1 + ω)

FUKTIG LUFT. Fuktig luft = torr luft + vatten m = m a + m v Fuktighetsgrad ω anger massan vatten per kg torr luft. ω = m v /m a m = m a (1 + ω) FUKTIG LUFT Fuktig luft = torr luft + vatten m = m a + m v Fuktighetsgrad ω anger massan vatten per kg torr luft Normalt är ω 1 (ω 0.02) ω = m v /m a m = m a (1 + ω) Luftkonditionering, luftbehandling:

Läs mer

TENTAPLUGG.NU AV STUDENTER FÖR STUDENTER. Kursnamn Fysik 1. Datum LP Laboration Balkböjning. Kursexaminator. Betygsgränser.

TENTAPLUGG.NU AV STUDENTER FÖR STUDENTER. Kursnamn Fysik 1. Datum LP Laboration Balkböjning. Kursexaminator. Betygsgränser. TENTAPLUGG.NU AV STUDENTER FÖR STUDENTER Kurskod F0004T Kursnamn Fysik 1 Datum LP2 10-11 Material Laboration Balkböjning Kursexaminator Betygsgränser Tentamenspoäng Övrig kommentar Sammanfattning Denna

Läs mer

LABKOMPENDIUM. TFYA76 Mekanik

LABKOMPENDIUM. TFYA76 Mekanik Linköpings universitet IFM, Institutionen för Fysik, Kemi och Biologi Rev. 2014-08-27 LABKOMPENDIUM TFYA76 Mekanik INNEHÅLL: LAB 1: RÖRELSE. 3 Uppgift 1 3 Uppgift 2 5 LAB 2: STÖT 6 2 LAB 1: RÖRELSE Målsättning

Läs mer

Fysikaliska modeller

Fysikaliska modeller Fysikaliska modeller Olika syften med fysiken Grundforskarens syn Finna förklaringar på skeenden i naturen Ställa upp lagar för fysikaliska skeenden Kritiskt granska uppställda lagar Kontrollera uppställda

Läs mer

Föreläsning 12: Ideal gas i klassiska gränsen med inre frihetsgrader, ekvipartitionsprincipen

Föreläsning 12: Ideal gas i klassiska gränsen med inre frihetsgrader, ekvipartitionsprincipen Föreläsning 12: Ideal gas i klassiska gränsen med frihetsgrader, ekvipartitionsprincipen April 26, 2013, KoK kap. 6 Centrala ekvationer i statistisk mekanik Mikrokanonisk ensemble (U,,N konst):p s = 1/g,

Läs mer

Gastekniska apparater inom vården. Jan Carlfjord medicinteknisk ingenjör MT/CMIT 2016-03-16

Gastekniska apparater inom vården. Jan Carlfjord medicinteknisk ingenjör MT/CMIT 2016-03-16 Gastekniska apparater inom vården En översikt med avseende på säkerhet i kursen ETE034 Jan Carlfjord medicinteknisk ingenjör MT/CMIT 2016-03-16 Sjukhusmiljö? Kunskap = Säkerhet Gruppering av gaser efter

Läs mer

Vetenskaplig metod och Statistik

Vetenskaplig metod och Statistik Vetenskaplig metod och Statistik Innehåll Hur ska man lägga upp ett experiment? Hur hanterar man felkällor? Hur ska man tolka resultatet från experimentet? Experimentlogg Att fundera på Experiment NE:

Läs mer

1. INLEDNING 2. TEORI. Arbete TD3 Temperaturberoendet för en vätskas ångtryck

1. INLEDNING 2. TEORI. Arbete TD3 Temperaturberoendet för en vätskas ångtryck Arbete TD3 Temperaturberoendet för en vätskas ångtryck 1. INLEDNING En vätskas ångtryck växer då vätskan värms upp och allt fler molekyler får en tillräckligt stor mängd kinetisk energi för att lösgöra

Läs mer

Linköpings tekniska högskola Exempeltentamen 2 IKP/Mekaniksystem Mekanisk värmeteori och strömningslära. Exempeltentamen 2

Linköpings tekniska högskola Exempeltentamen 2 IKP/Mekaniksystem Mekanisk värmeteori och strömningslära. Exempeltentamen 2 Exempeltentamen 2 (OBS! Uppgifterna nedan gavs innan kursen delvis bytte innehåll och omfattning. Vissa uppgifter som inte längre är aktuella har därför tagits bort, vilket medför att poängsumman är

Läs mer

Bestämning av hastighetskonstant för reaktionen mellan väteperoxid och jodidjon

Bestämning av hastighetskonstant för reaktionen mellan väteperoxid och jodidjon Bestämning av hastighetskonstant för reaktionen mellan väteperoxid och jodidjon Jesper Hagberg Simon Pedersen 28 november 2011 Chalmers Tekniska Högskola Institutionen för Kemi och Bioteknik Fysikalisk

Läs mer

Lösningar till tentamen i Kemisk termodynamik

Lösningar till tentamen i Kemisk termodynamik Lösningar till tentamen i Kemisk termodynamik 2012-05-23 1. a Molekylerna i en ideal gas påverkar ej varandra, medan vi har ungefär samma växelverkningar mellan de olika molekylerna i en ideal blandning.

Läs mer

Tentamen i teknisk termodynamik (1FA527)

Tentamen i teknisk termodynamik (1FA527) Tentamen i teknisk termodynamik (1FA527) 2016-08-24 Tillåtna hjälpmedel: Cengel & Boles: Thermodynamics (eller annan lärobok i termodynamik), ångtabeller, Physics Handbook, Mathematics Handbook, miniräknare

Läs mer

GÖTEBORGS UNIVERSITET Institutionen för fysik LÖSNINGAR TILL TENTAMEN I MEKANIK B För FYP100, Fysikprogrammet termin 2

GÖTEBORGS UNIVERSITET Institutionen för fysik LÖSNINGAR TILL TENTAMEN I MEKANIK B För FYP100, Fysikprogrammet termin 2 GÖTEBORGS UNIVERSITET Institutionen för fysik LÖSNINGAR TILL TENTAMEN I MEKANIK B För FYP100, Fysikprogrammet termin Tid: Plats: Ansvarig: Hjälpmedel: Tisdag juni 009, kl 8 30 13 30 V-huset Lennart Sjögren,

Läs mer

Kundts rör - ljudhastigheten i luft

Kundts rör - ljudhastigheten i luft Kundts rör - ljudhastigheten i luft Laboration 4, FyL VT00 Sten Hellman FyL 3 00-03-1 Laborationen utförd 00-03-0 i par med Sune Svensson Assisten: Jörgen Sjölin 1. Inledning Syftet med försöket är att

Läs mer

Vätskors volymökning

Vätskors volymökning Värmelära Värme Värme är rörelse hos atomer och molekyler. Ju varmare ett föremål är desto kraftigare är atomernas eller molekylernas rörelse (tar mer utrymme). Fast Flytande Gas Atomerna har bestämda

Läs mer

KINETISK TEORI och Boltzmannekvationen

KINETISK TEORI och Boltzmannekvationen ) KINETISK TEORI och Boltzmannekvationen En gas består av myriader av molekyler... En gas består av molekyler, och det som skiljer en gas från en vätska eller från en fast kropp, är att molekylerna för

Läs mer

10. Kinetisk gasteori

10. Kinetisk gasteori 10. Kinetisk gasteori Alla gaser beter sig på liknande sätt. I slutet av 1800 talet utvecklades matematiska sätt att beskriva gaserna, den så kallade kinetiska gasteorin. Den grundar sig på en modell för

Läs mer

En pendels svängningstid

En pendels svängningstid Använd denna exempelrapport som mall för din rapport. Mer detaljer hittar du i Lathund för rapportskrivning av Merkel, Andersson, Lundquist och Önnegren. Notera att denna exempelrapport beskriver ett mycket

Läs mer

Föreläsning 2 Vädrets makter

Föreläsning 2 Vädrets makter Föreläsning 2 Vädrets makter Föreläsning 2 Hävning Torradiabatiskt temperaturavtagande Hydrostatisk balans Skiktningen i atmosfären Fuktadiabatiskt temperaturavtagande Skiktningskurvor och hävningskurvor

Läs mer

LABORATION 2 UPPTÄCK ETT SAMBAND

LABORATION 2 UPPTÄCK ETT SAMBAND Fysikum FK2002 - Fysikexperiment FK2004 - Exp. fysik för lärare Laborationsinstruktion (28 september 2010) LABORATION 2 UPPTÄCK ETT SAMBAND TÖMNING Mål Idenhärlaborationenskalldubörjamedattställauppenhypotes

Läs mer

Tentamen i FTF140 Termodynamik och statistisk fysik för F3

Tentamen i FTF140 Termodynamik och statistisk fysik för F3 Chalmers Institutionen för Teknisk Fysik Göran Wahnström Tentamen i FTF4 Termodynamik och statistisk fysik för F3 Tid och plats: Tisdag aug, kl 8.3-.3 i Väg och vatten -salar. Hjälpmedel: Physics Handbook,

Läs mer

VI. Reella gaser. Viktiga målsättningar med detta kapitel. VI.1. Reella gaser

VI. Reella gaser. Viktiga målsättningar med detta kapitel. VI.1. Reella gaser I. Reella gaser iktiga målsättningar med detta kapitel eta vad virialutvecklingen och virialkoefficienterna är Kunna beräkna första termen i konfigurationsintegralen Känna till van der Waal s gasekvation

Läs mer

Fysik. Laboration 1. Specifik värmekapacitet och glödlampas verkningsgrad

Fysik. Laboration 1. Specifik värmekapacitet och glödlampas verkningsgrad Fysik Laboration 1 Specifik värmekapacitet och glödlampas verkningsgrad Laborationens syfte: Visa hur man kan med enkla experimentella anordningar studera fysikaliska effekter och bestämma i) specifik

Läs mer

Var i en nöjespark får man uppleva de starkaste krafterna? Enligt

Var i en nöjespark får man uppleva de starkaste krafterna? Enligt Ann-Marie Pendrill & David Eager Studsmattematte fritt fall och harmonisk svängningsrörelse Studsmattor finns i många trädgårdar och lekplatser. Under studsandet rör man sig huvudsakligen i vertikalled

Läs mer

Övningsuppgifter till Originintroduktion

Övningsuppgifter till Originintroduktion UMEÅ UNIVERSITET 05-08-01 Institutionen för fysik Ylva Lindgren Övningsuppgifter till Originintroduktion Uppgift 1. I ett experiment vill man bestämma fjäderkonstanten k för en viss fjäder. Med olika kraft

Läs mer

Vetenskaplig metod och statistik

Vetenskaplig metod och statistik Vetenskaplig metod och statistik Innehåll Vetenskaplighet Hur ska man lägga upp ett experiment? Hur hanterar man felkällor? Hur ska man tolka resultatet från experimentet? Experimentlogg Att fundera på

Läs mer

Innehållsförteckning

Innehållsförteckning Innehållsförteckning Inledning 2 Grundläggande fysik 3 SI enheter 3 Area och godstjocklek 4 Tryck 5 Temperatur 7 Densitet 8 Flöde 10 Värmevärde 11 Värmeutvidgning 14 Sträckgränser 15 Allmänna gaslagen

Läs mer

Experimentella metoder, FK3001. Datorövning: Finn ett samband

Experimentella metoder, FK3001. Datorövning: Finn ett samband Experimentella metoder, FK3001 Datorövning: Finn ett samband 1 Inledning Den här övningen går ut på att belysa hur man kan utnyttja dimensionsanalys tillsammans med mätningar för att bestämma fysikaliska

Läs mer

Tentamen i Mekanik SG1102, m. k OPEN. Problemtentamen

Tentamen i Mekanik SG1102, m. k OPEN. Problemtentamen 014-06-04 Tentamen i Mekanik SG110, m. k OPEN. OBS: Inga hjälpmedel förutom rit- och skrivdon får användas! KTH Mekanik 1. Problemtentamen En boll skjuts ut genom ett hål med en hastighet v så att den

Läs mer

Rotationsrörelse laboration Mekanik II

Rotationsrörelse laboration Mekanik II Rotationsrörelse laboration Mekanik II Utförs av: William Sjöström Oskar Keskitalo Uppsala 2015 04 19 Sida 1 av 10 Sammanfattning För att förändra en kropps rotationshastighet så krävs ett vridmoment,

Läs mer

Uppvärmning, avsvalning och fasövergångar

Uppvärmning, avsvalning och fasövergångar Läs detta först: [version 141008] Denna text innehåller teori och korta instuderingsuppgifter som du ska lösa. Under varje uppgift finns ett horisontellt streck, och direkt nedanför strecket finns facit

Läs mer

STOCKHOLMS UNIVERSITET FYSIKUM

STOCKHOLMS UNIVERSITET FYSIKUM STOCKHOLMS UNIVERSITET FYSIKUM Tentamensskrivning i Fysikexperiment, 7,5 hp, för FK2002 Onsdagen den 15 december 2010 kl. 9-14. Skrivningen består av två delar A och B. Del A innehåller enkla frågor och

Läs mer

Övningar till datorintroduktion

Övningar till datorintroduktion Institutionen för Fysik Umeå Universitet Ylva Lindgren Sammanfattning En samling uppgifter att göra i MATLAB, vilka ska utföras enskilt eller i grupp om två. Datorintroduktion Handledare: (it@tekniskfysik.se)

Läs mer

Repetition F12. Lunds universitet / Naturvetenskapliga fakulteten / Kemiska institutionen / KEMA00

Repetition F12. Lunds universitet / Naturvetenskapliga fakulteten / Kemiska institutionen / KEMA00 Repetition F12 Kolligativa egenskaper lösning av icke-flyktiga ämnen beror främst på mängd upplöst ämne (ej ämnet självt) o Ångtryckssänkning o Kokpunktsförhöjning o Fryspunktssänkning o Osmotiskt tryck

Läs mer

TENTAMEN I TERMODYNAMIK för K2 och Kf2 (KVM091 och KVM090) 2010-01-15 kl. 14.00-18.00

TENTAMEN I TERMODYNAMIK för K2 och Kf2 (KVM091 och KVM090) 2010-01-15 kl. 14.00-18.00 CHALMERS 1 (4) Energi och Miljö/Värmeteknik och maskinlära Kemi- och bioteknik/fysikalisk kemi Termodynamik (KVM091/KVM090) TENTAMEN I TERMODYNAMIK för K2 och Kf2 (KVM091 och KVM090) 2010-01-15 kl. 14.00-18.00

Läs mer

Föreläsning 17: Jämviktsläge för flexibla system

Föreläsning 17: Jämviktsläge för flexibla system 1 KOMIHÅG 16: --------------------------------- Ellipsbanans storaxel och mekaniska energin E = " mgm 2a ------------------------------------------------------ Föreläsning 17: Jämviktsläge för flexibla

Läs mer

Planering Fysik för V, ht-11, lp 2

Planering Fysik för V, ht-11, lp 2 Planering Fysik för V, ht-11, lp 2 Kurslitteratur: Häfte: Experimentell metodik, Kurslaboratoriet 2011, Fysik i vätskor och gaser, Göran Jönsson, Teach Support 2010 samt föreläsningsanteckningar i Ellära,

Läs mer

Repetition F8. Lunds universitet / Naturvetenskapliga fakulteten / Kemiska institutionen / KEMA00

Repetition F8. Lunds universitet / Naturvetenskapliga fakulteten / Kemiska institutionen / KEMA00 Repetition F8 System (isolerat, slutet, öppet) Första huvudsatsen U = 0 i isolerat system U = q + w i slutet system Tryck-volymarbete w = -P ex V vid konstant yttre tryck w = 0 vid expansion mot vakuum

Läs mer

Termodynamik och inledande statistisk fysik

Termodynamik och inledande statistisk fysik Några grundbegrepp i kursen Termodynamik och inledande statistisk fysik I. INLEDNING Termodynamiken beskriver på en makroskopisk nivå processer där värme och/eller arbete tillförs eller extraheras från

Läs mer

I princip gäller det att mäta ström-spänningssambandet, vilket tillsammans med kännedom om provets geometriska dimensioner ger sambandet.

I princip gäller det att mäta ström-spänningssambandet, vilket tillsammans med kännedom om provets geometriska dimensioner ger sambandet. Avsikten med laborationen är att studera de elektriska ledningsmekanismerna hos i första hand halvledarmaterial. Från mätningar av konduktivitetens temperaturberoende samt Hall-effekten kan en hel del

Läs mer

Tentamen i FTF140 Termodynamik och statistisk mekanik för F3

Tentamen i FTF140 Termodynamik och statistisk mekanik för F3 Chalmers Institutionen för Teknisk Fysik Göran Wahnström Tentamen i FTF14 Termodynamik och statistisk mekanik för F3 Tid och plats: Tisdag 25 aug 215, kl 8.3-13.3 i V -salar. Hjälpmedel: Physics Handbook,

Läs mer

EXPERIMENTELLT PROV

EXPERIMENTELLT PROV EXPERIMENTELLT PRV 2010-03-17 Provet omfattar 2 uppgifter som redovisas enligt anvisningarna. Provtid: 180 minuter. jälpmedel: Miniräknare. BS! EJ tabell- och formelsamling Börja redovisningen av varje

Läs mer