Kinetik. Föreläsning 2

Save this PDF as:
 WORD  PNG  TXT  JPG

Storlek: px
Starta visningen från sidan:

Download "Kinetik. Föreläsning 2"

Transkript

1 Kinetik Föreläsning 2

2 Reaktioner som går mot ett jämviktsläge ALLA reaktioner går mot jämvikt, här avses att vid jämvikt finns mätbara mängder av alla i summaformeln ingående ämnen. Exempel: Reaktion i fram- och återgående riktning, båda 1:a ordningen, hastighetskonstanter k resp. k, A B v = d A dd = k A k [B] För att beräkna hur snabbt [A] förändras måste vi alltså även ta hänsyn till hur A bildas från B!

3 Reversibla kontra icke-reversibla reaktioner Om jämvikten måste beaktas Om jämvikten är förskjuten (nästan) helt åt höger Formler för [A] och [B]:s tidsberoende vid jämvikt behöver ej läras in.

4 Reaktionshastigheter och jämviktskonstanter Vid jämvikt ändras definitionsmässigt inga koncentrationer med tiden och därmed är alla tidsderivator = 0. För reaktionen A B erhålls k [A] eq = k [B] eq B ee A ee = k k = K c K c är jämviktskonstanten (ej den termodynamiska). Sambandet mellan hastighetskonstanterna och koncentrationsjämviktskonstanten är viktigt och används ofta vid kinetiska studier. Om två är kända kan den tredje räknas ut. Detta används ofta i t.ex. enzymkinetik.

5 Hur studera kinetik för reversibla reaktioner? Relaxationsmetoder Jämvikten störs genom snabb temperaturändring (5-10 K/µs upp till K/ns) eller tryckförändring. Om jämviktskonstanten är temperatur- eller tryckberoende måste reaktionen gå till ett nytt jämviktsläge Detta kan studeras och mycket snabba förlopp kan mätas elektroniskt.

6 Hur studera kinetik för reversibla reaktioner? Relaxationsmetoder Jämvikten får ställa in sig vid en temperatur Vid tiden t 0 ändras temperaturen så att jämviktskonstanten ändras från K c till K c = [B] eq /[A] eq

7 Hur studera kinetik för reversibla reaktioner? Relaxationsmetoder Som figuren på förra bilden är ritad kommer K c att öka när temperaturen höjs, och systemet börjar genast närma sig det nya jämviktsläget. x är avvikelsen från jämviktskoncentrationen och dess startvärde är x 0. Det går då att visa att: x = x 0 e t/τ där τ = relaxationstiden som för vårt fall kan skrivas (se Just. 21.4, tiden måste räknas från tiden t 0 i figuren): 1 τ = k + kk Relaxationstiden (eller snarare 1/ τ ) har liknande funktion som tidskonstanten för en vanlig 1:a ordningens reaktion, där ju 1/τ = k.

8 Reaktionshastigheters temperaturberoende Temperaturberoendet för reaktionshastigheten sitter i hastighetskonstanten, k, eftersom reaktionsordningen i allmänhet är oberoende av temperatur inom vida temperaturintervall.

9 Arrhenius ekvation Svante Arrhenius fann 1884: k = A e E a R T eller logaritmerat: ln k = E a R T + ln A Notera att vi ofta logaritmerar ekvationer eftersom det många gånger gör icke-linjära ekvationer linjära och därmed lättare att studera.

10 Arrhenius ekvation forts. A = frekvensfaktorn eller pre-exponentiella faktorn samma enhet som k E a = aktiveringsenergin enhet J/mol, se nedan R = gaskonstanten använd alltid 8,3145 J/(K mol)! T = temperatur - måste anges i Kelvin!

11 Utvidgad definition av aktiveringsenergi I vissa fall får man ingen rät linje i Arrheniusdiagrammet. Då används en utvidgad definition E a = R T 2 d(ll k) dd Motivering: d(ll k) dd = d(ll k) d(1/t) d 1 T dd = 1 d ll k T2 d 1 T = E a R T 2 Första och sista ledet i ekvationen ovan ger den utvidgade definitionen. Notera att den vanliga definitionen av aktiveringsenergi är ett specialfall av denna definition.

12 Fysikalisk innebörd av E a och A: Aktiveringsenergin (E a ) är den minimala energi som krävs för att ett aktiverat komplex skall bildas. Det motsvarar maximat på kurvan i figuren nedan. Reaktionen sker enligt B + C [BC] ac [BC] ts P Notera att dessa båda begrepp ofta används synonymt ac - aktiverat komplex, som kan gå tillbaka till reaktanter ts - transition state (= övergångstillstånd), härifrån finns ingen återvändo. Kan vara någon deformation av det aktiverade komplexet.

13 Fysikalisk innebörd av E a och A: Frekvensfaktorn (A) är ett mått på totalt antal kollisioner per tidsenhet vid koncentrationen = 1. Den har samma enhet som k. Att två molekyler kolliderar betyder inte nödvändigtvis att de reagerar. Antalet lyckade kollisioner per tidsenhet ges alltså av k = A e E a R T Totalt antal kollisioner per tidsenhet Sannolikhet att en kollision leder till reaktion

14 Förklaringar till hastighetsekvationerna Reaktionsformeln antyder ofta en hastighetsekvation som inte stämmer med den experimentellt erhållna. Detta förklaras med en mekanism som är en serie av elementärreaktioner. Exempel: Reaktionen A + 2B + 3C P antyder att för att ske måste en molekyl A samtidigt kollidera med 2 molekyler B och 3 molekyler C, vilket skulle betyda hastighetsekvationen v = k A 1 B 2 C 3 En sådan reaktionsmekanism är dock så osannolik att vi kan bortse från den och den sanna mekanismen och hastighetsuttrycket är säkert annorlunda.

15 Elementärreaktioner Dessa är resultatet av en molekylär händelse, ett aktiverat komplex bildas, varur (mellan)produkt(er) uppkommer. Antalet molekyler som bildar aktiverat komplex anger molekylariteten. Unimolekylär: en molekyl undergår spontan förändring (ex. sönderfall, isomerisering ). Alltid 1:a ordningen. Bimolekylär: två molekyler kolliderar och reagerar via aktiverat komplex till produkt(er). Alltid 2:a ordningen. Termolekylär finns, men ovanliga, (kräver att tre molekyler kolliderar (nästan) samtidigt,) 3:e ordningen.

16 Exempel: Reaktionen A + 2 B C + D (1) har hastighetsekvationen: v = k [A] [B] Det borde ha varit v = k [A] [B] 2. Den korrekta ekvationen kan förklaras med mekanismen: (2) A + B C + X v 2 = k 2 [A] [B] (3) X + B Y v 3 = k 3 [X] [B] (4) Y D v 4 = k 4 [Y] Σ A + 2 B C + D Mellanprodukterna eller intermediärerna X och Y tar ut sig = KRAV på mekanism. Elementarreaktionerna (2) och (3) är bimolekylära och (4) är unimolekylär. Om (2) är hastighetsbestämmande fås den erhållna hastighetsekvationen.

17 Serier av elementärreaktioner Kallas konsekutiva (på varandra följande). Exempel: A I P med hastighetskonstanter k a respektive k b, båda 1:a ordningens reaktioner. Formler för tidsberoende för koncentrationer oväsentliga, men att [A] går mot noll [I] har ett maximum [P] går mot [A] 0 (om endast A fanns vid t = 0) är viktigt att inse.

18 Två specialfall av konsekutiva elementärreaktioner Notera att vi kan ha principiellt olika typer av förhållanden mellan storleken på de två hastighetskonstanterna vilket får konsekvenser för reaktionens förlopp: 1. k a >> k b. [A] faller snabbt mot 0, [I] stiger snabbt nästan mot [A] 0 för att sedan sjunka sakta, medan [P] sakta stiger. 2. k a << k b. I är en mycket reaktiv mellanprodukt som aldrig kan uppnå någon märkbar koncentration.

19 Två specialfall av konsekutiva elementärreaktioner I fall 1 (t. v. i fig.) är det andra steget hastighetsbestämmande, i fall 2 är det första steget hastighetsbestämmande.

20 Steady-State-approximationen I fall 2 ovan får [I] efter en kort period (induktionsperiod) ett litet, nära konstant värde << [A]. Då kan dess tidsderivata approximeras med noll. Detta ger d I dd = k a A k b I = 0 I = k a k b [A] Sätt in i hastighetsekvationen för andra reaktionen: d P dd = k b I = k b k a k b A = k a [A] Som om ingen mellanprodukt funnits! I Atkins Fig visas hur bra approximationen stämmer med exakta beräkningar. Steady-State approximationen kan till exempel användas för att härleda Michaelis- Menten ekvationen för enzymkatalys.

21 Snabb inledande jämvikt Reaktion: A + B I P A + B I Hastighetskonstant = k a resp. k a snabba I P Hastighetskonstant = k b << k a resp. k a För jämvikten gäller: K cc = k a k a = I A [B] I = K cc A [B] För produkten gäller: d P dd = k b I = k b K cc A B = k a k b k a A B Det blir som en andra ordningens reaktion.

22 Kinetisk eller termodynamisk kontroll av reaktioner Vi har två parallella reaktioner: A + B P 1 A + B P 2 v 1 = k 1 [A] [B] v 2 = k 2 [A] [B] Under reaktionens gång kommer [P 1 ]/[P 2 ] = k 1 /k 2. Detta kallas kinetisk kontroll. Om reaktionerna däremot är reversibla (bakåtgående reaktioner viktiga) kommer förhållandet att bestämmas av jämviktsförhållanden, vilket betyder termodynamisk kontroll.

23 Första ordningens gasreaktioner Reaktion: A P Borde vara unimolekylära, och alltså ej aktiveras genom kollisioner med lösningsmedelsmolekyler. Varifrån kommer aktiveringsenergin? Mekanism enligt Lindemann-Hinshelwood A A A* P A

24 Lindemann-Hinshelwood mekanismen Aktivering: A + A A + A* 2:a ordn. k a Deaktivering: A* + A A + A 2:a ordn. k a Bildn. av produkt: A* P 1:a ordn. k b Gör Steady-State på A*: d A dd = k a A 2 k a A A k b A = 0 A = k a A 2 k a A +k b Om k a A k b blir A = k a k a [A] och d P dd = k b A = k a k b k a [A] alltså första ordningens reaktion.

25 MEN Lindemann-Hinshelwood mekanismen Vad händer vid mycket låga tryck så att k a A k b??? Reaktionen borde bli av andra ordningen! eftersom A = k a k b A 2 i detta fall Detta stämmer ofta experimentellt.

26 Skenbar aktiveringsenergi för sammansatta reaktioner Exempel: Lindmann-Hinshelwoods mekanism Effektiv hastighetskonstant blir: k eee = k a k b k a ln k eee = ln k a + ln k b ln k a Tillämpa Arrhenius ekvation på de tre konstanterna: ln k eee = ln A a + ln A b ln A a E a,a + E a,b E a,a R T Skenbar aktiveringsenergi: E a,a + E a,b E a,a

27 Skenbar aktiveringsenergi Skenbara aktiveringsenergin blir större än noll i de flesta fall som till vänster i figuren MEN om E a,a är stort kan skenbara aktiveringsenergin bli negativ och en sådan reaktion går långsammare vid temperaturhöjning. Se till höger i figuren!

Kinetik. Föreläsning 3

Kinetik. Föreläsning 3 Kinetik Föreläsning 3 Reaktioner som går mot ett jämviktsläge ALLA reaktioner går mot jämvikt, här avses att vid jämvikt finns mätbara mängder av alla i summaformeln ingående ämnen. Ibland kan dock hastigheten

Läs mer

Kemisk reaktionskinetik. (Kap ej i kurs.)

Kemisk reaktionskinetik. (Kap ej i kurs.) Kemisk reaktionskinetik. (Kap. 14.1-4. 14.5-6 ej i kurs.) Reaktionshastighet kemisk jämvikt. Reaktionshastighet avgör tiden att komma till jämvikt. Ett system i jämvikt reagerar inte. Jämviktsläge avgörs

Läs mer

Kinetik. Föreläsning 1

Kinetik. Föreläsning 1 Kinetik Föreläsning 1 Varför kunna kinetik? För att till exempel kunna besvara: Hur lång tid tar reaktionen till viss omsättningsgrad eller hur mycket produkt bildas på viss tid? Hur ser reaktionens temperaturberoende

Läs mer

Reaktionskinetik...hur fort går kemiska reaktioner

Reaktionskinetik...hur fort går kemiska reaktioner Reaktionskinetik..hur fort går kemiska reaktioner Några begrepp Jämvikt Reaktionerna går lika snabbt i båda riktingarna ingen ändring i koncentrationer A + B C + D Miljoner år Långsamma reaktioner Ex:

Läs mer

KEM A02 Allmän- och oorganisk kemi. KINETIK 2(2) A: Kap

KEM A02 Allmän- och oorganisk kemi. KINETIK 2(2) A: Kap KEM A02 Allmän- och oorganisk kemi KINETIK 2(2) A: Kap 14.6 14.16 14.6 Andra ordningens kinetik Typiskt för bimolekylära reaktioner EXEMPEL: 2 HI H 2 + I 2 v = k [HI] 2 Typiskt för 2:a ordningens reaktion:

Läs mer

Bestämning av hastighetskonstant för reaktionen mellan väteperoxid och jodidjon

Bestämning av hastighetskonstant för reaktionen mellan väteperoxid och jodidjon Bestämning av hastighetskonstant för reaktionen mellan väteperoxid och jodidjon Jesper Hagberg Simon Pedersen 28 november 2011 Chalmers Tekniska Högskola Institutionen för Kemi och Bioteknik Fysikalisk

Läs mer

EXPERIMENTELLT PROV ONSDAG Provet omfattar en uppgift som redovisas enligt anvisningarna. Provtid: 180 minuter. Hjälpmedel: Miniräknare.

EXPERIMENTELLT PROV ONSDAG Provet omfattar en uppgift som redovisas enligt anvisningarna. Provtid: 180 minuter. Hjälpmedel: Miniräknare. EXPERIMENTELLT PROV ONSDAG 2011-03-16 Provet omfattar en uppgift som redovisas enligt anvisningarna. Provtid: 180 minuter. Hjälpmedel: Miniräknare. OBS! Tabell- och formelsamling får EJ användas. Skriv

Läs mer

Kemisk Dynamik för K2, I och Bio2

Kemisk Dynamik för K2, I och Bio2 Kemisk Dynamik för K2, I och Bio2 Fredagen den 11 mars 2005 kl 8-13 Uppgifterna märkta (GKII) efter uppgiftens nummer är avsedda både för tentan i Kemisk Dynamik och för dem som deltenterar den utgångna

Läs mer

Kinetik. Föreläsning 4

Kinetik. Föreläsning 4 Kinetik Föreläsning 4 Fotokemi Med fotoreaktioner avses reaktioner som initieras av ljus. Exempel: Cl 2 + h ν Cl 2 * 2Cl Ljus = små odelbara energipaket med frekvens ν (Hz = s -1 ) є = h ν h = Plancks

Läs mer

Energi, katalys och biosyntes (Alberts kap. 3)

Energi, katalys och biosyntes (Alberts kap. 3) Energi, katalys och biosyntes (Alberts kap. 3) Introduktion En cell eller en organism måste syntetisera beståndsdelar, hålla koll på vilka signaler som kommer utifrån, och reparera skador som uppkommit.

Läs mer

Bestämning av hastighetskonstant och aktiveringsenergi för reaktionen mellan väteperoxid och jodidjon i sur lösning Jodklockan

Bestämning av hastighetskonstant och aktiveringsenergi för reaktionen mellan väteperoxid och jodidjon i sur lösning Jodklockan 1 K 1 070703/SEF Bestämning av hastighetskonstant och aktiveringsenergi för reaktionen mellan väteperoxid och jodidjon i sur lösning Jodklockan Inledning Avsikten med detta försök är att bestämma hastighetskonstanten

Läs mer

KEM A02 Allmän- och oorganisk kemi. KINETIK 1(2) A: Kap

KEM A02 Allmän- och oorganisk kemi. KINETIK 1(2) A: Kap KEM A02 Allmän- och oorganisk kemi KINETIK 1(2) A: Kap 14.1 14.5 Vad är kinetik? REAKTIONSKINETIK: ger information om på vilket sätt och hur snabbt kemiska reaktioner sker mekanism hastighetslag FÖLJDFRÅGA:

Läs mer

KINETIK 1(2) A: Kap Vad är kinetik? 14.1 Koncentration och reaktionshastighet. KEM A02 Allmän- och oorganisk kemi

KINETIK 1(2) A: Kap Vad är kinetik? 14.1 Koncentration och reaktionshastighet. KEM A02 Allmän- och oorganisk kemi KEM A02 Allmän och oorganisk kemi KINETIK 1(2) A: Kap 14.1 14.5 Vad är kinetik? REAKTIONSKINETIK: ger information om på vilket sätt mekanism och hur snabbt hastighetslag kemiska reaktioner sker FÖLJDFRÅGA:

Läs mer

4. Kemisk jämvikt när motsatta reaktioner balanserar varandra

4. Kemisk jämvikt när motsatta reaktioner balanserar varandra 4. Kemisk jämvikt när motsatta reaktioner balanserar varandra 4.1. Skriv fullständiga formler för följande reaktioner som kan gå i båda riktningarna (alla ämnen är i gasform): a) Kolmonoxid + kvävedioxid

Läs mer

Definition Materialfysik II Ht Kinetik 5.1 Allmänt om kinetik. Massverkningslagen (eng. law of mass action ) Processer

Definition Materialfysik II Ht Kinetik 5.1 Allmänt om kinetik. Massverkningslagen (eng. law of mass action ) Processer Definition 530117 Materialfysik II Ht 2010 5. Kinetik 5.1 Allmänt om kinetik [Mitchell 3.0; lite ur Porter-Easterling 5.4] Med kinetik avses tidsberoendet av processer, hur snabbt de sker Avgörande storhet

Läs mer

530117 Materialfysik vt 2007. 5. Kinetik 5.1 Allmänt om kinetik. [Mitchell 3.0; lite ur Porter-Easterling 5.4]

530117 Materialfysik vt 2007. 5. Kinetik 5.1 Allmänt om kinetik. [Mitchell 3.0; lite ur Porter-Easterling 5.4] 530117 Materialfysik vt 2007 5. Kinetik 5.1 Allmänt om kinetik [Mitchell 3.0; lite ur Porter-Easterling 5.4] Definition Med kinetik avses tidsberoendet av processer, hur snabbt de sker Avgörande storhet

Läs mer

Repetition F12. Lunds universitet / Naturvetenskapliga fakulteten / Kemiska institutionen / KEMA00

Repetition F12. Lunds universitet / Naturvetenskapliga fakulteten / Kemiska institutionen / KEMA00 Repetition F12 Kolligativa egenskaper lösning av icke-flyktiga ämnen beror främst på mängd upplöst ämne (ej ämnet självt) o Ångtryckssänkning o Kokpunktsförhöjning o Fryspunktssänkning o Osmotiskt tryck

Läs mer

dess energi ökar (S blir mer instabilt) TS sker tidigare i reaktionen strukturen på TS blir mer lik S (2p).

dess energi ökar (S blir mer instabilt) TS sker tidigare i reaktionen strukturen på TS blir mer lik S (2p). Dugga 1 TFE44 2012 1. Vad innebär the Hammond postulate - om det finns ett instabilt intermediat under reaktionen, kommer transition state att likna strukturen av intermediatet (1p). Vad menas med the

Läs mer

Laboration Enzymer. Labföreläsning. Introduktion, enzymer. Kinetik. Första ordningens kinetik. Michaelis-Menten-kinetik

Laboration Enzymer. Labföreläsning. Introduktion, enzymer. Kinetik. Första ordningens kinetik. Michaelis-Menten-kinetik Labföreläsning Maria Svärd maria.svard@ki.se Molekylär Strukturbiologi, MBB, KI Introduktion, er och kinetik Första ordningens kinetik Michaelis-Menten-kinetik K M, v max och k cat Lineweaver-Burk-plot

Läs mer

Repetition F4. Lunds universitet / Naturvetenskapliga fakulteten / Kemiska institutionen / KEMA00

Repetition F4. Lunds universitet / Naturvetenskapliga fakulteten / Kemiska institutionen / KEMA00 Repetition F4 VSEPR-modellen elektronarrangemang och geometrisk form Polära (dipoler) och opolära molekyler Valensbindningsteori σ-binding och π-bindning hybridisering Molekylorbitalteori F6 Gaser Materien

Läs mer

Allmän kemi. Läromålen. Viktigt i kap 17. Kap 17 Termodynamik. Studenten skall efter att ha genomfört delkurs 1 kunna:

Allmän kemi. Läromålen. Viktigt i kap 17. Kap 17 Termodynamik. Studenten skall efter att ha genomfört delkurs 1 kunna: Allmän kemi Kap 17 Termodynamik Läromålen Studenten skall efter att ha genomfört delkurs 1 kunna: n - använda de termodynamiska begreppen entalpi, entropi och Gibbs fria energi samt redogöra för energiomvandlingar

Läs mer

Lite basalt om enzymer

Lite basalt om enzymer Enzymer: reaktioner, kinetik och inhibering Biokatalysatorer Reaktion: substrat omvandlas till produkt(er) Påverkar reaktionen så att jämvikten ställer in sig snabbare, dvs hastigheten ökar Reaktionen

Läs mer

Repetition F9. Lunds universitet / Naturvetenskapliga fakulteten / Kemiska institutionen / KEMA00

Repetition F9. Lunds universitet / Naturvetenskapliga fakulteten / Kemiska institutionen / KEMA00 Repetition F9 Process (reversibel, irreversibel) Entropi o statistisk termodynamik: S = k ln W o klassisk termodynamik: S = q rev / T o låg S: ordning, få mikrotillstånd o hög S: oordning, många mikrotillstånd

Läs mer

Lösning till dugga för Grundläggande kemi Duggauppgifter enligt lottning; nr X, Y och Z.

Lösning till dugga för Grundläggande kemi Duggauppgifter enligt lottning; nr X, Y och Z. till dugga för Grundläggande kemi 2013-11-29 Duggauppgifter enligt lottning; nr X, Y och Z. 1. a) Ange kvalitativt buffertkapacitetens storlek (stor eller liten, med motivering, dock inga beräkningar)

Läs mer

Kemisk jämvikt. Kap 3

Kemisk jämvikt. Kap 3 Kemisk jämvikt Kap 3 En reaktionsformel säger vilka ämnen som reagerar vilka som bildas samt förhållandena mellan ämnena En reaktionsformel säger inte hur mycket som reagerar/bildas Ingen reaktion ger

Läs mer

Lösningar till tentamen i Kemisk termodynamik

Lösningar till tentamen i Kemisk termodynamik Lösningar till tentamen i Kemisk termodynamik 2012-05-23 1. a Molekylerna i en ideal gas påverkar ej varandra, medan vi har ungefär samma växelverkningar mellan de olika molekylerna i en ideal blandning.

Läs mer

Tentamensskrivning i FYSIKALISK KEMI Bt (Kurskod: KFK 162) den 19/ kl

Tentamensskrivning i FYSIKALISK KEMI Bt (Kurskod: KFK 162) den 19/ kl Tentamensskrivning i FYSIKALISK KEMI Bt (Kurskod: KFK 162) den 19/10 2010 kl 08.30-12.30 Observera! Börja på nytt ark för varje ny deluppgift. Tillåtna hjälpmedel 1. Miniräknare av valfri typ. 2. Utdelad

Läs mer

10. Kinetisk gasteori

10. Kinetisk gasteori 10. Kinetisk gasteori Alla gaser beter sig på liknande sätt. I slutet av 1800 talet utvecklades matematiska sätt att beskriva gaserna, den så kallade kinetiska gasteorin. Den grundar sig på en modell för

Läs mer

TENTAMEN I KEMI TFKE16 (4 p)

TENTAMEN I KEMI TFKE16 (4 p) Linköpings Universitet IFM-Kemi. Kemi för Y, M. m. fl. (TFKE16) TENTMEN I KEMI TFKE16. 2007-10-16 Lokal: TER2. Skrivtid: 14.00 18.00 nsvariga lärare: Nils-la Persson, tel. 1387, alt 070-517 1088. Stefan

Läs mer

Homogen gasjämvikt: FYSIKALISK KEMI. Laboration 2. Dissociation av dikvävetetraoxid. N2O4(g) 2 NO2(g)

Homogen gasjämvikt: FYSIKALISK KEMI. Laboration 2. Dissociation av dikvävetetraoxid. N2O4(g) 2 NO2(g) Linköpings universitet 2013-10-03 IFM / Kemi Fysikalisk kemi Termodynamik FYSIKALISK KEMI Laboration 2 Homogen gasjämvikt: Dissociation av dikvävetetraoxid N2O4(g) 2 NO2(g) Linköpings Universitet Kemi

Läs mer

Fysikaliska modeller. Skapa modeller av en fysikalisk verklighet med hjälp av experiment. Peter Andersson IFM fysik, adjunkt

Fysikaliska modeller. Skapa modeller av en fysikalisk verklighet med hjälp av experiment. Peter Andersson IFM fysik, adjunkt Fysikaliska modeller Skapa modeller av en fysikalisk verklighet med hjälp av experiment Peter Andersson IFM fysik, adjunkt På denna föreläsning Vad är en fysikalisk modell? Linjärisering med hjälp av logaritmer

Läs mer

Konc. i början 0.1M 0 0. Ändring -x +x +x. Konc. i jämvikt 0,10-x +x +x

Konc. i början 0.1M 0 0. Ändring -x +x +x. Konc. i jämvikt 0,10-x +x +x Lösning till tentamen 2013-02-28 för Grundläggande kemi 10 hp Sid 1(5) 1. CH 3 COO - (aq) + H 2 O (l) CH 3 COOH ( (aq) + OH - (aq) Konc. i början 0.1M 0 0 Ändring -x +x +x Konc. i jämvikt 0,10-x +x +x

Läs mer

Tentamen i Kemisk Termodynamik 2011-01-19 kl 13-18

Tentamen i Kemisk Termodynamik 2011-01-19 kl 13-18 Tentamen i Kemisk Termodynamik 2011-01-19 kl 13-18 Hjälpmedel: Räknedosa, BETA och Formelsamling för kurserna i kemi vid KTH. Endast en uppgift per blad! Skriv namn och personnummer på varje blad! Alla

Läs mer

VI. Reella gaser. Viktiga målsättningar med detta kapitel. VI.1. Reella gaser

VI. Reella gaser. Viktiga målsättningar med detta kapitel. VI.1. Reella gaser I. Reella gaser iktiga målsättningar med detta kapitel eta vad virialutvecklingen och virialkoefficienterna är Kunna beräkna första termen i konfigurationsintegralen Känna till van der Waal s gasekvation

Läs mer

Tentamen i Kemisk reaktionsteknik för Kf3, K3 (KKR 100) Fredagen den 22 december 2006 kl 8:30-12:30 i V. Man får svara på svenska eller engelska!

Tentamen i Kemisk reaktionsteknik för Kf3, K3 (KKR 100) Fredagen den 22 december 2006 kl 8:30-12:30 i V. Man får svara på svenska eller engelska! 2006-12-22 Sid 2(5) Tentamen i Kemisk reaktionsteknik för Kf3, K3 (KKR 100) Fredagen den 22 december 2006 kl 8:30-12:30 i V Examinator: Derek Creaser Derek Creaser (0702-283943) kommer att besöka tentamenslokalen

Läs mer

Lämpliga uppgifter: 2.3, 2.7, 2.9, 2.10, 2.17, 2.19, 2.21, 20.1, 20.3, 20.4,

Lämpliga uppgifter: 2.3, 2.7, 2.9, 2.10, 2.17, 2.19, 2.21, 20.1, 20.3, 20.4, KEMB12 översikt (Housecroft & Sharp 4th ed.) Bindningsteori 1. Kvanttal n, l, ms (s. 9-10, 15, 17); orbitaler (s. 12-15) 2. MO-diagram för diatomära molekyler (s. 48-51) 3. MO-diagram för polyatomära molekyler

Läs mer

Meddelande. Föreläsning 2.5. Repetition Lv 1-4. Kemiska reaktioner. Kemi och biokemi för K, Kf och Bt 2012

Meddelande. Föreläsning 2.5. Repetition Lv 1-4. Kemiska reaktioner. Kemi och biokemi för K, Kf och Bt 2012 Energi Kemi ch bikemi för K, Kf ch Bt 2012 Föreläsning 2.5 Kemiska reaktiner Meddelande 1. Justerat labschema Lv5-7. Berör K6, Bt6, Bt2, Kf3 2. Mittmötet. Rättning av inlämningsuppgifter. Knstruktiv kritik

Läs mer

Termodynamik Föreläsning 4

Termodynamik Föreläsning 4 Termodynamik Föreläsning 4 Ideala Gaser & Värmekapacitet Jens Fjelstad 2010 09 08 1 / 14 Innehåll Ideala gaser och värmekapacitet TFS 2:a upplagan (Çengel & Turner) 3.6 3.11 TFS 3:e upplagan (Çengel, Turner

Läs mer

Idealgasens begränsningar märks bäst vid högt tryck då molekyler växelverkar mera eller går över i vätskeform.

Idealgasens begränsningar märks bäst vid högt tryck då molekyler växelverkar mera eller går över i vätskeform. Van der Waals gas Introduktion Idealgaslagen är praktisk i teorin men i praktiken är inga gaser idealgaser Den lättaste och vanligaste modellen för en reell gas är Van der Waals gas Van der Waals modell

Läs mer

LABORATION 2 TERMODYNAMIK BESTÄMNING AV C p /C v

LABORATION 2 TERMODYNAMIK BESTÄMNING AV C p /C v Fysikum FK4005 - Fristående kursprogram Laborationsinstruktion (1 april 2008) LABORATION 2 TERMODYNAMIK BESTÄMNING AV C p /C v Mål Denna laboration är uppdelad i två delar. I den första bestäms C p /C

Läs mer

Jämviktsuppgifter. 2. Kolmonoxid och vattenånga bildar koldioxid och väte enligt följande reaktionsformel:

Jämviktsuppgifter. 2. Kolmonoxid och vattenånga bildar koldioxid och väte enligt följande reaktionsformel: Jämviktsuppgifter Litterarum radices amarae, fructus dulces 1. Vid upphettning sönderdelas etan till eten och väte. Vid en viss temperatur har följande jämvikt ställt in sig i ett slutet kärl. C 2 H 6

Läs mer

Modellering av Dynamiska system. - Uppgifter till övning 1 och 2 17 mars 2010

Modellering av Dynamiska system. - Uppgifter till övning 1 och 2 17 mars 2010 Modellering av Dynamiska system - Uppgifter till övning 1 och 2 17 mars 21 Innehållsförteckning 1. Repetition av Laplacetransformen... 3 2. Fysikalisk modellering... 4 2.1. Gruppdynamik en sciologisk modell...

Läs mer

KEMI. Ämnets syfte. Kurser i ämnet

KEMI. Ämnets syfte. Kurser i ämnet KEMI Kemi är ett naturvetenskapligt ämne som har sitt ursprung i människans behov av att förstå och förklara sin omvärld samt i intresset för hur materia är uppbyggd och hur olika livsprocesser fungerar.

Läs mer

TENTAMEN I KEMI TFKE

TENTAMEN I KEMI TFKE Linköpings Universitet IFM-Kemi. Kemi för Y, M. m. fl. (TFKE09) TENTAMEN I KEMI TFKE09. 2005-10-17 Lokal: TER2. Skrivtid: 14.00 18.00 Ansvariga lärare: Nils-la Persson, tel. 1387, alt 070-517 1088. Stefan

Läs mer

Biologisk katalysator

Biologisk katalysator Enzymer biologiska katalysatorer Enzymer är biologiska katalysatorer som sänker aktiverings-energin! Biochemistry Kapitel 8 samt delar av kapitel 9 och 10 Biologisk katalysator Enzymer sänker aktiveringsenergin!

Läs mer

Kemisk jämvikt. Kap 3

Kemisk jämvikt. Kap 3 Kemisk jämvikt Kap 3 En reaktionsformel säger vilka ämnen som reagerar vilka som bildas samt förhållandena mellan ämnena En reaktionsformel säger inte hur mycket som reagerar/bildas Ingen reaktion ger

Läs mer

Sammanfattning av räkneövning 1 i Ingenjörsmetodik för ME1 och IT1. SI-enheter (MKSA)

Sammanfattning av räkneövning 1 i Ingenjörsmetodik för ME1 och IT1. SI-enheter (MKSA) Sammanfattning av räkneövning 1 i Ingenjörsmetodik för ME1 och IT1 Torsdagen den 4/9 2008 SI-enheter (MKSA) 7 grundenheter Längd: meter (m), dimensionssymbol L. Massa: kilogram (kg), dimensionssymbol M.

Läs mer

SF1513 NumProg för Bio3 HT2013 LABORATION 4. Ekvationslösning, interpolation och numerisk integration. Enkel Tredimensionell Design

SF1513 NumProg för Bio3 HT2013 LABORATION 4. Ekvationslösning, interpolation och numerisk integration. Enkel Tredimensionell Design 1 Beatrice Frock KTH Matematik 4 juli 2013 SF1513 NumProg för Bio3 HT2013 LABORATION 4 Ekvationslösning, interpolation och numerisk integration Enkel Tredimensionell Design Efter den här laborationen skall

Läs mer

I princip gäller det att mäta ström-spänningssambandet, vilket tillsammans med kännedom om provets geometriska dimensioner ger sambandet.

I princip gäller det att mäta ström-spänningssambandet, vilket tillsammans med kännedom om provets geometriska dimensioner ger sambandet. Avsikten med laborationen är att studera de elektriska ledningsmekanismerna hos i första hand halvledarmaterial. Från mätningar av konduktivitetens temperaturberoende samt Hall-effekten kan en hel del

Läs mer

med angivande av definitionsmängd, asymptoter och lokala extrempunkter. x 2 e x =

med angivande av definitionsmängd, asymptoter och lokala extrempunkter. x 2 e x = UPPSALA UNIVERSITET Matematiska institutionen Anders Källström Prov i matematik Distans, Matematik A Analys 2004 02 4 Skrivtid: 0-5. Hjälpmedel: Gymnasieformelsamling. Lösningarna skall åtföljas av förklarande

Läs mer

Enzymkinetik. - En minskning i reaktantkoncentrationen per tidsenhet (v = - A/ t)

Enzymkinetik. - En minskning i reaktantkoncentrationen per tidsenhet (v = - A/ t) Enzymkinetik Hastigheten för en reaktion A P kan uttryckas som: - En minskning i reaktantkoncentrationen per tidsenhet ( - A/ t - En ökning i produktkoncentrationen per tidsenhet ( P/ t Detta innebär att

Läs mer

Termodynamik (repetition mm)

Termodynamik (repetition mm) 0:e HS, 1:a HS, 2:a HS Termodynamik (repetition mm) Definition av processer, tillstånd, tillståndsstorheter mm Innehåll och överföring av energi 1: HS öppet system 1: HS slutet system Fö 11 (TMMI44) Fö

Läs mer

STOCKHOLMS UNIVERSITET FYSIKUM

STOCKHOLMS UNIVERSITET FYSIKUM STOCKHOLMS UNIVERSITET FYSIKUM Tentamensskrivning i Fysikexperiment, 7,5 hp, för FK2002 Onsdagen den 15 december 2010 kl. 9-14. Skrivningen består av två delar A och B. Del A innehåller enkla frågor och

Läs mer

Tentamen i Allmän kemi 7,5 hp 5 november 2014 ( poäng)

Tentamen i Allmän kemi 7,5 hp 5 november 2014 ( poäng) 1 (6) Tentamen i Allmän kemi 7,5 hp 5 november 2014 (50 + 40 poäng) Tentamen består av två delar, räkne- respektive teoridel: Del 1: Teoridel. Max poäng: 50 p För godkänt: 28 p Del 2: Räknedel. Max poäng:

Läs mer

1. Introduktion. Vad gör senapsgas så farlig?

1. Introduktion. Vad gör senapsgas så farlig? Föreläsning 9 Reaktionslära II Kapitel 9.1-9.6 1) Introduktion 2) Monomolekylära nukleofila substitutioner 3) Parametrar 4) Sammanfattning 5) Exempel 1. Introduktion Vad gör senapsgas så farlig? 2. Nukleofila

Läs mer

1. a) Förklara, genom användning av något lämpligt kemiskt argument, varför H 2 SeO 4 är en starkare syra än H 2 SeO 3.

1. a) Förklara, genom användning av något lämpligt kemiskt argument, varför H 2 SeO 4 är en starkare syra än H 2 SeO 3. Lösning till tentamen 2008 12 15 för Grundläggande kemi 10 hp Sid 1(5) 1. a) Förklara, genom användning av något lämpligt kemiskt argument, varför H 2 SeO 4 är en starkare syra än H 2 SeO 3. b) Beräkna

Läs mer

Enzymer Farmaceutisk biokemi. Enzymet pepsin klyver proteiner i magsäcken till mindre peptider

Enzymer Farmaceutisk biokemi. Enzymet pepsin klyver proteiner i magsäcken till mindre peptider Enzymer Farmaceutisk biokemi Enzymet pepsin klyver proteiner i magsäcken till mindre peptider Enzymet CYP11A1, i t ex binjurar, testiklar och äggstockar, omvandlar kolesterol till könshormoner 1 Enzymet

Läs mer

KEMA02 Oorganisk kemi grundkurs F12

KEMA02 Oorganisk kemi grundkurs F12 KEMA02 Organisk kemi grundkurs F12 Kinetik Kinetik Atkins & Jnes kap 14.1 14.5 Översikt Reaktinshastigheter Kncentratin ch reaktinshastighet Mmentan hastighetsekvatin Hastighetsekvatiner ch reaktinsrdning

Läs mer

Aggregationstillstånd

Aggregationstillstånd 4. Gaser Aggregationstillstånd 4.1 Förbränning En kemisk reaktion mellan ett ämne och syre. Fullständig förbränning (om syre finns i överskott), t.ex. etanol + syre C2H6OH (l) +3O2 (g) 3H2O (g) + 2CO2

Läs mer

Allmän Kemi 2 (NKEA04 m.fl.)

Allmän Kemi 2 (NKEA04 m.fl.) Allmän Kemi (NKEA4 m.fl.) --4 Uppgift a) K c [NO] 4 [H O] 6 /([NH ] 4 [O ] 5 ) eller K p P(NO) 4 P(H O) 6 /(P(NH ) 4 P(O ) 5 ) Om kärlets volym minskar ökar trycket och då förskjuts jämvikten åt den sida

Läs mer

Tentamen i Kemisk reaktionsteknik för Kf3, K3 (KKR 100) Onsdag den 22 augusti 2012 kl 8:30-13:30 i V. Examinator: Bitr. Prof.

Tentamen i Kemisk reaktionsteknik för Kf3, K3 (KKR 100) Onsdag den 22 augusti 2012 kl 8:30-13:30 i V. Examinator: Bitr. Prof. Tentamen i Kemisk reaktionsteknik för Kf3, K3 (KKR 100) Onsdag den 22 augusti 2012 kl 8:30-13:30 i V Examinator: Bitr. Prof. Louise Olsson Louise Olsson (031-722 4390) kommer att besöka tentamenslokalen

Läs mer

Linjärisering och Newtons metod

Linjärisering och Newtons metod CTH/GU STUDIO 5 TMV36a - 214/215 Matematiska vetenskaper 1 Inledning Linjärisering och Newtons metod Vi skall fortsätta med att lösa ekvationer. I förra studioövningen såg vi på intervallhalveringsmetoden.

Läs mer

Matematik D (MA1204)

Matematik D (MA1204) Matematik D (MA104) 100 p Betygskriterier med eempeluppgifter Värmdö Gymnasium Betygskriterier enligt Skolverket Kriterier för betyget Godkänd Eleven använder lämpliga matematiska begrepp, metoder och

Läs mer

Fysikaliska modeller

Fysikaliska modeller Fysikaliska modeller Olika syften med fysiken Grundforskarens syn Finna förklaringar på skeenden i naturen Ställa upp lagar för fysikaliska skeenden Kritiskt granska uppställda lagar Kontrollera uppställda

Läs mer

Farmakokinetik. Farmakokinetik och farmakodynamik 2011-11-06. Ernst Brodin, Institutionen för Fysiologi och Farmakologi, Karolinska Institutet

Farmakokinetik. Farmakokinetik och farmakodynamik 2011-11-06. Ernst Brodin, Institutionen för Fysiologi och Farmakologi, Karolinska Institutet Farmakokinetik och farmakodynamik Ernst Brodin, Institutionen för Fysiologi och Farmakologi, Karolinska Institutet KUT HT 2011 Farmakokinetik 1 Farmakokinetik = att matematiskt försöka beskriva tidsförloppet

Läs mer

Föreläsning 12. Alkener III Kapitel 12 F12

Föreläsning 12. Alkener III Kapitel 12 F12 Föreläsning 12 Alkener III Kapitel 12 1) Introduktion 2) Allyliska system 3) Fleromättade kolväten 4) Färg och seende 5) Reaktioner 6) Sammanfattning och framåtblick 1. Introduktion Varför ser man bättre

Läs mer

TENTAMEN I TERMODYNAMIK för K2, Kf2 och TM (KVM091 och KVM090) 2010-10-19 kl. 08.30-12.30 och lösningsförslag

TENTAMEN I TERMODYNAMIK för K2, Kf2 och TM (KVM091 och KVM090) 2010-10-19 kl. 08.30-12.30 och lösningsförslag CALMERS 1 (3) Kemi- och bioteknik/fysikalk kemi ermodynamik (KVM091/KVM090) ENAMEN I ERMODYNAMIK för K2, Kf2 och M (KVM091 och KVM090) 2010-10-19 kl. 08.30-12.30 och lösningsförslag jälpmedel: Kursböckerna

Läs mer

1. INLEDNING 2. TEORI. Arbete TD3 Temperaturberoendet för en vätskas ångtryck

1. INLEDNING 2. TEORI. Arbete TD3 Temperaturberoendet för en vätskas ångtryck Arbete TD3 Temperaturberoendet för en vätskas ångtryck 1. INLEDNING En vätskas ångtryck växer då vätskan värms upp och allt fler molekyler får en tillräckligt stor mängd kinetisk energi för att lösgöra

Läs mer

Tentamen i FUF050 Subatomär Fysik, F3

Tentamen i FUF050 Subatomär Fysik, F3 Tentamen i FUF050 Subatomär Fysik, F3 Tid: 013-05-30 fm Hjälpmedel: Physics Handbook, nuklidkarta, Beta, Chalmersgodkänd räknare Poäng: Totalt 75 poäng, för betyg 3 krävs 40 poäng, för betyg 4 krävs 60

Läs mer

Skriv reaktionsformler som beskriver vad som bör hända för följande blandningar: lösning blandas med 50 ml 0,05 H 3 PO 4 lösning.

Skriv reaktionsformler som beskriver vad som bör hända för följande blandningar: lösning blandas med 50 ml 0,05 H 3 PO 4 lösning. Lösning till tentamen 95 för Grundläggande kemi hp Sid (5). a) Perklorsyra är en stark syra varför pk a värde saknas i SI Chem Data. Behövs inte heller för phberäkning eftersom HClO 4 H O ClO 4 H 3 O går

Läs mer

@

@ Kinetisk gasteori F = area tryck Newtons 2:a lag på impulsformen: dp/dt = F, där p=mv Impulsöverföringen till kolven när en molekyl reflekteras i kolvytan A är p=2mv x. De molekyler som når fram till ytan

Läs mer

2. SUBSTITUTION (Nukleofil substitution) S N 2

2. SUBSTITUTION (Nukleofil substitution) S N 2 . SUBSTITUTION (Nukleofil substitution) Alkylhalider är generellt reaktiva pga att den elektronegativa haliden gör att bindningen till kol polariseras, man får en dipol. Kolet blir elektrofilt (elektronfattigare

Läs mer

Valenselektroner = elektronerna i yttersta skalet visas nedan för några element ur grupperna

Valenselektroner = elektronerna i yttersta skalet visas nedan för några element ur grupperna Kapitel 9 är hittar du svar och lösningar till de övningsuppgifter som hänvisas till i inledningen. I vissa fall har lärobokens avsnitt Svar och anvisningar bedömts vara tillräckligt fylliga varför enbart

Läs mer

Föreläsning 4- Konsumentteori

Föreläsning 4- Konsumentteori Föreläsning 4- Konsumentteori 2012-11-08 Vad är konsumentteori? Vad bestämmer hur konsumenten väljer att spendera sin inkomst mellan olika varor? Vad bestämmer hur mycket konsumenten köper av en viss vara?

Läs mer

Temperatur T 1K (Kelvin)

Temperatur T 1K (Kelvin) Temperatur T 1K (Kelvin) Makroskopiskt: mäts med termometer (t.ex. volymutvidgning av vätska) Mikroskopiskt: molekylers genomsnittliga kinetiska energi Temperaturskalor Celsius 1 o C: vattens fryspunkt

Läs mer

Fysikalisk kemi KEM040. Clausius-Clapeyronekvationen Bestämning av ångtryck och ångbildningsentalpi för en ren vätska (Lab2)

Fysikalisk kemi KEM040. Clausius-Clapeyronekvationen Bestämning av ångtryck och ångbildningsentalpi för en ren vätska (Lab2) GÖTEBORGS UNIVERSITET INSTITUTIONEN FÖR KEMI Fysikalisk kemi KEM040 Laboration i fysikalisk kemi Clausius-Clapeyronekvationen Bestämning av ångtryck och ångbildningsentalpi för en ren vätska (Lab2) ifylls

Läs mer

Repetition F10. Lunds universitet / Naturvetenskapliga fakulteten / Kemiska institutionen / KEMA00

Repetition F10. Lunds universitet / Naturvetenskapliga fakulteten / Kemiska institutionen / KEMA00 Repetition F10 Gibbs fri energi o G = H TS (definition) o En naturlig funktion av P och T Konstant P och T (andra huvudsatsen) o G = H T S 0 G < 0: spontan process, irreversibel G = 0: jämvikt, reversibel

Läs mer

Repetition F8. Lunds universitet / Naturvetenskapliga fakulteten / Kemiska institutionen / KEMA00

Repetition F8. Lunds universitet / Naturvetenskapliga fakulteten / Kemiska institutionen / KEMA00 Repetition F8 System (isolerat, slutet, öppet) Första huvudsatsen U = 0 i isolerat system U = q + w i slutet system Tryck-volymarbete w = -P ex V vid konstant yttre tryck w = 0 vid expansion mot vakuum

Läs mer

4.1 Se lärobokens svar och anvisningar. 4.2 För reaktionen 2ICl(g) I 2 (g) + Cl 2 (g) gäller att. För reaktionen I 2 (g) + Cl 2 (g) 2ICl(g) gäller 2

4.1 Se lärobokens svar och anvisningar. 4.2 För reaktionen 2ICl(g) I 2 (g) + Cl 2 (g) gäller att. För reaktionen I 2 (g) + Cl 2 (g) 2ICl(g) gäller 2 apitel 4 Här hittar du svar och lösningar till de övningsuppgifter som hänvisas till i inledningen. I vissa fall har lärobokens avsnitt Svar och anvisningar bedömts vara tillräckligt fylliga varför enbart

Läs mer

KEMA02 Oorganisk kemi grundkurs F13

KEMA02 Oorganisk kemi grundkurs F13 KEMA02 Organisk kemi grundkurs F13 Kinetik Kinetik Atkins & Jnes kap 14.6 14.16 Senast Reaktinshastigheter Kncentratin ch reaktinshastighet Mmentan hastighetsekvatin Hastighetsekvatiner ch reaktinsrdning

Läs mer

Termodynamik FL4. 1:a HS ENERGIBALANS VÄRMEKAPACITET IDEALA GASER ENERGIBALANS FÖR SLUTNA SYSTEM

Termodynamik FL4. 1:a HS ENERGIBALANS VÄRMEKAPACITET IDEALA GASER ENERGIBALANS FÖR SLUTNA SYSTEM Termodynamik FL4 VÄRMEKAPACITET IDEALA GASER 1:a HS ENERGIBALANS ENERGIBALANS FÖR SLUTNA SYSTEM Energibalans när teckenkonventionen används: d.v.s. värme in och arbete ut är positiva; värme ut och arbete

Läs mer

LÄRARHANDLEDNING Harmonisk svängningsrörelse

LÄRARHANDLEDNING Harmonisk svängningsrörelse LÄRARHANDLEDNING Harmonisk svängningsrörelse Utrustning: Dator med programmet LoggerPro LabQuest eller LabPro Avståndsmätare Kraftgivare Spiralfjäder En vikt Stativmateriel Kraftgivare Koppla mätvärdesinsamlaren

Läs mer

10 Beräkning av dubbelintegraler

10 Beräkning av dubbelintegraler Nr,7april-,Amelia Beräkning av dubbelintegraler. Bte av integrationsordning Eempel (96) Kasta om integrationsordningen i a) b) c) Z Z e Z 6 Z d d d Z ln Z f(, )d f(, )d f(, )d. Lösning: Med hjälp av figurer

Läs mer

Temperaturbegrebet

Temperaturbegrebet http://fy.chalmers.se/~f1xjk/fysikaliskaprinciper/forel.lp1/f4%20/f4%20.html Temperaturbegrebet Vid varje fysikalisk beskrivning av något föremål eller någon händelse måste man ange vissa mätstorheter.

Läs mer

TENTAMEN I TERMODYNAMIK för K2 och Kf2 (KVM090) 2009-01-16 kl. 14.00-18.00 i V

TENTAMEN I TERMODYNAMIK för K2 och Kf2 (KVM090) 2009-01-16 kl. 14.00-18.00 i V CHALMERS 1 () ermodynamik (KVM090) LÖSNINFÖRSLA ENAMEN I ERMODYNAMIK för K2 och Kf2 (KVM090) 2009-01-16 kl. 14.00-18.00 i V 1. I den här ugiften studerar vi en standard kylcykel, som är en del av en luftkonditioneringsanläggning.

Läs mer

Bestämning av livslängden för singlettexciterad naftalen

Bestämning av livslängden för singlettexciterad naftalen Bestämning av livslängden för singlettexciterad naftalen Jesper Hagberg Simon Pedersen 0 november 20 Chalmers Tekniska Högskola Institutionen för Kemi och Bioteknik Fysikalisk Kemi Handledare Nils Carlsson

Läs mer

SVÄNGNINGSTIDEN FÖR EN PENDEL

SVÄNGNINGSTIDEN FÖR EN PENDEL Institutionen för fysik 2012-05-21 Umeå universitet SVÄNGNINGSTIDEN FÖR EN PENDEL SAMMANFATTNING Ändamålet med experimentet är att undersöka den matematiska modellen för en fysikalisk pendel. Vi har mätt

Läs mer

KURSPROGRAM Inledande kemi (5)

KURSPROGRAM Inledande kemi (5) KURSPROGRAM Inledande kemi 2015 1(5) Föreläsningar Föreläsningar hålls av Johan Reimer Tid Plats Att läsa Innehåll Tisdag 20/1 KC:G Kap 2 Upprop/introduktion/repetition/nomenklatur Onsdag 21/1 KC:G Kap

Läs mer

Två system, bägge enskilt i termisk jämvikt med en tredje, är i jämvikt sinsemellan

Två system, bägge enskilt i termisk jämvikt med en tredje, är i jämvikt sinsemellan Termodynamikens grundlagar Nollte grundlagen Termodynamikens 0:e grundlag Två system, bägge enskilt i termisk jämvikt med en tredje, är i jämvikt sinsemellan Temperatur Temperatur är ett mått på benägenheten

Läs mer

Termodynamiska potentialer Hösten Assistent: Frans Graeffe

Termodynamiska potentialer Hösten Assistent: Frans Graeffe Räkneövning 3 Termodynamiska potentialer Hösten 206 Assistent: Frans Graeffe (03-) Concepts in Thermal Physics 2.6 (6 poäng) Visa att enpartielpartitionsfunktionen Z för en gas av väteatomer är approximativt

Läs mer

Makroekonomi Övningar REVIDERAD MED HÄNSYN TAGET TILL KURSENS LÅGA KUNSKAPER I. Gäller Kap

Makroekonomi Övningar REVIDERAD MED HÄNSYN TAGET TILL KURSENS LÅGA KUNSKAPER I. Gäller Kap Makroekonomi Övningar REVIDERAD MED HÄNSYN TAGET TILL KURSENS LÅGA KUNSKAPER I GRUNDLÄGGANDE MATEMATIK Gäller Kap 11-13. 2011-09-13 Juan Carlos Estibill Ht-2011 Se Kursinformation BILAGA: ÖVNINGAR KRAV:

Läs mer

Dagens föreläsning (F15)

Dagens föreläsning (F15) Dagens föreläsning (F15) Problemlösning med datorer Carl-Mikael Zetterling bellman@kth.se KP2+EKM http://www.ict.kth.se/courses/2b1116/ 1 Innehåll Programmering i Matlab kap 5 EKM Mer om labben bla Deluppgift

Läs mer

4 rörelsemängd. en modell för gaser. Innehåll

4 rörelsemängd. en modell för gaser. Innehåll 4 rörelsemängd. en modell för gaser. Innehåll 8 Allmänna gaslagen 4: 9 Trycket i en ideal gas 4:3 10 Gaskinetisk tolkning av temperaturen 4:6 Svar till kontrolluppgift 4:7 rörelsemängd 4:1 8 Allmänna gaslagen

Läs mer

Kinetisk Gasteori. Daniel Johansson January 17, 2016

Kinetisk Gasteori. Daniel Johansson January 17, 2016 Kinetisk Gasteori Daniel Johansson January 17, 2016 I kursen har vi under två lektioner diskuterat kinetisk gasteori. I princip allt som sades på dessa lektioner sammanfattas i texten nedan. 1 Lektion

Läs mer

Föreläsning 2.3. Fysikaliska reaktioner. Kemi och biokemi för K, Kf och Bt S = k lnw

Föreläsning 2.3. Fysikaliska reaktioner. Kemi och biokemi för K, Kf och Bt S = k lnw Kemi och biokemi för K, Kf och Bt 2012 N molekyler V Repetition Fö2.2 Entropi är ett mått på sannolikhet W i = 1 N S = k lnw Föreläsning 2.3 Fysikaliska reaktioner 2V DS = S f S i = Nkln2 Björn Åkerman

Läs mer

Arbete TD4 Gasreaktion. Den undersökta reaktionen är av typen A D + E. Reaktionens ordningstal är 1 och dess hastighetslag presenteras i ekvation (1).

Arbete TD4 Gasreaktion. Den undersökta reaktionen är av typen A D + E. Reaktionens ordningstal är 1 och dess hastighetslag presenteras i ekvation (1). Arbete TD4 Gasreaktion 1. INLEDNING Då en organisk förening förbränns sker reaktioner med och utan syra. Reaktionerna utan syre är protolysreaktioner där en kemisk förening sönderfaller till stabila produkter.

Läs mer

Föreläsning 4. Koncentrationer, reaktionsformler, ämnens aggregationstillstånd och intermolekylära bindningar.

Föreläsning 4. Koncentrationer, reaktionsformler, ämnens aggregationstillstånd och intermolekylära bindningar. Föreläsning 4. Koncentrationer, reaktionsformler, ämnens aggregationstillstånd och intermolekylära bindningar. Koncentrationer i vätskelösningar. Kap. 12.2+3. Lösning = lösningsmedel + löst(a) ämne(n)

Läs mer

Reaktionsmekanismer. Kap 6

Reaktionsmekanismer. Kap 6 Reaktionsmekanismer Kap 6 Karbokatjoner är elektrofila intermediärer Innehåll Kvalitativa resonemang hur och varför kemiska reaktioner sker Exempel på energiomsättningar vid olika slags organiska reaktioner.

Läs mer

Tentamen, Termodynamik och ytkemi, KFKA01,

Tentamen, Termodynamik och ytkemi, KFKA01, Tentamen, Termodynamik och ytkemi, KFKA01, 2016-10-26 Lösningar 1. a Mängden vatten är n m M 1000 55,5 mol 18,02 Förångningen utförs vid konstant tryck ex 2 bar och konstant temeratur T 394 K. Vi har alltså

Läs mer

Tentamen i KEMI del A för basåret GU (NBAK10) kl Institutionen för kemi, Göteborgs universitet

Tentamen i KEMI del A för basåret GU (NBAK10) kl Institutionen för kemi, Göteborgs universitet Tentamen i KEMI del A för basåret GU (NBAK10) 2007-02-15 kl. 08.30-13.30 Institutionen för kemi, Göteborgs universitet Lokal: Väg och Vatten-huset Hjälpmedel: Räknare Ansvarig lärare: Leif Holmlid 772

Läs mer