Genom att använda geometrin i figuren ovan kan vi även ta fram uttryck för hur storleken på bilden, h, beror på storleken på objektet, h.
|
|
- Berit Forsberg
- för 7 år sedan
- Visningar:
Transkript
1 öeläsig 6 Avbildig i säisk gäsyta Hittills ha vi baa avbildat puktomiga objekt som ligge på de optiska axel, me de lesta objekt ha e stolek d.v.s. bestå av me ä e pukt. Otast ita ma objektet som e ståede pil, som i igue eda, och ölje ståla å toppe av objektet (beteckat med Q i igue). Nä vi ölje ståla å Q ka vi utyttja det aktum att ståla igeom ytas kökigscetum, C, gå obuta etesom de komme i lägs med ytas omal. Vi ha alltså e ståle å Q som otsätte obute igeom C och ka ses som e y optisk axel så att vi ka aväda samma avbildigsomel som tidigae ö att hitta bilde Q. I paaxial appoximatio ligge bildea B och Q ligge i samma pla så läge som objektpuktea B och Q gö det. Vid stålkostuktioe ösumma vi äve ytas sag och byte alla ståla i ett och samma pla vid ytas vetex, A (se igue). Ståle å Q som alle i paallellt med optiska axel byts till bake okalpukte och ståle geom äme okalpukte komme ut paallellt med optiska axel. Ståle å Q geom ytas vetex A, mitt i stålkippet, kallas huvudståle. Bytige av huvudståle ges av bytigslage: w' w w w '. Geom att aväda geometi i igue ova ka vi äve ta am uttyck ö hu stoleke på bilde, h, beo på stoleke på objektet, h. Tiagel B AQ ge att: h taw ö små vikla i adiae w Tiagel BAQ ge att: h l ta w ö små vikla i adiae lw Med hjälp av dessa uttyck och bytige av huvudståle ova, ka vi bestämma bildes lateala östoig, m: h w L m l h lw l L 1
2 Det is äve ett alteativt sätt att ta am östoige dä ma istället ö att aväda l och age objekts- och bildavståd å äme och bake okalpukte och betecka dessa som x och x. Geom att de steckade, likomiga tiaglaa i igue ova ka östoige äve skivas som: h m h xx x x och u detta uttyck ka vi äve å am att De sista omel kallas ö Newtos elatio och ka avädas som ett alteativ till avbildigsomel. Vaiatea på omel ö östoige ä speciellt avädbaa om ma baa ha objekts- elle bildavstådet och söke östoige. Sammaattig av omlea ö avbildig (Alla utom de sista omel gälle i alla avbildade system): L l L Objekt och bildveges L L Avbildigsomel äme och bake okallägd m h L x Lateal östoig h L x xx Newtos elatio säisk yta Styka ö säisk gäsyta. 2
3 Exempel på avbildig i säisk gäsyta E 2 cm sto isk beie sig vid bakkate av e vatteylld säisk skål med adie 2 dm. Hu sto bli bilde av iske? Givet: = 4/3, = 1 = -0,2 m l = -0,4 m. h = 0,02 m Paaxial elektio i säiska spegla Beäkiga: = ( -)/ = 1,66 D L = /l = -3,33 D L = L + = - 1,67 D m = L/L = 2 h = hm = 0,04 m Relektioslage ge Om vi jämö elektioslage med paaxiala bytigslage,, se vi att de bli lika om vi sätte i bytigslage. (samma idex ete som öe etesom ljuset elekteas, mius etesom ljuset gå bakläges). Det betyde att om ma byte ut mot i omlea ö säisk gäsyta så å ma omlea ö säisk spegel! 3
4 2 Avbildigsomel ö säisk spegel l' l L L Objekt och bildveges l säisk spegel 2 Styka ö säisk spegel. L L Avbildigsomel Obsevea att: Kovexa spegla (>0) ha egativ styka, de gö ljuset me diveget. Kokava spegla (<0) ha positiv styka, de gö ljuset me koveget. okalpukte till säiska spegla Ett objekt i oädlighete (l=, L=0) ge bild i bake okalpukte, (se göa ståla med gö pil i iguea eda). Objekt i äme okalpukte,, ge bild i oädlighete (l =, L =0) (se göa ståla med öd pil i iguea eda). 4
5 ö spegla ä äme och bake okalpuktea ( och ) alltid samma pukt: Avbildig i säiska spegla Ståle paallell med optiska axel elekteas geom bake okalpukte. Ståle geom äme okalpukte elekteas paallellt med optiska axel. Ståle geom kökigscetum elekteas tillbaka i samma iktig och e ståle som täa dä optiska axel skä spegel elekteas eligt samma egle som vid e pla spegel, alltså med samma vikel som de kom i. Vid avbildig av ett stot objekt å ma också östoig eligt Sammaattig omle ö avbildig i spegel (Miesegel: sätt =- i tidigae omle): L L Objekt och bildveges l L L Avbildigsomel ' äme och bake okallägd 2 m h L x Lateal östoig h L x xx Newtos elatio säisk spegel 2 Styka ö säisk spegel. 5
Föreläsning 6 (kap i Optics)
23 öeäsig 6 (kap 3.7-3.10 i Optics) Avbidig i säisk gäsyta Hittis ha vi baa avbidat puktomiga objekt som igge på de optiska axe, me de esta objekt ha e stoek d.v.s. bestå av me ä e pukt. Otast ita ma objektet
Läs merFöreläsning 4 5 Sfärisk krökning och att mäta den; sag formeln
Föeäsig 4 5 Sfäisk kökig och att mäta de; sag fome De sfäiska ta ä de viktigaste tpe av ta iom optike. Det ä de atuiga fom två to få om de gids mot vaada och toa på de aa festa ise ka behadas som sfäiska
Läs merFinansiell ekonomi Föreläsning 2
Fiasiell ekoomi Föeläsig 2 Fö alla ivesteigsbeslut gälle: Om ytta > Kostad Geomfö ivesteige Om Kostad > ytta Geomfö ite ivesteige Gemesam ehet = pega Vädeig = makadspis om sådat existea (jf. vädet av tid
Läs merMS-A0409 Grundkurs i diskret matematik Sammanfattning, del I
MS-A0409 Gudkus i disket matematik Sammafattig, del I G. Gipebeg 1 Mägde och logik 2 Relatioe och fuktioe Aalto-uivesitetet 15 maj 2014 3 Kombiatoik etc. G. Gipebeg Aalto-uivesitetet MS-A0409 Gudkus i
Läs merÖvning 3 - Kapitel 35
Övig 3 - Kapitel 35 7(1). Brytigsidex får vi frå Eq. 35-3: c = = v. 998 10 8 19. 10 8 ms ms = 156.. 6(4). (a) Frekvese för gult atriumljus är,998 10 589 10 5,09 10 (b) När ljuset färdas geom glas blir
Läs merStången: Cylindern: G :
mekaik I, 09084- A V H f mg G N B 3 d Frilägg cylider och de lätta ståge! Ståge påverkas av kraftparsmometet M samt kotaktkrafter i A och O. Cylider påverkas av kotaktkrafter i A och B samt tygdkrafte
Läs merLINJÄR ALGEBRA II LEKTION 4
LINJÄR ALGEBRA II LEKTION 4 JOHAN ASPLUND Iehåll Egevärde, egevektorer och egerum 2 Diagoaliserig 3 Uppgifter 2 5:4-5a) 2 Extrauppgift frå dugga 2 52:8 4 52:3 4 Extrauppgift frå teta 4 Egevärde, egevektorer
Läs merTillämpad biomekanik, 5 poäng Plan rörelse, kinematik och kinetik
Pla rörelse Kiematik vid rotatio av stela kroppar Iledade kiematik för stela kroppar. För de två lijera, 1 och, i figure bredvid gäller att deras vikelpositioer, θ 1 och θ, kopplas ihop av ekvatioe Θ =
Läs merTENTAMEN. Datum: 11 feb 2019 Skrivtid 8:00-12:00. Examinator: Armin Halilovic Jourhavande lärare: Armin Halilovic tel
Kus: HF9, Matematik, atum: feb 9 Skivti 8:-: TENTAMEN momet TEN aals Eamiato: Ami Halilovic Jouhavae läae: Ami Halilovic tel 8 79 8 Fö gokät betg kävs av ma poäg Betgsgäse: Fö betg A, B, C,, E kävs, 9,
Läs merFinansiell ekonomi Föreläsning 3
Fiasiell ekoomi Föeläsig 3 Specifika tillgåga ätebäade - aktie Hu bestäms Avkastig? Utbud och eftefåga S = I Vad påveka utbud och eftefåga på spaade medel (spaade och låade) Kapitalets fövätade avkastig
Läs merÖvning 3 Fotometri. En källa som sprider ljus diffust kallas Lambertstrålare. Ex. bioduk, snö, papper.
Övning 3 Fotometi Lambetstålae En källa som spide ljus diffust kallas Lambetstålae. Ex. bioduk, snö, pappe. Luminansen ä obeoende av betaktningsvinkeln θ. Om vinkeln ändas ändas I v men inte L v. L v =
Läs merTentamen i Elektronik, ESS010, del 2 den 14 dec 2009 klockan 14:00 19:00.
Tekiska Högskola i Lud Istitutioe för Elektroveteskap Tetame i Elektroik, ESS010, del 2 de 14 dec 2009 klocka 14:00 19:00. Uppgiftera i tetame ger totalt 60p. Uppgiftera är ite ordade på ågot speciellt
Läs merHambley avsnitt 12.7 (även 7.3 för den som vill läsa lite mer om grindar)
1 Föreläsig 5/11 Hambley avsitt 12.7 (äve 7.3 för de som vill läsa lite mer om gridar) Biära tal Vi aväder ormalt det decimala talsystemet, vilket har base 10. Talet 2083 rereseterar då 2 10 3 0 10 2 8
Läs merVad är det okända som efterfrågas? Vilka data är givna? Vilka är villkoren?
Problemlösig. G. Polya ger i si utmärkta lilla bok How to solve it (Priceto Uiversity press, 946) ett schema att följa vid problemlösig. I de flod av böcker om problemlösig som har följt på Polyas bok
Läs merSvar till tentan
UPPSALA UNIVERSITET Matematiska istitutioe Sigstam, Styf Prov i matematik ES, K, KadKemi, STS, X ENVARIABELANALYS 0-03- Svar till teta 0-03-. Del A ( x Bestäm e ekvatio för tagete till kurva y = f (x =
Läs merTENTAMEN I MATEMATIK MED MATEMATISK STATISTIK HF1004 TEN
TENTAMEN I MATEMATIK MED MATEMATISK STATISTIK HF004 TEN 0-0-7 Hjälpmedel: Fomelsamlig med tabelle i statistik oc äkedosa Fullstädiga lösiga efodas till samtliga uppgifte. Lösigaa skall vaa väl motiveade
Läs mer101. och sista termen 1
Lektio, Evariabelaalys de ovember 999 5.. Uttryck summa j uta summasymbole. j + Termera är idexerade frå j = till j = och varje term är blir j j+. Summa Skriver vi upp summa uta summasymbole blir de +
Läs merResultatet av kryssprodukten i exempel 2.9 ska vara följande: Det vill säga att lika med tecknet ska bytas mot ett plustecken.
Kommetarer till Christer Nybergs bok: Mekaik Statik Kommetarer kapitel 2 Sida 27 Resultatet av kryssprodukte i exempel 2.9 ska vara följade: F1 ( d cos β + h si β ) e z Det vill säga att lika med tecket
Läs merLinjär Algebra (lp 1, 2016) Lösningar till skrivuppgiften Julia Brandes
Lijär Algebra (lp 1, 2016) Lösigar till skrivuppgifte Julia Brades Uppgift 1. Betecka mägde av alla matriser med M(). Vi har e elemetvist defiierad additio av två matriser A, B M(). De är defiierad geom
Läs merH1009, Introduktionskurs i matematik Armin Halilovic. använder vi oftast induktionsbevis.
MATEMATISK INDUKTION För att bevisa att ett påståede P() är sat för alla heltal 0 aväder vi oftast iduktiosbevis Iduktiossatse Låt P() vara ett påståede vars saigsvärde beror av heltalet 0 där 0 är ett
Läs merAnmärkning: I några böcker använder man följande beteckning ]a,b[, [a,b[ och ]a,b] för (a,b), [a,b) och (a,b].
MÄNGDER Stadardtalmägder: N={0,, 2, 3, } mägde av alla aturliga tal (I ågra böcker N={,2,3, }) Z={ 3, 2,,0,, 2, 3, 4, } mägde av alla hela tal m Q={, där m, är hela tal och 0 } mägde av alla ratioella
Läs merMS-A0409 Grundkurs i diskret matematik I
MS-A0409 Grudkurs i diskret matematik I G. Gripeberg Mägder och logik Relatioer och fuktioer Aalto-uiversitetet oktober 04 Kombiatorik etc. G. Gripeberg (Aalto-uiversitetet MS-A0409 Grudkurs i diskret
Läs merGeometrisk optik. Optiska system F9 Optiska instrument. Brytningsindex. avbildning med linser. Begrepp inom geometrisk optik. Brytningslagen FAF260
FF60 Geometrisk optik vildig med liser och speglr Geometrisk optik F7 elektio och rytig F8 vildig, liser och speglr system F9 istrumet Geometrisk optik vildig med liser epetitio: elektio och rytig rytig
Läs merTenta i MVE025/MVE295, Komplex (matematisk) analys, F2 och TM2/Kf2
Teta i MVE5/MVE95, Komplex (matematisk) aalys, F och TM/Kf 6, 8.3-.3 Hjälpmedel: Formelblad som delas ut av tetamesvaktera Telefovakt: Mattias Leartsso, 3-535 Betygsgräser: -9 (U), -9 (3), 3-39 (4), 4-5
Läs merDatum: 11 feb Betygsgränser: För. Komplettering sker. Skriv endast på en. finns på omslaget) Uppgift. Uppgift 2 2. Uppgift. Beräkna.
Tetame i Matematisk aals, HF5 atum: feb Skivti: 8:-: Läae: Maia Aakela, Joas Steholm, Ami Halilovic Eamiato: Ami Halilovic Jouhavae läae: Ami Halilovic tel 8 7 8 Fö gokät betg kävs av ma poäg Betgsgäse:
Läs merLösningar och kommentarer till uppgifter i 1.1
Lösigar och kommetarer till uppgifter i. 407 d) 408 d) 40 a) 3 /5 5) 5 3 0 ) 0) 3 5 5 4 0 6 5 x 5 x) 5 x + 5 x 5 x 5 x 5 x + 5 x 40 Om det u är eklare så här a x a 3x + a x) a 4x + 43 a) 43 45 5 3 5 )
Läs merTentamen i El- och vågrörelselära, 2014 08 28
Tentamen i El- och vågöelseläa, 04 08 8. Beäknastolekochiktningpådetelektiskafältetipunkten(x,y) = (4,4)cm som osakas av laddningana q = Q i oigo, q = Q i punkten (x,y) = (0,4) cm och q = Q i (x,y) = (0,
Läs merTentamen i Linjär Algebra, SF december, Del I. Kursexaminator: Sandra Di Rocco. Matematiska Institutionen KTH
1 Matematiska Istitutioe KTH Tetame i Lijär Algebra, SF164 14 december, 21. Kursexamiator: Sadra Di Rocco OBS! Svaret skall motiveras och lösige skrivas ordetligt och klart. Iga hjälpmedel är tillåta.
Läs merKompletterande kurslitteratur om serier
KTH Matematik Has Thuberg 5B47 Evariabelaalys Kompletterade kurslitteratur om serier I Persso & Böiers.5.4 itroduceras serier, och serier diskuteras också i kapitel 7.9. Ia du läser vidare här skall du
Läs merMagnetiskt fält kring strömförande ledare Kraften på en av de två ledarna ges av
Magnetism Magnetiskt fält king stömföande ledae. Kaften på en av de två ledana ges av F k l ewtons 3:e lag säge att kaften på den anda ledaen ä lika sto men motiktad. Sva: Falskt. Fältets styka ges av
Läs merHambley avsnitt 12.7 (även 7.3 för den som vill läsa lite mer om grindar)
1 Föreläsig 6, Ht 2 Hambley avsitt 12.7 (äve 7.3 för de som vill läsa lite mer om gridar) Biära tal Vi aväder ormalt det decimala talsystemet, vilket har base 10. Talet 2083 rereseterar då 2 10 3 0 10
Läs mer5. Linjer och plan Linjer 48 5 LINJER OCH PLAN
48 5 LINJER OCH PLAN 5. Lijer och pla 5.. Lijer Eempel 5.. Låt L ara e lije i rummet. Atag att P är e pukt på L och att L är parallell med e ektor, lijes riktigsektor. Då gäller att e pukt P ligger på
Läs merBilaga 6.1 Låt oss studera ett generellt andra ordningens tidsdiskreta system
Bilaga 6. Lå oss sudea e geeell ada odiges idsdiskea sysem [] [] [ ] [ ] [ ] [ ] y y x x x y Vi besämme öveföigsfukioe i -plae Figu B6.. Tidsdiske sysem på gudfom,, blockschema [ ] [ ] Lå oss fomulea om
Läs merProblem 2 löses endast om Du hade färre än 15 poäng på duggan som gavs arctanx sin x. x(1 cosx) lim. cost.
UPPSALA UNIVERSITET Matematiska istitutioe Abrahamsso 7-6796 Prov i matematik IT, W, lärarprogrammet Evariabelaalys, hp 9-6-4 Skrivtid: : 5: Tillåta hjälpmedel: Mauella skrivdo Varje uppgift är värd maimalt
Läs merTNA001 Matematisk grundkurs Övningsuppgifter
TNA00 Matematisk grudkurs Övigsuppgiter Iehåll: Uppgit Uppgit 8 Uppgit 9 6 Uppgit 7 5 Uppgit 55 60 Facit sid. 8-0 Summor, Biomialsatse, Iduktiosbevis Ivers uktio Logaritmer, Expoetialuktioer Trigoometri
Läs merTentamen i Flervariabelanalys F/TM, MVE035
Tetame i Flervariabelaalys F/TM, MV35 8 3 kl. 8.3.3. Hjälpmedel: Iga, ej räkedosa. Telefo: Oskar Hamlet tel 73-8834 För godkät krävs mist 4 poäg. Betyg 3: 4-35 poäg, betyg 4: 36-47 poäg, betyg 5: 48 poäg
Läs merx 1 x 2 x 3 x 4 x 5 x 6 HL Z x x x
Uppgift 1 a) Vi iför slackvariabler x 4, x 5 och x 6 och löser problemet med hjälp av simplexalgoritme. Z -2-1 1 0 0 0 0 x 4 1 1-1 1 0 0 20 x 5 2 1 1 0 1 0 30 x 6 1-1 2 0 0 1 10 x 1 blir igåede basvariabel
Läs merc n x n, där c 0, c 1, c 2,... är givna (reella eller n=0 c n x n n=0 absolutkonvergent om x < R divergent om x > R n n lim = 1 R.
P Potesserier Med e potesserie mear vi e serie av type c x, där c, c, c,... är giva (reella eller komplexa) kostater, s.k. koefficieter, och där x är e (reell eller komplex) variabel. För varje eskilt
Läs merGenomsnittligt sökdjup i binära sökträd
Iformatiostekologi Tom Smedsaas 10 augusti 016 Geomsittligt sökdjup i biära sökträd Detta papper visar att biära sökträd som byggs upp av slumpmässiga data är bra. Beteckigar och defiitioer Defiitio De
Läs merUpp gifter. c. Finns det fler faktorer som gör att saker inte faller på samma sätt i Nairobi som i Sverige.
Upp gifte 1. Mattias och hans vänne bada vid ett hoppton som ä 10,3 m högt. Hu lång tid ta det innan man slå i vattnet om man hoppa akt ne fån tonet?. En boll täffa ibban på ett handbollsmål och studsa
Läs merNEWTON-RAPHSONS METOD (en metod för numerisk lösning av ekvationer)
Armi Halilovic: EXTRA ÖVNINGAR Newto-Raphsos metod NEWTON-RAPHSONS METOD (e metod för umeris lösig av evatioer Måga evatioer är besvärligt och iblad äve omöjligt att lösa eat. Då aväder ma umerisa metoder
Läs merfile:///c:/users/engström/downloads/resultat.html
M 6 0 M F Ö R S Ö K 1 2 0 1 2-0 1-2 1 1 J a n W o c a l e w s k i 9 3 H u d d i n g e A I S 7. 0 9 A F 2 O s c a r J o h a n s s o n 9 2 S p å r v ä g e n s F K 7. 2 1 A F 3 V i c t o r K å r e l i d 8
Läs mer1. BERÄKNING AV GRÄNSVÄRDEN ( då x 0 ) MED HJÄLP AV MACLAURINUTVECKLING. n x
BERÄKNING AV GRÄNSVÄRDEN ( då ) MED HJÄLP AV MACLAURINUTVECKLING a) Maclauris formel ( ) f () f () f () f ( ) f () + f () + + + +!!! ( ) f ( c) där R och c är tal som ligger mella och ( + )! Amärkig Eftersom
Läs merMinsta kvadrat-metoden, MK. Maximum likelihood-metoden, ML. Medelfel. E(X i ) = µ i (θ) MK-skattningen av θ fås genom att minimera
Matematisk statistik slumpes matematik Saolikhetsteori hur beskriver ma slumpe? Statistikteori vilka slutsatser ka ma dra av ett datamaterial? Statistikteori översikt Puktskattig Hur gör ma e bra gissig
Läs merNEWTON-RAPHSONS METOD (en metod för numerisk lösning av ekvationer)
Armi Halilovic: EXTRA ÖVNINGAR Newto Raphsos metod NEWTON-RAPHSONS METOD (e metod ör umeris lösig av evatioer Måga evatioer är besvärligt och iblad äve omöjligt att lösa eat. Då aväder ma umerisa metoder
Läs merArmin Halilovic: EXTRA ÖVNINGAR MASSCENTRUM. vara punkter med motsvarande massor m. . Om O betecknar origo och T masscentrum då gäller
ri Halilovic: EXTR ÖVNINGR Masscetru MSSCENTRUM Låt P, P,, P vara pukter ed otsvarade assor,,, O O beteckar origo och T asscetru då gäller ( OP OP OP OT = + + + ) (*) där = + + + ärkig: Uttrcket ( OP OP
Läs merFöreläsning F3 Patrik Eriksson 2000
Föreläsig F Patrik riksso 000 Y/D trasformatio Det fis ytterligare ett par koppligar som är värda att käa till och kua hatera, ite mist är ma har att göra med trefasät. Dessa kallas stjärkopplig respektive
Läs merθx θ 1 om 0 x 1 f(x) = 0 annars
Avd. Matematisk statistik TENTAMEN I SF903 SANNOLIKHETSLÄRA OCH STATISTIK FÖR 3-ÅRIG Media TIMEH TORSDAGEN DEN TREDJE JUNI 200 KL 4.00 9.00. Examiator: Guar Eglud, tel. 790 74 06 Tillåta hjälpmedel: Läroboke.
Läs merGeometrisk optik. Optiska system F9 Optiska instrument. Brytningsindex. avbildning med linser. Begrepp inom geometrisk optik. Brytningslagen FAF260
FF60 Geometrisk optik vildig med liser och speglr Geometrisk optik F7 eflektio och rytig F8 vildig, liser och speglr system F9 istrumet Geometrisk optik vildig med liser epetitio: eflektio och rytig rytig
Läs merBegreppet rörelsemängd (eng. momentum) (YF kap. 8.1)
Begreppet rörelsemägd (eg. mometum) (YF kap. 8.1) Defto (Newto!): E partkel med massa m och hastghet ഥv har rörelsemägd ഥp = m ഥv. Vektor med samma rktg som hastghete! Newto II: ሜF = m dvlj = d dt dt d
Läs merDel A. x 0 (1 + x + x 2 /2 + x 3 /6) x x 2 (1 x 2 /2 + O(x 4 )) = x3 /6 + O(x 5 ) (x 3 /6) + O(x 4 )) = 1 + } = 1
UPPSALA UNIVERSITET Matematiska istitutioe Sigstam, Styf Svar till övigsteta ENVARIABELANALYS 0-0- Svar till övigsteta. Del A. Bestäm e ekvatio för tagete till kurva y f x) x 5 i pukte där x. Skissa kurva.
Läs mer0,22 m. 45 cm. 56 cm. 153 cm 115 cm. 204 cm. 52 cm. 38 cm. 93 cm 22 cm. 140 cm 93 cm. 325 cm
Läs mer
MS-A0409 Grundkurs i diskret matematik Sammanfattning, del I
MS-A0409 Grudkurs i diskret matematik Sammafattig, del I G. Gripeberg Aalto-uiversitetet 2 oktober 2013 G. Gripeberg (Aalto-uiversitetet) MS-A0409 Grudkurs i diskret matematiksammafattig, del 2Ioktober
Läs merAv Henrik 01denburg\ Radikaler. För att lösa ekv.: x n = a (n helt, pos. tal) konstruerar man kurvan
Av Herik 01deburg\ Eligt gymasiets kurspla skall av lära om poteser medtagas huvudsaklige vad som är behövligt för viade av e säker isikt i lära om logaritmer. Alla torde vara ese därom, att det är syerlige
Läs merUppgifter 3: Talföljder och induktionsbevis
Gruder i matematik och logik (017) Uppgifter 3: Talföljder och iduktiosbevis Ur Matematik Origo 5 Talföljder och summor 3.01 101. E talföljd defiieras geom formel a 8 + 6. a) Är det e rekursiv eller e
Läs merx=konstant V 1 TANGENTPLAN OCH NORMALVEKTOR TILL YTAN z = f ( x, LINEARISERING NORMALVEKTOR (NORMALRIKTNING) TILL YTAN.
Amin Halilovic: EXTRA ÖVNINGAR Tangentplan Linjäa appoimatione TANGENTPLAN OCH NORMALVEKTOR TILL YTAN z LINEARISERING NORMALVEKTOR NORMALRIKTNING TILL YTAN Låt z vaa en dieentieba unktion i punkten a b
Läs merLEDNINGAR TILL PROBLEM I KAPITEL 10. från jorden. Enligt Newtons v 2 e r. där M och m är jordens respektive F. F = mgr 2
LEDNINGA TILL POBLEM I KAPITEL LP Satelliten ketsa king joden oc påvekas av en enda kaft, gavitationskaften fån joden Enligt Newtons v e allänna gavitationslag ä den = G M e () v dä M oc ä jodens espektive
Läs merStort massflöde Liten volym och vikt Hög verkningsgrad. Utföranden Kolv (7) Skruv (4) Ving (4) Roots (1,5) Radial (2-4) Axial (1,3) Diagonal.
Komressorer F1 F Skillad mot fläktar: Betydade desitetsförädrig, ryk mäts ormalt som absolut totaltryk. vå huvudgruer av komressorer: Förträgigskomressorer urbokomressorer Egeskaer Lågt massflöde Höga
Läs merAPPROXIMATION AV SERIENS SUMMA MED EN DELSUMMA OCH EN INTEGRAL
Armi Halilovic: EXTRA ÖVNINGAR Approimatio av erie umma med e delumma APPROXIMATION AV SERIENS SUMMA MED EN DELSUMMA OCH EN INTEGRAL Låt vara e poitiv och avtagade utio ör åda att erie overgerar. Vi a
Läs merFinansiell Statistik (GN, 7,5 hp,, HT 2008) Föreläsning 4 (del 2)
Fiasiell Statistik (GN, 7,5 hp,, HT 008) Föreläsig 4 (del ) Pukt- och itervallskattig (LLL Kap 10) Departmet of Statistics (Gebreegus Ghilagaber, PhD, Associate Professor) Fiacial Statistics (Basic-level
Läs merLEDNINGAR TILL PROBLEM I KAPITEL 8. Vi antar först att den givna bromsande kraften F = kx är den enda kraft som påverkar rörelsen och därmed också O
LEDIGAR TILL ROLEM I KAITEL 8 L 8. Vi anta föst att den givna bomsande kaften F = k ä den enda kaft som påveka öesen och dämed också O intängningsdjupet. Men veka ingen kaft i öeseiktningen? Fastän man
Läs merOm komplexa tal och funktioner
Om komplexa tal och fuktioer Aalys60 (Grudkurs) Istuderigsuppgifter Dessa övigar är det täkt du ska göra i aslutig till att du läser huvudtexte. De flesta av övigara har, om ite lösigar, så i varje fall
Läs merFunktionsteori Datorlaboration 1
Fuktiosteori Datorlaboratio 1 Fuktiosteori vt1 2013 Rekursiosekvatioer och komplex aalys Syftet med datorövige Öviges ädamål är att ge ett smakprov på hur ett datoralgebrasystem ka avädas för att att lösa
Läs merFöreläsning 10: Kombinatorik
DD2458, Problemlösig och programmerig uder press Föreläsig 10: Kombiatorik Datum: 2009-11-18 Skribeter: Cecilia Roes, A-Soe Lidblom, Ollata Cuba Gylleste Föreläsare: Fredrik Niemelä 1 Delmägder E delmägd
Läs merTentamen i Statistik STG A01 (12 hp) 5 mars 2010, kl. 08.15 13.15
Karlstads uiversitet Fakultete för ekoomi, kommuikatio och IT Statistik Tetame i Statistik STG A0 ( hp) 5 mars 00, kl. 08.5 3.5 Tillåta hjälpmedel: Bifogad formel- och tabellsamlig (skall retureras) samt
Läs merLycka till! I(X i t) 1 om A 0 annars I(A) =
Avd Matematisk statistik TENTAMEN I SF955 f d 5B555 DATORINTENSIVA METODER ONSDAGEN DEN AUGUSTI 008 KL 400 900 Examiator: Guar Eglud, tel 790746 Email: guare@mathkthse Tillåta hjälpmedel: Formel- och tabellsamlig
Läs merIE1206 Inbyggd Elektronik
IE6 Inbyggd Elektonik F F3 F4 F Ö Ö PIC-block Dokumentation, Seiecom Pulsgivae I, U, R, P, seie och paallell KK AB Pulsgivae, Menypogam Stat ö pogammeingsguppuppgit Kichos laga Nodanalys Tvåpolsatsen RR
Läs mer1. (a) Eftersom X och Y har samma fördelning så har de även samma väntevärde och standardavvikelse. E(X 2 ) = k
LÖSNINGAR TILL Matematisk statistik, Matematikcetrum Tetame: 5 kl 8 Luds tekiska högskola FMS, FMS, FMS, FMS 5, MAS 9 Matematisk statistik för ED, F, I, FED och fysiker. a Eftersom X och Y har samma fördelig
Läs mer= x 1. Integration med avseende på x ger: x 4 z = ln x + C. Vi återsubstituerar: x 4 y 1 = ln x + C. Villkoret ger C = 1.
Lösigsförslag till tetamesskrivig i Matematik IV, 5B0 Torsdage de 6 maj 005, kl 0800-00 Hjälpmedel: BETA, Mathematics Hadbook Redovisa lösigara på ett sådat sätt att beräkigar och resoemag är lätta att
Läs merUPPSKATTNING AV INTEGRALER MED HJÄLP AV TVÅ RIEMANNSUMMOR. Med andra ord: Vi kan approximera integralen från båda sidor
Armi Halilovic: EXTRA ÖVNINGAR Summor och itegraler UPPSKATTNING AV INTEGRALER MED HJÄLP AV TVÅ RIEMANNSUMMOR Om vi betratar e futio ff() som är otiuerlig i itervallet [aa, bb] då atar futioe sitt mista
Läs merInduktion LCB Rekursion och induktion; enkla fall. Ersätter Grimaldi 4.1
duktio LCB 2000 Ersätter Grimaldi 4. Rekursio och iduktio; ekla fall E talföljd a a 0 a a 2 ka aturligtvis defiieras geom att ma ager e explicit formel för uträkig av dess elemet, som till exempel () a
Läs merStela kroppens rotation kring fix axel
FMEA10 01 Sammafattig av Föreläsig om Stela kroppes rotatio krig fix axel (FMEA10) Föreläsig 1: Kiematik (14.-14.5) Cirkelrörelse: E partikel P rör sig i e cirkelbaa med radie R. Vi iför cyliderkoordiater
Läs merUppsala Universitet Matematiska Institutionen Bo Styf. Genomgånget på föreläsningarna Föreläsning 26, 9/2 2011: y + ay + by = h(x)
Uppsala Uiversitet Matematiska Istitutioe Bo Styf Evariabelaalys, 0 hp STS, X 200-0-27 Föreläsig 26, 9/2 20: Geomgåget på föreläsigara 26-30. Att lösa de ihomogea ekvatioe. De ekvatio vi syftar på är förstås
Läs merLösningar till tentamen i tillämpad kärnkemi den 10 mars 1998 kl
Lösninga till tentamen i tillämpad känkemi den 10 mas 1998 kl 0845-145 Ett öetag ha köpt natuligt uan ö 10 k/. Konveteing till UF 6 kosta 60 k/ tillvekad UF 6. I en gascentiugbasead anikningsanläggning
Läs merÅngestrapporten 2013. Om kvinnors erfarenheter som patienter och anhöriga
Ågestappote 2013 Om kvios efaehete som patiete och ahöiga 1 Måga eve sitt iv med ågest Måga fe kvio ä mä dabbas ågo gåg i ivet av e ågestsjukdom. Nämae 1 800 kvio ha i de hä udesökige svaat på vad de ha
Läs merTentamen 1 i Matematik 1, HF1903, Fredag 14 september 2012, kl
TEN HF9 Tetame i Matematik, HF9, Fredag september, kl. 8.. Udervisade lärare: Fredrik ergholm, Elias Said, Joas Steholm Eamiator: rmi Halilovic Hjälpmedel: Edast utdelat formelblad miiräkare är ite tillåte
Läs merUPPGIFT 1. F E. v =100m/s F B. v =100m/s B = 0,10 mt d = 0,10 m. F B = q. v. B F E = q. E
UPPGIFT 1. B 0,10 mt d 0,10 m F B q. v. B F E q. E d e + + + + + + + + + + + + + + + + + + F E F B v 100m/s E U / d - - - - - - - - - - - - - - - - - F B F E q v B q U d Magnetfältsiktning inåt anges med
Läs merKonsoliderad version av. Styrelsens för ackreditering och teknisk kontroll föreskrifter (STAFS 1993:18) om EEG-märkning av färdigförpackade varor
Kosoliderad versio av Styrelses för ackrediterig och tekisk kotroll föreskrifter (STAFS 1993:18) om EEG-märkig av färdigförpackade varor Rubrike har dea lydelse geom (STAFS 2008:11) Ädrig iförd: t.o.m.
Läs merFAFF Johan Mauritsson 1. Geometrisk optik - reflektion och brytning. Våglära och optik. Geometrisk optik - reflektion och brytning
Våglär och optik Geometrisk optik - relektio och rytig FFF30 JOHN MUITSSON Geometrisk optik system Geometrisk optik - relektio och rytig elektioslge rytigslge (Sell s lg) Totlrelektio 3 4 Ljusets utredig
Läs merEnkel slumpvandring. Sven Erick Alm. 9 april 2002 (modifierad 8 mars 2006) 2 Apan och stupet 3 2.1 Passagesannolikheter... 3 2.2 Passagetider...
Ekel slumpvadrig Sve Erick Alm 9 april 2002 (modifierad 8 mars 2006) Iehåll 1 Iledig 2 2 Apa och stupet 3 2.1 Passagesaolikheter............................... 3 2.2 Passagetider....................................
Läs merSkineffekten. (strömförträngning) i! Skineffekten. Skineffekten. Skineffekten. Skineffekten!
14 15 Stömma alsta magnetfält." Magnetfältet fån en lång ak stömföande tåd: (stömfötängning i B Fältet bilda cikla unt tåden, oienteade enligt högehandsegeln B = i 2" 16 J 17 Stömfötängningen beo av fekvensen
Läs merNEWTON-RAPHSONS METOD (en metod för numerisk lösning av ekvationer)
Armi Halilovic: EXTRA ÖVNINGAR Newto-Raphsos metod NEWTON-RAPHSONS METOD (e metod för umeris lösig av evatioer Måga evatioer är besvärligt och iblad äve omöjligt att lösa eat. Då aväder ma umerisa metoder
Läs merInnehållsförteckning Tabeller och polynom
Iehållsförteckig Tabeller och polyom -Utsigal och seebeckkoefficieter för termoelemet B, E, J, K, N, R, S, T eligt IEC 60584 (1995). 10:2 -Utsigal för termoelemet W3Re/W25Re och W5Re/W26Re eligt ASTM 988
Läs merTentamen 19 mars, 8:00 12:00, Q22, Q26
Avdelige för elektriska eergisystem EG225 DRIFT OCH PLANERING AV ELPRODUKTION Vårtermie 25 Tetame 9 mars, 8: 2:, Q22, Q26 Istruktioer Skriv alla svar på det bifogade svarsbladet. Det är valfritt att också
Läs merFinansiell Statistik (GN, 7,5 hp,, HT 2008) Föreläsning 4 (del 1)
Fiasiell Statistik (GN, 7,5 hp,, HT 008) Föreläsig 4 (del 1) Sampligfördeligar (LLL Kap 8) Departmet of Statistics (Gebreegus Ghilagaber, PhD, Associate Professor) Fiacial Statistics (Basic-level course,
Läs merFöreläsning 3. 732G04: Surveymetodik
Föreläsig 3 732G04: Surveymetodik Dages föreläsig Obudet slumpmässigt urval (OSU) Populatiosparametrar och stickprovsstatistikor Vätevärdesriktighet Ädliga och oädliga populatioer Medelvärde, adel Kofidesitervall
Läs merSKÄRDATAREKOMMENDATIONER RAMAX HH
SKÄRATAREKOMMENATIONER Lämpliga bearbetigsdata beror alltid på de aktuella operatioe, verktygsmaskie och vilket verktyg som aväds. e data som ages i det här bladet är geerella riktlijer som måste apassas
Läs mervara ett polynom där a 0, då kallas n för polynomets grad och ibland betecknas n grad( P(
Armi Halilovic: EXTRA ÖVNINGAR Polyom POLYNOM OCH ALGEBRAISKA EKVATIONER Defiitio Polyom är uttrycket av type a a a 0 ( där är ett icke-egativt heltal) Defiitio Låt P( a a a0 vara ett polyom där a 0, då
Läs merDEL I. Matematiska Institutionen KTH
1 Matematiska Istitutioe KTH Lösig till tetamesskrivig på kurse Diskret Matematik, momet A, för D2 och F, SF1631 och SF1630, de 5 jui 2009 kl 08.00-13.00. DEL I 1. (3p) Bestäm e lösig till de diofatiska
Läs merNågra begrepp 2011-04-28. Hur kan kvalificerad rådgivning tillämpas i tandvården. Beteendeförändring. Patientcentrerat Beteende
0048 Hu ka kvalificead ådgivig tillämpa i tadvåde PhD, leg. tadhygieit, Högkola Dalaa och Folktadvåde Uppala bjo@du.e Någa begepp Patietceteat Beteede Beteedeföädig Mikig av det om ä oökat Tilläga ig ett
Läs merRäkning med potensserier
Räkig med potesserier Serier (termiologi fis i [P,4-4]!) av type P + + + + 4 +... k ( om < ) k + + + + P 4 4 +... k k! ( e för alla ) k och de i [P, sid.9, formler 7-] som ärmast skulle kua beskrivas som
Läs merFORMLER TILL NATIONELLT PROV I MATEMATIK KURS C, D OCH E
FORMLER TILL NTIONELLT PROV I MTEMTIK KURS D OH E LGER Rgl dgdsktio kdigsgl kojugtgl Ektio p q ött p p p q o dä p o q p q RITMETIK Pi T G M k d m µ p t gig mg kilo kto di ti milli miko o piko 9 6 - - -
Läs merSida 1 av 12. vara ett inkonsistent system (= olösbart system dvs. ett system som saknar lösning). b =.
Sida av MINSAKVADRAMEODEN Låt a a a a a a a a a vara ett ikosistet sste ( olösart sste dvs. ett sste so sakar lösig). Vi ka skriva ssteet på fore A (ss ) där a a... a a a... a A, och............. a p a
Läs merArbetsmiljöuppföljning IFO-FH enhet: Barn- och familjeenheten
Abetsmiljöuppföljig 2014 IFO-FH ehet: Ba- och familjeehete Iehållsföteckig 1 Uppföljig vå... 3 1.1 Abetsskado, otillåte påveka och tillbud... 3 1.2 Sjukfåvao... 3 1.3 Lågtidsfiska... 3 1.4 Abetsmiljöod
Läs merINGENJÖRSMATEMATISK FORMELSAMLING
Sätyck u femte upplaga av fomle och tabelle fö aolikhetläa och tatitik, idoa 89-4. Toe Gutafo 004. INGENJÖRSMATEMATISK FORMELSAMLING Toe K. Gutafo Kombiatoik 89 90 Kombiatoik 6 KOMBINATORIK Atal pemutatioe
Läs merMS-A0509 Grundkurs i sannolikhetskalkyl och statistik Exempel etc., del II
MS-A0509 Grudkurs i saolikhetskalkyl och statistik Exempel etc., del II G. Gripeberg Aalto-uiversitetet 11 februari 014 G. Gripeberg Aalto-uiversitetet) MS-A0509 Grudkurs i saolikhetskalkyl och statistikexempel
Läs merLeica Lino. Noggranna, självavvägande punkt- och linjelasers
Leica Lio Noggraa, självavvägade pukt- och lijelasers Etablera, starta, klart! Med Leica Lio är alltig lodat och perfekt apassat Leica Lios projekterar lijer eller pukter med millimeterprecisio och låter
Läs merLösningar till tentamensskrivning i kompletteringskurs Linjär Algebra, SF1605, den 10 januari 2011,kl m(m + 1) =
Lösigar till tetamesskrivig i kompletterigskurs Lijär Algebra, SF605, de 0 jauari 20,kl 4.00-9.00. 3p Visa med hjälp av ett iduktiosbevis att m= mm + = +. Lösig: Formel är uppebarlige sa är = eftersom
Läs merAngående kapacitans och induktans i luftledningar
Angående kapacitans och induktans i luftledninga Emilia Lalande Avdelningen fö elekticitetsläa 4 mas 2010 Hä behandlas induktans i ledninga och kapacitans mellan ledae. Figu öve alla beskivninga finns
Läs merGeometrisk optik reflektion och brytning
Geometisk optik eflektion oh bytning Geometisk optik F7 Reflektion oh bytning F8 Avbildning med linse Plana oh buktiga spegla Optiska system F9 Optiska instument Geometisk optik eflektion oh bytning Repetition:
Läs mer