Föreläsning 1. Metall: joner + gas av klassiska elektroner. l = v th =1/ Materialegenskaper

Save this PDF as:
 WORD  PNG  TXT  JPG

Storlek: px
Starta visningen från sidan:

Download "Föreläsning 1. Metall: joner + gas av klassiska elektroner. l = v th =1/ Materialegenskaper"

Transkript

1 Föreläsning 1 Vi gick igenom kapitel 2.1 och (nästan hela) 2.2. Vi betraktade en mycket enkel modell av en metall, där valenselektronerna antas bilda en klassisk gas. Vid ändliga temperaturer rör sig elektronerna slumpmässigt i metallen, men deras medelhastighet är noll. Om man lägger på en spänning accelereras elektronerna av det elektriska fältet. För att få Ohms lag att passa ihop med Newtons andra lag var vi tvungna att anta att elektronerna ibland kolliderar med jonerna i metallen och förlorar sin hastighet. Vi härledde ett uttryck för konduktiviteten, som är proportionell mot drifthastigheten och därmed proportionell mot tiden mellan kollisioner. Metall: joner + gas av klassiska elektroner Materialegenskaper Kollisionstid: Fri medelväglängd: Mobilitet: Konduktivitet: Resistivitet: l = v th µ e = v d /E = e /m = ne 2 /m = µ e ne =1/

2 Föreläsning 2 V i b ö r j a d e m e d k apitel 2. 3 o m d i f f u s i o n : o m elektronkoncentrationen beror på läget leder elektronernas slumpmässiga rörelse till en nettoström, även utan ett elektriskt fält. Vi fortsatte med kapitel 2.4 som handlar om Halleffekten, som uppstår när vi driver en ström vinkelrätt mot ett magnetfält. Lorentzkraften leder till ackumulation av laddning vinkelrätt mot strömriktningen och den resulterande Hallspänningen kan användas för att bestämma både koncentrationen och laddningen hos laddningsbärarna. Kapitel 2.5 hoppade vi över (ingår ej i kursen). Vi diskuterade ett par tillkortakommanden hos den klassiska beskrivningen av ledningselektroner (kapitel 2.6): värmekapaciteten och resistivitetens temperaturberoende stämmer inte överens med experiment. Dessutom kan man inte klassiskt förstå vad hål är, och att hål faktiskt finns bekräftas av Hallmätningar. Till slut började vi lite med kvantmekanikrepetition och behandlade kortfattat kapitel : Schrödingerekvationen, sannolikstäthet, normering, stationära tillstånd och plana vågor. Koncentrationsgradient Einsteins relation för diffusionskonstanten: diffusionsström: J = ev th l dn dx = ed dn e dx D e = v th l = µ e kt e Lorentzkraft: F B = ev B Ackumulation av laddning på kanterna Elektriskt (Hall)fält Kraft på elektroner F H = ee H Ackumulationen av laddning fortsätter tills jämvikt uppstår, dvs ingen nettokraft verkar längre på elektronerna: F H = F B E H = J en B Elektronbidrag till värmekapacitet: C el V Ēel kin = 3 2 kn Men experiment visar att C el V 0 Temperaturberoendet hos resistiviteten: 1/ v th p T Men experiment visar att T

3 Föreläsning 2 V i b ö r j a d e m e d k apitel 2. 3 o m d i f f u s i o n : o m elektronkoncentrationen beror på läget leder elektronernas slumpmässiga rörelse till en nettoström, även utan ett elektriskt fält. Vi fortsatte med kapitel 2.4 som handlar om Halleffekten, som uppstår när vi driver en ström vinkelrätt mot ett magnetfält. Lorentzkraften leder till ackumulation av laddning vinkelrätt mot strömriktningen och den resulterande Hallspänningen kan användas för att bestämma både koncentrationen och laddningen hos laddningsbärarna. Kapitel 2.5 hoppade vi över (ingår ej i kursen). Vi diskuterade ett par tillkortakommanden hos den klassiska beskrivningen av ledningselektroner (kapitel 2.6): värmekapaciteten och resistivitetens temperaturberoende stämmer inte överens med experiment. Dessutom kan man inte klassiskt förstå vad hål är, och att hål faktiskt finns bekräftas av Hallmätningar. Till slut började vi lite med kvantmekanikrepetition och behandlade kortfattat kapitel : Schrödingerekvationen, sannolikstäthet, normering, stationära tillstånd och plana (x, t) Schrödingerekvationen: Stationära tillstånd: (x, t) = Tidsoberoende Schrödingerekvationen: Normering = 2 (x, t) 2 + V (x) (x, t) (x)e i!t,! = E/~ ~ V (x) (x) =E Tidsberoende för plan våg Utan potentialterm (fria elektroner) är lösningarna plana vågor: (x, t) = 1 p L e i(kx!t), k = r 2mE ~ 2 Vågfunktionen berättar inte exakt var elektronen befinner sig, men dess sannolikhetstäthet ges av: (x, t) 2 = (x) 2 (där likheten gäller för stationära tillstånd, vars sannolikhetstäthet alltså är tidsoberoende) Sannolikheten att hitta partikeln mellan x = a och x = b ges av: Z b a (x, t) 2 dx

4 Föreläsning 3 Föreläsning 3 var lite av en djupdykning i några av de mer abstrakta elementen av kvantmekaniken. Avsikten är främst att i alla fall en gång gå igenom hur det hänger ihop, eftersom begrepp som operator (tex Hamiltonoperator) ofta används utan närmare förklaring. Dessutom är dessa begrepp centrala i mer avancerade kurser i kvantmekanik. Men varken den muntliga eller skriftliga tentamen kommer att innehålla detaljerade frågor på detta. Vi pratade om hur man beräknar väntevärden i kvantmekanik och såg att tex rörelsemängd och kinetisk energi motsvaras av operatorer. Hamiltonoperatorn är operatorn för den totala energin. Ett väntevärde är medelresultatet av ett stort antal mätningar. Det möjliga utfallet av en enda mätning ges istället av egenvärdena till den operator som svarar mot observabeln man mäter. Detta material finns i texten operatorer i kvantmekanik som finns som pdf på hemsidan (denna text går ännu lite längre än vi gjorde på föreläsningarna och ingår inte i det tentarelevanta kursmaterialet). Vi såg att en plan våg har en välbestämd rörelsemängd ħk men en fullständigt obestämd position. Om man adderar många plana vågor får man ett vågpaket som är delvis lokaliserat i rummet, men i utbyte har en viss osäkerhet i rörelsemängden. Heisenbergs osäkerhetsrelation säger att det finns en gräns för hur noga man kan bestämma både position och rörelsemängd hos en partikel. Denna del motsvarar kapitel 3.5 i kompendiet. Rörelsemängd och kinetisk energi är operatorer: ˆp = Total energi: Ĥ = ~2 2m Medelresultat av många mätningar (väntevärde): Om @ 2 + V (x) hâi = Z 1 1 Â i(x, t) =a i i(x, t) Egenvärde Ê kin = 1 2 mˆv2 = ˆp2 2m = ~2 2m - Hamiltonoperator (x, t)â (x, t) =C 1 1(x, t)+c 2 2(x, t)+... ger en mätning av A resultatet Egenfunktion (x, t)dx a i med sannolikheten C i 2 Efter mätningen kollapsar vågfunktionen: (x, t) = i(x, 2 Exempel: Ĥ i (x) =E i i (x) Lösningarna till den tidsoberoende Schrödingerekvationen är egenvärden och egenfunktioner till Hamiltonoperatorn. De möjliga energierna för partikeln (energinivåer) ges alltså av egenvärdena till operatorn för total energi. Plan våg: ˆp k(x, t) 1 p L e i(kx!t) = ~k k(x, t) En plan våg beskriver alltså en partikel med bestämd rörelsemängd men fullständigt obestämt läge ~k

5 Föreläsning 3 Föreläsning 3 var lite av en djupdykning i några av de mer abstrakta elementen av kvantmekaniken. Avsikten är främst att i alla fall en gång gå igenom hur det hänger ihop, eftersom begrepp som operator (tex Hamiltonoperator) ofta används utan närmare förklaring. Dessutom är dessa begrepp centrala i mer avancerade kurser i kvantmekanik. Men varken den muntliga eller skriftliga tentamen kommer att innehålla detaljerade frågor på detta. Vi pratade om hur man beräknar väntevärden i kvantmekanik och såg att tex rörelsemängd och kinetisk energi motsvaras av operatorer. Hamiltonoperatorn är operatorn för den totala energin. Ett väntevärde är medelresultatet av ett stort antal mätningar. Det möjliga utfallet av en enda mätning ges istället av egenvärdena till den operator som svarar mot observabeln man mäter. Detta material finns i texten operatorer i kvantmekanik som finns som pdf på hemsidan (denna text går ännu lite längre än vi gjorde på föreläsningarna och ingår inte i det tentarelevanta kursmaterialet). Vi såg att en plan våg har en välbestämd rörelsemängd ħk men en fullständigt obestämd position. Om man adderar många plana vågor får man ett vågpaket som är delvis lokaliserat i rummet, men i utbyte har en viss osäkerhet i rörelsemängden. Heisenbergs osäkerhetsrelation säger att det finns en gräns för hur noga man kan bestämma både position och rörelsemängd hos en partikel. Denna del motsvarar kapitel 3.5 i kompendiet. Superposition av många plana vågor: (x, t) = Resulterande vågpaket Re (x, 0) Z 1 1 a(k)e i(kx!t) dk Det vågpaket vi får är delvis lokaliserat i rummet, partikeln befinner sig inom ett intervall med stor sannolikhet. Å andra sidan har vi introducerat en osäkerhet i rörelsemängden som kan variera inom ett intervall x ~ k Vi fann: p x h Ju noggrannare vi känner partikelns position, desto större är osäkerheten i dess hastighet! I allmänhet gäller Heisenbergs osäkerhetsrelation: p x ~ 2

6 Föreläsning 4 Föreläsning 4 behandlade frielektronmodellen och vi hann med kapitel i kompendiet. I frielektronmodellen antar vi att varje atom ger ifrån sig en eller ett par valenselektroner som kan röra sig fritt i metallen. Kvar blir positivt laddade joner som ger upphov till en attraktiv potential för de negativt laddade elektronerna. Vi bryr oss inte om variationer i potentialen (kommer i kapitel 5), utan ser helt enkelt metallen som en oändligt djup och jämn potentialgrop för valenselektronerna. Formen på lösningarna beror på randvillkoren. Om vi antar att vågfunktionen är noll utanför potentialgropen är vågfunktionerna sinusfunktioner som beskriver stående vågor utan medelhastighet. Om vi istället vill beskriva fortskridande vågor, som tex kan beskriva elektroner som rör sig i ett elektriskt fält, måste vi använda andra randvillkor. Vi valde periodiska randvillkor, som ger plana vågor som lösningar, men bara vissa k-värden är tillåtna och vi får ett liknande kvantiseringsvillkor som med de fixa randvillkoren. Även i en mycket liten metallbit finns väldigt många elektroner och det är ganska opraktiskt att basera beräkningar på tillståndet (k-vektorn) hos alla dessa elektroner. Ofta beror resultatet endast på hur många elektroner som finns inom ett visst energiintervall. Detta beskrivs av tillståndstätheten som vi härledde ett utttryck för. Periodiska randvillkor: (x + L) = (x) (x) = p 1 e ikx,k= 2 n L L E = h2 n 2 2mL 2 Beskriver plana vågor, fortskridande med ändlig medelhastighet Fixa randvillkor:,n=0, ±1, ±2,... Metall: oändligt djup potentialgrop för elektroner (x) =0,x<0 eller x>l (x) = r 2 n sin(kx), k=,n=1, 2,..., 0 apple x apple L L L E = h2 n 2 8mL 2 Beskriver stående vågor, ingen medelhastighet

7 Föreläsning 4 Föreläsning 4 behandlade frielektronmodellen och vi hann med kapitel i kompendiet. I frielektronmodellen antar vi att varje atom ger ifrån sig en eller ett par valenselektroner som kan röra sig fritt i metallen. Kvar blir positivt laddade joner som ger upphov till en attraktiv potential för de negativt laddade elektronerna. Vi bryr oss inte om variationer i potentialen (kommer i kapitel 5), utan ser helt enkelt metallen som en oändligt djup och jämn potentialgrop för valenselektronerna. Formen på lösningarna beror på randvillkoren. Om vi antar att vågfunktionen är noll utanför potentialgropen är vågfunktionerna sinusfunktioner som beskriver stående vågor utan medelhastighet. Om vi istället vill beskriva fortskridande vågor, som tex kan beskriva elektroner som rör sig i ett elektriskt fält, måste vi använda andra randvillkor. Vi valde periodiska randvillkor, som ger plana vågor som lösningar, men bara vissa k-värden är tillåtna och vi får ett liknande kvantiseringsvillkor som med de fixa randvillkoren. Även i en mycket liten metallbit finns väldigt många elektroner och det är ganska opraktiskt att basera beräkningar på tillståndet (k-vektorn) hos alla dessa elektroner. Ofta beror resultatet endast på hur många elektroner som finns inom ett visst energiintervall. Detta beskrivs av tillståndstätheten som vi härledde ett utttryck för. S(E) = 4 3 k3 g(k) 2= V 3 2 2mE ~ 2 3/2 Tillståndstäthet: Z(E) = ds(e) de S(E) = Antal tillstånd med energi mindre än E Med k-vektor innanför sfären som begränsas av r 2mE ~ 2 = k = q k 2 x + k 2 y + k 2 z Fermisfär Z(E) = V 2 2 3/2 2m p E ~ 2 Samma beräkning med fixa randvillkor ger samma tillståndstäthet! (Kapitel 4.11) T = 0: alla tillstånd fyllda upp till Fermienergin E F

8 Föreläsning 5 I föreläsning 5 fortsatte vi att prata om frielektronmodellen och behandlade lite som var kvar av kapitel 4.5 och sedan kapitel Vid noll temperatur är alla tillstånd besatta upp till den så kallade Fermienergin, medan alla tillstånd över Fermienergin är tomma. Det är Pauli-principen som hindrar att alla elektroner befinner sig i tillståndet med lägst energi. Därmed får elektronerna en stor kinetisk energi, och därmed även en hög hastighet, även vid låga temperaturer. Vid ändliga temperaturer beskrivs sannolikheten att ett tillstånd är besatt av Fermifunktionen. En del tillstånd under Fermienergin är nu tomma och en del tillstånd över Fermienergin är fulla. Fermienergin vid ändlig temperatur (kallas ofta kemisk potential) bestäms av villkoret att det totala antalet valenselektroner är konstant. Vi diskuterade även när elektronerna beter sig klassiskt, med vilket vi menar att Pauli-principen inte är viktig för hur tillstånden är besatta. Detta sker när alla tillstånd endast har en liten sannolikhet för att vara besatta. Då spelar det mindre roll att Pauli-principen förbjuder dubbel besättning, vilket skulle vara väldigt osannolikt ändå. Vi fann att detta endast kan ske vid höga temperaturer, där den termiska energin är större än Fermienergins värde vid noll temperatur. Sannolikheten att ett tillstånd med energi E är besatt (det sitter en elektron i tillståndet) ges av Fermifunktionen F (E) = exp 1 E EF (T ) kt +1 T =0 T>0 Totala antalet elektroner ges av N = T =0 Z 1 F (E) = (E F (0) E) 0 Z(E)F (E)dE E F (0) = 2 3 Z(E F )E F = h2 2m 3 8 N V 2/3 Beror inte på provets storlek, endast på elektrontätheten n = N V E F (T>0) Bestäms av villkoret att N ej ändras med temperaturen

9 Föreläsning 5 I föreläsning 5 fortsatte vi att prata om frielektronmodellen och behandlade lite som var kvar av kapitel 4.5 och sedan kapitel Vid noll temperatur är alla tillstånd besatta upp till den så kallade Fermienergin, medan alla tillstånd över Fermienergin är tomma. Det är Pauli-principen som hindrar att alla elektroner befinner sig i tillståndet med lägst energi. Därmed får elektronerna en stor kinetisk energi, och därför även en hög hastighet, även vid låga temperaturer. Vid ändliga temperaturer beskrivs sannolikheten att ett tillstånd är besatt av Fermifunktionen. En del tillstånd under Fermienergin är nu tomma och en del tillstånd över Fermienergin är fulla. Fermienergin vid ändlig temperatur (kallas ofta kemisk potential) bestäms av villkoret att det totala antalet valenselektroner är konstant. Vi diskuterade även när elektronerna beter sig klassiskt, med vilket vi menar att Pauli-principen inte är viktig för hur tillstånden är besatta. Detta sker när alla tillstånd endast har en liten sannolikhet för att vara besatta. Då spelar det mindre roll att Pauli-principen förbjuder dubbel besättning, vilket skulle vara väldigt osannolikt ändå. Vi fann att detta endast kan ske vid höga temperaturer, där den termiska energin är större än Fermienergins värde vid noll temperatur. Klassisk gräns: F (E) 1 E F (T ) < 0 och Typisk metall: E F (T = 0) 5 ev n 2 h 3 (2 mkt )3/2 vilket leder till E F (T = 0) kt Klassisk fysik (Pauli-principen oviktig) återfås alltså vid höga temperaturer, där man kan jämföra antingen med elektrontätheten eller med Fermienergins läge vid noll temperatur. kt 5 ev T Elektroner i en metall beter sig aldrig klassiskt!

10 Föreläsning 6 I f ö re l ä s n i n g 6 av s l u t a d e v i d i s k u s s i o n e n o m frielektronmodellen. Vi gick igenom kapitel Vi pratade inte om kapitel 4.11 där det visas att tillståndstätheten blir likadan med fixa randvillkor som med periodiska (detta avsnitt ingår dock i kursen). Kapitel ingår däremot inte och man behöver inte läsa delen om Boltzmann-faktorn på s om man inte vill. V i b örjade m e d att b e r äkna v ärmekapaciteten kvantmekaniskt. Medelenergin hos en kvantmekanisk elektrongas är (mycket) större än en klassisk beräkning visar eftersom Pauli-principen tvingar elektronerna att besätta högre liggande tillstånd även vid låga temperaturer. Däremot är den termiska energin (mycket) mindre i det kvantmekaniska fallet. Endast elektroner nära Fermienergin kan exciteras termiskt eftersom andra elektroner inte har några tomma tillstånd i närheten att besätta. Därför blir det kvantmekaniska bidraget till värmekapaciteten mycket mindre än en klassisk beräkning visar. Vi diskuterade sedan konduktivitet kvantmekaniskt och härledde samma uttryck som vi fick i det klassiska fallet, med skillnaden att den medelfria vägen ska beräknas med Fermihastigheten istället för den termiska hastigheten och alltså blir mycket längre i en metall än man kan tro klassiskt. Sammanfattningsvis fungerar frielektronmodellen förvånansvärt bra, men duger inte till att förklara varför vissa ämnen är isolatorer eller halvledare, och hål (positiva laddningsbärare som Hallmätningar visar finns i vissa material) verkar inte rymmas inom denna modell. Medelenergi per elektron (kvantmekaniskt): E av = 1 N Z 1 0 EZ(E)F (E)dE = 3 5 E F T =0 Vi kan beräkna även resultatet för T>0 från integralen ovan, men gjorde istället en enkel uppskattning (se figur till höger): E av (T ) E av (T = 0) + 1 N ktz(e F ) kt C el V E av(t )=2Z(E F )k 2 T = 3 2kT Nk 2 E F Klassiskt resultat 1 Elektriskt fält k = e ~ E = m ~ v d Medelfri väg: l = v F Medelförskjutningen av k leder till samma drifthastighet som vi fick klassiskt och därmed samma uttryck för strömmen och konduktiviteten. Framförallt är det elektroner nära Fermienergin som kolliderar. Övriga elektroner måste tillföras mycket energi i kollisionen för att ha tillgängliga tillstånd att hamna i

11 Föreläsning 7 I föreläsning 7 började vi med att repetera frielektronmodellen och räkna övningsuppgift 18. Sedan började vi med nästan-frielektronmodellen och gick igenom kapitel 5.2 (5.1 är repetition). Vi betraktade en modell av ett fast material som en oändlig potentialgrop, men med en ojämn potential inne i gropen. Potentialen är periodisk med minima vid jonernas positioner. Vi började tänka på elektronerna som plana vågor som rör sej i denna periodiska potential och har en viss liten sannolikhet att reflekteras tex vid varje potentialmaximum. För vissa speciella k-värden interfererar varje reflekterad våg konstruktivt med (har samma fas som) de vågor som reflekterats vid andra potentialmaximum. Vid dessa speciella k- värden blandas planvågslösningar som propagerar åt motsatt håll och lösningarna blir istället sinus och cosinus. En plan våg har samma sannolikhetstäthet överallt. Sinus och cosinus däremot har varierande sannolikhetstäthet och (den potentiella energin) beror på om sannolikhetstätheten är s t ö r s t v i d e t t p o t e n t i a l m a x i num e l l e r v i d e t t potentialminimum. Detta ger upphov till bandgap, alltså energiintevall utan några tillåtna tillstånd. Vissa k-värden hör ihop eftersom de blandas genom konstruktiv interferens. För att ta hänsyn till detta införde vi begreppet första Brillouinzonen och plottade hela bandstrukturen inom detta intevall. Övergångar kan då ske vertikalt utan att tillföra eller avge rörelsemängd. I kapitel gås detta igenom lite mer rigoröst, men detta kan man hoppa över om man vill (ingår ej i det tentarelevanta kursmaterialet). e ikx Konstruktiv interferens: k = a n Plan våg i 1D periodisk potential För dessa k-värden blir vågfunktionen en superposition av plana vågor med motsatt utbredningshastighet: (x)! 1 p 2L e i a nx ± e i a nx (Bragg-reflektion) För dessa k-värden leder stark spridning till stående vågor istället för propagerande plana vågor cos ( a nx) sin ( a nx) cos 2 ( a nx) sin 2 ( a nx) har max i potentialmin. och därmed låg energi har max i potentialmax. och därmed hög energi

12 Föreläsning 7 I föreläsning 7 började vi med att repetera frielektronmodellen och räkna övningsuppgift 18. Sedan började vi med nästan-frielektronmodellen och gick igenom kapitel 5.2 (5.1 är repetition). Vi betraktade en modell av ett fast material som en oändlig potentialgrop, men med en ojämn potential inne i gropen. Potentialen är periodisk med minima vid jonernas positioner. Vi började tänka på elektronerna som plana vågor som rör sej i denna periodiska potential och har en viss liten sannolikhet att reflekteras tex vid varje potentialmaximum. För vissa speciella k-värden interfererar varje reflekterad våg konstruktivt med (har samma fas som) de vågor som reflekterats vid andra potentialmaximum. Vid dessa speciella k- värden blandas planvågslösningar som propagerar åt motsatt håll och lösningarna blir istället sinus och cosinus. En plan våg har samma sannolikhetstäthet överallt. Sinus och cosinus däremot har varierande sannolikhetstäthet och (den potentiella energin) beror på om sannolikhetstätheten är s t ö r s t v i d e t t p o t e n t i a l m a x i num e l l e r v i d e t t potentialminimum. Detta ger upphov till bandgap, alltså energiintevall utan några tillåtna tillstånd. Vissa k-värden hör ihop eftersom de blandas genom konstruktiv interferens. För att ta hänsyn till detta införde vi begreppet första Brillouinzonen och plottade hela bandstrukturen inom detta intevall. Övergångar kan då ske vertikalt utan att tillföra eller avge rörelsemängd. I kapitel gås detta igenom lite mer rigoröst, men detta kan man hoppa över om man vill (ingår ej i det tentarelevanta kursmaterialet). e ikx Plan våg i 1D periodisk potential Skillnaden i potentiell energi mellan sin- och coslösningarna ger upphov till bandgap I allmänhet fås konstruktiv interferens om k ändras med 2 n/a Man ritar därför ofta hela bandstrukturen inom första Brillouinzonen: k 2 h a, a i

13 Föreläsning 8 I föreläsning 8 pratade vi först om hur elektroner i nästanfrielektronmodellen rör sig under inverkan av en extern kraft (kapitel 5.4). Elektronernas k-värden påverkas enbart av externa krafter, till exempel ett pålagt elektriskt fält, inte av elektrostatiska krafter från jonernas laddning. Detta beror på att jonernas effekt redan byggts in i elektronernas rörelse via den modifierade bandstrukturen i nästan-frielektronmodellen. Sedan diskuterade vi skillnaden mellan metaller och isolatorer. Metaller har delvis fulla band och elektronerna kan omfördelas över tillstånden (k-värdena) som svar på tex ett elektriskt fält. I en isolator är alla band antingen helt fulla eller helt tomma och elektronerna kan inte ändra sina k-värden eftersom det inte finns några tillgängliga tillstånd för dem att besätta. Slutligen tittade vi på ett alternativ till frielektronmodellen. Vi började med en 1D kedja av atomer och antog att den totala vågfunktionen kan skrivas som en superposition (summa) av vågfunktioner som beskriver elektroner lokaliserade på de enskilda atomerna. Med detta antagande löste vi Schrödingerekvationen med fixa randvillkor och fick en vågfunktion som liknar den i nästan-frieleketronmodellen med fixa randvillkor. Vågpaket utbreder sig med grupphastigheten: v g = d! dk = 1 ~ I nästan-fem är v g 6= ~k m ~k kallas då kristallrörelsemängd eller kristallimpuls (kan inte längre associeras med vanlig rörelsemängd) Rörelseekvation i nästan-fem: ~ dk dt = F ext de dk extern kraft, inkluderar ej kraften från jonernas elektriska fält Med spridning får vi en konstant förskjutning av k-värdena k = 1 ~ F ext Fungerar bara om det finns tillgängliga tillstånd så att k-värdena kan ändras, alltså bara om något band endast är delvis fyllt. I en metall är det översta bandet delvis fyllt och Fermienergin ligger inne i ett band. I en isolator är alla band antingen helt fulla eller helt tomma och Fermienergin ligger i ett bandgap. Vilket man får beror på hur många tillstånd det finns i varje band (som beror på hur atomerna sitter arrangerade i kristallstrukturen) och på hur många valenselektroner som finns att fylla på banden med (som beror på vilket eller vilka slags atomer man har).

14 Föreläsning 8 I föreläsning 8 pratade vi först om hur elektroner i nästanfrielektronmodellen rör sig under inverkan av en extern kraft (kapitel 5.4). Elektronernas k-värden påverkas enbart av externa krafter, till exempel ett pålagt elektriskt fält, inte av elektrostatiska krafter från jonernas laddning. Detta beror på att jonernas effekt redan byggts in i elektronernas rörelse via den modifierade bandstrukturen i nästan-frielektronmodellen. Sedan diskuterade vi skillnaden mellan metaller och isolatorer. Metaller har delvis fulla band och elektronerna kan omfördelas över tillstånden (k-värdena) som svar på tex ett elektriskt fält. I en isolator är alla band antingen helt fulla eller helt tomma och elektronerna kan inte ändra sina k-värden eftersom det inte finns några tillgängliga tillstånd för dem att besätta. Slutligen tittade vi på ett alternativ till frielektronmodellen. Vi började med en 1D kedja av atomer och antog att den totala vågfunktionen kan skrivas som en superposition (summa) av vågfunktioner som beskriver elektroner lokaliserade på de enskilda atomerna. Med detta antagande löste vi Schrödingerekvationen med fixa randvillkor och fick en vågfunktion som liknar den i nästan-frieleketronmodellen med fixa randvillkor. Detta beskrivs i kapitel Schrödingerekvationen ger: XN at i=1 K i Z 1 1 Total vågfunktion j(x)ĥ i(x)dx = E E 1, om i = j A, om i = j ± 1 0, annars Alternativ till nästan-fem: tight binding model XN at (x) = i=1 K i Z 1 1 XN at i=1 K i j(x) i (x)dx ij atomär orbital Fixa randvillkor K 0 = K Nat +1 =0 ger K j sin(kx j ) och energin E = E 1 2Acos(ka) k = (N at + 1)a n Tillåtna k-värden: L n i (x) E 1 : A : = N at energi hos elektron i atomär orbital hopping parameter, relaterad till kinetisk energi

15 Föreläsning 9 I föreläsning 9 fortsatte vi först med tight-binding-modellen, men nu med periodiska randvillkor (kapitel ). Precis som för en potentialgrop med periodiska randvillkor blir lösningarna plana vågor. Energin som funktion av k blir exakt samma som för fixa randvillkor och uppvisar klara likheter med resultatet från nästan-frielektronmodellen. Vi såg däremot att vi bara får ett enda band. Vi räknade ut antalet tillstånd i detta band och fann att det är lika med det totala antalet tillstånd i de atomära orbitalerna. Antalet tillstånd ändras alltså inte genom att koppla samman atomerna. Om vi vill beskriva mer än ett band behöver vi ta med mer än en orbital per atom. Som ett konkret exempel diskuterade vi specialfallet med endast två atomer i kedjan, då lösningarna visade sig vara precis de bindande och anti-bindande orbitaler som vi är bekanta med från kemin. Vi pratade inte om (de mycket korta) kapitlen , som dock ingår i kursen. Sedan började vi lite smått att prata om halvledare och gick igenom 6.1-6,3. I riktiga tredimensionella halvledare är bandstrukturen ganska komplicerad, men nästan all fysik beror endast på egenskaperna i närheten av toppen av valensbandet (det högsta fulla bandet) och botten av ledningsbandet (det lägsta tomma bandet). Vi gjorde en Taylor-utveckling runt botten av ledningsbandet. Genom att jämföra med frielektronresultatet definierade vi en effektiv massa och såg att elektronerna i kristallstrukturens periodiska potential beter sig som fria elektroner, men med en annan massa. Detta är ett ganska fantastiskt resultat som tillåter oss att (ofta) beskriva elektroner i fasta material lika enkelt som fria elektroner. Total vågfunktion Periodiska randvillkor: k = 2 N at a n 2 L (x) = XN at i=1 K j = K j+nat Två atomer: bindande/antibindande orbitaler K i atomär orbital i (x) n, n =0, ±1, ±2,... = N at Ansats: K j e ikx j Många atomer: band, där högre liggande tillstånd har mer och mer anti-bindande karaktär E = E 1 2Acos(ka)

16 Föreläsning 9 I föreläsning 9 fortsatte vi först med tight-binding-modellen, men nu med periodiska randvillkor (kapitel ). Precis som för en potentialgrop med periodiska randvillkor blir lösningarna plana vågor. Energin som funktion av k blir exakt samma som för fixa randvillkor och uppvisar klara likheter med resultatet från nästan-frielektronmodellen. Vi såg däremot att vi bara får ett enda band. Vi räknade ut antalet tillstånd i detta band och fann att det är lika med det totala antalet tillstånd i de atomära orbitalerna. Antalet tillstånd ändras alltså inte genom att koppla samman atomerna. Om vi vill beskriva mer än ett enda band behöver vi ta med en en orbital per atom. Som ett konkret exempel diskuterade vi specialfallet med endast två atomer i kedjan, då lösningarna visade sig vara precis de bindande och anti-bindande orbitaler som vi är bekanta med från kemin. Vi pratade inte om (de mycket korta) kapitlen , som dock ingår i kursen. Sedan började vi lite smått att prata om halvledare och gick igenom 6.1-6,3. I riktiga tredimensionella halvledare är bandstrukturen ganska komplicerad, men nästan all fysik beror endast på egenskaperna i närheten av toppen av valensbandet (det högsta fulla bandet) och botten av ledningsbandet (det lägsta tomma bandet). Vi gjorde en Taylor-utveckling runt botten av ledningsbandet. Genom att jämföra med frielektronresultatet definierade vi en effektiv massa och såg att elektronerna i kristallstrukturens periodiska potential beter sig som fria elektroner, men med en annan massa. Detta är ett ganska fantastiskt resultat som tillåter oss att (ofta) beskriva elektroner i fasta material lika enkelt som fria elektroner. Grupphastigheten blir: v g = ~(k k 0) m e E F tomma tillstånd, ledningsband bandgap E g 1.1 ev fulla tillstånd, valensband Betrakta ledningsbandet nära dess minimum och Taylorutvecka: E(k) E C + 2 E 2 (k k 0 ) 2 k=k 0 " Definiera den effektiva elektronmassan: m e = ~ 2 E(k) E C + ~2 (k k 0 ) 2 2m e # 2 2 k=k 0 som i FEM! Som uppfyller rörelseekvationen: m = F ext Vi kan även skriva: E(k) E C m ev 2 g

17 Föreläsning 10 Efter en repetition av nästan-frielektronmodellen började vi med att diskutera hål (kapitel 6.2). När en elektron tas bort från valensbandet (tex genom att exciteras till ledningsbandet) blir det en lucka i de annars fyllda tillstånden i valensbandet. På grund av denna lucka kan elektronerna i det nästan fyllda valensbandet ändra sina k-värden när ett elektriskt fält appliceras och materialet kan alltså leda ström. Vi argumenterade för att den saknade elektronen (luckan) kan beskrivas som ett positivt laddat hål med en effektiv massa som är minus den för den saknade elektronen (i valensbandet har elektronerna negativ effektiv massa och hålen alltså positiv effektiv massa). Sedan pratade vi om optiska övergångar (kapitel 6.3), alltså när en elektron absorberar en foton och exciteras från valensbandet till ledningsbandet. I en sådan process genereras alltså två laddningsbärare: ett hål i valensbandet och en elektron i ledningsbandet. En sådan process måste bevara den totala energin och den totala (kristall-)rörelsemängden. Vi såg att en foton med en energi som matchar bandgapet har mycket liten rörelsemängd. I en halvledare med indirekt bandgap kan därför inte optiska övergångar ske utan att blanda in ytterligare en process som kan tillföra den saknade rörelsemängden. Denna ytterligare process är vanligen absorption av en fonon, dvs en kvantiserad svängningsvåg hos atomerna i kristallen. Vi började sedan lite smått med kapitel 6.4 om laddningsbärarkoncentrationer. Elektroner och hål får olika tillståndstäthet pga den olika effektiva massan. Vi kom även fram till att utan dopning är elektronkoncentrationen precis lika stor som hålkoncentrationen, vilket medför att Ferminivån ligger ungefär mitt i bandgapet. Lucka i VB = fullt valensband + positivt laddad partikel: hål Effektiv hålmassa: m h = ~ 2 " # 2 2 > 0 k=k 0 Nära max beskrivs VB av: E(k) E V ~ 2 (k k 0 ) 2 2m h

18 Föreläsning 10 Efter en repetition av nästan-frielektronmodellen började vi med att diskutera hål (kapitel 6.2). När en elektron tas bort från valensbandet (tex genom att exciteras till ledningsbandet) blir det en lucka i de annars fyllda tillstånden i valensbandet. På grund av denna lucka kan elektronerna i det nästan fyllda valensbandet ändra sina k-värden när ett elektriskt fält appliceras och materialet kan alltså leda ström. Vi argumenterade för att den saknade elektronen (luckan) kan beskrivas som ett positivt laddat hål med en effektiv massa som är minus den för den saknade elektronen (i valensbandet har elektronerna negativ effektiv massa och hålen alltså positiv effektiv massa). Sedan pratade vi om optiska övergångar (kapitel 6.3), alltså när en elektron absorberar en foton och exciteras från valensbandet till ledningsbandet. I en sådan process genereras alltså två laddningsbärare: ett hål i valensbandet och en elektron i ledningsbandet. En sådan process måste bevara den totala energin och den totala (kristall-)rörelsemängden. Vi såg att en foton med en energi som matchar bandgapet har mycket liten rörelsemängd. I en halvledare med indirekt bandgap kan därför inte optiska övergångar ske utan att blanda in ytterligare en process som kan tillföra den saknade rörelsemängden. Denna ytterligare process är vanligen absorption av en fonon, dvs en kvantiserad svängningsvåg hos atomerna i kristallen. Vi började sedan lite smått med kapitel 6.4 om laddningsbärarkoncentrationer. Elektroner och hål får olika tillståndstäthet pga den olika effektiva massan. Vi kom även fram till att utan dopning är elektronkoncentrationen precis lika stor som hålkoncentrationen, vilket medför att Ferminivån ligger ungefär mitt i bandgapet. Optisk övergång: elektron i VB absorberar en foton och exciteras till CB Bevaring av energi: E 0 = E + ~! f Så endast absorption av fotoner med energi större än bandgapet är möjlig Bevaring av rörelsemängd: k 0 e = k e + k f k e (fotoner har mycket liten k-vektor) Bevaring av energi: E 0 = E + ~! f + ~! fonon E + ~! f De tillgängliga fononerna har energi ~kt vilket är mycket mindre än bandgapet vid rumstemp. Bevaring av rörelsemängd: k 0 e = k e + k f + k fonon k e + k fonon Tillståndstätheten är olika i VB och CB om den effektiva massan är olika för elektroner och hål

19 Föreläsning 11 Vi spenderade hela föreläsningen med att prata om laddningsbärarkoncentrationer och gick igenom kapitel Vi beräknade elektronkoncentrationen (n) och hålkoncentrationen (p) med hjälp av Fermifunktionen och tillståndstätheten. Det visade sig att produkten np är oberoende av Fermienergin och graden av dopning. Halvledare kan dopas antingen med donatoratomer, som gärna gör sig av med en elektron som då hamnar i ledningsbandet, eller med acceptoratomer, som gärna tar upp en elektron från valensbandet och därmed lämnar kvar ett hål. Donatorer ger upphov till tillstånd strax under ledningsbandet och acceptorer till tillstånd strax ovanför valensbandet. Vi fokuserade på dopning med donatorer och b e r ä k n a d e h u r F e r m i e n e r g i n o c h laddningsbärarkoncentrationerna ändras med ökande temperatur. Vid låga temperaturer ligger Fermienergin mellan donatortillstånden och ledningsbandet. Endast ett fåtal donatortillstånd är tomma, men bestämmer ändå helt n eftersom excitationer över bandgapet är helt försumbara. När temperaturen ökar sjunker Fermienergin och passerar så småningom donatortillstånden som då till största delen blir tomma. Om bandgapet inte är mycket litet är dock fortfarande antalet excitationer över bandgapet mycket litet. I detta mättnadsområde är laddningsbärarkoncentrationen i stort sett temperaturoberoende (att ett sådant område existerar är viktigt för att kunna tillverka elektroniska komponenter som inte är alltför temperaturkänsliga). Vid mycket höga temperaturer dominerar excitationerna över bandgapet över de elektroner som kommer från donatoratomerna och halvledaren beter sig som den hade gjort utan dopning. Fermienergin ligger nu ungefär mitt i bandgapet. Oavsett dopningsgrad kan vi beräkna n och p enligt: Z 1 apple EC E F (T ) n = Z C (E)F (E)dE... N C exp E C kt Z EV apple EF (T ) E V p = Z C (E)(1 F (E))dE... N V exp kt 1 Effektiv tillståndstäthet Fermienergin beror på dopningsgraden, men faller bort i produkten np, vilket ger oss massverkans lag: np = n 2 i = N C N V exp Eg kt Utan dopning: n = p = n i E F = E Fi = E V + E C 2 kt 2 ln N C N V intrinsisk laddningsbärarkoncentration intrinsisk Fermienergi

20 Föreläsning 11 Vi spenderade hela föreläsningen med att prata om laddningsbärarkoncentrationer och gick igenom kapitel Vi beräknade elektronkoncentrationen (n) och hålkoncentrationen (p) med hjälp av Fermifunktionen och tillståndstätheten. Det visade sig att produkten np är oberoende av Fermienergin och graden av dopning. Halvledare kan dopas antingen med donatoratomer, som gärna gör sig av med en elektron som då hamnar i ledningsbandet, eller med acceptoratomer, som gärna tar upp en elektron från valensbandet och därmed lämnar kvar ett hål. Donatorer ger upphov till tillstånd strax under ledningsbandet och acceptorer till tillstånd strax ovanför valensbandet. Vi fokuserade på dopning med donatorer och b e r ä k n a d e h u r F e r m i e n e r g i n o c h laddningsbärarkoncentrationerna ändras med ökande temperatur. Vid låga temperaturer ligger Fermienergin mellan donatortillstånden och ledningsbandet. Endast ett fåtal donatortillstånd är tomma, men bestämmer ändå helt n eftersom excitationer över bandgapet är helt försumbara. När temperaturen ökar sjunker Fermienergin och passerar så småningom donatortillstånden som då till största delen blir tomma. Om bandgapet inte är mycket litet är dock fortfarande antalet excitationer över bandgapet mycket litet. I detta mättnadsområde är laddningsbärarkoncentrationen i stort sett temperaturoberoende (att ett sådant område existerar är viktigt för att kunna tillverka elektroniska komponenter som inte är alltför temperaturkänsliga). Vid mycket höga temperaturer dominerar excitationerna över bandgapet över de elektroner som kommer från donatoratomerna och halvledaren beter sig som den hade gjort utan dopning. Fermienergin ligger nu ungefär mitt i bandgapet. N D = N A = N + D = N A = koncentration av donatorer koncentration av acceptorer koncentration av joniserade donatorer koncentration av joniserade acceptorer N + D = N D(1 F (E D )) N A = N A F (E A ) Genom att kombinera dessa uttryck med uttrycken för n och p på föregående slide kan vi beräkna n, p och Fermienergin i olika temperaturområden (antar ren donatordopning). p n, n N + D N D n p apple EC E D N D N C exp 2kT E F E C + E D 2 p n, n N + D N D E F E C N + D N D, p kt ln N C N D N D n p n i kt 2 ln N C N D E F E Fi = E C + E V 2 kt 2 ln N C N V

21 Föreläsning 12 Vi avslutade kapitel 6 om halvledare och gick igenom 6.10 som handlar om spridning (6.9 och ingår i kursen men innehåller inte så mycket ny information). Det finns två huvudsakliga bidrag till spridning av laddningsbärare: atomära vibrationer och elektriskt laddade orenheter (tex joniserade dopatomer). Vi gjorde mycket grova uppskattningar av temperaturberoendet hos dessa bidrag och fann att de är mycket olika i den kvantmekaniska gränsen (relevant för metaller) och i den klassiska (oftast relevant för halvledare). Sedan började vi med kapitel 7 om pn-övergången och hann med 7.1 och delar av 7.2. En pn-övergång är helt enkelt en halvledare där en del är håldopad och del del elektrondopad. Vi tittade lite på vad som händer precis vid gränsen mellan n- och p-områdena. Här diffunderar elektroner över till p och hål till n för att sedan rekombinera. Resultatet blir ett utarmningsområde utan fria laddningsbärare, men med en nettoladdning eftersom de joniserade dopatomerna finns kvar. Denna nettoladdning ger upphov till ett elektriskt fält i utarmningsområdet och därmed till en potentialskillnad mellan p- och n-områdena. Vi började beräkna dessa storheter som en funktion av koncentrationen av dopatomer, men hann inte riktigt ända fram. Två dominerande bidrag till spridning av laddningsbärare: atomära vibrationer och elektriskt laddade orenheter (tex joniserade dopatomer). Atomer kan vibrera, beter sig som harmoniska oscillatorer: E = p2 2M M!2 r 2 = 3 2 kt kt likafördelningslagen Vid temperaturen T är amplituden hos svängningen då: Area som elektronen kan spridas mot: S ( r) 2 T r p T Medeltid mellan kollisioner: 1 Sv 1/T, v = v F 1/T 3/2, v = v th kvant-regim klassisk regim Laddningsbärare sprids av en laddad orenhet om den passerar så nära att dess potentiella energi blir ungefär lika stor som den kinetiska E pot = E kin e 2 S r 2 c 1/v r r c = 1 2 mv2 r c 1/v 2 1 Sv v3 v 3 F (T-ober. ) kvant-regim v 3 th T 3/2 klassisk regim

22 Föreläsning 12 Vi avslutade kapitel 6 om halvledare och gick igenom 6.10 som handlar om spridning (6.9 och ingår i kursen men innehåller inte så mycket ny information). Det finns två huvudsakliga bidrag till spridning av laddningsbärare: atomära vibrationer och elektriskt laddade orenheter (tex joniserade dopatomer). Vi gjorde mycket grova uppskattningar av temperaturberoendet hos dessa bidrag och fann att de är mycket olika i den kvantmekaniska gränsen (relevant för metaller) och i den klassiska (oftast relevant för halvledare). Sedan började vi med kapitel 7 om pn-övergången och hann med 7.1 och delar av 7.2. En pn-övergång är helt enkelt en halvledare där en del är håldopad och del del elektrondopad. Vi tittade lite på vad som händer precis vid gränsen mellan n- och p-områdena. Här diffunderar elektroner över till p och hål till n för att sedan rekombinera. Resultatet blir ett utarmningsområde utan fria laddningsbärare, men med en nettoladdning eftersom de joniserade dopatomerna finns kvar. Denna nettoladdning ger upphov till ett elektriskt fält i utarmningsområdet och därmed till en potentialskillnad mellan p- och n-områdena. Vi började beräkna dessa storheter som en funktion av koncentrationen av dopatomer, men hann inte riktigt ända fram. pn-övergång: prov med ett område p-dopat och ett område n-dopat Nära gränsen diffunderar majoritetsladdningbärare över till den andra sidan och rekombinerar Ett utarmningsområde bildas, med få fria laddningsbärare, men elektriskt laddade joniserade dopatomer Ett elektriskt fält uppstår, som i jämvikt är precis stort nog att stoppa elektron- och hålströmmarna Elektriska fält: Potential: de dx = s, = d 2 dx 2 = s laddningstäthet På p-sidan får vi: Och på n-sidan: = en A,E(x) = (x) = ( x p ) = en D,E(x) = (x) = (x n ) Z x Z x 0 Z x Z x x p en A s dx 0 = en A s (x + x p ) x p E(x 0 )dx 0 = ( en D s dx 0 = en D s (x x n ) x n E(x 0 )dx 0 = (x n ) x p )+ en A 2 s (x + x p ) 2 en D 2 s (x x n ) 2

23 Föreläsning 13 Vi fortsatte att diskutera pn-övergången, avslutade kapitel 7.2 om pn-övergången i jämvikt och började med 7.4 som behandlar pn-övergången med en pålagd spänning (det mycket korta kapitel 7.3 pratade vi inte om, men det ingår i kursen). Vi avslutade diskussionen om det elektriska fältet och potentialen i jämvikt. Ett samband mellan utarmningsområdets utbredning på p- och n-sidan fås om man kräver att det elektriska fältet ska vara kontinuerligt vid övergången. Den totala potentialskillnaden mellan p och n-områdena ges av integralen av det elektriska fältet och kallas diffusionsspänningen ( den u p p står j u e f t e rsom majoritetsladdningsbärare diffunderar över till andra sidan övergången). En pålagd spänning som är positiv på p-sidan kallas framspänning. En sådan spänning minskar potentialskillnaden jämfört med den i jämvikt (diffusionsspänningen). Detta resulterar i att majoritetsladdningsbärare kan diffundera till andra sidan övergången, vilket borde ge upphov till en stor ström som ökar snabbt med ökande spänning. En pålagd spänning som är negativ på p-sidan kallas backspänning. I detta fall ökar potentialskillnaden och diffusionsströmmen stryps. Det som blir kvar är den lilla ström som kommer från minoritetsladdningsbärare nära utarmningsområdet som sveps över till andra sidan övergången av det elektriska fältet. Denna ström borde endast bero svagt på den pålagda spänningen. Vi räknade även ett exempel som visade att det är en god approximation att anta att spänningen endast faller över utarmningsområdet, samt att minoritetsladdningsbärarna är försumbara när man betraktar strömmen djupt inne i p- eller n-områdena. Elektriskt fält och potential för pn-övergång i jämvikt Elektron i denna potential får sin potentiella energi ändrad enligt E pot (x) = e (x) vilket resulterar i att banden böjs: E C,V (x) =E C,V + E pot (x) Jämvikt: ett fåtal elektroner diffunderar från n-sidan till p-sidan och ett fåtal elektroner på p-sidan kommer in i utarmningsområdet och sveps över till n-sidan av det elektriska fältet, men dessa strömmar tar precis ut varandra. Samma gäller för hålen.

24 Föreläsning 13 Vi fortsatte att diskutera pn-övergången, avslutade kapitel 7.2 om pn-övergången i jämvikt och började med 7.4 som behandlar pn-övergången med en pålagd spänning (det mycket korta kapitel 7.3 pratade vi inte om, men det ingår i kursen). Vi avslutade diskussionen om det elektriska fältet och potentialen i jämvikt. Ett samband mellan utarmningsområdets utbredning på p- och n-sidan fås om man kräver att det elektriska fältet ska vara kontinuerligt vid övergången. Den totala potentialskillnaden mellan p och n-områdena ges av integralen av det elektriska fältet och kallas diffusionsspänningen ( den u p p står j u e f t e rsom majoritetsladdningsbärare diffunderar över till andra sidan övergången). En pålagd spänning som är positiv på p-sidan kallas framspänning. En sådan spänning minskar potentialskillnaden jämfört med den i jämvikt (diffusionsspänningen). Detta resulterar i att majoritetsladdningsbärare kan diffundera till andra sidan övergången, vilket borde ge upphov till en stor ström som ökar snabbt med ökande spänning. En pålagd spänning som är negativ på p-sidan kallas backspänning. I detta fall ökar potentialskillnaden och diffusionsströmmen stryps. Det som blir kvar är den lilla ström som kommer från minoritetsladdningsbärare nära utarmningsområdet som sveps över till andra sidan övergången av det elektriska fältet. Denna ström borde endast bero svagt på den pålagda spänningen. Vi räknade även ett exempel som visade att det är en god approximation att anta att spänningen endast faller över utarmningsområdet, samt att minoritetsladdningsbärarna är försumbara när man betraktar strömmen djupt inne i p- eller n-områdena. Med en pålagd spänning U antar vi att spänningsfallet endast sker över utarmningsområdet och därmed ökar eller minskar potentialskillnaden från diffusionsspänningen Utarmningsområdets bredd: w(u) = U>0: barriären minskar, antalet elektroner som kan diffundera ökar U<0: barriären ökar, antalet elektroner som kan diffundera minskar Vid U>0 borde antalet minoritetsladdningsbärare nära övergången öka I jämvikt gäller: r 2 s e N D + N A N D N A ( 0 U) apple EC (x n ) E F (T ) n(x n )=n n0 = N C exp kt apple EC ( x p ) E F (T ) n( x p )=n p0 = N C exp kt = n n0 exp apple e 0 kt apple Med en spänning gissar vi att n( x p )=n n0 exp e 0 U kt = n p0 exp apple eu kt Detta verkar rimligt om det inte sker någon netto-rekombination eller netto-generation i utarmningsområdet

25 Föreläsning 14 Vi avslutade härledningen av den ideala diodekvationen (kapitel 7.4), dvs ström-spänning-förhållandet hos en pnövergång. Vi beräknade minoritetsladdningsbärarnas diffusionsström alldeles vid kanten till utarmningsområdet. Under antagandet att strömmen är konstant genom utarmningsområdet ges den totala strömmen av summan av elektronströmmen alldeles intill utarmningsområdet på hålsidan och hålströmmen alldeles intill utarmningsområdet på elektronsidan. Vid framspänning ökar denna ström e x p o n e n t i e l l t m e d s p ä n n i n g e n e f t e r s o m minoritetsladdningsbärarkoncentrationen ökar exponentiellt. Vid backspänning återstår endast en liten läckström eller backström. Vi beräknade även kapacitansen (alltså förmågan att lagra laddning) hos pn-övergången (kapitel 7.5) och såg att den ges av ett uttryck som liknar en vanlig plattkondensator. Vi tittade även lite kvalitativt på vad som händer när man även tar hänsyn till rekombination och generation i utarmningsområdet (kapitel 7.6). Vid framspänning leder strävan efter jämvikt till nettorekombination i utarmningsområdet. För att kompensera detta måste en extra rekombinationsström flyta in från kontakterna. Man kan modifiera den ideala diodekvationen för att ta hänsyn till både rekombinationsström och diffusionsström. Vid backspänning får man istället nettogeneration i utarmningsområdet. De genererade elektron-hål-paren sveps sedan med av det elektriska fältet. Eftersom storleken på utarmningsområdet ökar med ökande backspänning ökar även generationen och därmed blir backströmmen spänningsberoende. Antag ingen netto-generation eller -rekombination i utarmningsområdet: J(x = 0) = J e (x = 0) + J h (x = 0) = J e (x = x p )+J h (x = x n ) Hål på n-sidan: p n (x) =p n0 +(p n (x n ) p n0 )e (x x n)/l h J h (x n )= J e ( dp n (x) ed h = ed h p n0 e eu kt 1 dx x=x n L h x p )= ed e n p0 e eu kt 1 L e Ideala diodekvationen: J(x = 0) = ede n p0 L e + ed hp n0 L h e eu kt 1 = J 0 e eu kt 1

26 Föreläsning 14 Vi avslutade härledningen av den ideala diodekvationen (kapitel 7.4), dvs ström-spänning-förhållandet hos en pnövergång. Vi beräknade minoritetsladdningsbärarnas diffusionsström alldeles vid kanten till utarmningsområdet. Under antagandet att strömmen är konstant genom utarmningsområdet ges den totala strömmen av summan av elektronströmmen alldeles intill utarmningsområdet på hålsidan och hålströmmen alldeles intill utarmningsområdet på elektronsidan. Vid framspänning ökar denna ström e x p o n e n t i e l l t m e d s p ä n n i n g e n e f t e r s o m minoritetsladdningsbärarkoncentrationen ökar exponentiellt. Vid backspänning återstår endast en liten läckström eller backström. Vi beräknade även kapacitansen (alltså förmågan att lagra laddning) hos pn-övergången (kapitel 7.5) och såg att den ges av ett uttryck som liknar en vanlig plattkondensator. Vi tittade även lite kvalitativt på vad som händer när man även tar hänsyn till rekombination och generation i utarmningsområdet (kapitel 7.6). Vid framspänning leder strävan efter jämvikt till nettorekombination i utarmningsområdet. För att kompensera detta måste en extra rekombinationsström flyta in från kontakterna. Man kan modifiera den ideala diodekvationen för att ta hänsyn till både rekombinationsström och diffusionsström. Vid backspänning får man istället nettogeneration i utarmningsområdet. De genererade elektron-hål-paren sveps sedan med av det elektriska fältet. Eftersom storleken på utarmningsområdet ökar med ökande backspänning ökar även generationen och därmed blir backströmmen spänningsberoende. Med rekombination och generation i utarmningsområdet U>0: nettorekombination i utarmningsområdet extra inflöde från kontakterna (rekombinationsström) Generaliserade diodekvationen: I = I 0 e eu kt 1 : idealitetsfaktor U<0: nettogeneration i utarmningsområdet genererade laddningsbärare sveps med av det elektriska fältet (generationsström) I0 ökar med ökande negativ spänning eftersom w ökar

Föreläsning 1. Metall: joner + gas av klassiska elektroner. e m Et. m dv dt = ee v(t) =v(0) 1 2 mv2 th = 3 2 kt. Likafördelningslagen:

Föreläsning 1. Metall: joner + gas av klassiska elektroner. e m Et. m dv dt = ee v(t) =v(0) 1 2 mv2 th = 3 2 kt. Likafördelningslagen: Föreläsning 1 Vi började med en väldigt kort repetition av några grundbegrepp inom ellära. Sedan gick vi igenom kapitel 2.1 och började med kapitel 2.2. Vi betraktade en mycket enkel modell av en metall,

Läs mer

Välkomna till kursen i elektroniska material! Martin Leijnse

Välkomna till kursen i elektroniska material! Martin Leijnse Välkomna till kursen i elektroniska material! Martin Leijnse Information Innehåll: fasta tillståndets fysik med fokus på halvledarfysik. Dioder, solceller, transistorer... Lärare: Martin Leijnse (föreläsare,

Läs mer

Med ett materials elektriska egenskaper förstår man helt allmänt dess ledningsförmåga, konduktans, och resistans Ohms lag:

Med ett materials elektriska egenskaper förstår man helt allmänt dess ledningsförmåga, konduktans, och resistans Ohms lag: 530117 Materialfysik Ht 2010 8. Materials elektriska egenskaper 8.1 Bandstruktur 8.1.1. Allmänt Med ett materials elektriska egenskaper förstår man helt allmänt dess ledningsförmåga, konduktans, och resistans

Läs mer

Föreläsning 2 - Halvledare

Föreläsning 2 - Halvledare Föreläsning 2 - Halvledare Historisk definition Atom Molekyl - Kristall Metall-Halvledare-Isolator Elektroner Hål Intrinsisk halvledare effekt av temperatur Donald Judd, untitled 1 Komponentfysik - Kursöversikt

Läs mer

Kap 2. Elektroner som partikel

Kap 2. Elektroner som partikel Kap. Elektroner som partikel.1 ström, spridning och diffusion Antar elektronerna som en klassisk gas. I denna model har elektronerna ensdast kinetisk energi (termisk) kraften. Laddningsbärare kommer separeras

Läs mer

Föreläsning 2 - Halvledare

Föreläsning 2 - Halvledare Föreläsning 2 - Halvledare Historisk definition Atom Molekyl - Kristall Metall-Halvledare-Isolator lektroner Hål Intrinsisk halvledare effekt av temperatur 1 Komponentfysik - Kursöversikt Bipolära Transistorer

Läs mer

I princip gäller det att mäta ström-spänningssambandet, vilket tillsammans med kännedom om provets geometriska dimensioner ger sambandet.

I princip gäller det att mäta ström-spänningssambandet, vilket tillsammans med kännedom om provets geometriska dimensioner ger sambandet. Avsikten med laborationen är att studera de elektriska ledningsmekanismerna hos i första hand halvledarmaterial. Från mätningar av konduktivitetens temperaturberoende samt Hall-effekten kan en hel del

Läs mer

HALVLEDARE. Inledning

HALVLEDARE. Inledning HALVLEDARE Inledning Halvledare har varit den i särklass viktigaste materialkategorin för den högteknologiska utvecklingen under 1900-talet. Man kan också säga att inget annat exempel kan mer tydligt visa

Läs mer

1-1 Hur lyder den tidsberoende Schrödingerekvationen för en partikel som rör sig längs x-axeln? Definiera ingående storheter!

1-1 Hur lyder den tidsberoende Schrödingerekvationen för en partikel som rör sig längs x-axeln? Definiera ingående storheter! KVANTMEKANIKFRÅGOR, GRIFFITHS Tanken med dessa frågor är att de ska belysa de centrala delarna av kursen och tjäna som kunskapskontroll och repetition. Kapitelreferenserna är till Griffiths. 1 Kapitel

Läs mer

Om inget annat anges så gäller det kisel och rumstemperatur (300K)

Om inget annat anges så gäller det kisel och rumstemperatur (300K) Komponentfysik Övning 3 VT-0 Om inget annat anges så gäller det kisel och rumstemperatur (300K) Utredande uppgifter: I: En diod har två typer av kapacitanser, utarmningskapacitans och diffusionskapacitans.

Läs mer

Lösningar Tenta

Lösningar Tenta Lösningar Tenta 110525 1) a) Driftström: Elektriskt laddade partiklar (elektroner och hål) rör sig i ett elektriskt fält. Detta ger upphov till en ström som följer ohms lag. Diffusion: Elektroner / hål

Läs mer

Ett materials förmåga att leda elektrisk ström beror på två förutsättningar:

Ett materials förmåga att leda elektrisk ström beror på två förutsättningar: Bandmodellen Som vi såg i föreläsningen om atommodeller lägger sig elektronerna runt en atom i ett gasformigt ämne i väldefinierade energinivåer. Dessa kan vara svåra att beräkna, men är i allmänhet experimentellt

Läs mer

Tentamen i Komponentfysik ESS030, ETI240/0601 och FFF090

Tentamen i Komponentfysik ESS030, ETI240/0601 och FFF090 011-01-10 08 00-13 00 Tentamen i Komponentfysik ESS030, ETI40/0601 och FFF090 Hjälpmedel: TEFYMA, ordlista, beteckningslista, formelsamlingar och räknare. Max 5p, för godkänt krävs 10p. Om inget annat

Läs mer

Introduktion till halvledarteknik

Introduktion till halvledarteknik Introduktion till halvledarteknik Innehåll 4 Excitation av halvledare Optisk absorption och excitation Luminiscens Rekombination Diffusion av laddningsbärare Optisk absorption och excitation E k hv>e g

Läs mer

Frielektron fermigas i en kristall. L z. L y L x. h 2 2m FRIELEKTRONMODELLEN

Frielektron fermigas i en kristall. L z. L y L x. h 2 2m FRIELEKTRONMODELLEN FRIELEKTRONMODELLEN I frielektronmodellen (FEM) behandlas valenselektronerna som en gas. Elektronerna rör sig obehindrat i kristallen och växelverkar varken med jonerna eller med varandra. Figuren nedan

Läs mer

Atomer, ledare och halvledare. Kapitel 40-41

Atomer, ledare och halvledare. Kapitel 40-41 Atomer, ledare och halvledare Kapitel 40-41 Centrala begrepp Kvantiserade energinivåer i atomer Elektronspinn och finstruktur Elektronen i en atom både banimpulsmoment, som karakteriseras av kvanttalet

Läs mer

4-1 Hur lyder Schrödingerekvationen för en partikel som rör sig i det tredimensionella

4-1 Hur lyder Schrödingerekvationen för en partikel som rör sig i det tredimensionella KVANTMEKANIKFRÅGOR Griffiths, Kapitel 4-6 Tanken med dessa frågor är att de ska belysa de centrala delarna av kursen och tjäna som kunskapskontroll och repetition. Kapitelreferenserna är till Griffiths.

Läs mer

2: Räkna ut utsträckningen av rymdladdningsområdet i de två fallen i 1 för n-sidan, p-sidan och den totala utsträckningen.

2: Räkna ut utsträckningen av rymdladdningsområdet i de två fallen i 1 för n-sidan, p-sidan och den totala utsträckningen. Komponentfysik Uppgifter pn del 1 VT-15 Utredande uppgifter Ia) Rita skisser med nettoladdning, elektriskt fält och bandstruktur för en symmetrisk pn-övergång. b) Rita motsvarande skisser som i a), men

Läs mer

När man förklarar experiment för andra finns det en bra sekvens att följa:

När man förklarar experiment för andra finns det en bra sekvens att följa: Den inledande teoridelen ska läsas av alla studenter före laborationstillfället. Tänk igenom och lös förberedelseuppgifterna innan labben! De mest relevanta kapitlena i kompendiet är kapitel 6 och 7 om

Läs mer

a e d) Hur varierar det elektriska fältet när vi går ett varv runt kretsen (medurs) från a till e (med batteriet inkopplat enligt figuren)?

a e d) Hur varierar det elektriska fältet när vi går ett varv runt kretsen (medurs) från a till e (med batteriet inkopplat enligt figuren)? Förord Många av övningsuppgifterna illustrerar eller ger nya aspekter på de teorier vi diskuterar snarare än att träna på användning av formler, även om det finns några sådana uppgifter också. De flesta

Läs mer

Instuderingsfrågor, Griffiths kapitel 4 7

Instuderingsfrågor, Griffiths kapitel 4 7 Joakim Edsjö 15 oktober 2007 Fysikum, Stockholms Universitet Tel.: 08-55 37 87 26 E-post: edsjo@physto.se Instuderingsfrågor, Griffiths kapitel 4 7 Teoretisk Kvantmekanik II HT 2007 Tanken med dessa frågor

Läs mer

Kvantmekanik. Kvantmekaniken: De naturlagar som styr förlopp i den mikroskopiska världen (och i den makroskopiska!) Kvantmekanik.

Kvantmekanik. Kvantmekaniken: De naturlagar som styr förlopp i den mikroskopiska världen (och i den makroskopiska!) Kvantmekanik. Kap. 7. Kvantmekanik: introduktion 7A.1- I begynnelsen Kvantmekanik Kvantmekaniken: De naturlagar som styr förlopp i den mikroskopiska världen och i den makroskopiska! Kvantmekanik Klassisk fysik Specialfall!

Läs mer

När man förklarar experiment för andra finns det en bra sekvens att följa:

När man förklarar experiment för andra finns det en bra sekvens att följa: Den inledande teoridelen ska läsas av alla studenter före laborationstillfället. Tänk igenom och lös förberedelseuppgifterna innan labben det kommer ni att ha nytta av. De mest relevanta kapitlena i kompendiet

Läs mer

Införa begreppen ström, strömtäthet och resistans Ohms lag Tillämpningar på enkla kretsar Energi och effekt i kretsar

Införa begreppen ström, strömtäthet och resistans Ohms lag Tillämpningar på enkla kretsar Energi och effekt i kretsar Kapitel: 25 Ström, motstånd och emf (Nu lämnar vi elektrostatiken) Visa under vilka villkor det kan finnas E-fält i ledare Införa begreppet emf (electromotoric force) Beskriva laddningars rörelse i ledare

Läs mer

Lecture 6 Atomer och Material

Lecture 6 Atomer och Material Lecture 6 Atomer och Material Bandstruktur Ledare Isolatorer Halvledare Påminnelse Elektronerna ordnas i skal (n) och subskal (l) En elektron specificeras med 4 kvanttalen n,lm l,m s Två elektroner kan

Läs mer

Kvantmekanik. Kapitel Natalie Segercrantz

Kvantmekanik. Kapitel Natalie Segercrantz Kvantmekanik Kapitel 38-39 Natalie Segercrantz Centrala begrepp Schrödinger ekvationen i en dimension Fotoelektriska effekten De Broglie: partikel-våg dualismen W 0 beror av materialet i katoden minimifrekvens!

Läs mer

3.9. Övergångar... (forts: Halvledare i kontakt)

3.9. Övergångar... (forts: Halvledare i kontakt) 3.9. Övergångar... (forts: Halvledare i kontakt) [Understanding Physics: 20.9-20.12] Utjämningen av Ferminivåerna för två ledare i kontakt med varandra gäller också för två halvledare i kontakt med varandra.

Läs mer

Laboration: pn-övergången

Laboration: pn-övergången LTH: FASTA TILLSTÅNDETS FYSIK Komponentfysik för E Laboration: pn-övergången Utförd datum Inlämnad datum Grupp:... Laboranter:...... Godkänd datum Handledare: Retur Datum: Återinlämnad Datum: Kommentarer

Läs mer

Mätning av Halleffekten och elektriska ledningsförmågan som funktion av temperaturen hos halvledarna InSb / Ge.

Mätning av Halleffekten och elektriska ledningsförmågan som funktion av temperaturen hos halvledarna InSb / Ge. Laborationsinstruktion laboration Halvledarfysik UPPSALA UNVERSTET delkurs Fasta tillståndets fysik 1 lokal 4319 innehåll delkurskod 1TG100 labkod HF UPPGFTER: Mätning av Halleffekten och elektriska ledningsförmågan

Läs mer

Andra föreläsningen kapitel 7. Patrik Lundström

Andra föreläsningen kapitel 7. Patrik Lundström Andra föreläsningen kapitel 7 Patrik Lundström Kvantisering i klassisk fysik: Uppkomst av heltalskvanttal För att en stående våg i en ring inte ska släcka ut sig själv krävs att den är tillbaka som den

Läs mer

r 2 Arbetet är alltså endast beroende av start- och slutpunkt. Det följer av att det elektriska fältet är konservativt ( E = 0).

r 2 Arbetet är alltså endast beroende av start- och slutpunkt. Det följer av att det elektriska fältet är konservativt ( E = 0). 1 Föreläsning 2 Motsvarar avsnitten 2.4 2.5 i Griffiths. Arbete och potentiell energi (Kap. 2.4) r 1 r 2 C Låt W vara det arbete som måste utföras mot ett givet elektriskt fält E, då en laddning Q flyttas

Läs mer

Physics to Go! Part 1. 2:a på Android

Physics to Go! Part 1. 2:a på Android Physics to Go! Part 1 2:a på Android Halvledare Halvledare Halvledare V V V Grupp V: Si, Ge Transistorer, CCD, solceller, indirekt bandgap Grupp -V: GaP, GaAs, ngaasp LED, lasrar, detektorer Grupp -N:

Läs mer

Kvantbrunnar Kvantiserade energier och tillstånd

Kvantbrunnar Kvantiserade energier och tillstånd Kvantbrunnar Kvantiserade energier och tillstånd Inledning Syftet med denna laboration är att undersöka kvantiseringen av energitillstånd i kvantbrunnar. Till detta används en java-applet som hittas på

Läs mer

F3: Schrödingers ekvationer

F3: Schrödingers ekvationer F3: Schrödingers ekvationer Backgrund Vi behöver en ny matematik för att beskriva elektroner, atomer och molekyler! Den nya fysiken skall klara av att beskriva: Experiment visar att för bundna system så

Läs mer

HALVLEDARES ELEKTRISKA KONDUKTIVITET

HALVLEDARES ELEKTRISKA KONDUKTIVITET HALVLEDARES ELEKTRISKA KONDUKTIVITET 1 Inledning I fasta ämnen ockuperar ämnens elektroner s.k. energiband. För goda elektriska ledare är det översta ockuperade energibandet endast delvis fyllt vilket

Läs mer

1 Hur förklarar du att det blev ett interferensmönster i interferensexperimentet med elektroner?

1 Hur förklarar du att det blev ett interferensmönster i interferensexperimentet med elektroner? Session: okt28 Class Points Avg: 65.38 out of 100.00 (65.38%) 1 Hur förklarar du att det blev ett interferensmönster i interferensexperimentet med elektroner? A 0% Vi måste ha haft "koincidens", dvs. flera

Läs mer

Kvantmekanik II (FK5012), 7,5 hp

Kvantmekanik II (FK5012), 7,5 hp Joakim Edsjö Fysikum, Stockholms Universitet Tel.: 8-5537876 E-post: edsjo@physto.se Lösningar till Kvantmekanik II (FK51, 7,5 hp 3 januari 9 Lösningar finns även tillgängliga på http://www.physto.se/~edsjo/teaching/kvant/index.html.

Läs mer

Tentamen i FTF140 Termodynamik och statistisk mekanik för F3

Tentamen i FTF140 Termodynamik och statistisk mekanik för F3 Chalmers Institutionen för Teknisk Fysik Göran Wahnström Tentamen i FTF14 Termodynamik och statistisk mekanik för F3 Tid och plats: Tisdag 25 aug 215, kl 8.3-13.3 i V -salar. Hjälpmedel: Physics Handbook,

Läs mer

Lite fakta om proteinmodeller, som deltar mycket i den här tentamen

Lite fakta om proteinmodeller, som deltar mycket i den här tentamen Skriftlig deltentamen, FYTA12 Statistisk fysik, 6hp, 28 Februari 2012, kl 10.15 15.15. Tillåtna hjälpmedel: Ett a4 anteckningsblad, skrivdon. Totalt 30 poäng. För godkänt: 15 poäng. För väl godkänt: 24

Läs mer

Lablokalerna är i samma korridor som där ni gjorde lab1.

Lablokalerna är i samma korridor som där ni gjorde lab1. Den inledande teoridelen ska läsas av alla studenter före laborationstillfället. Tänk igenom och lös förberedelseuppgifterna innan labben det kommer ni att ha nytta av. De mest relevanta kapitel i kompendiet

Läs mer

3.3. Den kvantmekaniska fria elektronmodellen

3.3. Den kvantmekaniska fria elektronmodellen 3.3. Den kvantmekaniska fria elektronmodellen [Understanding Physics: 20.3-20.7] I kvantmekaniken behandlas ledningselektronerna som ett enda fermionsystem, på ett liknande sätt som elektronerna i flerelektronatomer.

Läs mer

3.8. Halvledare. [Understanding Physics: 20.8-20.11] Den moderna fysikens grunder, Tom Sundius 2009 1

3.8. Halvledare. [Understanding Physics: 20.8-20.11] Den moderna fysikens grunder, Tom Sundius 2009 1 3.8. Halvledare [Understanding Physics: 20.8-20.11] Som framgår av fig. 20.27, kan energigapet i en halvledare uttryckas E g = E c E v, där E c är den lägsta energin i ledningsbandet och E v den högsta

Läs mer

Vad är elektricitet?

Vad är elektricitet? Vad är elektricitet? Vad är elektricitet? Grundämnenas elektriska egenskaper avgörs av antalet elektroner i det yttersta skalet - valenselektronerna! Skol-modellen av en Kiselatom. Kisel med atomnumret

Läs mer

Fysikaliska krumsprång i spexet eller Kemister och matematik!

Fysikaliska krumsprång i spexet eller Kemister och matematik! Fysikaliska krumsprång i spexet eller Kemister och matematik! Mats Linder 10 maj 2009 Ingen sammanfattning. Sammanfattning För den hugade har vi knåpat ihop en liten snabbguide till den fysik och kvantmekanik

Läs mer

Vad är elektricitet?

Vad är elektricitet? Vad är elektricitet? Vad är elektricitet? Grundämnenas elektriska egenskaper avgörs av antalet elektroner i det yttersta skalet - valenselektronerna! Skol-modellen av en Kiselatom. Kisel med atomnumret

Läs mer

Optiska och elektriska egenskaper hos pn- övergången

Optiska och elektriska egenskaper hos pn- övergången FASTA TILLSTÅNDETS FYSIK och ELEKTRONISKA MATERIAL 2013 Optiska och elektriska egenskaper hos pn- övergången Den inledande teoridelen ska läsas av alla studenter före laborationstillfället. Tänk igenom

Läs mer

Lösningsanvisningar till tentamen i SI1161 Statistisk fysik, 6 hp, för F3 Onsdagen den 2 juni 2010 kl. 14.00-19.00

Lösningsanvisningar till tentamen i SI1161 Statistisk fysik, 6 hp, för F3 Onsdagen den 2 juni 2010 kl. 14.00-19.00 EOREISK FYSIK KH Lösningsanvisningar till tentamen i SI1161 Statistisk fysik, 6 hp, för F3 Onsdagen den juni 1 kl. 14. - 19. Examinator: Olle Edholm, tel. 5537 8168, epost oed(a)kth.se. Komplettering:

Läs mer

Föreläsning 6: Opto-komponenter

Föreläsning 6: Opto-komponenter Föreläsning 6: Opto-komponenter Opto-komponent Interaktion ljus - halvledare Fotoledare Fotodiod / Solcell Lysdiod Halvledarlaser 1 Komponentfysik - Kursöversikt Bipolära Transistorer pn-övergång: kapacitanser

Läs mer

8-10 Sal F Generellt om kursen/utbildningen. Exempel på nanofenomen runt oss

8-10 Sal F Generellt om kursen/utbildningen. Exempel på nanofenomen runt oss Upplägg och planering för NanoIntro 15; Lars Samuelson (lars.samuelson@ftf.lth.se): Måndag 31/8: Presentationer av deltagarna 8-10 Sal F Generellt om kursen/utbildningen. Exempel på nanofenomen runt oss

Läs mer

Lösningsförslag till deltentamen i IM2601 Fasta tillståndets fysik. Onsdagen den 30 maj, Teoridel Ê Á Ê. B B T Ë k B T Ê. exp m BBˆ.

Lösningsförslag till deltentamen i IM2601 Fasta tillståndets fysik. Onsdagen den 30 maj, Teoridel Ê Á Ê. B B T Ë k B T Ê. exp m BBˆ. Lösningsförslag till deltentamen i IM60 Fasta tillståndets fysik Paramagnetism i ett tvånivåsystem Onsdagen den 30 maj, 0 Teoridel. a) För m S = - är m S z = -m B S z = +m B och energin blir U = -m B B

Läs mer

Energidiagram enligt FEM

Energidiagram enligt FEM MEALLER emperaturens inverkan på elektrontillståndens fyllnadsgrad i en frielektronmetall I grundtillståndet besätter elektronerna de lägsta N e /2 st tillstånden med två elektroner i varje tillstånd.

Läs mer

Dugga i FUF040 Kvantfysik för F3/Kf3

Dugga i FUF040 Kvantfysik för F3/Kf3 Dugga i FUF040 Kvantfysik för F3/Kf3 fredagen den 23 oktober 2015 kl 14.00-16.00 i V Examinator: Måns Henningson, ankn 3245. Inga hjälpmedel. Ringa in bokstaven svarande mot det unika rätta svaret på svarsblanketten!

Läs mer

Elektronik 2015 ESS010

Elektronik 2015 ESS010 Elektronik 2015 ESS010 Föreläsning 16 Halvledare PN-diod: likriktare Information inför tentamen Repetition 2015-10-21 Föreläsning 16, Elektronik 2015 1 USA Chicago Notre Dame New Orleans Tunneltransistorer

Läs mer

7. Atomfysik väteatomen

7. Atomfysik väteatomen Partiklars vågegenskaper Som kunnat konstateras uppträder elektromagnetisk strålning ljus som en dubbelnatur, ibland behöver man beskriva ljus som vågrörelser och ibland är det nödvändigt att betrakta

Läs mer

530117 Materialfysik vt 2010. 10. Materiens optiska egenskaper. [Callister, etc.]

530117 Materialfysik vt 2010. 10. Materiens optiska egenskaper. [Callister, etc.] 530117 Materialfysik vt 2010 10. Materiens optiska egenskaper [Callister, etc.] 10.0 Grunder: upprepning av elektromagnetism Ljus är en elektromagnetisk våg våglängd, våglängd, k vågtal, c hastighet, E

Läs mer

10.0 Grunder: upprepning av elektromagnetism

10.0 Grunder: upprepning av elektromagnetism 530117 Materialfysik vt 2010 10. Materiens optiska egenskaper [Callister, etc.] 10.0 Grunder: upprepning av elektromagnetism Ljus är en elektromagnetisk våg våglängd, våglängd, k vågtal, c hastighet, E

Läs mer

10.0 Grunder: upprepning av elektromagnetism Materialfysik vt Materiens optiska egenskaper. Det elektromagnetiska spektret

10.0 Grunder: upprepning av elektromagnetism Materialfysik vt Materiens optiska egenskaper. Det elektromagnetiska spektret 10.0 Grunder: upprepning av elektromagnetism 530117 Materialfysik vt 2010 Ljus är en elektromagnetisk våg 10. Materiens optiska egenskaper [Callister, etc.] våglängd, våglängd, k vågtal, c hastighet, E

Läs mer

KOMPLETTERANDE FORMELSAMLING FÖR FASTA TILLSTÅNDET I (reviderad version) 1. GITTER. RECIPROKT GITTER. KRISTALLPLAN.

KOMPLETTERANDE FORMELSAMLING FÖR FASTA TILLSTÅNDET I (reviderad version) 1. GITTER. RECIPROKT GITTER. KRISTALLPLAN. KOMPLETTERANDE FORMELSAMLING FÖR FASTA TILLSTÅNDET I (reviderad version) Nedanstående är en minneslista över väsentliga formler och detaljer i den inledande kursen i fasta tillståndets fysik. Observera

Läs mer

1. q = -Q 2. q = 0 3. q = +Q 4. 0 < q < +Q

1. q = -Q 2. q = 0 3. q = +Q 4. 0 < q < +Q 2.1 Gauss lag och elektrostatiska egenskaper hos ledare (HRW 23) Faradays ishinksexperiment Elfältet E = 0 inne i en elektrostatiskt laddad ledare => Laddningen koncentrerad på ledarens yta! Elfältets

Läs mer

Komponentfysik Introduktion. Kursöversikt. Varför Komponentfysik? Hålltider --- Ellära, Elektriska fält och potentialer

Komponentfysik Introduktion. Kursöversikt. Varför Komponentfysik? Hålltider --- Ellära, Elektriska fält och potentialer Komponentfysik 2012 Introduktion Kursöversikt Varför Komponentfysik? Hålltider Ellära, Elektriska fält och potentialer 1 Lite om mig själv Erik Lind (Erik.Lind@eit.lth.se) Civ. Ing. i Teknisk Fysik Doktorerade

Läs mer

Vågfysik. Ljus: våg- och partikelbeteende

Vågfysik. Ljus: våg- och partikelbeteende Vågfysik Modern fysik & Materievågor Kap 25 (24 1:st ed.) Ljus: våg- och partikelbeteende Partiklar Lokaliserade Bestämd position & hastighet Kollision Vågor Icke-lokaliserade Korsar varandra Interferens

Läs mer

Fysikaliska modeller

Fysikaliska modeller Fysikaliska modeller Olika syften med fysiken Grundforskarens syn Finna förklaringar på skeenden i naturen Ställa upp lagar för fysikaliska skeenden Kritiskt granska uppställda lagar Kontrollera uppställda

Läs mer

Tentamen i Modern fysik, TFYA11/TENA

Tentamen i Modern fysik, TFYA11/TENA IFM - Institutionen för Fysik, Kemi och Biologi Linköpings universitet Tentamen i Modern fysik, TFYA11/TENA Fredagen den 21/12 2012 kl. 14.00-18.00 i TER2 och TER3 Tentamen består av 2 A4-blad (inklusive

Läs mer

Parbildning. Om fotonens energi är mer än dubbelt så stor som elektronens vileoenergi (m e. c 2 ):

Parbildning. Om fotonens energi är mer än dubbelt så stor som elektronens vileoenergi (m e. c 2 ): Parbildning Vi ar studerat två sätt med vilket elektromagnetisk strålning kan växelverka med materia. För ögre energier ar vi även en tredje: Parbildning E mc Innebär att omvandling mellan energi oc massa

Läs mer

BANDGAP 2009-11-17. 1. Inledning

BANDGAP 2009-11-17. 1. Inledning 1 BANDGAP 9-11-17 1. nledning denna laboration studeras bandgapet i två halvledare, kisel (Si) och galliumarsenid (GaAs) genom mätning av transmissionen av infrarött ljus genom en tunn skiva av respektive

Läs mer

NFYA02: Svar och lösningar till tentamen 140115 Del A Till dessa uppgifter behöver endast svar anges.

NFYA02: Svar och lösningar till tentamen 140115 Del A Till dessa uppgifter behöver endast svar anges. 1 NFYA: Svar och lösningar till tentamen 14115 Del A Till dessa uppgifter behöver endast svar anges. Uppgift 1 a) Vi utnyttjar att: l Cx dx = C 3 l3 = M, och ser att C = 3M/l 3. Dimensionen blir alltså

Läs mer

Föreläsning 6: Opto-komponenter

Föreläsning 6: Opto-komponenter Föreläsning 6: Opto-komponenter Opto-komponent Interaktion ljus - halvledare Fotoledare Fotodiod / Solcell Lysdiod Halvledarlaser Dan Flavin 2014-04-02 Föreläsning 6, Komponentfysik 2014 1 Komponentfysik

Läs mer

Kvantmekanik II - Föreläsning 7

Kvantmekanik II - Föreläsning 7 Kvantmekanik II - Föreläsning 7 Identiska partiklar Joakim Edsjö edsjo@fysik.su.se HT 2013 Kvantmekanik II Föreläsning 7 Joakim Edsjö 1/44 Innehåll 1 Generalisering av Schrödingerekvationen till fler partiklar

Läs mer

ENERGIBAND. Blochfunktioner. ψ k

ENERGIBAND. Blochfunktioner. ψ k ENERGIBAND Blochfunktioner Frilektronmodellen är användbar för att beskriva metallers elektriska och termiska egenskaper. Ska man beskriva elektrontillstånden i andra typer av material, såsom halvmetaller,

Läs mer

Vågrörelselära & Kvantfysik, FK januari 2012

Vågrörelselära & Kvantfysik, FK januari 2012 Räkneövning 9 Vågrörelselära & Kvantfysik, FK00 9 januari 0 Problem 4.3 En elektron i vila accelereras av en potentialskillnad U = 0 V. Vad blir dess de Broglie-våglängd? Elektronen tillförs den kinetiska

Läs mer

FK Kvantfysikens principer, Fysikum, Stockholms universitet Tentamensskrivning, onsdag 21 december 2016, kl 17:00-22:00

FK Kvantfysikens principer, Fysikum, Stockholms universitet Tentamensskrivning, onsdag 21 december 2016, kl 17:00-22:00 FK2003 - Kvantfysikens principer, Fysikum, Stockholms universitet Tentamensskrivning, onsdag 21 december 2016, kl 17:00-22:00 Läs noggrant genom hela tentan först. Börja med uppgifterna som du tror du

Läs mer

Övningsuppgifter/repetition inom elektromagnetism + ljus (OBS: ej fullständig)

Övningsuppgifter/repetition inom elektromagnetism + ljus (OBS: ej fullständig) Övningsuppgifter/repetition inom elektromagnetism + ljus (OBS: ej fullständig) Elektrostatik 1. Ange Faradays lag i elektrostatiken. 2. Vad är kravet för att ett vektorfält F är konservativt? 3. En låda

Läs mer

Tentamen: Atom och Kärnfysik (1FY801)

Tentamen: Atom och Kärnfysik (1FY801) Tentamen: Atom och Kärnfysik (1FY801) Torsdag 1 november 2012, 8.00-13.00 Kursansvarig: Magnus Paulsson (magnus.paulsson@lnu.se, 0706-942987) Kom ihåg: Ny sida för varje problem. Skriv ditt namn och födelsedatum

Läs mer

BANDGAP 2013-02-06. 1. Inledning

BANDGAP 2013-02-06. 1. Inledning 1 BANDGAP 13--6 1. Inledning I denna laboration studeras bandgapet i två halvledare, kisel (Si) och galliumarsenid (GaAs) genom mätning av transmissionen av infrarött ljus genom en tunn skiva av respektive

Läs mer

3.7 Energiprincipen i elfältet

3.7 Energiprincipen i elfältet 3.7 Energiprincipen i elfältet En laddning som flyttas från en punkt med lägre potential till en punkt med högre potential får även större potentialenergi. Formel (14) gav oss sambandet mellan ändring

Läs mer

Tentamen i FTF140 Termodynamik och statistisk fysik för F3

Tentamen i FTF140 Termodynamik och statistisk fysik för F3 Chalmers Institutionen för Teknisk Fysik Göran Wahnström Tentamen i FTF4 Termodynamik och statistisk fysik för F3 Tid och plats: Tisdag aug, kl 8.3-.3 i Väg och vatten -salar. Hjälpmedel: Physics Handbook,

Läs mer

Magnetfält och magnetiska krafter. Emma Björk

Magnetfält och magnetiska krafter. Emma Björk Magnetfält och magnetiska krafter Emma Björk Magnetfält och magnetiska krafter Beskriva permanentmagneters beteende Samband magnetism-laddning i rörelse Ta fram uttryck för magnetisk kraft på laddning

Läs mer

Sensorer och elektronik. Grundläggande ellära

Sensorer och elektronik. Grundläggande ellära Sensorer och elektronik Grundläggande ellära Innehåll Grundläggande begrepp inom mekanik Elektriskt fält och elektrisk potential Dielektrika och kapacitans Ström och strömtäthet Ohms lag och resistans

Läs mer

Exempel på statistisk fysik Svagt växelverkande partiklar

Exempel på statistisk fysik Svagt växelverkande partiklar Exempel på statistisk fysik Svagt växelverkande partiklar I kapitlet om kinetisk gasteori behandlades en s k ideal gas där man antog att partiklarna inte växelverkade med varandra och dessutom var punktformiga.

Läs mer

Fasta Tillståndets Fysik - Elektroniska material

Fasta Tillståndets Fysik - Elektroniska material Fasta Tillståndets Fysik Elektroniska material Formelsamling 00 Elektroner klassiskt F q( E+ v B) U R I, J σe N J ( e)v V d Lorentzkraft Ohms lag v d ee τ m Drifthastighet τ kollisionstid md + dt τ v F

Läs mer

1.13. Den tidsoberoende Schrödinger ekvationen

1.13. Den tidsoberoende Schrödinger ekvationen 1.13. Den tidsoberoende Schrödinger ekvationen [Understanding Physics: 13.12-13.14] Den tidsberoende Schrödinger ekvationen för en fri partikel som rör sig i en dimension är en partiell differentialekvation

Läs mer

Tentamen, Kvantfysikens principer FK2003, 7,5 hp

Tentamen, Kvantfysikens principer FK2003, 7,5 hp Tentamen, Kvantfysikens principer FK2003, 7,5 hp Tid: 17:00-22:00, tisdag 3/3 2015 Hjälpmedel: utdelad formelsamling, utdelad miniräknare Var noga med att förklara införda beteckningar och att motivera

Läs mer

Föreläsning 11 Fälteffekttransistor II

Föreläsning 11 Fälteffekttransistor II Föreläsning 11 Fälteffekttransistor Fälteffekt Tröskelspänning Beräkning av strömmen Storsignal, D Kanallängdsmodulation Flatband-shift pmosfet 013-05-03 Föreläsning 11, Komponentfysik 013 1 Komponentfysik

Läs mer

F2: Kvantmekanikens ursprung

F2: Kvantmekanikens ursprung F2: Kvantmekanikens ursprung Koncept som behandlas: Energins kvantisering Svartkroppsstrålning Värmekapacitet Spektroskopi Partikel-våg dualiteten Elektromagnetisk strålning som partiklar Elektroner som

Läs mer

11. Halvledare. [HH 5, Kittel 8, AM 28] Fasta tillståndets fysik, Kai Nordlund 2015 1

11. Halvledare. [HH 5, Kittel 8, AM 28] Fasta tillståndets fysik, Kai Nordlund 2015 1 11. Halvledare [HH 5, Kittel 8, AM 28] All modern datorteknologi baserar sig helt på halvledande materials fysik. Detta är ett bemärkningsvärt faktum, om man tänker på att den allra första transistorn

Läs mer

Vågrörelselära och optik

Vågrörelselära och optik Vågrörelselära och optik Kapitel 32 1 Vågrörelselära och optik Kurslitteratur: University Physics by Young & Friedman (14th edition) Harmonisk oscillator: Kapitel 14.1 14.4 Mekaniska vågor: Kapitel 15.1

Läs mer

Föreläsning 12: Ideal gas i klassiska gränsen med inre frihetsgrader, ekvipartitionsprincipen

Föreläsning 12: Ideal gas i klassiska gränsen med inre frihetsgrader, ekvipartitionsprincipen Föreläsning 12: Ideal gas i klassiska gränsen med frihetsgrader, ekvipartitionsprincipen April 26, 2013, KoK kap. 6 Centrala ekvationer i statistisk mekanik Mikrokanonisk ensemble (U,,N konst):p s = 1/g,

Läs mer

Föreläsning 3 Heisenbergs osäkerhetsprincip

Föreläsning 3 Heisenbergs osäkerhetsprincip Föreläsning 3 Heisenbergs osäkeretsprincip Materialet motsvarar Kap.1,.,.5 and.6 i Feynman Lectures Vol III + Uncertainty in te Classroom - Teacing Quantum Pysics K.E.Joansson and D.Milstead, Pysics Education

Läs mer

Sensorer, effektorer och fysik. Grundläggande fysikaliska begrepp som är viktiga inom mättekniken

Sensorer, effektorer och fysik. Grundläggande fysikaliska begrepp som är viktiga inom mättekniken Sensorer, effektorer och fysik Grundläggande fysikaliska begrepp som är viktiga inom mättekniken Innehåll Grundläggande begrepp inom mekanik. Elektriskt fält och elektrisk potential. Gauss lag Dielektrika

Läs mer

KEMA00. Magnus Ullner. Föreläsningsanteckningar och säkerhetskompendium kan laddas ner från

KEMA00. Magnus Ullner. Föreläsningsanteckningar och säkerhetskompendium kan laddas ner från KEMA00 Magnus Ullner Föreläsningsanteckningar och säkerhetskompendium kan laddas ner från http://www.kemi.lu.se/utbildning/grund/kema00/dold Användarnamn: Kema00 Lösenord: DeltaH0 F2 Periodiska systemet

Läs mer

Förslag: En laddad partikel i ett magnetfält påverkas av kraften F = qvb, dvs B = F qv = 0.31 T.

Förslag: En laddad partikel i ett magnetfält påverkas av kraften F = qvb, dvs B = F qv = 0.31 T. 1. En elektron rör sig med v = 100 000 m/s i ett magnetfält. Den påverkas av en kraft F = 5 10 15 N vinkelrätt mot rörelseriktningen. Rita figur och beräkna den magnetiska flödestätheten. Förslag: En laddad

Läs mer

Lågtemperaturfysik. Maria Ekström. November Första utgåvan

Lågtemperaturfysik. Maria Ekström. November Första utgåvan F7 Lågtemperaturfysik Maria Ekström November 2014 - Första utgåvan Syfte Målet är att använda lågtemperaturfysik för studera hur den elektriska ledningsförmågan hos olika typer av material ändras med temperatur.

Läs mer

Svaren på förståelsedelen skall ges på tesen som skall lämnas in.

Svaren på förståelsedelen skall ges på tesen som skall lämnas in. Dugga i Elektromagnetisk fältteori F. för F2. EEF031 2005-11-19 kl. 8.30-12.30 Tillåtna hjälpmedel: BETA, Physics Handbook, Formelsamling i Elektromagnetisk fältteori, Valfri kalkylator men inga egna anteckningar

Läs mer

If you think you understand quantum theory, you don t understand quantum theory. Quantum mechanics makes absolutely no sense.

If you think you understand quantum theory, you don t understand quantum theory. Quantum mechanics makes absolutely no sense. If you think you understand quantum theory, you don t understand quantum theory. Richard Feynman Quantum mechanics makes absolutely no sense. Roger Penrose It is often stated that of all theories proposed

Läs mer

Elektriska och magnetiska fält Elektromagnetiska vågor

Elektriska och magnetiska fält Elektromagnetiska vågor 1! 2! Elektriska och magnetiska fält Elektromagnetiska vågor Tommy Andersson! 3! Ämnens elektriska egenskaper härrör! från de atomer som bygger upp ämnet.! Atomerna i sin tur är uppbyggda av! en atomkärna,

Läs mer

Vågor och Optik. Mekaniska vågor (Kap. 15) Mekaniska vågor (Kap. 15)

Vågor och Optik. Mekaniska vågor (Kap. 15) Mekaniska vågor (Kap. 15) Mekaniska vågor (Kap. 15) Vågor och Optik Mekaniska vågor (Kap. 15) D Alemberts allmäna lösning i 1D En mekanisk våg är en störning i ett medium som fortplantar sig. 1 $ 1 '$ 1 ' =& )& + ) = 0 x v t %

Läs mer

Tentamen i : Vågor,plasmor och antenner. Totala antalet uppgifter: 6 Datum:

Tentamen i : Vågor,plasmor och antenner. Totala antalet uppgifter: 6 Datum: Tentamen i : Vågor,plasmor och antenner Kurs: MTF108 Totala antalet uppgifter: 6 Datum: 2006-05-27 Examinator/Tfn: Hans Åkerstedt/491280/Åke Wisten070/5597072 Skrivtid: 9.00-15.00 Jourhavande lärare/tfn:

Läs mer

FK Elektromagnetism och vågor, Fysikum, Stockholms Universitet Tentamensskrivning, måndag 21 mars 2016, kl 9:00-14:00

FK Elektromagnetism och vågor, Fysikum, Stockholms Universitet Tentamensskrivning, måndag 21 mars 2016, kl 9:00-14:00 FK5019 - Elektromagnetism och vågor, Fysikum, Stockholms Universitet Tentamensskrivning, måndag 21 mars 2016, kl 9:00-14:00 Läs noggrant igenom hela tentan först Tentan består av 5 olika uppgifter med

Läs mer

1.7. Tolkning av våg partikeldualiteten

1.7. Tolkning av våg partikeldualiteten 1.7. Tolkning av våg partikeldualiteten [Understanding Physics: 13.7-13.12] En egenskap som är gemensam för både vågor och partiklar är förmågan att överföra energi. I vartdera fallet kan man representera

Läs mer

c = λ ν Vågrörelse Kap. 1. Kvantmekanik och den mikroskopiska världen Kvantmekanik 1.1 Elektromagnetisk strålning

c = λ ν Vågrörelse Kap. 1. Kvantmekanik och den mikroskopiska världen Kvantmekanik 1.1 Elektromagnetisk strålning Kap. 1. Kvantmekanik och den mikroskopiska världen Modern teori för atomer/molekyler kan förklara atomers/molekylers egenskaper: Kvantmekanik I detta och nästa kapitel: atomers egenskaper och periodiska

Läs mer