Lablokalerna är i samma korridor som där ni gjorde lab1.

Storlek: px
Starta visningen från sidan:

Download "Lablokalerna är i samma korridor som där ni gjorde lab1."

Transkript

1 Den inledande teoridelen ska läsas av alla studenter före laborationstillfället. Tänk igenom och lös förberedelseuppgifterna innan labben det kommer ni att ha nytta av. De mest relevanta kapitel i kompendiet är kapitel 6 och 7 om halvledare och pn-övergångar. Varje laborationspar A, B och C utför sedan separata laborativa moment. Vid diskussionstillfället ska resultaten förklaras för dem som utfört andra moment. Känner ni att ni behöver mer hjälp (än vad ni fick under laborationen) med att tolka era mätdata eller annat, gå i första hand på frågetimmen (vi får bestämma en bra tid) och i andra hand - maila handledaren. Använd OH eller dator till att visa mätdata vid diskussionsmötet. Utnyttja de vita tavlorna till härledningar - det är svårt att göra härledningar på ett bra sätt i t.ex. PowerPoint, men ni får förstås bestämma själva. Om ni vill ha OH och inte har möjlighet att fixa det själva - lägg utskrivna plottar i Carinas fack (vid rum H221) senast ett dygn innan er redovisning, så kopierar jag till OH och lägger dem i mitt ut-fack. Lägg gärna era utskrifter i ett kuvert eller i en plastficka med namn så att ni hittar dem i ut-facket. Målet vid diskussionstillfället är att resten av gruppen ska förstå vad ni har gjort och fysiken bakom resultaten. Efter detta tillfälle bör alla studenter ha tillgodogjort sig teori och resultat från alla moment som ingår i laborationen och till exempel förstå alla förberedelseuppgifterna. Lablokalerna är i samma korridor som där ni gjorde lab1. Diskussionerna är på avdelningen för Fasta tillståndets fysik, i Q-huset (med ett undantag som är i H422 gruppen det gäller får reda på det på labben)

2 Strömmen I genom en pn-övergång som funktion av spänningen U över den beskrivs av diodekvationen ( ) ( ( ) ) där I0 är backströmmen, e elementarladdningen, k Boltzmanns konstant, T temperaturen och idealitetsfaktorn. För en diffusiv ström genom dioden (det som diskuteras mest utförligt i kompendiet) blir idealitetsfaktorn i teorin 1. Dioder uppvisar dock ofta strömspänningskurvor där idealitetsfaktorn är skild från 1 i större eller mindre spänningsområden. Om diodströmmen domineras av rekombinationsström är idealitetsfaktorn närmare 2 än 1. Uppgift 1. Skissa en I-U-kurva för en pn-övergång vid två olika temperaturer. pn-övergångar är centrala inom många elektroniska och optoelektroniska tillämpningar. En av de mer okända är som termometer - strömmen i övergången beror på temperaturen som vi i uppgift 1. Ett av sätten att implementera denna specifika applikation av pn-övergången är att hålla strömmen konstant och notera spänningen över dioden - detta ger temperaturen. Om vi funderar lite på pn-övergångens fysik så kan vi inse att backströmmen I0 beror på bland annat temperatur. I0 utgörs av de elektroner (hål) från p(n)-sidan som sveps över till n(p)- sidan av det elektriska fältet i utarmningsområdet. Uppgift 2. Vad bestämmer hur stor I0 är? Hur tror du att temperaturberoendet i I0 ser ut? Den inbyggda spänningen U0 i en pn-övergång uppstår på grund av att materialet är olika dopat på p- och n-sidan. Experimentellt kan U0 bestämmas genom att man mäter pnövergångens kapacitans C som funktion av pålagd spänning U. Kapacitansen C definieras som där Q är laddning och U är spänning. Utarmningsområdet i en pn-övergång är utarmat på rörliga laddningar men de fixa laddningarna (joniserade acceptorer och donatorer) sitter förstås kvar. Utarmningsområdets storlek ändras när spänningen varierar och alltså ändras även den fixa lagrade laddningsmängden.

3 Vår teori för övergångens kapacitans fungerar bäst då dioden är backspänd eller inte alltför framspänd - när fria laddningsbärare flödar in i utarmningsområdet vid framspänning finns det mycket mer laddning där än bara de joniserade dop-atomerna. Kapacitansen ges av följande uttryck (kompendiet s , även i formelsamlingen) ( ) där A är komponentens area, ND och NA dopkoncentrationerna, U0 den inbyggda spänningen och U den pålagda spänningen som vi definierar som positiv om dioden är framspänd. Uppgift 3. Hur kan man styra U0 i tillverkningen av en pn-övergång? En pn-övergång kan arbeta i tre olika kvadranter av ström-spänningsdiagrammet (se figur 1). En vanlig diod öppnas genom att framspännas och stängs genom att backspännas. En lysdiod är en pn-övergång där elektroner och hål i stor utsträckning rekombinerar genom att emittera fotoner. Då dioden framspänns går en framström i dioden och elektroner som diffunderat till p-sidan rekombinerar med hål som det finns rikligt av där genom att emittera fotoner. Motsvarande process sker för hålen hål som diffunderat in på n-sidan hittar snabbt hål att rekombinera med. Rekombination sker även i utarmningsområdet där vi ju har flöden av både hål och elektroner. Våglängden på det utsända ljuset bestäms av bandgapet. Genom kontroll över halvledarmaterialet i dioden kan man tillverka dioder med olika färg. Uppgift 4: Hur ser ljusemissionen (intensiteten) som funktion av våglängd ut för en lysdiod med Eg=2 ev? Om dioden används som fotodetektor registrerar man den ström eller spänning som uppstår då infallande fotoner absorberas i pn-övergången. I den här tillämpningen backspänner man ofta dioden för att öka storleken på utarmningsområdet. Uppgift 5: Hur tror du att absorptionen som funktion av våglängd ser ut för en lysdiod med Eg=2 ev?

4 Figur1: Olika arbetsområden för pn-övergångar. I solcellskretsen belastar man avsiktligt med en väl vald resistans R. I de andra två kretsarna har man inte alltid någon avsiktlig resistans, men det finns förstås ändå alltid någon resistans, t.ex. i halvledarmaterialet i pnövergången. Då fotoner absorberas i utarmningsområdet (eller strax utanför) separeras de skapade elektronerna och hålen snabbt av det starka elektriska fältet i övergången. Genererade hål sveps till p-sidan och elektroner till n-sidan och dessa laddningsbärarkoncentrationer ger en ström i dioden. Denna belysningsinducerade ström finns i dioden oberoende av värdet på en pålagd spänning, och hela ström-spänningskurvan förskjuts enligt figur 1 (se fotodetektor och solcell). Även då U = 0 får vi alltså en ström i dioden kortslutningsströmmen I sc (shortcircuit current) och även då I = 0 finns en spänning över dioden tomgångsspänningen U oc (open circuit voltage). Kortslutningsströmmen är proportionell mot antalet absorberade fotoner och säger alltså något om fotonintensiteten. Diodens kvanteffektivitet (quantum efficiency) är 1 om alla infallande fotoner genererar elektron-hål par och mindre än ett för mindre ideala (men mer realistiska) fotodetektorer. Uppgift 6: Är det en framström eller en backström som uppstår i dioden/fotodetektorn/solcellen då den absorberar fotoner? Pn-övergångar kan även användas som solceller. Det finns även andra typer av solceller, t.ex. Grätzelceller, men halvledarsolcellerna har potential att uppnå högre kvanteffektivitet även om de i dagsläget är dyrare än Grätzelcellerna. I en solcell används den ström och spänning som uppstår då fotoner absorberas till att driva någon applikation. Belastningen (resistansen) i solcellskretsen påverkar hur stor effekt solcellen ger och måste väljas rätt för att optimera den elektriska effekten som solcellen kan leverera.

5 Uppgift 7: Om man över en belyst solcell uppmäter spänningen U, vilken spänning ligger då över motståndet i solcellskretsen i figur 1? Vilken eller vilka ytterligare storheter behöver du mäta för att beräkna den elektriska effekt som utvecklas i resistorn? Solceller förväntas bli mycket viktiga i strävan efter miljövänliga energikällor. Solstrålningen vid jordytan per timme motsvarar mänsklighetens energikonsumtion under hela 2008, så det finns potential. Vilken sida är vilken? En diod har ett långt och ett kort ben. Börja med att ta reda på, eller verifiera om ni redan vet, vilket som går till p-sidan och vilket som går till n-sidan på dioden.

6 Inbyggd spänning och diodens kapacitans (IR-diod) Nollställ kapacitansmätaren och sätt dioden i hållaren. Använd spänningskällan och potentiometern för att variera spänningen i både framoch backriktningen. Mät mellan ca -0,5V till +0,5V För varje spänning, notera kapacitans och pålagd spänning. Emission (IR-diod och gul diod) Dra försiktigt på spänning tills dioden lyser. Montera den lysande dioden vid spektrometerns ingångsspalt. Starta spektrometern, amperemetern och programmet Optokomponenter. Mät emissionen i ett lämpligt våglängdsområde. Justera känsligheten på amperemetern om intensiteten går i taket eller i botten. Gör sen om mätningen. Spara dina data genom att markera aktuellt dataset och välj save plot. Absorption (Gul diod) Montera dioden på detektorplatsen på spektrometern och koppla den till amperemetern. Montera och tänd den vita lampan vid spektrometerns ingångsspalt. Mät absorptionen i ett lämpligt våglängdsområde. Justera känsligheten på amperemetern om det behövs Spara dina data genom att markera aktuellt dataset och välj save plot. Byt till kiseldetektorn och mät den vita lampans emission. När ni plottar, normera diodens absorption med lampans emissionsspektra. Analysuppgifter (ska ingå i er diskussion): 1. Bestäm IR-lysdiodens inbyggda spänning, U 0, genom att plotta 1/C 2 mot den pålagda spänningen U. Jämför med IR-diodens bandgap från en emissionsmätning. 2. Plotta den gula lysdiodens emission och absorption som funktion av våglängd och beskriv fysiken. Bestäm bandgapet. 3. Beräkna emissionen från absorptionskurvan genom att multiplicera absorptionskurvan med svansen av en Fermifördelning Ferminivån ligger ju någonstans i bandgapet så vi behöver bara ta med den exponentiellt avtagande delen av fördelningen.

7 IU-karakteristik (Rumstemperatur) Öppna programmet I-U-karakteristik Använd spänningskällan och potentiometern för att variera spänningen (koppla enligt schematisk skiss nr. 1). Ha dioden i en termos med öppningen täckt med plasthandskar. För en viss spänning, tryck nytt värde så registrerar Labview spänning och ström. Knappen Avsluta/Radera raderar era data! Tryck aldrig på den utan att trycka Spara data först! Mät både fram- och backström. Låt inte strömmen genom dioden bli större än 2 ma. (Flytande kväve: 77 K) Upprepa mätningarna med provet nedsänkt i flytande kväve. Innan ni avslutar, vrid upp spänningen så att dioden lyser och notera färgen! Dioden som termometer Håll strömmen genom dioden konstant genom att driva den med en konstant-strömgenerator (koppla enligt schematisk skiss nr. 2). Koppla konstant-strömgeneratorn så att det går en framström och dioden lyser. Notera strömmen. Skruva på hatten på mäthållaren. Vi ska mäta hur spänningen över dioden varierar med temperaturen. Öppna programmet Konduktivitet Börja med att ha dioden nedsänt i flytande kväve. Lyft upp dioden ur kvävet och starta en mätning. Om ni vill att temperaturen ska stiga fortare, koppla in en spänningskälla över kontakterna märkta värme. Börja med inställningarna: noll spänning, max ström. Vrid upp spänningen tills strömmen är runt 1A men absolut inte större. Mät upp till ca 330K. Analysuppgifter (ska ingå i er diskussion): 1. Plotta IU-kurvorna för de två olika temperaturerna i samma diagram. Beskriv utifrån diodekvationen och er plot vad som händer när temperaturen ändras. 2. Plotta ln(i) mot U för båda era mätningar. Utifrån er plot, vad bli idealitetsfaktorn? 3. För konstant ström - plotta spänning som funktion av temperatur och beskriv fysiken med hjälp av diodekvationen.

8 Dioden som fotodiod: Montera dioden i det lilla mäthuset. Koppla in en multimeter för att mäta ström. Ställ den ena polarisatorn på 90 grader och vrid den andra tills ni hittar ett strömminima. Låt sedan den andra polarisatorn vara still och vrid den första för att variera intensiteten. 0 grader ger max intensitet och 90 grader ger lägst intensitet. Variera ljusintensiteten genom vrida den ena polarisatorn relativt den andra. Notera värden på strömmen genom dioden för relativ intensitet 1, 0.75, 0.5, 0.25, 0.1, 0.03, Byt ut amperemetern mot en voltmeter. Notera värden på spänningen över dioden för samma relativa intensiteter som i föregående uppgift. Plotta log(i sc ) mot log(intensitet) och U oc mot log(intensitet) Dioden som solcell: Nu behöver du mäta både ström och spänning och dessutom behöver du koppla in en resistor (potentiometer) i kretsen. Ställ in polarisatorerna så att de släpper igenom så mycket ljus som möjligt. Börja vid lägsta resistansen (med en 1 MOhm-potentiometer) och gå mot högsta medan du noterar värden på ström och spänning. Beräkna effekten och resistansen. Vad är optimal belastning? Om du hinner, sänk ljusintensiteten och gör om mätningen. Vilken resistans är nu optimal? Analysuppgifter (ska ingå i er diskussion): 1. Visa era data för hur kortslutningsströmmen och tomgångsspänningen varierar med belysning [log(ström) som funktion av log(intensitet), samt spänning som funktion av log(intensitet)], samt diskutera fysiken. 2. Visa era data för spänning och ström genom dioden/resistorn när dioden fungerar som solcell. Plotta effekt som funktion av resistans. Vad blev optimal belastning? 3. Visa alla era data plottade i samma diagram och hur diagrammet är relaterat till diodekvationen. Om vi har hunnit prata om det, rita lastlinjen för resistorn i solcellskretsen och indikera hur den varierar med resistansen.

Optiska och elektriska egenskaper hos pn- övergången

Optiska och elektriska egenskaper hos pn- övergången FASTA TILLSTÅNDETS FYSIK och ELEKTRONISKA MATERIAL 2013 Optiska och elektriska egenskaper hos pn- övergången Den inledande teoridelen ska läsas av alla studenter före laborationstillfället. Tänk igenom

Läs mer

När man förklarar experiment för andra finns det en bra sekvens att följa:

När man förklarar experiment för andra finns det en bra sekvens att följa: Den inledande teoridelen ska läsas av alla studenter före laborationstillfället. Tänk igenom och lös förberedelseuppgifterna innan labben det kommer ni att ha nytta av. De mest relevanta kapitlena i kompendiet

Läs mer

När man förklarar experiment för andra finns det en bra sekvens att följa:

När man förklarar experiment för andra finns det en bra sekvens att följa: Den inledande teoridelen ska läsas av alla studenter före laborationstillfället. Tänk igenom och lös förberedelseuppgifterna innan labben! De mest relevanta kapitlena i kompendiet är kapitel 6 och 7 om

Läs mer

Optiska och elektriska egenskaper hos pn-övergången

Optiska och elektriska egenskaper hos pn-övergången FASTA TILLSTÅNDETS FYSIK och ELEKTRONISKA MATERIAL 2017 Optiska och elektriska egenskaper hos pn-övergången Labben bygger mest på kapitel 6 och 7 i kompendiet. Lös förberedelseuppgift 1-8 innan labben

Läs mer

Optiska och elektriska egenskaper hos pn-övergången

Optiska och elektriska egenskaper hos pn-övergången FASTA TILLSTÅNDETS FYSIK och ELEKTRONISKA MATERIAL 2018 Optiska och elektriska egenskaper hos pn-övergången Labben bygger mest på kapitel 6 och 7 i kompendiet. Lös förberedelseuppgift 1-8 innan labben

Läs mer

Föreläsning 6: Opto-komponenter

Föreläsning 6: Opto-komponenter Föreläsning 6: Opto-komponenter Opto-komponent Interaktion ljus - halvledare Fotoledare Fotodiod / Solcell Lysdiod Halvledarlaser 1 Komponentfysik - Kursöversikt Bipolära Transistorer pn-övergång: kapacitanser

Läs mer

Föreläsning 6: Opto-komponenter

Föreläsning 6: Opto-komponenter Föreläsning 6: Opto-komponenter Opto-komponent Interaktion ljus - halvledare Fotoledare Fotodiod / Solcell Lysdiod Halvledarlaser Dan Flavin 2014-04-02 Föreläsning 6, Komponentfysik 2014 1 Komponentfysik

Läs mer

Komponentfysik ESS030. Den bipolära transistorn

Komponentfysik ESS030. Den bipolära transistorn Komponentfysik ESS030 Den bipolära transistorn T- 2016 Syfte Syftet med denna laboration är att studenten ska bekanta sig med den grundläggande fysiken i en bipolär transistor. Det fundamentala byggblocket

Läs mer

Laboration: Optokomponenter

Laboration: Optokomponenter LTH: FASTA TILLSTÅNDETS FYSIK Komponentfysik för E Laboration: Optokomponenter Utförd datum Inlämnad datum Grupp:... Laboranter:...... Godkänd datum Handledare: Retur Datum: Återinlämnad Datum: Kommentarer

Läs mer

Introduktion till halvledarteknik

Introduktion till halvledarteknik Introduktion till halvledarteknik Innehåll 6 Övergångar (pn och metal-halvledare) 2:a ordningens effekter Metal-halvledar övergångar 6 Fälteffekttransistorer JFET och MOS transistorer Ideal MOS kapacitans

Läs mer

Mätningar på solcellspanel

Mätningar på solcellspanel Projektlaboration Mätningar på solcellspanel Mätteknik Av Henrik Bergman Laboranter: Henrik Bergman Mauritz Edlund Uppsala 2015 03 22 Inledning Solceller omvandlar energi i form av ljus till en elektrisk

Läs mer

Physics to Go! Part 1. 2:a på Android

Physics to Go! Part 1. 2:a på Android Physics to Go! Part 1 2:a på Android Halvledare Halvledare Halvledare V V V Grupp V: Si, Ge Transistorer, CCD, solceller, indirekt bandgap Grupp -V: GaP, GaAs, ngaasp LED, lasrar, detektorer Grupp -N:

Läs mer

Optokomponenter Laborationshandledning

Optokomponenter Laborationshandledning ESS030 Komponentfysik för E Optokomponenter Laborationshandledning FASTA TLLSTÅNDETS FYSK LTH Komponentfysik för E Optokomponenter modern elektronik används både elektriska och optiska signaler för överföring

Läs mer

Halvledare. Periodiska systemet (åtminstone den del som är viktig för en halvledarfysiker)

Halvledare. Periodiska systemet (åtminstone den del som är viktig för en halvledarfysiker) Halvledare Halvledare Halvledare V V V Grupp V: Si, Ge Transistorer, CCD, solceller, indirekt bandgap Grupp -V: GaP, GaAs, ngaasp LED, lasrar, detektorer Grupp -N: GaN, ngan Blå (& vita) LED, UV lasrar

Läs mer

Laboration: pn-övergången

Laboration: pn-övergången LTH: FASTA TILLSTÅNDETS FYSIK Komponentfysik för E Laboration: pn-övergången Utförd datum Inlämnad datum Grupp:... Laboranter:...... Godkänd datum Handledare: Retur Datum: Återinlämnad Datum: Kommentarer

Läs mer

2: Räkna ut utsträckningen av rymdladdningsområdet i de två fallen i 1 för n-sidan, p-sidan och den totala utsträckningen.

2: Räkna ut utsträckningen av rymdladdningsområdet i de två fallen i 1 för n-sidan, p-sidan och den totala utsträckningen. Komponentfysik Uppgifter pn del 1 VT-15 Utredande uppgifter Ia) Rita skisser med nettoladdning, elektriskt fält och bandstruktur för en symmetrisk pn-övergång. b) Rita motsvarande skisser som i a), men

Läs mer

I princip gäller det att mäta ström-spänningssambandet, vilket tillsammans med kännedom om provets geometriska dimensioner ger sambandet.

I princip gäller det att mäta ström-spänningssambandet, vilket tillsammans med kännedom om provets geometriska dimensioner ger sambandet. Avsikten med laborationen är att studera de elektriska ledningsmekanismerna hos i första hand halvledarmaterial. Från mätningar av konduktivitetens temperaturberoende samt Hall-effekten kan en hel del

Läs mer

Ellära. Laboration 2 Mätning och simulering av likströmsnät (Thevenin-ekvivalent)

Ellära. Laboration 2 Mätning och simulering av likströmsnät (Thevenin-ekvivalent) Ellära. Laboration 2 Mätning och simulering av likströmsnät (Thevenin-ekvivalent) Labhäftet underskrivet av läraren gäller som kvitto för labben. Varje laborant måste ha ett eget labhäfte med ifyllda förberedelseuppgifter

Läs mer

FFY616. Halvledarteknik. Laboration 4 DIODER

FFY616. Halvledarteknik. Laboration 4 DIODER Halvledarteknik Laboration 4 DIODER Målet med denna laboration är att du skall lära dig hur olika typer av dioder fungerar och hur man kan använda dem Laborant: Godkänt den.. av. M. K. Friesel, I. Albinsson

Läs mer

Komponentfysik Introduktion. Kursöversikt. Hålltider --- Ellära: Elektriska fält, potentialer och strömmar

Komponentfysik Introduktion. Kursöversikt. Hålltider --- Ellära: Elektriska fält, potentialer och strömmar Komponentfysik 2014 Introduktion Kursöversikt Hålltider --- Ellära: Elektriska fält, potentialer och strömmar 1 Lite om mig själv Erik Lind (Erik.Lind@eit.lth.se) Lektor i nanoelektronik vid EIT sedan

Läs mer

Om inget annat anges så gäller det kisel och rumstemperatur (300K)

Om inget annat anges så gäller det kisel och rumstemperatur (300K) Komponentfysik Övning 3 VT-0 Om inget annat anges så gäller det kisel och rumstemperatur (300K) Utredande uppgifter: I: En diod har två typer av kapacitanser, utarmningskapacitans och diffusionskapacitans.

Läs mer

Om inget annat anges så gäller det kisel och rumstemperatur (300K)

Om inget annat anges så gäller det kisel och rumstemperatur (300K) Komponentfysik Uppgifter pn del VT-15 Om inget annat anges så gäller det kisel och rumstemperatur (300K Utredande uppgifter: I: En diod har två typer av kapacitanser, utarmningskapacitans och diffusionskapacitans.

Läs mer

Om inget annan anges gäller det rumstemperatur, d.v.s. T =300K, termisk jämvikt och värden som inte ges i uppgiften hämtas från formelsamlingen.

Om inget annan anges gäller det rumstemperatur, d.v.s. T =300K, termisk jämvikt och värden som inte ges i uppgiften hämtas från formelsamlingen. Komponentfysik Övningsuppgifter Halvledare VT-15 Om inget annan anges gäller det rumstemperatur, d.v.s. T =300K, termisk jämvikt och värden som inte ges i uppgiften hämtas från formelsamlingen. Utredande

Läs mer

Solar cells. 2.0 Inledning. Utrustning som används i detta experiment visas i Fig. 2.1.

Solar cells. 2.0 Inledning. Utrustning som används i detta experiment visas i Fig. 2.1. Solar cells 2.0 Inledning Utrustning som används i detta experiment visas i Fig. 2.1. Figure 2.1 Utrustning som används i experiment E2. Utrustningslista (se Fig. 2.1): A, B: Två solceller C: Svart plastlåda

Läs mer

Laboration Photovoltic Effect Diode IV -Characteristics Solide State Physics. 16 maj 2005

Laboration Photovoltic Effect Diode IV -Characteristics Solide State Physics. 16 maj 2005 Laboration Photovoltic Effect Diode I -Characteristics Solide State Physics Farid Bonawiede Michael Litton Johan Mörtberg fabo2@kth.se litton@kth.se jmor2@kth.se 16 maj 25 1 I denna laboration ska vi förklara

Läs mer

Utredande uppgifter. 2: Räkna ut utsträckningen av rymdladdningsområdet i de tre fallen i 1 för n-sidan, p-sidan och den totala utsträckningen.

Utredande uppgifter. 2: Räkna ut utsträckningen av rymdladdningsområdet i de tre fallen i 1 för n-sidan, p-sidan och den totala utsträckningen. Komponentfysik Övning VT-10 Utredande uppgifter Ia) Rita skisser med nettoladdning, elektriskt fält och bandstruktur för en symmetrisk pn-övergång. b) Rita motsvarande skisser som i (a), men med en pålagd

Läs mer

Laborationer i miljöfysik. Solcellen

Laborationer i miljöfysik. Solcellen Laborationer i miljöfysik Solcellen Du skall undersöka elektrisk ström, spänning och effekt från en solcellsmodul under olika förhållanden, och ta reda på dess verkningsgrad under olika förutsättningar.

Läs mer

Införa begreppen ström, strömtäthet och resistans Ohms lag Tillämpningar på enkla kretsar Energi och effekt i kretsar

Införa begreppen ström, strömtäthet och resistans Ohms lag Tillämpningar på enkla kretsar Energi och effekt i kretsar Kapitel: 25 Ström, motstånd och emf (Nu lämnar vi elektrostatiken) Visa under vilka villkor det kan finnas E-fält i ledare Införa begreppet emf (electromotoric force) Beskriva laddningars rörelse i ledare

Läs mer

Lösningar Tenta

Lösningar Tenta Lösningar Tenta 110525 1) a) Driftström: Elektriskt laddade partiklar (elektroner och hål) rör sig i ett elektriskt fält. Detta ger upphov till en ström som följer ohms lag. Diffusion: Elektroner / hål

Läs mer

Elektronik. Lars-Erik Cederlöf

Elektronik. Lars-Erik Cederlöf Elektronik LarsErik Cederlöf 1 Ledare och isolatorer Ledare för elektrisk ström har atomer med fria rörliga laddningar i yttersta skalet. Exempel på ledare är metallerna koppar och aluminium. Deras atomer

Läs mer

Laboration: Optokomponenter

Laboration: Optokomponenter LTH: FASTA TLLSTÅNDETS FYSK Komponentfysik för E Laboration: Optokomponenter Utförd datum nlämnad datum Grupp:... Laboranter:...... Godkänd datum Handledare: Retur Datum: Återinlämnad Datum: Kommentarer

Läs mer

LTK010, vt 2017 Elektronik Laboration

LTK010, vt 2017 Elektronik Laboration Reviderad: 20 december 2016 av Jonas Enger jonas.enger@physics.gu.se Förberedelse: Du måste känna till följande Kirchoffs ström- och spänningslagar Ström- och spänningsriktig koppling vid resistansmätning

Läs mer

Övningsuppgifter i Elektronik

Övningsuppgifter i Elektronik 1 Svara på följande frågor om halvledarkomponenter. Övningsuppgifter i Elektronik a) Vad är utmärkande för ett halvledarmaterial? b) Vad innebär egenledning och hur kan den förhindras? c) edogör för dopning

Läs mer

Laborationer i miljöfysik. Solcellen

Laborationer i miljöfysik. Solcellen Laborationer i miljöfysik Solcellen Du skall undersöka elektrisk ström, spänning och effekt från en solcellsmodul under olika förhållanden, och ta reda på dess verkningsgrad under olika förutsättningar.

Läs mer

Atomer, ledare och halvledare. Kapitel 40-41

Atomer, ledare och halvledare. Kapitel 40-41 Atomer, ledare och halvledare Kapitel 40-41 Centrala begrepp Kvantiserade energinivåer i atomer Elektronspinn och finstruktur Elektronen i en atom både banimpulsmoment, som karakteriseras av kvanttalet

Läs mer

Fotoelektriska effekten

Fotoelektriska effekten Fotoelektriska effekten Bakgrund År 1887 upptäckte den tyska fysikern Heinrich Hertz att då man belyser ytan på en metallkropp med ultraviolett ljus avges elektriska laddningar från ytan. Noggrannare undersökningar

Läs mer

Laboration 1 Elektriska kretsar Online fjärrstyrd laborationsplats Blekinge Tekniska Högskola (BTH)

Laboration 1 Elektriska kretsar Online fjärrstyrd laborationsplats Blekinge Tekniska Högskola (BTH) Laboration 1 Elektriska kretsar Online fjärrstyrd laborationsplats Blekinge Tekniska Högskola (BTH) Likspänningsexperiment Namn: Elektriska kretsar Online fjärrstyrd laborationsplats Blekinge Tekniska

Läs mer

Laborationsrapport Elektroteknik grundkurs ET1002 Mätteknik

Laborationsrapport Elektroteknik grundkurs ET1002 Mätteknik Laborationsrapport Kurs Lab nr Elektroteknik grundkurs ET1002 1 Laborationens namn Mätteknik Namn Kommentarer Utförd den Godkänd den Sign 1 Elektroteknik grundkurs Laboration 1 Mätteknik Förberedelseuppgifter:

Läs mer

Extrauppgifter Elektricitet

Extrauppgifter Elektricitet Extrauppgifter Elektricitet 701 a) Strömmen genom en ledning är 2,50 A Hur många elektroner passerar varje sekund genom ett tvärsnitt av ledningen? b) I en blixt kan strömmen vara 20 ka och pågå i 0,90

Läs mer

Laboration i Tunneltransport. Fredrik Olsen

Laboration i Tunneltransport. Fredrik Olsen Laboration i Tunneltransport Fredrik Olsen 9 maj 28 Syfte och Teori I den här laborationen fick vi möjlighet att studera elektrontunnling över enkla och dubbla barriärer. Teorin bakom är den som vi har

Läs mer

Välkomna till kursen i elektroniska material!

Välkomna till kursen i elektroniska material! Välkomna till kursen i elektroniska material! Information Innehåll: fasta tillståndets fysik med fokus på halvledarfysik. Dioder, solceller, transistorer... Lärare: Martin Leijnse (föreläsare, kursansvarig)

Läs mer

Om inget annan anges gäller det rumstemperatur, d.v.s. T =300K, termisk jämvikt och värden som inte ges i uppgiften hämtas från formelsamlingen.

Om inget annan anges gäller det rumstemperatur, d.v.s. T =300K, termisk jämvikt och värden som inte ges i uppgiften hämtas från formelsamlingen. Komponentfysik Övning 1 VT-10 Om inget annan anges gäller det rumstemperatur, d.v.s. T =300K, termisk jämvikt och värden som inte ges i uppgiften hämtas från formelsamlingen. Utredande frågor: I Definiera

Läs mer

CHALMERS TEKNISKA HÖGSKOLA Institutionen för Teknisk Fysik kl.: Sal : Hörsalar

CHALMERS TEKNISKA HÖGSKOLA Institutionen för Teknisk Fysik kl.: Sal : Hörsalar CHALMERS TEKNISKA HÖGSKOLA 2007-10-26 Institutionen för Teknisk Fysik kl.:14 00-18 00 Sal : Hörsalar Tentamen i FYSIK 2 för E (FFY143) Lärare: Stig-Åke Lindgren, tel 7723346, 0707238333, 874836 Hjälpmedel:

Läs mer

** Mät solstrålningen

** Mät solstrålningen ** Mät solstrålningen Kort version Prova att mäta Klar himmel Molnigt Mulet Mitt på dan Morgon och kväll Söder, öster, väster, norr Rakt upp eller vinklat 1 *** Mät solstrålningen Utförlig version Att

Läs mer

Den bipolä rä tränsistorn

Den bipolä rä tränsistorn Komponentfysik ESS3 Laborationshandledning av: Martin Berg Elvedin Memišević Den bipolä rä tränsistorn VT-213 Syfte Syftet med denna laboration är att studenten ska bekanta sig med den grundläggande fysiken

Läs mer

Elektronik grundkurs Laboration 1 Mätteknik

Elektronik grundkurs Laboration 1 Mätteknik Elektronik grundkurs Laboration 1 Mätteknik Förberedelseuppgifter: Uppgifterna skall lösas före laborationen med papper och penna och vara snyggt uppställda med figurer. a) Gör beräkningarna till uppgifterna

Läs mer

Elektronik 2018 EITA35

Elektronik 2018 EITA35 Elektronik 2018 EITA35 Föreläsning 12 Halvledare PN-diod Kretsanalys med diodkretsar. 1 Labrapport Gratisprogram för att rita kretsar: http://www.digikey.com/schemeit/ QUCS LTSPICE (?) 2 Föreläsningen

Läs mer

Kvantbrunnar Kvantiserade energier och tillstånd

Kvantbrunnar Kvantiserade energier och tillstånd Kvantbrunnar Kvantiserade energier och tillstånd Inledning Syftet med denna laboration är att undersöka kvantiseringen av energitillstånd i kvantbrunnar. Till detta används en java-applet som hittas på

Läs mer

Sammanfattning av kursen ETIA01 Elektronik för D, Del 1 (föreläsning 1-6)

Sammanfattning av kursen ETIA01 Elektronik för D, Del 1 (föreläsning 1-6) Sammanfattning av kursen ETIA01 Elektronik för D, Del 1 (föreläsning 1-6) Kapitel 1: sid 1 37 Definitioner om vad laddning, spänning, ström, effekt och energi är och vad dess enheterna är: Laddningsmängd

Läs mer

Kvantbrunnar -Kvantiserade energier och tillstånd

Kvantbrunnar -Kvantiserade energier och tillstånd Kvantbrunnar -Kvantiserade energier och tillstånd Inledning Syftet med denna laboration är att undersöka kvantiseringen av energitillstånd i kvantbrunnar. Till detta används en java-applet som hittas på

Läs mer

Extralab fo r basterminen: Elektriska kretsar

Extralab fo r basterminen: Elektriska kretsar Extralab fo r basterminen: Elektriska kretsar I denna laboration får du träna att koppla upp kretsar baserat på kretsscheman, göra mätningar med multimetern samt beräkna strömmar och spänningar i en krets.

Läs mer

Tentamen ETE115 Ellära och elektronik för F och N,

Tentamen ETE115 Ellära och elektronik för F och N, Tentamen ETE5 Ellära och elektronik för F och N, 2009 0602 Tillåtna hjälpmedel: formelsamling i kretsteori och elektronik. Observera att uppgifterna inte är ordnade i svårighetsordning. Alla lösningar

Läs mer

Välkomna till kursen i elektroniska material! Martin Leijnse

Välkomna till kursen i elektroniska material! Martin Leijnse Välkomna till kursen i elektroniska material! Martin Leijnse Information Innehåll: fasta tillståndets fysik med fokus på halvledarfysik. Dioder, solceller, transistorer... Lärare: Martin Leijnse (föreläsare,

Läs mer

Förberedelseuppgifter... 2

Förberedelseuppgifter... 2 Syftet med denna laboration är att låta studenten bekanta sig med systemet Elvis II+ samt ge känsla för de komponenter och fenomen som förekommer i likströmskretsar. I laborationen ingår övningar på att

Läs mer

Mats Areskoug. Solceller. Sveriges största solcellsanläggning på Ikea i Älmhult.

Mats Areskoug. Solceller. Sveriges största solcellsanläggning på Ikea i Älmhult. Elevhandledning Experiment i miljöfysik Mats Areskoug Solceller Sveriges största solcellsanläggning på Ikea i Älmhult. Inledning Solceller ger elektrisk ström när solen lyser på dem. De består av specialbehandlade

Läs mer

Q I t. Ellära 2 Elektrisk ström, kap 23. Eleonora Lorek. Ström. Ström är flöde av laddade partiklar.

Q I t. Ellära 2 Elektrisk ström, kap 23. Eleonora Lorek. Ström. Ström är flöde av laddade partiklar. Ellära 2 Elektrisk ström, kap 23 Eleonora Lorek Ström Ström är flöde av laddade partiklar. Om vi har en potentialskillnad, U, mellan två punkter och det finns en lämplig väg rör sig laddade partiklar i

Läs mer

Ett materials förmåga att leda elektrisk ström beror på två förutsättningar:

Ett materials förmåga att leda elektrisk ström beror på två förutsättningar: Bandmodellen Som vi såg i föreläsningen om atommodeller lägger sig elektronerna runt en atom i ett gasformigt ämne i väldefinierade energinivåer. Dessa kan vara svåra att beräkna, men är i allmänhet experimentellt

Läs mer

ETE115 Ellära och elektronik, vt 2013 Laboration 1

ETE115 Ellära och elektronik, vt 2013 Laboration 1 ETE115 Ellära och elektronik, vt 2013 Laboration 1 Sammanfattning Syftet med denna laboration är att ge tillfälle till praktiska erfarenheter av elektriska kretsar. Grundläggande mätningar görs på ett

Läs mer

2. Vad menas med begreppen? Vad är det för olikheter mellan spänning och potentialskillnad?

2. Vad menas med begreppen? Vad är det för olikheter mellan spänning och potentialskillnad? Dessa laborationer syftar till att förstå grunderna i Ellära. Laborationerna utförs på byggsatts Modern Elmiljö för Elektromekanik / Mekatronik. När du börjar med dessa laborationer så bör du ha läst några

Läs mer

KOMPONENTKÄNNEDOM. Laboration E165 ELEKTRO. UMEÅ UNIVERSITET Tillämpad fysik och elektronik Anton Holmlund Personalia:

KOMPONENTKÄNNEDOM. Laboration E165 ELEKTRO. UMEÅ UNIVERSITET Tillämpad fysik och elektronik Anton Holmlund Personalia: UMEÅ UNIVESITET Tillämpad fysik och elektronik nton Holmlund 1997-03-14 KOMPONENTKÄNNEDOM Laboration E165 ELEKTO Personalia: Namn: Kurs: Datum: Återlämnad (ej godkänd): ättningsdatum Kommentarer Godkänd:

Läs mer

Tentamen i Elektronik för F, 2 juni 2005

Tentamen i Elektronik för F, 2 juni 2005 Tentamen i Elektronik för F, juni 005 Tid: 83 Tillåtna hjälpmedel: Formelsamling i kretsteori, miniräknare CEQ: Fyll i enkäten efter det att du lämnat in tentan. Det går bra att stanna kvar efter 3.00

Läs mer

4:2 Ellära: ström, spänning och energi. Inledning

4:2 Ellära: ström, spänning och energi. Inledning 4:2 Ellära: ström, spänning och energi. Inledning Det samhälle vi lever i hade inte utvecklats till den höga standard som vi ser nu om inte vi hade lärt oss att utnyttja elektricitet. Därför är det viktigt

Läs mer

Laboration II Elektronik

Laboration II Elektronik 817/Thomas Munther IDE-sektionen Halmstad Högskola Laboration II Elektronik Transistor- och diodkopplingar Switchande dioder, D1N4148 Zenerdiod, BZX55/C3V3, BZX55/C9V1 Lysdioder, Grön, Gul, Röd, Vit och

Läs mer

Lektion 1: Automation. 5MT001: Lektion 1 p. 1

Lektion 1: Automation. 5MT001: Lektion 1 p. 1 Lektion 1: Automation 5MT001: Lektion 1 p. 1 Lektion 1: Dagens innehåll Electricitet 5MT001: Lektion 1 p. 2 Lektion 1: Dagens innehåll Electricitet Ohms lag Ström Spänning Motstånd 5MT001: Lektion 1 p.

Läs mer

Mät resistans med en multimeter

Mät resistans med en multimeter elab003a Mät resistans med en multimeter Namn Datum Handledarens sign Laboration Resistans och hur man mäter resistans Olika ämnen har olika förmåga att leda den elektriska strömmen Om det finns gott om

Läs mer

Vad är elektricitet?

Vad är elektricitet? Vad är elektricitet? Vad är elektricitet? Grundämnenas elektriska egenskaper avgörs av antalet elektroner i det yttersta skalet - valenselektronerna! Skol-modellen av en Kiselatom. Kisel med atomnumret

Läs mer

Spänning, ström och energi!

Spänning, ström och energi! Spänning, ström och energi! Vi lever i ett samhälle som inte hade haft den höga standard som vi har nu om inte vi hade lärt oss att utnyttja elektricitet. Därför är det viktigt att lära sig förstå några

Läs mer

Laboration 1: Likström

Laboration 1: Likström 1. Instrumentjämförelse Laboration 1: Likström Syfte och metod Vi undersöker hur ett instruments inre resistans påverkar mätresultatet. Vi mäter spänningar med olika instrument och inställningar, och undersöker

Läs mer

WORKSHOP: EFFEKTIVITET OCH ENERGIOMVANDLING

WORKSHOP: EFFEKTIVITET OCH ENERGIOMVANDLING WORKSHOP: EFFEKTIVITET OCH ENERGIOMVANDLING Energin i vinden som blåser, vattnet som strömmar, eller i solens strålar, måste omvandlas till en mera användbar form innan vi kan använda den. Tyvärr finns

Läs mer

Sammanfattning av kursen ETIA01 Elektronik för D, Del 1 (föreläsning 1-10)

Sammanfattning av kursen ETIA01 Elektronik för D, Del 1 (föreläsning 1-10) Sammanfattning av kursen ETIA0 Elektronik för D, Del (föreläsning -0) Kapitel : sid 37 Definitioner om vad laddning, spänning, ström, effekt och energi är och vad dess enheterna är: Laddningsmängd q mäts

Läs mer

Laborationsrapport. Kurs El- och styrteknik för tekniker ET1015. Lab nr. Laborationens namn Lik- och växelström. Kommentarer. Utförd den.

Laborationsrapport. Kurs El- och styrteknik för tekniker ET1015. Lab nr. Laborationens namn Lik- och växelström. Kommentarer. Utförd den. Laborationsrapport Kurs El- och styrteknik för tekniker ET1015 Lab nr 1 version 1.2 Laborationens namn Lik- och växelström Namn Kommentarer Utförd den Godkänd den Sign 1 Inledning I denna laboration skall

Läs mer

Tentamen i komponentfysik

Tentamen i komponentfysik Tentame komponentfysik 009-05-8 08 00-13 00 Hjälpmedel: TEFYMA, ordlista, beteckningslista, formelsamlingar och räknare. Max 5p, för godkänt krävs 10p. Om inget annat anges, så antag att det är kisel (Si),

Läs mer

Lab nr Elinstallation, begränsad behörighet ET1013 Likströmskretsar

Lab nr Elinstallation, begränsad behörighet ET1013 Likströmskretsar Laborationsrapport Kurs Elinstallation, begränsad behörighet ET1013 Lab nr 1 version 2.1 Laborationens namn Likströmskretsar Namn Kommentarer Utförd den Godkänd den Sign 1 Noggrannhet vid beräkningar Anvisningar

Läs mer

Halogenlampa Spektrometer Optisk fiber Laserdiod och UV- lysdiod (ficklampa)

Halogenlampa Spektrometer Optisk fiber Laserdiod och UV- lysdiod (ficklampa) Elektroner och ljus I den här laborationen ska vi studera växelverkan mellan ljus och elektroner. Kunskap om detta är viktigt för många tillämpningar men även för att förklara fenomen som t ex färgen hos

Läs mer

Undersökning av logiknivåer (V I

Undersökning av logiknivåer (V I dlab002a Undersökning av logiknivåer (V I Namn Datum Handledarens sign. Laboration Varför denna laboration? Vid såväl konstruktion som felsökning och reparation av digitala kretskort är det viktigt att

Läs mer

Föreläsning 2 - Halvledare

Föreläsning 2 - Halvledare Föreläsning 2 - Halvledare Historisk definition Atom Molekyl - Kristall Metall-Halvledare-Isolator Elektroner Hål Intrinsisk halvledare effekt av temperatur Donald Judd, untitled 1 Komponentfysik - Kursöversikt

Läs mer

Elektricitetslära och magnetism - 1FY808. Lab 3 och Lab 4

Elektricitetslära och magnetism - 1FY808. Lab 3 och Lab 4 Linnéuniversitetet Institutionen för fysik och elektroteknik Elektricitetslära och magnetism - 1FY808 Lab 3 och Lab 4 Ditt namn:... eftersom labhäften far runt i labsalen. 1 Laboration 3: Likström och

Läs mer

Undersökning av olinjär resistans

Undersökning av olinjär resistans elab00a Undersökning av olinjär resistans Namn Datum Handledarens sign. Laboration Olinjär resistans och hur den mäts I många kopplingar kan man betrakta ett motstånds resistans som konstant dvs. oberoende

Läs mer

Batteri. Lampa. Strömbrytare. Tungelement. Motstånd. Potentiometer. Fotomotstånd. Kondensator. Lysdiod. Transistor. Motor. Mikrofon.

Batteri. Lampa. Strömbrytare. Tungelement. Motstånd. Potentiometer. Fotomotstånd. Kondensator. Lysdiod. Transistor. Motor. Mikrofon. Batteri Lampa Strömbrytare Tungelement Motstånd Potentiometer Fotomotstånd Kondensator Lysdiod Transistor Motor Mikrofon Högtalare Ampèremeter 1 1. Koppla upp kretsen. Se till att motorns plus och minuspol

Läs mer

IE1206 Inbyggd Elektronik

IE1206 Inbyggd Elektronik IE1206 Inbyggd Elektronik F1 F3 F4 F2 Ö1 Ö2 PIC-block Dokumentation, Seriecom Pulsgivare I, U, R, P, serie och parallell KK1 LAB1 Pulsgivare, Menyprogram Start för programmeringsgruppuppgift Kirchhoffs

Läs mer

Tentamen i Komponentfysik ESS030, ETI240/0601 och FFF090

Tentamen i Komponentfysik ESS030, ETI240/0601 och FFF090 011-01-10 08 00-13 00 Tentamen i Komponentfysik ESS030, ETI40/0601 och FFF090 Hjälpmedel: TEFYMA, ordlista, beteckningslista, formelsamlingar och räknare. Max 5p, för godkänt krävs 10p. Om inget annat

Läs mer

LEGO Energimätare. Att komma igång

LEGO Energimätare. Att komma igång LEGO Energimätare Att komma igång Energimätaren består av två delar: LEGO Energidisplay och LEGO Energilager. Energilagret passar in i botten av energidisplayen. För att montera energilagret låter du det

Läs mer

I: Beskriv strömmarna i en npn-transistor i normal mod i de neutrala delarna av transistorn.

I: Beskriv strömmarna i en npn-transistor i normal mod i de neutrala delarna av transistorn. Komponentfysik Övning 4 VT-10 Utredande uppgifter: I: Beskriv strömmarna i en npn-transistor i normal mod i de neutrala delarna av transistorn. II: Beskriv de fyra arbetsmoderna för en npn-transistor.

Läs mer

BANDGAP 2009-11-17. 1. Inledning

BANDGAP 2009-11-17. 1. Inledning 1 BANDGAP 9-11-17 1. nledning denna laboration studeras bandgapet i två halvledare, kisel (Si) och galliumarsenid (GaAs) genom mätning av transmissionen av infrarött ljus genom en tunn skiva av respektive

Läs mer

Introduktion till halvledarteknik

Introduktion till halvledarteknik Introduktion till halvledarteknik Innehåll 7 Fälteffekttransistorer MOS-transistorn strömekvation MOS-transistorn kanal mobilitet Substrat bias effekt 7 Bipolar transistorn Introduktion Minoritets bärare

Läs mer

Föreläsning 1. Elektronen som partikel (kap 2)

Föreläsning 1. Elektronen som partikel (kap 2) Föreläsning 1 Elektronen som partikel (kap 2) valenselektroner i metaller som ideal gas ström från elektriskt fält mikroskopisk syn på resistans, Ohms lag diffusionsström Vår första modell valenselektroner

Läs mer

EXPERIMENTELLT PROBLEM 2 DUBBELBRYTNING HOS GLIMMER

EXPERIMENTELLT PROBLEM 2 DUBBELBRYTNING HOS GLIMMER EXPERIMENTELLT PROBLEM 2 DUBBELBRYTNING HOS GLIMMER I detta experiment ska du mäta graden av dubbelbrytning hos glimmer (en kristall som ofta används i polariserande optiska komponenter). UTRUSTNING Förutom

Läs mer

Mätning av Halleffekten och elektriska ledningsförmågan som funktion av temperaturen hos halvledarna InSb / Ge.

Mätning av Halleffekten och elektriska ledningsförmågan som funktion av temperaturen hos halvledarna InSb / Ge. Laborationsinstruktion laboration Halvledarfysik UPPSALA UNVERSTET delkurs Fasta tillståndets fysik 1 lokal 4319 innehåll delkurskod 1TG100 labkod HF UPPGFTER: Mätning av Halleffekten och elektriska ledningsförmågan

Läs mer

Introduktion till. fordonselektronik ET054G. Föreläsning 2

Introduktion till. fordonselektronik ET054G. Föreläsning 2 01-01-5 1 Introduktion till fordonselektronik ET054G Föreläsning Introduktion till fordonselektronik esistans i ledare ρ = A ρ = ledarens resistivitet l = ledarens längd A = ledarens tvärstittsarea A =

Läs mer

Sensorer och elektronik. Grundläggande ellära

Sensorer och elektronik. Grundläggande ellära Sensorer och elektronik Grundläggande ellära Innehåll Grundläggande begrepp inom mekanik Elektriskt fält och elektrisk potential Dielektrika och kapacitans Ström och strömtäthet Ohms lag och resistans

Läs mer

IF1330 Ellära KK1 LAB1 KK2 LAB2. tentamen

IF1330 Ellära KK1 LAB1 KK2 LAB2. tentamen F330 Ellära F/Ö F/Ö4 F/Ö2 F/Ö5 F/Ö3 Strömkretslära Mätinstrument Batterier Likströmsnät Tvåpolsatsen KK LAB Mätning av U och F/Ö6 F/Ö7 Magnetkrets Kondensator Transienter KK2 LAB2 Tvåpol mät och sim F/Ö8

Läs mer

Emtithal Majeed, Örbyhus skola, Örbyhus www.lektion.se

Emtithal Majeed, Örbyhus skola, Örbyhus www.lektion.se Emtithal Majeed, Örbyhus skola, Örbyhus www.lektion.se * Skillnader mellan radiorör och halvledarkomponenter 1.Halvledarkomponenter är mycket mindre I storlek 2.De är mycket tåliga för slag och stötar

Läs mer

Lösningsförslag Inlämningsuppgift 3 Kapacitans, ström, resistans

Lösningsförslag Inlämningsuppgift 3 Kapacitans, ström, resistans Inst. för fysik och astronomi 2017-11-26 1 Lösningsförslag Inlämningsuppgift 3 Kapacitans, ström, resistans Elektromagnetism I, 5 hp, för ES och W (1FA514) höstterminen 2017 (3.1) En plattkondensator har

Läs mer

FYD101 Elektronik 1: Ellära

FYD101 Elektronik 1: Ellära FYD101 Elektronik 1: Ellära Laboration 1: Grundläggande instrumenthantering Förberedelse: Du måste känna till följande Ström- och spänningsriktig koppling vid resistansmätning Hur ett digitalt instruments

Läs mer

Komponentfysik Introduktion. Kursöversikt. Varför Komponentfysik? Hålltider --- Ellära, Elektriska fält och potentialer

Komponentfysik Introduktion. Kursöversikt. Varför Komponentfysik? Hålltider --- Ellära, Elektriska fält och potentialer Komponentfysik 2012 Introduktion Kursöversikt Varför Komponentfysik? Hålltider Ellära, Elektriska fält och potentialer 1 Lite om mig själv Erik Lind (Erik.Lind@eit.lth.se) Civ. Ing. i Teknisk Fysik Doktorerade

Läs mer

Elektriska och elektroniska fordonskomponenter Föreläsning 2

Elektriska och elektroniska fordonskomponenter Föreläsning 2 01-01-5 1 Föreläsning esistans i ledare ρ = A ρ = ledarens resistivitet l = ledarens längd A = ledarens tvärstittsarea A = π r d = π 4 ρ Copyright 003 by Pearson Education, Inc. pper Saddle iver, New Jersey

Läs mer

Elektricitetslära och magnetism - 1FY808

Elektricitetslära och magnetism - 1FY808 Linnéuniversitetet Institutionen för datavetenskap, fysik och matematik Laborationshäfte för kursen Elektricitetslära och magnetism - 1FY808 Ditt namn:... eftersom labhäften far runt i labsalen. 1 1. Instrumentjämförelse

Läs mer

IDE-sektionen. Laboration 5 Växelströmsmätningar

IDE-sektionen. Laboration 5 Växelströmsmätningar 9428 IDEsektionen Laboration 5 Växelströmsmätningar 1 Förberedelseuppgifter laboration 4 1. Antag att vi mäter spänningen över en okänd komponent resultatet blir u(t)= 3sin(ωt) [V]. Motsvarande ström är

Läs mer

IE1206 Inbyggd Elektronik

IE1206 Inbyggd Elektronik IE1206 Inbyggd Elektronik F1 F3 F4 F2 Ö1 Ö2 PIC-block Dokumentation, Seriecom Pulsgivare I, U, R, P, serie och parallell KK1 LAB1 Pulsgivare, Menyprogram Start för programmeringsgruppuppgift Kirchhoffs

Läs mer

4:7 Dioden och likriktning.

4:7 Dioden och likriktning. 4:7 Dioden och likriktning. Inledning Nu skall vi se vad vi har för användning av våra kunskaper från det tidigare avsnittet om halvledare. Det är ju inget självändamål att tillverka halvledare, utan de

Läs mer