9. Magnetisk energi [RMC 12] Elektrodynamik, vt 2013, Kai Nordlund 9.1

Relevanta dokument
9. Magnetisk energi Magnetisk energi för en isolerad krets

9. Magnetisk energi Magnetisk energi för en isolerad krets

Faradays lag. ger. Låt oss nu bestämma den magnetiska energin för N st kopplade kretsar. Arbetet som kretsarnas batterier utför är

14. Potentialer och fält

8. Elektromagnetisk induktion

14. Potentialer och fält

8. Elektromagnetisk induktion

8. Elektromagnetisk induktion

Strålningsfält och fotoner. Kapitel 23: Faradays lag

Tentamen i El- och vågrörelselära,

Bra tabell i ert formelblad

SF1626 Flervariabelanalys Lösningsförslag till tentamen DEL A. 1. En svängningsrörelse beskrivs av

Rep. Kap. 27 som behandlade kraften på en laddningar från ett B-fält.

Föreläsning 8. Ohms lag (Kap. 7.1) 7.1 i Griffiths

Sensorer, effektorer och fysik. Grundläggande fysikaliska begrepp som är viktiga inom mättekniken

Tentamen i tmv036c och tmv035c, Analys och linjär algebra C för K, Kf och Bt A =, = det(a λi) = e 2t + c 2. x(t) = c 1. = c 1.

Tentamen i El- och vågrörelselära,

SF1626 Flervariabelanalys Lösningsförslag till tentamen DEL A

FFM234, Klassisk fysik och vektorfält - Föreläsningsanteckningar

Lösningar till tentamen i Elektromagnetisk fältteori för Π3 & F3

SF1626 Flervariabelanalys Lösningsförslag till tentamen DEL A

SF1626 Flervariabelanalys Lösningsförslag till tentamen DEL A

Tenta svar. E(r) = E(r)ˆr. Vi tillämpar Gauss sats på de tre områdena och väljer integrationsytan S till en sfär med radie r:

Införa begreppen ström, strömtäthet och resistans Ohms lag Tillämpningar på enkla kretsar Energi och effekt i kretsar

Integraler av vektorfält Mats Persson

SF1646 Analys i flera variabler Tentamen 18 augusti 2011, Svar och lösningsförslag

SF1626 Flervariabelanalys Lösningsförslag till tentamen DEL A

av envariabelfunktionen g(t) och flervariabelfunktionen t = h(x, y) = x 2 + e y.)

Skriftlig tentamen i Elektromagnetisk fältteori för π3 (ETEF01) och F3 (ETE055)

= 0. Båda skärningsvinklarna är således π/2 (ortogonala riktningsvektorer).

Tentamensskrivning i Ellära: FK4005e Fredag, 11 juni 2010, kl 9:00-15:00 Uppgifter och Svar

93FY51/ STN1 Elektromagnetism Tenta : svar och anvisningar


SF1626 Flervariabelanalys Lösningsförslag till tentamen DEL A

Institutionen för Matematik, KTH Torbjörn Kolsrud

Motorprincipen. William Sandqvist

SF1626 Flervariabelanalys Tentamen Torsdagen den 18 augusti 2016

Strålningsfält och fotoner. Våren 2013

Strålningsfält och fotoner. Våren 2016

Tentamen SF1626, Analys i flera variabler, Svar och lösningsförslag. 2. en punkt på randkurvan förutom hörnen, eller

SF1626 Flervariabelanalys Tentamen 18 augusti 2011, Svar och lösningsförslag

SF1669 Matematisk och numerisk analys II Lösningsförslag till tentamen DEL A. r cos t + (r cos t) 2 + (r sin t) 2) rdrdt.

Maxwell insåg att dessa ekvationer inte var kompletta!! Kontinutetsekvationen. J = ρ

Lösningsskiss för tentamen Vektorfält och klassisk fysik (FFM234 och FFM232)

SF1626 Flervariabelanalys Lösningsförslag till tentamen DEL A

SF1626 Flervariabelanalys Tentamen Tisdagen den 7 juni 2016

Elektrodynamik. Elektrostatik. 4πε. eller. F q. ekv

Formelsamling. Elektromagnetisk fältteori för F och Pi ETE055 & ETEF01

Tentamen i El- och vågrörelselära,

x ( f u 2y + f v 2x) xy = 24 och C = f

18. Sammanfattning Ursprung och form av fältena Elektrostatik Kraft, fält och potential 2 21, (18.3)

18. Sammanfattning Kraft, fält och potential. Krafter F är fysikaliskt mätbara storheter Elfält beror på kraften som F = Eq (18.

18. Sammanfattning. Elektrodynamik, vt 2013, Kai Nordlund 18.1

10. Kretsar med långsamt varierande ström

Vecka 4 INDUKTION OCH INDUKTANS (HRW 30-31) EM-OSCILLATIONER OCH VÄXELSTRÖMSKRETSAR

Tentamen Modellering och simulering inom fältteori, 8 januari, 2007

SF1626 Flervariabelanalys Lösningsförslag till tentamen DEL A

5. Elektrisk ström [RMC] Elektrodynamik, vt 2008, Kai Nordlund 5.1

SF1626 Flervariabelanalys Tentamen Måndagen den 16 mars 2015

SF1626 Flervariabelanalys Lösningsförslag till tentamen DEL A

10. Kretsar med långsamt varierande ström

10. Kretsar med långsamt varierande ström

isolerande skikt positiv laddning Q=CV negativ laddning -Q V V

har ekvation (2, 3, 4) (x 1, y 1, z 1) = 0, eller 2x + 3y + 4z = 9. b) Vi söker P 1 = F (1, 1, 1) + F (1, 1, 1) (x 1, y 1, z 1) = 2x + 3y + 4z.

5. Elektrisk ström Introduktion

6. Magnetostatik I: Magnetfältet från tidsoberoende strömmar

6. Magnetostatik I: Magnetfältet från tidsoberoende strömmar

Lösningsförslag envariabelanalys

Tentamen TMA044 Flervariabelanalys E2

SF1626 Flervariabelanalys

Institutionen för matematik SF1626 Flervariabelanalys. Lösningsförslag till tentamen Måndagen den 5 juni 2017 DEL A

Tentamen i matematik. f(x) = ln(ln(x)),

Strålningsfält och fotoner. Kapitel 23: Faradays lag

10. Kretsar med långsamt varierande ström

Inlämningsuppgift nr 2, lösningar

Svar till övningar. Nanovetenskapliga tankeverktyg.

VIKTIGA TILLÄMPNINGAR AV GRUNDLÄGGANDE BEGREPP

3. Lösning av elektrostatiska problem för dielektrika

SF1626 Flervariabelanalys Lösningsförslag till tentamen DEL A

3. Lösning av elektrostatiska problem för dielektrika

3. Lösning av elektrostatiska problem för dielektrika

SF1626 Flervariabelanalys Lösningsförslag till tentamen DEL A

Visa att vektorfältet F har en potential och bestäm denna. a. F = (3x 2 y 2 + y, 2x 3 y + x) b. F = (2x + y, x + 2z, 2y 2z)

Skriftlig tentamen i Elektromagnetisk fältteori för π3 (ETEF01) och F3 (ETE055)

Tentamen: Lösningsförslag

5. Elektrisk ström [RMC] Elektrodynamik, vt 2013, Kai Nordlund 5.1

Tentamen Modellering och simulering inom fältteori, 21 oktober, 2006

FK Elektromagnetism, Fysikum, Stockholms universitet Tentamensskrivning (1:a omtentan), tisdag 17 juni 2014, kl 9:00-14:00

Lösningsförslag till tentamen Onsdagen den 15 mars 2017 DEL A

Oscillerande dipol i ett inhomogent magnetfält

Tentamen i ELEKTROMAGNETISM I, för F1 och Q1 (1FA514)

Tentamen i ELEKTROMAGNETISM I, för W2 och ES2 (1FA514)

5. Elektrisk ström Introduktion

11. Maxwells ekvationer och vågekvationen

11. Maxwells ekvationer och vågekvationen

Lösningsförslag Inlämningsuppgift 3 Kapacitans, ström, resistans

Tentamen i Elektromagnetisk fältteori för π3 och Modellering och simulering inom fältteori för F3, 24 augusti, 2009, kl

15. Strålande system

Transkript:

9. Magnetisk energi [RMC 12] Elektrodynamik, vt 2013, Kai Nordlund 9.1

9.1. Magnetisk energi för en isolerad krets Arbetet som ett batteri utför då det för en laddning dq runt en krets, från batteriets anod A till dess katod B är: där V k är batteriets spänning. Kirchhoffs II lag: dw k = dq V k (9.1) E + i V k,i = j V j (9.2) Om all resistans kan kombineras till en enda resistor: så att V k = E + RI (9.3) dw k = dq V k = dq( E + RI) = Idt( E + RI) = IdtE + RI 2 dt (9.4) Elektrodynamik, vt 2013, Kai Nordlund 9.2

Faradays lag ger E = dφ dt (9.5) dw k = IdΦ + RI 2 dt (9.6) Batteriets arbete går alltså till att bygga upp ett magnetiskt flöde Φ och därmed motverka den bromsande inducerade spänningen, och att dissipera värme-energi i resistorn. Om vi kan ignorera denna sistnämnda Joule-uppvärmning så får vi energin som går in i magnetfältet. Om inget annat förändras i kretsen, t.ex. kretsen behåller sin stela form och befinner sig hela tiden i vila, så har det utförda arbetet bara gått åt att öka på kretsens magnetiska energi: du M = IdΦ (9.7) Elektrodynamik, vt 2013, Kai Nordlund 9.3

9.2. Magnetisk energi för kopplade kretsar Låt oss nu bestämma den magnetiska energin för N st kopplade kretsar. Arbetet som kretsarnas batterier utför är då Joule-uppvärmningen inte beaktas. dw k = N I i dφ i (9.8) i=1 Vi utför nu integreringen under antagande att strömmarna och flödena ökar samtidigt i alla kretsar, så att den tillfälliga strömmen i krets i är Detta ger I i αi i (9.9) För linjära magnetiska media gäller att Φ i I i, så induktansen di i = I idα (9.10) L i = dφ i di i = Φ i I i (9.11) Elektrodynamik, vt 2013, Kai Nordlund 9.4

som ger I i L i = Φ i. Vi får nu att di i = Φ i L i dα (9.12) Men L i = L i = dφ i di i (9.13) så att dφ i = Φ idα (9.14) Vi har nu W k = = dw k = N 1 i=1 0 N i=1 I i αφ i dα I i dφ i Elektrodynamik, vt 2013, Kai Nordlund 9.5

= = 1 2 N 1 I i Φ i dαα i=1 0 N I i Φ i (9.15) i=1 För ett system av N st kopplade, stationära och stela kretsar har vi alltså att den lagrade magnetiska energin är U M = 1 2 N I i Φ i (9.16) i=1 Om inge yttre fält är närvarande är flödesförändringarna orsakade av de övriga kretsarna. Då gäller dφ i = N dφ ij = j=1 N j=1 dφ ij di j di j = N M ij di j (9.17) j=1 Elektrodynamik, vt 2013, Kai Nordlund 9.6

Vi får: U = dw b = N I i N M ij di j i=1 j=1 = N i=1 I i N j=1 1 M ij I j dαα 0 = 1 2 = 1 2 N i=1 N i=1 N M ij I i I j j=1 L i I 2 i +M 12 I 1 I 2 + M 13 I 1 I 3 +... + M 1N I 1 I N +M 23 I 2 I 3 + M 24 I 2 I 4 +... + M 2N I 2 I N +... + M N 1,N I N 1 I N (9.18) Vi använde L i = M ii och M ij = M ji. Elektrodynamik, vt 2013, Kai Nordlund 9.7

Exempel 1: En isolerad krets: Φ = LI (9.19) U = 1 2 IΦ = 1 2 LI2 = 1 2 Φ 2 L (9.20) Exempel 2: Två kopplade kretsar: Beteckna x = I 1 /I 2. Eftersom U 0 får vi U = 1 2 L 1I 2 1 + 1 2 L 2I 2 2 + M 12I 1 I 2 (9.21) U = 1 2 I2 2 (L 1x 2 + L 2 + 2M 12 x) 0 (9.22) Nu kan vi beräkna minimi-energin som funktion av förhållandet mellan strömmarna x genom att derivera parentesen och sätta uttrycket till noll, x = M 12 L 1 (9.23) Elektrodynamik, vt 2013, Kai Nordlund 9.8

och efter verifiering att andra derivatan är positiv. Minimi-energin: så att U min = 1 2 2 I2 2 (M 12 + L 2 2 M 2 12 ) = 1 L 1 L 2 M 2 L 1 L 1 2 I2 12 2 0 (9.24) L 1 M 2 12 + L 1L 2 0 (9.25) eller ett uttryck som vi använde oss av tidigare. L 1 L 2 M 2 12 (9.26) Elektrodynamik, vt 2013, Kai Nordlund 9.9

9.3. Det magnetiska fältets energi Som för elektriska laddningsfördelningar kan vi generalisera energin för magnetiska kretsar med hjälp av det fält dessa kretsar ger upphov till. Betrakta ett system av kretsar i ett linjärt magnetiskt medium. Flödet genom en av dessa kretsar är Φ i = A i da i B (9.27) En komplicerad krets kan delas upp i ett flertal slutna slingor. Detta gjorde vi redan tidigare när vi granskade kretsar med Kirchhoffs lagar. Vi kan nu skriva Φ i = da i B = da ij B A i j A ij = da ij ( A) j A ij = dr ij A (9.28) j C ij Elektrodynamik, vt 2013, Kai Nordlund 9.10

Totala energin för det magnetiska fältet är nu U = 1 2 = 1 2 = 1 2 = 1 2 I i Φ i i I i i j C ij dr ij A I i dr ij A i j C ij i j V ij dv ij J ij A (9.29) Låt volymerna vara sådana att deras summa fyller upp hela volymen V. Vi får då där J = ij J ij. U = 1 2 V dv J A (9.30) Elektrodynamik, vt 2013, Kai Nordlund 9.11

Fältekvationen för H är ju H = J (9.31) så vi får Med hjälp av U = 1 2 V dv ( H) A (9.32) (F G) = ( F) G ( G) F (9.33) fås nu U = 1 2 = 1 2 = 1 2 dv ( (H A) + ( A) H) V da (H A) + 1 dv ( A) H A 2 V da (H A) + 1 dv B H (9.34) A 2 V Elektrodynamik, vt 2013, Kai Nordlund 9.12

Om strömmar inte förekommer i oändligheten och de magnetiska materialen inte är oändligt stora dör A bort som 1/r, och H som B som A som 1/r 2 p.g.a. magnetiskt material och som 1/r 2 p.g.a. strömmar. Kombinationen av H och A dör alltså bort som 1/r 3. da är proportionell mot r 2, så yt-integralen dör bort som 1/r och försvinner i oändligheten. Vi sitter nu kvar med U M = 1 2 V dv B H (9.35) där V omfattar hela rummet. Detta är energin för ett linjärt magnetiskt system. Energitätheten för isotropiska linjära media är u M = 1 2 B H = 1 2 µh2 = 1 2µ B2 (9.36) Elektrodynamik, vt 2013, Kai Nordlund 9.13

9.4. Krafter och vridmoment på stela kretsar Vi betraktar nu ett magnetiskt system där en komponent tillåts röra sig under inverkan av magnetfältet. Strömmen i systemet hålls konstant Det arbete som den magnetiska kraften F utför på en rörlig komponent är dw I = F dr = dw k du M (9.37) där dw k är arbetet som utförs av externa batterier för att hålla strömmen konstant, och du M är förändringen i systemets magnetiska energi. Uttrycket för energin ger genast att du M = 1 2 I i dφ i (9.38) i Å andra sidan, batteriets arbete är dw k = i IdΦ i = 2dU M (9.39) Elektrodynamik, vt 2013, Kai Nordlund 9.14

enligt första sektionen. Vi får nu att så att den magnetiska kraften på komponenten är dw I = du M (9.40) För vridmoment fås F = ( U M ) I (9.41) τ = ( θ U M ) I (9.42) Elektrodynamik, vt 2013, Kai Nordlund 9.15

Flödet genom systemet hålls konstant Fortfarande gäller dw k = i IdΦ i (9.43) som nu är noll. Vi får då att dw Φ = du M (9.44) och F = ( U M ) Φ (9.45) Motsvarande, τ = ( θ U M ) Φ (9.46) Elektrodynamik, vt 2013, Kai Nordlund 9.16

Exempel 1: Bestäm kraften mellan två stela kretsar som bär de konstanta strömmarna I 1 och I 2. Låt krets 1 utöva en kraft på krets 2, som flyttas som helhet. De flöden som kretsarna ger upphov till genom sig själva ändras inte, eftersom strömmarna och tvärsnittsytorna är oföränderliga. Det enda som ändrar är kretsarnas inbördes position. Alltså ändrar endast det ömsesidiga flödet, och vi får F 2 = 2 U = 2 ( 1 2 L 1I 2 1 + 1 2 L 2I 2 2 + MI 1I 2 ) = I 1 I 2 2 M (9.47) där enligt Neumanns formel vi har att M = µ 0 4π C 1 dr 1 dr 2 C 2 r 1 r 2 (9.48) Elektrodynamik, vt 2013, Kai Nordlund 9.17

Skriv om: r 1 = r 1,0 + s 1 (9.49) r 2 = r 2,0 + s 2 (9.50) Här är r i,0 (i = 1, 2) nån fixerad punkt för kretsen, t.ex. dess massmedelpunkt. Denna rör sig om kretsen rör sig. s i är en vektor som löper över kretsens kontur, och vars origo är i massmedelpunkten. I uttrycket för den ömsesidiga induktansen löper integreringen över konturerna: M = µ 0 4π C 1 ds 1 ds 2 C 2 s 2 s 2 + r 1,0 r 2,0 (9.51) Derivering med avseende på r 2 betyder för stela kretsar att vi deriverar med avseende på massmedelpunkten för krets 2: F 2 = 2 U = I 1 I 2 r2,0 µ 0 4π C 1 ds 1 ds 2 C 2 s 1 s 2 + r 1,0 r 2,0 Elektrodynamik, vt 2013, Kai Nordlund 9.18

= I 1 I 2 µ 0 4π = I 1 I 2 µ 0 4π C 1 C 1 1 ds 1 ds 2 r2,0 C 2 s 1 s 2 + r 1,0 r 2,0 s 1 s 2 + r 1,0 r 2,0 ds 1 ds 2 (9.52) C 2 s 1 s 2 + r 1,0 r 2,0 3 Å andra sidan, Biot-Savarts lag säger att F 2 = µ 0 4π I dr 2 (dr 1 (r 2 r 1 )) 1I 2 (9.53) C 1 C 2 r 1 r 2 3 Vi kan nu för att vara konsekventa använda samma variabler i Biot-Savarts lag som i den tidigare ekvationen, men noteringarna blir lättare om vi istället återgår till r 1, r 2 : F 2 = I 1 I 2 µ 0 4π Detta uttryck och Biot-Savarts lag måste vara samma. Vi bevisar detta! C 1 C 2 (dr 1 dr 2 )(r 2 r 1 ) r 1 r 2 3 (9.54) Elektrodynamik, vt 2013, Kai Nordlund 9.19

Vi har: dr 2 (dr 1 (r 2 r 1 )) = dr 1 (dr 2 (r 2 r 1 )) (r 2 r 1 )(dr 2 dr 1 ) (9.55) enligt BAC-CAB-regeln. Sista termen ger oss det F 2 -uttryck vi härlett ovan, så vi visar att första termen försvinner. Denna term ger integralen C 1 C 2 dr 1 (dr 2 (r 2 r 1 )) r 1 r 2 3 = C 1 dr 1 C 2 dr 2 (r 2 r 1 ) r 2 r 1 3 (9.56) Utför integralen över C 2 först. I integranden kommer r 1 att vara en konstant, så att vi kan införa variabeln v = r 2 r 1 med dv = dr 2 : C 1 dr 1 C 2 dv v v 3 = = C 1 dr 1 C 1 dr 1 dvv dv = dr C 2 v 3 1 C 1 C 2 v 2 ( ) 1 = dr 1 0 (9.57) v C 1 C 2 d för att en sluten kurvintegral över bara en variabel säkert blir 0. Elektrodynamik, vt 2013, Kai Nordlund 9.20

OK! Elektrodynamik, vt 2013, Kai Nordlund 9.21

Exempel 2: Låt en solenoid med längden L och N st lindningar av en tråd som bär strömmen I vara nästan fylld med en järnstav med den konstanta permabiliteten µ och den konstanta tvärsnittsarean A = πa 2. Låt solenoiden ha sin symmetriaxel parallell med z-axeln. Approximera att magnetfältet är konstant i all riktningar som är vinkelräta mot z, inom solenoiden. Låt solenoidens ändpunkter vara z = 0 och z = L. Om nu staven dras ut så att ena änden är i 0 < z < L medan den andra är utanför solenoiden, bestäm den kraft som påverkar staven i det nya läget. Strömmen hålls konstant under utdragandet. Elektrodynamik, vt 2013, Kai Nordlund 9.22

Från tidigare vet vi att B z (z) = µ 0NI 2L (cos α 1 + cos α 2 ) = µ ( 0NI z 2L z2 + a + 2 = µ 0NI 2L ( ) L z (z L)2 + a 2 ) z z 2 + f + 1 z 2 (z 1) 2 + f 2 (9.58) med beteckningarna z = z/l och f = a/l. Elektrodynamik, vt 2013, Kai Nordlund 9.23

Om solenoidens radie är 10% av dess längd, d.v.s. f = 0, 1 fås ett B z (z) beroende som i figuren. Från detta ser vi att B z utanför staven är mycket svagt, så vi kan ignorera fältet där ute i våra räkningar. Den magnetiska energin är nu U = 1 2 dv µh 2 = 1 2 V = 1 ( z 2 A dz µ 0 H 2 + 0 z dz AµH 2 L z dz µh 2 ) (9.59) Elektrodynamik, vt 2013, Kai Nordlund 9.24

Kraften är F = z U = 1 2 A z = 1 2 A ( z ( z dz µ 0 H 2 + 0 0 L z dz µh 2 ) dz µ 0 z H2 (z ) + µ 0 H 2 (z = z) z z µ 0H 2 (z = 0) ) z 0 + 1 ( L 2 A dz µ z H2 (z ) + µh 2 (z = L) z L µh2 (z = z) )(9.60) z z z Här användes Leibniz integralregel: u [ ] b(u) dxf(x, u) a(u) = b(u) a(u) dx f(x, u) u +f(b(u), u) u b(u) f(a(u), u) a(u) (9.61) u Elektrodynamik, vt 2013, Kai Nordlund 9.25

Observera att z i integralerna är en hjälpvariabel som integreras bort och inte syns utanför integralen. Vi får inte derivera med avseende på denna! Nu försvinner de flesta termerna för derivatorna med avseende på z på termer som inte beror på denna variabel blir noll, och vi får F = 1 ) (µ 2 A 0 H 2 (z = z) µh 2 (z = z) = 1 2 A(µ 0 µ)h 2 (z = z) = 1 2 A(µ 0 µ 0 (1 + χ M ))H 2 (z = z) = 1 2 Aχ Mµ 0 H 2 (z = z) (9.62) Kraften är riktad till vänster i figuren, d.v.s. solenoiden vill dra in staven. Elektrodynamik, vt 2013, Kai Nordlund 9.26

Exempel 3: Bestäm den cylinderradiella kraften på en solenoids lindningar, per längd. Antalet lindningar är N, strömmen i dessa är I, solenoidens radie är R och dess längd är L. Ignorera fältet utanför solenoiden. Energin är U M = 1 dv µh 2 2 = 1 ( ) NI 2 2 µ dv L = 1 ( ) NI 2 2 µπr2 L (9.63) L enligt tidigare approximation. Kraften i den cylinderradiella riktningen är, om strömmen hålls konstant: F ρ = ( U M ) ρ = ρ U M = 1 ( ) NI 2 2 µπ2rl (9.64) L Elektrodynamik, vt 2013, Kai Nordlund 9.27

Den sökta kraften per längd är F ρ 2πRN = 1 2 µni2 L (9.65) Om i stället flödet hålls konstant får vi ett minustecken. Elektrodynamik, vt 2013, Kai Nordlund 9.28