FORMLER TILL NATIONELLT PROV I MATEMATIK KURS C, D OCH E

Save this PDF as:
 WORD  PNG  TXT  JPG

Storlek: px
Starta visningen från sidan:

Download "FORMLER TILL NATIONELLT PROV I MATEMATIK KURS C, D OCH E"

Transkript

1 FORMLER TILL NTIONELLT PROV I MTEMTIK KURS D OH E LGER Rgl dgdsktio kdigsgl kojugtgl Ektio p q ött p p p q o dä p o q p q RITMETIK Pi T G M k d m µ p t gig mg kilo kto di ti milli miko o piko Pots Logitm Fö ll tl o o positi tl o gäll Fö positi tl o gäll: lg l lg lg lg lg lg lg lg p p lg Gomtisk summ k k... k k dä k k Skolkt

2 DIFFERENTIL- OH INTEGRLKLKYL Dits diitio lim lim Diigsgl Fuktio Dit dä ä tt llt tl > l > l k k k si os os si t t os g g g g g g g g g g Kdjgl Om z o z g ä tå di uktio så gäll ö d smmstt uktio g tt d d dz g g ll d dz d Någ pimiti uktio F ä ll kostt k k l > l si os os si Skolkt

3 DIFFERENTILEKVTIONER Homog ktio : odig: Lösig k skis : odig: D kktistisk ktio ött o Om o ä ll tl o så k lösig skis Om o ä ll tl o så k lösig skis Om s it o s it k lösig skis s s os t si t si t ϕ Iomog ktio Gllt stäms d llmä lösig som p dä p ä ptikulälösig till d iomog ktio o d llmä lösig till motsd omog ktio. Spl ditilktio: g Löss ligt g d d FUNKTIONSLÄR Rät lij Epotiluktio Potsuktio k Riktigskoiit ö lij gom pukt o dä k m Lij gom pukt m md iktigskoiit k k Lij gom pukt md iktigskoiit k k k Villko ö iklät lij o ä kostt > o o ä kostt Skolkt

4 4 GEOMETRI Ptgos sts Tigl Pllllogm Plllltpts ikl πd π 4 omkts π πd d α iklskto åg π 6 α π 6 α Pism olm lid Rk ikulä lid olm π mtl π Skolkt

5 5 Pmid olm Ko Rk ikulä ko olm π s mtl πs Klot olm 4 π 4π Likomigt Fö likomig gomtisk igu gäll tt motsd ikl ä lik sto o tt öålldt mll motsd sido ä lik. F Tigl o DEF ä likomig. d Då gäll D E Skl skl Lägdskl Volmskl Lägdskl Vikl Nä tå ät lij skä d ä sidoikls summ 8º t.. u 8º o tiklikl lik sto t.. w. w u Nä lij L skä tå d iöds pllll lij L o L så ä likläg ikl lik sto t.. w o lttikl lik sto t.. u w w u L L L Omät gäll tt om lttikl ll likläg ikl ä lik sto så ä lij L o L pllll. Skolkt

6 6 Topptigl- o tsslsts Om DE ä pllll md gäll DE D E o D E D E D E isktissts D D D Kodsts d d Rdiklsts Mdlpuktsikl till iklåg ä dult så sto som dikl till smm iklåg u u KOMPLEX TL iϕ Rpsttio z i osϕ i siϕ dä o ϕ ä ll tl smt i gumt solutloppt g z ϕ z t ϕ Kojugt Tl z i o z i klls kojugd tl z i ϕ ϕ Räklg z z z os ϕ ϕ i si ϕ ϕ i ϕϕ os ϕ ϕ isi ϕ ϕ d Mois oml z osϕ i siϕ os ϕ i si ϕ Euls oml i os i si os i i si i i i Skolkt

7 7 Skolkt NUMERISK METODER Ektioslösig Nwto-Rpsos ittiosoml: Itgl Itllt dls i i dlitll. Mittpukt i j dlitll tks... Rktglmtod:... d Tptsmtod:... d Ditilktio stglägd Euls mtod tgtmtod: Mittpuktsmtod: k dä k TRIGONOMETRI Diitio ä ätiklig tigl. äliggd ktt motståd ktt potus äliggd ktt potus motståd ktt t os si OP ä di i tsikl. Koodit ö P ä t os si o P

8 8 Siussts si si si osiussts os sts si Tigoomtisk oml si os si α β siα os β osα si β si α β siα os β osα si β os α β osα os β siα si β os α β osα os β siα si β tα t β t α β tα t β si α siα osα os α os α si α os α si α osα α osα si os si os si dä α o t Ekt äd Vikl gd π π π π π π 5π di π si os t 6 4 Ej d Skolkt

FORMLER TILL NATIONELLT PROV I MATEMATIK KURS C OCH D

FORMLER TILL NATIONELLT PROV I MATEMATIK KURS C OCH D (7) FORMLER TILL NTIONELLT PROV I MTEMTIK KURS OH D LGER Rgl dgdsktio ( + ) = + + ( ) = + (kdigsgl) ( + )( ) = (kojugtgl) ( + ) = + + + ( ) = + + = ( + )( + = ( )( + + Ektio + p+ q = 0 ) ) ött p p p =

Läs mer

FORMLER TILL NATIONELLT PROV I MATEMATIK KURS E

FORMLER TILL NATIONELLT PROV I MATEMATIK KURS E (8 FORMLER TILL NATIONELLT PROV I MATEMATIK KURS E ALGERA Rgl Adgdskvtio ( + = + + ( = + (kvdigsgl ( + ( = (kojugtgl ( + = + + + ( = + + = ( + ( + = ( ( + + Ekvtio + p+ q = ött p p p = + q o = dä + = p

Läs mer

FORMLER TILL NATIONELLT PROV I MATEMATIK KURS C OCH D

FORMLER TILL NATIONELLT PROV I MATEMATIK KURS C OCH D (7 FORMLER TILL NTIONELLT PROV I MTEMTIK KURS OH D LGER Rgl dgdsktio ( + = + + ( = + (kdigsgl ( + ( = (kojugtgl ( + = + + + ( = + + = ( + ( + = ( ( + + Ektio + p+ q = ött p p p = + q o = dä + = p o = q

Läs mer

FORMLER TILL NATIONELLT PROV I MATEMATIK KURS C OCH D

FORMLER TILL NATIONELLT PROV I MATEMATIK KURS C OCH D (7) FORMLER TILL NTIONELLT PROV I MTEMTIK KURS OH D LGER Rgl dgdskvtio ( + ) = + + ( ) = + (kvdigsgl) ( + )( ) = (kojugtgl) ( + ) = + + + ( ) = + + = ( + )( + = ( )( + + Ekvtio + p+ q = ött p p p = + q

Läs mer

FORMLER TILL NATIONELLT PROV I MATEMATIK KURS A, B OCH C

FORMLER TILL NATIONELLT PROV I MATEMATIK KURS A, B OCH C FORMLER TILL NATIONELLT PROV I MATEMATIK KURS A, B OCH C ALGEBRA Kdeigsegle ( + ) + + ( ) + Kojugtegel ( + )( ) Adgdsektioe Ektioe + p + q 0 ötte p p p p + q o 4 4 id + p o q q ARITMETIK Pefi Tiopotes

Läs mer

Matte KONVENT. Ma te ma tik. Länktips: Mattecentrum.se Matteboken.se Formelsamlingen.se Pluggakuten.se. Innehåll: Pluggtips Formelsamling Kursprov

Matte KONVENT. Ma te ma tik. Länktips: Mattecentrum.se Matteboken.se Formelsamlingen.se Pluggakuten.se. Innehåll: Pluggtips Formelsamling Kursprov Mtte KONVENT Plgg tillsmmns inför de ntionell proen i mtemtik M te m tik Länktips: Mttecentrm.se Mtteoken.se Formelsmlingen.se Plggkten.se 5 Innehåll: Plggtips Formelsmling Krspro I smrete med retsgirorgnistionen

Läs mer

ρ. Farten fås genom integrering av (2):

ρ. Farten fås genom integrering av (2): LEDNINGAR TILL PROBLEM I KAPITEL 6 (4-76) LP 6.45 y t Ifö dt tulig kooditsystmt md koodit s = id tid t = då bil stt, och bskto t och ligt figu. s Bgylsillkot ä O x t = s = s = Accltio gs dt llmä uttyckt

Läs mer

ÖPPNA OCH SLUTNA MÄNGDER. KOMPAKTA MÄNGDER. DEFINITIONSMÄNGD. INLEDNING. Några viktiga andragradskurvor: Cirkel, ellips, hyperbel och parabel.

ÖPPNA OCH SLUTNA MÄNGDER. KOMPAKTA MÄNGDER. DEFINITIONSMÄNGD. INLEDNING. Några viktiga andragradskurvor: Cirkel, ellips, hyperbel och parabel. ÖPPNA OH SLUTNA MÄNGDER. KOMPAKTA MÄNGDER. DEFINITIONSMÄNGD. INLEDNING. Någr viktig drgrdskurvor: irkel ellips hyperbel och prbel.. irkels ekvtio irkel med cetrum i och rdie hr ekvtioe pq O Amärkig. Edst

Läs mer

Facit Arbetsblad. 7 a) 32 b) 35 c) 27 8 a) 5 b) 18 c) 4 9 a) 18 b) 30 10 a) 17 b) 19 11 a) 6 b) 0 12 a) 24 b) 35. 1 Tal

Facit Arbetsblad. 7 a) 32 b) 35 c) 27 8 a) 5 b) 18 c) 4 9 a) 18 b) 30 10 a) 17 b) 19 11 a) 6 b) 0 12 a) 24 b) 35. 1 Tal 1 Tal Arbetsblad 1:1 1 a) 18 9 06 b) 85 10 00 c) 0 1 080 9 060 d) 5 105 6 780 e) 78 8 970 9 05 f) 990 75 102 5 2 a) 0 = 2 2 2 5 b) 75 = 5 5 c) 6 = 2 2 a) 8 = 2 2 2 2 b) 28 = 2 2 7 c) 90 = 2 5 a) = 2 2

Läs mer

Vågräta och lodräta cirkelbanor

Vågräta och lodräta cirkelbanor Vågäta och lodäta cikelbano Josefin Eiksson Sammanfattning fån boken Ego fysik 13 septembe 2012 Intoduktion Vi ska studea koklinjig öelse i två dimensione - i ett plan. Våätt plan och lodätt plan Exempel

Läs mer

Matte C. Översikt. Funktioner. Derivatan. Användning av derivatan. Exponentialfunktionen. Logaritmiska funktioner. Geometriska summor

Matte C. Översikt. Funktioner. Derivatan. Användning av derivatan. Exponentialfunktionen. Logaritmiska funktioner. Geometriska summor Mtte C Översikt Fuktioer Poteslgr Potesuktioer Polomuktioer o Väde/vtgde uktio o M/mi pukter tersspukt o Tget Lösigsmetoder ör : grdre Rtioell uktioer Derivt Deiitio v derivt o Vis ör C Deriverigsregler:

Läs mer

F F idid - - LLöö 55 7 -- S mil: j: Söö nn0-0- Dgs fö ås s å Bc ch Cl Jun fäg Vi fi md å mängd v yl! g å vy fsdh c s s å fån ngöing l C s c B ch Jun å Gön-fi ch ic-fi Mögl-fi Kn j mbins md nd b. Dmid l

Läs mer

Kap.7 uppgifter ur äldre upplaga

Kap.7 uppgifter ur äldre upplaga Ka.7 ugifte u älde ulaga 99: 7. Beäkna aean innanfö s.k. asteoidkuvan jj + jyj Absolutbeloen ha till e ekt att, om unkten (a; b) kuvan, så gälle detsamma (a; b) (segelsymmeti m.a.. -aeln), ( a; b) (segelsymmeti

Läs mer

NATIONELLT KURSPROV I MATEMATIK KURS C VÅREN 2005 3. Del I, 10 uppgifter utan miniräknare 4. Del II, 8 uppgifter med miniräknare 6

NATIONELLT KURSPROV I MATEMATIK KURS C VÅREN 2005 3. Del I, 10 uppgifter utan miniräknare 4. Del II, 8 uppgifter med miniräknare 6 Kurs plnering.se NpMC vt005 (5) Innehåll Förord NATIONELLT KURSPROV I MATEMATIK KURS C VÅREN 005 Del I, 0 uppgifter utn miniräknre 4 Del II, 8 uppgifter med miniräknre 6 Förslg på lösningr till uppgifter

Läs mer

Innehåll. Kopieringsunderlag Breddningsdel Formelblad

Innehåll. Kopieringsunderlag Breddningsdel Formelblad Innehåll Information till lärare inför breddningsdelen i det nationella kursprovet i Matematik kurs A våren 1999...1 Inledning...1 Tidsplan våren 1999...1 Nyheter i kursprovet för Matematik kurs A vårterminen

Läs mer

Föreläsning 7: Trigonometri

Föreläsning 7: Trigonometri ht06 Föreläsning 7: Trigonometri Trigonometrisk identiteter En identitet är en likhet som håller för ll värden på någon vriel. Tex så gäller tt ( + ) + + för ll,. Dett skrivs ilnd som ( + ) + +, men vi

Läs mer

Tentamen i Flervariabelanalys F/TM, MVE035

Tentamen i Flervariabelanalys F/TM, MVE035 Tetame i Flervariabelaalys F/TM, MV35 8 3 kl. 8.3.3. Hjälpmedel: Iga, ej räkedosa. Telefo: Oskar Hamlet tel 73-8834 För godkät krävs mist 4 poäg. Betyg 3: 4-35 poäg, betyg 4: 36-47 poäg, betyg 5: 48 poäg

Läs mer

Målsättning: modell. Kvinnor kan uppnå fantastisk fysik genom att lyfta tunga vikter och äta bra mat utan att svälta sig själva.

Målsättning: modell. Kvinnor kan uppnå fantastisk fysik genom att lyfta tunga vikter och äta bra mat utan att svälta sig själva. Målättig: dll E plig tä tä kvi bö fku på tt lä ut följd: Kvi k it v ädd fö tug vikt, Få kvi tt i tt d k b ut vtt kppvikt å läg d ä fit, D k it bt fölit ig på våg fö tt utväd i ftg, D bö lägg tö fku på

Läs mer

6 Strukturer hos tidsdiskreta system

6 Strukturer hos tidsdiskreta system 6 Sukue hos idsdiske ssem 6. Gudsuku Vi h se e idsdiske ssem i de fles fll k eskivs v diffeesekvioe [ ] [ ] [ ] De k uligvis häd de ol sseme eså v fle seie- elle pllellkopplde delssem, me de föäd ie esoemge.

Läs mer

TATA42: Tips inför tentan

TATA42: Tips inför tentan TATA42: Tips inför tentn John Thim 25 mj 205 Syfte Tnken med dett kort dokument är tt ge lite extr studietips inför tentn. Kursinnehållet definiers så klrt fortfrnde v kursplnen och kurslitterturen så

Läs mer

vara en T- periodisk funktion som är integrerbar på intervallet ges av formlerna

vara en T- periodisk funktion som är integrerbar på intervallet ges av formlerna Armi Hlilovic: EXRA ÖVNINGAR FOURIERSERIER Deiitio (rigoometrisk serie Ett utryck v öljde orm [ cos( Ωx b si( Ω x är e trigoometrisk serie ] Amärkig: Först terme skriver vi som v prktisk skäl som vi örklrr

Läs mer

dalafrisören Dalarna nr 2 2012 Planket Hösten 2012 God Jul & Gott Nytt År!!! Håll dig uppdaterad på Dalafrisörena forumet & gruppen på Facebook!

dalafrisören Dalarna nr 2 2012 Planket Hösten 2012 God Jul & Gott Nytt År!!! Håll dig uppdaterad på Dalafrisörena forumet & gruppen på Facebook! dlfisöe 2 2012 Plket Höste 2012 Håll dig uppdted på lfisöe fouet & guppe på Fcebook! Augusti 23/8 Aftewok Leksd 28/8 Aftewok Boläge 29/8 Aftewok Mo 30/8 Aftewok Ludvik 30/8 Aftewok Ggef Septebe 25/9 Aftewok

Läs mer

Mekanik. Fysik 4, Rörelselagarna. En kropps rörelse. Grafer. Likformig rörelse. Herman Norrgrann Sir Isaac Newton, 1643-1727. 1.1 Likformig rörelse

Mekanik. Fysik 4, Rörelselagarna. En kropps rörelse. Grafer. Likformig rörelse. Herman Norrgrann Sir Isaac Newton, 1643-1727. 1.1 Likformig rörelse Meknik sik 4, Rörelselgrn Hermn Norrgrnn Sir Isc Newon, 1643-1727 lileo lilei, 1564-1642 En kropps rörelse 1.1 Likformig rörelse Rörelse r Hsighe (ekor) Likformig rörelse rfer Likformig rörelse om hsigheen

Läs mer

En krona dagen om dag ona om r e k n n E E n n k e g o r a d m o a n

En krona dagen om dag ona om r e k n n E E n n k e g o r a d m o a n g E o E E o g o Ambssörr/profilr Jököpigs Sör IF Rlf Eström Björ Norqvist Mukl IFK Uvll IK Ovol HK Coutry Flkbrgs FF Örgryt IS Värmo IK Brg Skoftbys IF GK Kroppskultur Dgrfors IF Gfl IF Äglholms FF Ljugskil

Läs mer

Höstvisa. I k k k k k kkk k j kz. l l l l. l l l l

Höstvisa. I k k k k k kkk k j kz. l l l l. l l l l Höstvis Musik: E. Tur, Text: Tve Jss S1 S2 A1 G =70 4 k 1.Vä-ge hem vr mc -ket låg ch ig e 4 k 4 kk k j - hr jg mött, srt blir kväl- lr- k-li - g ch se -. Km kk k j 1.Vä-ge hem vr mc -ket låg ch ig-e hr

Läs mer

Mat-1.1510 Grundkurs i matematik 1, del III

Mat-1.1510 Grundkurs i matematik 1, del III Mt-.50 Grundkurs i mtemtik, del III G. Gripenberg TKK december 00 G. Gripenberg TKK) Mt-.50 Grundkurs i mtemtik, del III december 00 / 59 Vribelbyte F gx))g x) dx = d F gx)) dx dx = / b F gx)) = F gb))

Läs mer

LINJÄR ALGEBRA II LEKTION 1

LINJÄR ALGEBRA II LEKTION 1 LINJÄR ALGEBRA II LEKTION JOHAN ASPLUND INNEHÅLL. VEKTORRUM OCH DELRUM Hel kursen Linjär Algebr II hndlr om vektorrum och hur vektorrum (eller linjär rum, som de iblnd klls) beter sig. Tidigre hr mn ntgligen

Läs mer

( ) i xy-planet. Vi skapar ( ) med alla x koordinater och en ( ) med alla y koordinater. Sedan plottar vi punkterna med kommandot. , x 2, x 3.

( ) i xy-planet. Vi skapar ( ) med alla x koordinater och en ( ) med alla y koordinater. Sedan plottar vi punkterna med kommandot. , x 2, x 3. Envariabelanalys med Matlab Under denna kurs kommer vi framförallt att använda Matlab som verktyg i Envariabelanalys. Bl.a skall vi se hur man mha Matlab kan vi rita kurvor i xy-planet, rita grafer till

Läs mer

Kompletterande formelsamling i hållfasthetslära

Kompletterande formelsamling i hållfasthetslära Kompletternde formelsmling i hållfsthetslär Görn Wihlorg LTH 004 Spänningstillståndet i ett pln, vinkelätt mot en huvudspänningsriktning ϕ cos ϕ+ sin ϕ + sinϕcosϕ ϕ sinϕ+ cos ϕ Huvudspänningr och huvudspänningsriktningr

Läs mer

Integralen. f(x) dx exakt utan man får nöja sig med att beräkna

Integralen. f(x) dx exakt utan man får nöja sig med att beräkna CTH/GU STUDIO TMVb - / Mtemtisk vetenskper Integrlen Anlys och Linjär Algebr, del B, K/Kf/Bt Inledning Mn kn inte lltid bestämm integrler f() d ekt utn mn får nöj sig med tt beräkn pproimtioner. T.e. e

Läs mer

REKLAMARTIKLAR TILL BÄSTA PRIS!

REKLAMARTIKLAR TILL BÄSTA PRIS! REKLAMARTIKLAR TILL BÄSTA PRIS! 2016 Innhåll PRONTO At.n. 108 Gummigpp md tyckmknism. Jumbopton. 40 x 13 mm. Fäg: gul, ong, öd, blå, gön, gå, svt/vit, svt. Pnno Tänd Rflx Nyckling Mdi Mäss Elktonic Giv

Läs mer

9. Beräkna volymen av det område som begränsas av planet z = 1 och paraboloiden z = 5 x 2 y 2.

9. Beräkna volymen av det område som begränsas av planet z = 1 och paraboloiden z = 5 x 2 y 2. Tentamenskrivning för TMS63, Matematisk Statistik. Onsdag fm den 3 juni, 15, V-huset. Examinator: Marina Axelson-Fisk. Tel: 7-88113 Tillåtna hjälpmedel: typgodkänd miniräknare, tabell- och formelhäfte

Läs mer

Höst- och vinter- STUNDER 2012/2013. Tävla & vinn. Årets julklapp! Snow Electric 31 895:- Se även paket- erbjudandet på sista sidan.

Höst- och vinter- STUNDER 2012/2013. Tävla & vinn. Årets julklapp! Snow Electric 31 895:- Se även paket- erbjudandet på sista sidan. STUNDER 2012/2013 Tävl & vi på www.tibtik. Åt jlklpp! Sow Elti 31 Höt- o vit- 895:- S äv pkt- bjddt på it id. www.tibtik. www.tibtik. MADE IN SWEDEN Åt t md Sti Vill 12 + 85 Svk klik md Bi & Sttto-moto,

Läs mer

Uppsala Universitet Matematiska Institutionen Thomas Erlandsson

Uppsala Universitet Matematiska Institutionen Thomas Erlandsson Uppsl Universitet Mtemtisk Institutionen Thoms Erlndsson RÄTA LINJER, PLAN, SKALÄRPRODUKT, ORTOGONALITET MM VERSION MER OM EKVATIONSSYSTEM Linjär ekvtionssystem och den geometri mn kn härled ur dess är

Läs mer

Skydda dricksvattnet. Att bo och verka i ett vattenskyddsområde

Skydda dricksvattnet. Att bo och verka i ett vattenskyddsområde Skydd dcksv A bo och vk vyddsoåd R v ä vå vkgs ullgåg V äo k vså d s, v kl oss u v Vyddsoåd fs ydd vå dcksv D g oss llgåg ll dcksv v god kvl också fd E vyddsoåd bä oåd ä vspä ll bjud vss M ll vksh so ugö

Läs mer

2416 ARB.RUM PERSONAL SKRIVARE HYLLOR DROPPSTÄLL VÅRDRUM/ METODÖVN. SÄNGGAVLAR SÄNGBORD 2422 FRD TILL VÅRDRUM PROVT.VAGNAR B B KROKLIST 10 PERS.

2416 ARB.RUM PERSONAL SKRIVARE HYLLOR DROPPSTÄLL VÅRDRUM/ METODÖVN. SÄNGGAVLAR SÄNGBORD 2422 FRD TILL VÅRDRUM PROVT.VAGNAR B B KROKLIST 10 PERS. 0 00 0 ET T ÄRIE VSER TUM SI FÖRKLRIR IREI PLL F FX KROKLI RETSOL OL S K SKRIVRE KOPITOR HYLL OLV HYLL ÖVER ORSHÖJ ISKÄK KRMOL SKÅP FÅTÖLJ OR SKÅP SOFF HYLL H9 RTS ÄKSKIV HÖJ I M RULLOL KOTORSR. PLTS T

Läs mer

som gör formeln (*) om vi flyttar första integralen till vänsterledet.

som gör formeln (*) om vi flyttar första integralen till vänsterledet. Armi Hlilovic: EXTRA ÖVNNGAR Prtill itgrtio PARTELL NTEGRATON uu(vv ( dddd uu(vv( uu (vv(dddd ( ), (pppppppppppppppp iiiiiiiiiiiiiiiiiiiiii) KKKKKKKKKKKKKK: uuuu dddd uuuu uu vv dddd Förklrig: Eligt produktrgl

Läs mer

Läsanvisningar för MATEMATIK I, ANALYS

Läsanvisningar för MATEMATIK I, ANALYS Läsnvisningr för MATEMATIK I, ANALYS Läsnvisningrn är tänkt i först hnd för dig som läser kursen mtemtik I på distns, och de sk vägled dig på din res genom nlysen. Stoffet är i stort sett portionert på

Läs mer

Tentamen i Statistik, STA A13 Deltentamen 2, 5p 20 januari 2007, kl. 09.00-13.00

Tentamen i Statistik, STA A13 Deltentamen 2, 5p 20 januari 2007, kl. 09.00-13.00 0.01.007 Tetame i Statistik, STA A13 Deltetame, 5p 0 jauari 007, kl. 09.00-13.00 Tillåta hjälpmedel: Bifogad formel- och tabellsamlig (skall retureras) samt miiräkare. Asvarig lärare: Haah Hall Övrigt:

Läs mer

Adagio. œ œ œ œ œ œ œ. œ œ œ œ. & bb 4 4 œ. & bb. œ œ œ œ œ œ œ œ Œ. & bb œ œ œ œ œ œ œ œ. & bb œ œ œ œ œ b D. q = 72. och nar. var 1ens.

Adagio. œ œ œ œ œ œ œ. œ œ œ œ. & bb 4 4 œ. & bb. œ œ œ œ œ œ œ œ Œ. & bb œ œ œ œ œ œ œ œ. & bb œ œ œ œ œ b D. q = 72. och nar. var 1ens. q = 72 & bb 4 4 1. Vatt 2. Mol net rörs nen gli & bb der vin lätt dagio m den spe lar, vind som vi ta sva nar vat ö ten tar ver him F B b Text: Bo Bergman Musik: Lasse ahlberg var 1ens ann. sjö, Bak men

Läs mer

Geometrisk optik reflektion och brytning

Geometrisk optik reflektion och brytning Geometisk optik eflektion oh bytning Geometisk optik F7 Reflektion oh bytning F8 Avbildning med linse Plana oh buktiga spegla Optiska system F9 Optiska instument Geometisk optik eflektion oh bytning Repetition:

Läs mer

Åsen Nytt J U L - S P E C I A L. J u l e t i d

Åsen Nytt J U L - S P E C I A L. J u l e t i d Åsen Nytt December 2015, årgång 18, nummer 12 Utgivare: Auvin ekonomiska förening Åsen Nytt J U L - S P E C I A L Varm julcider Varm cider med julkryddor är lite lättare i smaken än glögg men ger samma

Läs mer

Uppsala Summer Heat Blues

Uppsala Summer Heat Blues Inspirerad av den mellansvenska sommaren 200 (och av ohn Fogertys "A Hundred and Ten in the Shade"). Text och musik: Eva Toller 200 "Uppsala" och "Fyrisån" kan ytas ut mot lokala varianter. Soprano c Alto

Läs mer

ZA5888. Flash Eurobarometer 372 (Women in Developing Countries) Country Questionnaire Sweden

ZA5888. Flash Eurobarometer 372 (Women in Developing Countries) Country Questionnaire Sweden ZA888 Flash Euobaomt 7 (Womn in Dvloping Countis) County Qustionnai Swdn FL 7 Womn in dvloping countis - SE D Hu gammal ä du? (SKRIV NER OM "VÄGRAR" KOD '99') D Kön Man Kvinna Euopés åsikt om situationn

Läs mer

Addition och subtraktion

Addition och subtraktion Sidor i boken 35-39 Addition och subtrktion Vi börjr med lite ritmetik. Heltlsddition innebär ing som helst problem. Här tr vi lämpligen räknedosn till hjälp. Eempel. 3+00+5 = 7 Så länge ll nämnre är lik

Läs mer

Exempelsamling :: Vektorintro V0.95

Exempelsamling :: Vektorintro V0.95 Exempelsamling :: Vektorintro V0.95 Mikael Forsberg :: 2 noember 2012 1. eräkna summan a ektorerna (1, 2) och (3, 1) mha geometrisk addition 2. Tå ektorer u = ( 2, 3) och adderas och blir ektorn w = (1,

Läs mer

SNS 22 januari 2014. Catharina Lagerstam S N S. j a n u a r i

SNS 22 januari 2014. Catharina Lagerstam S N S. j a n u a r i K ås: Klväg A, 3 tockholm Mobl: 73-9 9 9 cth.lgstm@gml.com Cth Lgstm Cth Lgstm, vå, All ghts sv 9 s Ekoomsk / st boföstå It: Rovsgstkk Jsk övväg ttpkt Cth Lgstm, vå, All ghts sv ttpkt Rvsos fl? V som skll

Läs mer

Kunna beräkna medelantal kunder för alla köer i ett könät med återkopplingar. I denna övning kallas ett kösystem som ingår i ett könät oftast nod.

Kunna beräkna medelantal kunder för alla köer i ett könät med återkopplingar. I denna övning kallas ett kösystem som ingår i ett könät oftast nod. Övning 8 Vad du ska kunna efter denna övning Kunna beräkna medelantal kunder för alla köer i ett könät med återkopplingar. Kunna beräkna medeltiden som en kund tillbringar i ett könät med återkopplingar.

Läs mer

SKOLRESA. På Gotland!

SKOLRESA. På Gotland! 2016 * SKOLRESA På Gotld! Skolpkt I pktt igå följd: Båt t/, luch/middg v på övft. Butf Viby Hm-KippbyViby Hm. Logi i um/tugo md hlpio. Fi té hl vitl till Kippby Somm- & Vttld. Eklt pivät fö hl kl! Miigolf

Läs mer

Så här gör du för att få biljett

Så här gör du för att få biljett Nu f öjgh fö dg o ä dg hdppd och v Hby Hch på T 2 äg p. Nd ä pch fö d ch Så hä gö du fö få bj 1. Ko Gö Tgö på 48 ch och gö bäg: Ad: Go.Tgo@HbyFobo. 2. Hä u bj vd Hby Fobo T2 hv ch. Nä du h bo bj fobo få

Läs mer

Höstlov i Motala 2010

Höstlov i Motala 2010 Höstlv i Mtl 2010 1-5 vbr S prgrt ch läs tt s sr udr årt på: tl.s/ug Bwlig Mtl Bwlighll Öppttidr Mådg 1/11 13.00-16.00 Tisdg 2/11 12.00-16.00 Osdg 3/11 13.00-16.00 Trsdg 4/11 12.00-16.00 Frdg 5/11 12.00-16.00

Läs mer

Kurvlängd och geometri på en sfärisk yta

Kurvlängd och geometri på en sfärisk yta 325 Kurvlängd och geometri på en sfärisk yta Peter Sjögren Göteborgs Universitet 1. Inledning. Geometrin på en sfärisk yta liknar planets geometri, med flera intressanta skillnader. Som vi skall se nedan,

Läs mer

ICKE-HOMOGENA DIFFERENTIALEKVATIONSSYSTEM ( MED KONSTANTA KOEFFICIENTER I HOMOGENA DELEN)

ICKE-HOMOGENA DIFFERENTIALEKVATIONSSYSTEM ( MED KONSTANTA KOEFFICIENTER I HOMOGENA DELEN) Armi Hlilovi: ETRA ÖVNINGAR, S676 Ik-omog sysm Mrismod Sid v 0 ICKE-HOMOGENA DIERENTIALEKVATIONSSYSTEM MED KONSTANTA KOEICIENTER I HOMOGENA DELEN Vi brkr sysm v lijär ik-omog DE v örs ordig md kos koiir

Läs mer

5 % rab 50% Guldtvätt. Stöd Din förening, Ditt Lag eller Din klass genom att köpa Klubbrabatten. för. t batt 10% rabatt. för

5 % rab 50% Guldtvätt. Stöd Din förening, Ditt Lag eller Din klass genom att köpa Klubbrabatten. för. t batt 10% rabatt. för 60 k 0% j spl Kn 8 dl och g, läkm om 5-0-, idnin j ok dndn Gilig n Gä ju ill uik Riv u och s nd komin köp hck Vädc Hös Guldvä dn COOP Foum 0 k fö 50 så j spl Kn dl och -0-8 g, läkm om 5, idnin j ok dndn

Läs mer

lr Dagordning till årsmötet för

lr Dagordning till årsmötet för - ll Dgrning ill årsmöe för Rsklubben för Gs 'Aur Clå Dum 20L-02-06 klckn 13.00 Pls: ässjö Ärenen: 1. Jusering v röslängen' 2. Vl v rförne för årsmöe. 3r/r7 inr+ef 3. Syrelsens nmäln m prkllförre för möe'

Läs mer

Trigonometri. 2 Godtyckliga trianglar och enhetscirkeln 2. 3 Triangelsatserna Areasatsen Sinussatsen Kosinussatsen...

Trigonometri. 2 Godtyckliga trianglar och enhetscirkeln 2. 3 Triangelsatserna Areasatsen Sinussatsen Kosinussatsen... Trigonometri Innehåll 1 Rätvinklig tringlr 1 Godtyklig tringlr oh enhetsirkeln 3 Tringelstsern 4 3.1 restsen.............................. 4 3. Sinusstsen.............................. 5 3.3 Kosinusstsen.............................

Läs mer

TILLÄMPNINGAR AV INTEGRALER. VOLYMBERÄKNING.

TILLÄMPNINGAR AV INTEGRALER. VOLYMBERÄKNING. Armin lilovic: EXTA ÖNINGA olmeräkning TILLÄMPNINGA A INTEGALE. OLYMEÄNING. uvud verktg för volmeräkning är duelintegrl som tillör kursen i flervrielnls, men någr volmeräkningr kn vi gör med jälp v enkelintegrl.

Läs mer

a t a 21 50% Guldtvätt Guldtvätt Stöd Din förening, Ditt Lag eller Din klass genom att köpa Klubbrabatten. för Betala för 100

a t a 21 50% Guldtvätt Guldtvätt Stöd Din förening, Ditt Lag eller Din klass genom att köpa Klubbrabatten. för Betala för 100 50 k b 0% j spl K dl och, läk to 204-08-3, tidi j tobk dd Gilti Gäll ll bju till butik t b Riv ut och s d kobi j spl K dl och, läk to 204-08-3, tidi j tobk dd Gilti Gäll ll bju till butik t b Riv ut och

Läs mer

9 Storheter och enheter

9 Storheter och enheter 9 Storheter och enheter 9.1 SI - DET INTERNATIONELLA ENHETSSYSTEMET SI (Systeme Internationale d'unites), det internationella måttenhetssystemet, är inte ett helt nytt måttsystem. Det bygger på tidigare

Läs mer

Enkel slumpvandring. Sven Erick Alm. 9 april 2002 (modifierad 8 mars 2006) 2 Apan och stupet 3 2.1 Passagesannolikheter... 3 2.2 Passagetider...

Enkel slumpvandring. Sven Erick Alm. 9 april 2002 (modifierad 8 mars 2006) 2 Apan och stupet 3 2.1 Passagesannolikheter... 3 2.2 Passagetider... Ekel slumpvadrig Sve Erick Alm 9 april 2002 (modifierad 8 mars 2006) Iehåll 1 Iledig 2 2 Apa och stupet 3 2.1 Passagesaolikheter............................... 3 2.2 Passagetider....................................

Läs mer

Den stabila människan

Den stabila människan Dn sbl männskn Igå v jg på ylg n kus på Klvgnn, dnn gång om kokv änng och sblsngsänng. Effkv änng fö smä, spännng, nsbl och nds syk. Vd kn v gö fö höfn skll ö sg opml, fö skuldon skll må b och fö knän

Läs mer

En ny utmaning till leverantörer och entreprenörer av bostadshus

En ny utmaning till leverantörer och entreprenörer av bostadshus E y utmig till lvtö och tpö v bostdshus å cks o otm d dlig s m lt ty och v k ifi c lt lt lö p k vä. H tt s å tt m mått gp tt om stäm ll p sl läg öj c é fö id ch M. tt o tt pt. o lig. tt få på lmå s g t

Läs mer

Föreläsning 10. java.lang.string. java.lang.string. Stränghantering

Föreläsning 10. java.lang.string. java.lang.string. Stränghantering Föläig Stäghtig j.lg.stig E täg btå tt tl tc Stäg i ht om objt l Stig E täg it modifi ft tt d h pt! Stig - l : ch[] - cot : it + lgth(): it + chat(it): ch + idxof(ch): it E täg h: Ett äd och lägd Ett tl

Läs mer

Leica Lino. Noggranna, självavvägande punkt- och linjelasers

Leica Lino. Noggranna, självavvägande punkt- och linjelasers Leica Lio Noggraa, självavvägade pukt- och lijelasers Etablera, starta, klart! Med Leica Lio är alltig lodat och perfekt apassat Leica Lios projekterar lijer eller pukter med millimeterprecisio och låter

Läs mer

9. Bestämda integraler

9. Bestämda integraler 77 9. Bestämd integrler Låt f vr en icke-negtiv, begränsd funktion på [,b]. Vi hr lltså 0 f(x) ll x [,b] för någon konstnt B. B för Problem: Beräkn ren A v den yt som begränss v kurvn y = f(x), x b, x-xeln

Läs mer

Vi önskar er ett trevligt Speedwaymöte i Norrköping denna helg

Vi önskar er ett trevligt Speedwaymöte i Norrköping denna helg g E o E E o g Vi öskr r tt trvligt Spwymöt i Norrköpig hlg Su Björk, Support Your Tm o g E o E E o g Vi kämpr ihop! o Välk till prsttio s pssr i på ll Spwyförigr i hl Svrig m mottot VI KÄMPAR IHOP m st

Läs mer

Genom att använda geometrin i figuren ovan kan vi även ta fram uttryck för hur storleken på bilden, h, beror på storleken på objektet, h.

Genom att använda geometrin i figuren ovan kan vi även ta fram uttryck för hur storleken på bilden, h, beror på storleken på objektet, h. öeläsig 6 Avbildig i säisk gäsyta Hittills ha vi baa avbildat puktomiga objekt som ligge på de optiska axel, me de lesta objekt ha e stolek d.v.s. bestå av me ä e pukt. Otast ita ma objektet som e ståede

Läs mer

SF1625 Envariabelanalys

SF1625 Envariabelanalys Modul 5: Integrler Institutionen för mtemtik KTH 30 november 4 december Integrler Integrler är vd vi sk håll på med denn veck och näst. Vi kommer tt gör följnde: En definition v vd begreppet betyder En

Läs mer

Resa den 6 juni 2010 till Hofsnäs, Torpa och Limmared.

Resa den 6 juni 2010 till Hofsnäs, Torpa och Limmared. P P P 1 : 5 1 F P1452-251. 1 P 1452-251. 2 1 : 1 9 Na b b e 1 :2 n K v i n n o ö n P T o rp a s te n h u s M å s ö n Ä s p i n g s u d d Åk e rs ö r B j ö rk e b a c k e n S ä l g h å l a n F ru n s ö

Läs mer

Integraler. 1 Inledning. 2 Beräkningsmetoder. CTH/GU LABORATION 2 MVE /2013 Matematiska vetenskaper

Integraler. 1 Inledning. 2 Beräkningsmetoder. CTH/GU LABORATION 2 MVE /2013 Matematiska vetenskaper CTH/GU LABORATION MVE6 - / Mtemtisk vetenskper Inledning Integrler Iblnd kn mn inte bestämm integrler exkt utn mn får nöj sig med tt beräkn pproximtioner. T.ex. e x dx kn inte beräkns exkt, eftersom det

Läs mer

för att uppdatera dina produkter dagligen på LeGuide.com Groups webbplatser

för att uppdatera dina produkter dagligen på LeGuide.com Groups webbplatser för att uppdatera dina produkter dagligen på LeGuide.com Groups webbplatser Innehållsförteckning Beroende på ditt utgångsläge följer du alla eller en del av stegen i detta dokument för att enkelt skapa

Läs mer

Avd. Matematisk statistik

Avd. Matematisk statistik Avd. Matematisk statistik TENTAMEN I SF1902 SANNOLIKHETSTEORI OCH STATISTIK, TORSDAGEN DEN 23:E MAJ 2013 KL 14.00 19.00. Kursledare och examinator : Björn-Olof Skytt Tillåtna hjälpmedel: miniräknare, lathund

Läs mer

TNA001 Matematisk grundkurs Övningsuppgifter

TNA001 Matematisk grundkurs Övningsuppgifter TNA00 Matematisk grudkurs Övigsuppgiter Iehåll: Uppgit Uppgit 8 Uppgit 9 6 Uppgit 7 5 Uppgit 55 60 Facit sid. 8-0 Summor, Biomialsatse, Iduktiosbevis Ivers uktio Logaritmer, Expoetialuktioer Trigoometri

Läs mer

ORTONORMERADE BASER I PLAN (2D) OCH RUMMET (3D) ORTONORMERAT KOORDINAT SYSTEM

ORTONORMERADE BASER I PLAN (2D) OCH RUMMET (3D) ORTONORMERAT KOORDINAT SYSTEM Armin Hlilovi: EXTRA ÖVNINGAR 1 v 1 Ortonormerde bser oh koordinter i 3D-rummet ORTONORMERADE BASER I PLAN D OCH RUMMET 3D ORTONORMERAT KOORDINAT SYSTEM Vi säger tt en bs i rummet e r, e r, e r z e r,

Läs mer

TATA42: Föreläsning 10 Serier ( generaliserade summor )

TATA42: Föreläsning 10 Serier ( generaliserade summor ) TATA42: Föreläsning 0 Serier ( generaliserade summor ) Johan Thim 5 maj 205 En funktion s: N R brukar kallas talföljd, och vi skriver ofta s n i stället för s(n). Detta innebär alltså att för varje heltal

Läs mer

Kompletterande lösningsförslag och ledningar, Matematik 3000 kurs A, kapitel 6

Kompletterande lösningsförslag och ledningar, Matematik 3000 kurs A, kapitel 6 Kompletterande lösningsförslag och ledningar, Matematik 000 kurs A, kapitel Kapitel.1 101, 10, 10 Eempel som löses i boken. 104, 105, 10, 107, 108, 109 Se facit 110 a) Ledning: Alla punkter med positiva

Läs mer

SF1625 Envariabelanalys

SF1625 Envariabelanalys SF1625 Envribelnlys Föreläsning 13 Institutionen för mtemtik KTH 27 september 2017 SF1625 Envribelnlys Anmäl er till tentn Anmäl er till tentn nu. Det görs vi min sidor. Om det inte går, mejl studentexpeditionen

Läs mer

STOCKHOLM LIGHTHOUSE PLANLÖSNINGAR & PRISER KVARNHOLMEN

STOCKHOLM LIGHTHOUSE PLANLÖSNINGAR & PRISER KVARNHOLMEN OCHOM IHOUSE PAÖSIAR & PRISER VARHOME Öve rs i kt p l an 9 2 R 10901 2 R 20901 2 R 20902 / / / TRAP P HU S 1 TRAP P HU S 2 ÖRARIAR / Y/RYS TVÄ- MASI IEROV Y TOR- TUMARE UDERTA RYS HADDUS- TOR SCHAT DIS-

Läs mer

0 a. a -Â n 2 p n. beskriver på sedvanligt sätt en a-periodisk utvidgning av f. Nedanför ritas en partialsumma av Fourierserien.

0 a. a -Â n 2 p n. beskriver på sedvanligt sätt en a-periodisk utvidgning av f. Nedanför ritas en partialsumma av Fourierserien. Sinus- och cosinusserier I slutet v kursen där vi skll lös differentilekvtioner på ändlig intervll v typen H, L, behöver vi konstruer Fourierserier med en viss typ v uppförnde i intervllens ändpunkter.

Läs mer

Prov Antal uppgifter Uppgiftsnummer Rekommenderad provtid

Prov Antal uppgifter Uppgiftsnummer Rekommenderad provtid 2011-10-29 Provpass 4 Svarshäfte nr. Högskoleprovet Kvantitativ del m Provet innehåller 40 uppgifter Instruktion etta provhäfte består av fyra olika delprov. essa är XYZ (matematik), KV (kvantitativa jämförelser),

Läs mer

Ë Ñ ÙÒ Ø ÆÝ ÍØ Â Ö ØØ ĐÓÖØÖÓ Ò Ø Ú Ñ ÙÒ Ø ÒÝ ØÝÖ Ð ØØ Ú Ö ÓÑ Ö ØĐÓÖ ĐÓÖ Ùع غ ØØ Đ Ö Ò ÒÝ ÔÓ Ø Ó Ò Ø ØĐ ÐÐ Ú Ö ÑĐÓØ Ø ÍÔÔ Ð Ñ ØØ Öº Î ÑÑ ÑĐÓØ ÐĐÓØ ØØ ÔÓ Ø Ò ÓÑ Ö ØĐÓÖ ÙØ Ú ØÝÖ Ð Ò Ó Ò¹ Ò Ú Ö Đ Ö Ò Ú Ö

Läs mer

x 12 12 = 32 12 x 11 + 11 = 26 + 11 x 20 + 20 = 45 + 20 x=3 x=5 x=6 42 = 10x x + 10 = 15 x + 10 10 = 15 10 11 + 9 = 20 x = 65 x + 36 = 46

x 12 12 = 32 12 x 11 + 11 = 26 + 11 x 20 + 20 = 45 + 20 x=3 x=5 x=6 42 = 10x x + 10 = 15 x + 10 10 = 15 10 11 + 9 = 20 x = 65 x + 36 = 46 Vilket tl sk stå i rutn så tt likheten stämmer? + Lös ekvtionen så tt likheten stämmer. = + 9 = + = + = = Det sk stå 9 i rutn. Subtrher båd leden med. r -termen sk vr kvr i vänstr ledet. Skriv rätt tl

Läs mer

SIGNALER OCH SYSTEM II LEKTION 2 / MATEMATISK LEKTION 1. Fredrik Andréasson. Department of Mathematics, KTH

SIGNALER OCH SYSTEM II LEKTION 2 / MATEMATISK LEKTION 1. Fredrik Andréasson. Department of Mathematics, KTH SIGNALER OCH SYSTEM II LEKTION 2 / MATEMATISK LEKTION Fredrik Andrésson Deprtment of Mthemtics, KTH Lplcetrnsformen. I förr delkursen studerde vi fouriertrnsformen v en funktion h(t) H(iω) F[h(t)] Vi definierr

Läs mer

Kompletterande kurslitteratur om serier

Kompletterande kurslitteratur om serier KTH Matematik Has Thuberg 5B47 Evariabelaalys Kompletterade kurslitteratur om serier I Persso & Böiers.5.4 itroduceras serier, och serier diskuteras också i kapitel 7.9. Ia du läser vidare här skall du

Läs mer

5 Kontinuerliga stokastiska variabler

5 Kontinuerliga stokastiska variabler 5 Kontinuerliga stokastiska variabler Ex: X är livslängden av en glödlampa. Utfallsrummet är S = x : x 0}. X kan anta överuppräkneligt oändligt många olika värden. X är en kontinuerlig stokastisk variabel.

Läs mer

7,5 högskolepoäng. Provmoment: tentamen Ladokkod: TT081A Tentamen ges för: Högskoleingenjörer årskurs 1. Tentamensdatum: 2015-06-04 Tid: 9.00-13.

7,5 högskolepoäng. Provmoment: tentamen Ladokkod: TT081A Tentamen ges för: Högskoleingenjörer årskurs 1. Tentamensdatum: 2015-06-04 Tid: 9.00-13. Mekanik romoment: tentamen Ladokkod: TT81A Tentamen ges för: Högskoleingenjörer årskurs 1 7,5 högskolepoäng Tentamensdatum: 15-6-4 Tid: 9.-13. Hjälpmedel: Hjälpmedel id tentamen är hysics Handbook (Studentlitteratur),

Läs mer

¾ ½½¾ Ø ÐÓ Á ÖÙÒ ÙÖ Ñ Â Ú ¾¼¼¾ ¾¼¼ Ä ÙÖ ½ ÒÒ Ð ÙÖ ÓÑ ØØ Ö ÓÐ ÑÓÑ ÒØ Ö ÑÓÑ ÒØ ¾ ÐÐ Ö ÓÚ º Ì Ñ ÒÒ Ø ÐÐ Ú Ö Ö ÓÚ Ò Ò Ó Ø ÐÐ ØØ Ù Ö Ú ØØ Ò ÖÒ Ò ÐÖ Ö º Ö Ò Ò ÙÐÐ Ô Ö Ò Ø ÐÐ Ù ØØ ØØ Ò Ö ÙÐØ Ø Ö ÒÖ ÔÔÓÖØ Ö Ø

Läs mer

============================================================

============================================================ H0009, Introuktionskurs i mtemtik Armin Hlilovi LINJÄRA OCH ANDRAGRADSEKVATIONER Någr eemel me linjär ekvtioner oh ekvtioner som kn förenkls till linjär ekvtioner. Mn kn förenkl en ekvtion me hjäl v följne

Läs mer

Utveckling av metod och prototyp för detektering av lastförskjutning

Utveckling av metod och prototyp för detektering av lastförskjutning 2004:076 CIV EXAMENSARBETE Utveckling av metod och prototyp för detektering av lastförskjutning MIKAEL KARLSSON PER WESTIN CIVILINGENJÖRSPROGRAMMET Institutionen för Systemteknik EISLAB Embedded Internet

Läs mer

MA002X Bastermin - matematik VT16

MA002X Bastermin - matematik VT16 MA00X Bstermin - mtemtik VT6 Något om trigonometri Mikel Hindgren februri 06 Cirkelns ekvtion Exempel Beräkn vståndet melln punktern (4, 6) och (, ). 7 6 5 4 d (, ) 4 = (4, 6) 6 = 4 4 5 6 Pythgors sts:

Läs mer

i de fall de existerar. Om gränsvärdet ifråga inte skulle existera, ange i så fall detta med motivering.

i de fall de existerar. Om gränsvärdet ifråga inte skulle existera, ange i så fall detta med motivering. Kap 9. 9.5, 9.8 9.9, 6.5. Talföljd, mootoa talföljder, koverges, serier, koverges, geometriska serier, itegralkriterium, p serier, jämförelsekriterier, absolut koverges, altererade serier, potesserie,

Läs mer

Facit Träningshäfte 9:2

Facit Träningshäfte 9:2 Kapitel 1 1 a) 4 800 000 b) 300 200 c) 25 085 d) 0,8 e) 0,25 f) 0,785 2 a) 2 miljoner 35 tusen: 2 035 000 235 tusen: 235 000 tjugotretusen femhundra: 23 500 b) 12 tiondelar: 1,2 12 hundradelar: 0,12 12

Läs mer

Alternativ vattenbehandling

Alternativ vattenbehandling Alternativ vattenbehandling Effekter, mekanismer och perspektiv på vattenkvalitet Lasse Johansson Institutet för Ekologisk Teknik Forskningsrapporter 2 Göteborg - 2005 ÐØ ÖÒ Ø Ú Ú ØØ Ò Ò Ð Ò Ø Ö Ñ Ò Ñ

Läs mer

f(x i ) Vi söker arean av det gråfärgade området ovan. Området begränsas i x-led av de två x-värdena där kurvan y = x 2 2x skär y = 0, d.v.s.

f(x i ) Vi söker arean av det gråfärgade området ovan. Området begränsas i x-led av de två x-värdena där kurvan y = x 2 2x skär y = 0, d.v.s. Dg. Remsummor och tegrler Rekommederde uppgfter 5.. Del upp tervllet [, 3] lk stor deltervll och väd rektglr med dess deltervll som bs för tt beräk re v området uder = +, över =, smt mell = och = 3. V

Läs mer

VERKSAMHETSBERÄTTELSE 2011

VERKSAMHETSBERÄTTELSE 2011 NOAKS ARK STOCKHOLM VERKSAMHETSBERÄTTELSE 2011 Innehåll Förvaltningsberättelse.. 2 Resultaträkning.. Balansräkning. Revisionsberättelse FÖRVALTNINGSBERÄTTELSE Styrelse och förtroendevalda Fr ån och Vid

Läs mer

Studiehandledning till. MMA121 Matematisk grundkurs. Version 2012-09-03

Studiehandledning till. MMA121 Matematisk grundkurs. Version 2012-09-03 Studiehandledning till MMA Matematisk grundkurs läsåret 0/ Version 0-09-0 Kursinformation för MMA Mål Avsikten med kursen MMA Matematisk grundkurs är att ge grundläggande kunskaper i matematik, av betydelse

Läs mer

¾ ½½¾ Ø Ó Á ÖÙÒ ÙÖ Ñ Â Ú ¾¼¼¾ ¾¼¼ Ä ÙÖ ¾ ÒÒ ÙÖ ÓÑ ØØ Ö ¾ Ó ÑÓÑ ÒØ Ö ÓÚ º Ò Ö Ö ÓÑ Ó ÒÒ Ö Ú ØØ Ö Ô ÒÒ º Ö Ò Ò Ù Ô Ö Ò Ø Ù ØØ ØØ Ò Ö ÙØ Ø Ö ÒÖ ÔÔÓÖØ Ö Ø Ä Ó Æ ÑÒ ººººººººººººººººººººººººººººººººººººººººººººººººººººº

Läs mer

Nr 787. Mot. 1975:787 14. av herrar Johansson i Holmgården och Boström om l slam~ 'i deltagande i nordiskt kulturellt samarbete.

Nr 787. Mot. 1975:787 14. av herrar Johansson i Holmgården och Boström om l slam~ 'i deltagande i nordiskt kulturellt samarbete. Mot. 1975:787 14 Nr 787 av herrar Johansson i Holmgården och Boström om l slam~ 'i deltagande i nordiskt kulturellt samarbete. l Bilaga 10 till budgetpropositionen 1975, 1. I nternalionelh-kulturellt samarbete,

Läs mer

k9innehåll: Matte KONVENT Ma te ma tik Länktips: Mattecentrum.se Formelsamlingen.se Matteboken.se Pluggakuten.se

k9innehåll: Matte KONVENT Ma te ma tik Länktips: Mattecentrum.se Formelsamlingen.se Matteboken.se Pluggakuten.se Matte KONVENT Plugga tillsammans inför de nationella proven i matematik Ma te ma å tik Länktips: Mattecentrum.se Formelsamlingen.se Matteboken.se Pluggakuten.se k9innehåll: Pluggtips Formelsamling Nationella

Läs mer

Lösningsförslag nexus B Mekanik

Lösningsförslag nexus B Mekanik Lösningsföslag 1 Mekanik 101. Stenen falle stäckan s. s gt 9,8 1, 6 m 1,6 m Sva: 1 m 10. Vi kan använda enegipincipen: mv mgh v gh Hastigheten vid nedslaget bli då: v gh 9,85 m/s 6 m/s Sva: 6 m/s 10. a)

Läs mer