Om inget annat anges så gäller det kisel och rumstemperatur (300K)

Save this PDF as:
 WORD  PNG  TXT  JPG

Storlek: px
Starta visningen från sidan:

Download "Om inget annat anges så gäller det kisel och rumstemperatur (300K)"

Transkript

1 Komponentfysik Övning 3 VT-0 Om inget annat anges så gäller det kisel och rumstemperatur (300K) Utredande uppgifter: I: En diod har två typer av kapacitanser, utarmningskapacitans och diffusionskapacitans. a) Beskriv orsaken till de båda och förklara varför det rör sig om småsignalkapacitanser? b) Under vilka spänningsförhållanden finns de och hur ändrar de sig med ändrad spänning? II: Beskriv vad som händer vid minoritetsladdningsbärarinjektion och vad den beror på. III: Hur kan man från en mätning av kapacitansen för en asymmetrisk diod som funktion av backspänning bestämma den inbyggda spänningen och dopningskoncentrationerna? IV: Beskriv begreppen: Rekombinationsström, Diffusionsström och högnivåinjektion. Vid vilken framspänning har man de olika strömmarna och vilken idealitetsfaktor har man i de tre fallen? Beräkningsuppgifter: : Hur stor är elektron- och hålkoncentrationerna i kisel dopat med arsenik (As)? Anta att laddningsbärarna är homogent utspridda. Vilken volym upptar varje laddningsbärare och hur stor sidolängd har en motsvarande kub? Koncentrationen av As är: a),00 0 m -3 b),00 4 m -3 c),00 7 m -3 : Var ligger Fermi-nivån relativt ledningsbandskanten, E C, i de tre fallen ovan. 3: Betrakta en kort p + n-diod av kisel (= diod med kort bas). Den har följande dopningskoncentrationer, p-sidan: N A =,00 5 m -3 och n-sidan: N D =,00 m -3, utsträckningen på p-sidan är W p =,0 μm och på n-sidan är W n =30 μm, arean är,0 cm, idealitetsfaktorn är m=. Vid U a =0,40 V: a) Hur stor är den inbyggda spänningen, U bi? b) Hur stort är utarmningsområdets utsträckning på n-sidan? c) Hur stort är utarmningsområdets utsträckning på p-sidan? d) Hur stor är den injicerade laddningsbärarkoncentrationen på n-sidan? e) Hur stor är den injicerade laddningsbärarkoncentrationen på p-sidan? f) Hur stor är strömmen genom kontakterna, d.v.s. strömmen genom dioden? g) Hur stor är utarmningskapacitansen? h) Hur stor är diffusionskapacitansen? i) Jämför storleken på de två kapacitanserna. Vilken kommer att dominera vid högre framspänning? j) Hur stor blir de två kapacitanserna om vi ökar framspänningen till 0,5 V. Uppdaterad: () Anders Gustafsson

2 Komponentfysik Övning 3 VT-0 4: Betrakta en n + p-diod av kisel med area på,00-4 cm. En mätning av kapacitansen som funktion av pålagd spänning gav följande värden på kapacitansen: C (pf) 0,37 0,58 0,7 0,95 U a (V) -,00-0,40 0,00 0,30 a) Plotta /C som funktion av U a. b) Använd kurvan i (a) för att bestämma den inbyggda spänningen U bi. c) Använd även kurvan för att bestämma dopningskoncentrationen på p-sidan. d) Bestäm dopningskoncentrationen på n-sidan. 5: En kiseldiod har dopningskoncentrationerna N A =4,40 0 m -3, N D =4,0 3 m -3. U bi = 0,73 V. Utsträckningen av de neutrala områdena är W n = W p = 0μm så antag att det rör sig om en kort diod. Arean är 0,5 cm. a) Hur stora är minoritetsladdningsbärarkoncentrationerna p n 0 respektive n p0? b) Vilken framspänning krävs för att öka minoritetsladdningsbärarkoncentrationen på p-sidan till samma som dopningskoncentrationen, N A, på p-sidan? c) Med framspänningen i (b), hur stor är hål- respektive elektronströmmen? d) Det rör sig om en n + p-diod. Kan vi anta att elektronströmmen dominerar? e) Antag att elektronströmmen genom det neutrala området på n-sidan är en ren driftström. Hur stort spänningsfall får vi över n-sidan för strömmen i (c)? f) Hur stor ström behöver vi genom dioden för att få ett spänningsfall som är respektive 5% av U bi? g) Vilken framspänning krävs för att uppnå dessa två strömmar? h) Är dessa framspänningar rimliga? Uppdaterad: () Anders Gustafsson

3 Komponentfysik Facit till övning 3 VT-0 a) För N D =,00 0 m -3 : n =,00 0 m -3 och p = 0 m -3 V n = 0,00 μm 3 och L n 0, μm, V p = 0-3 mm 3 och L p = 00 μm b) För N D =,00 4 m -3 : n =,00 4 m -3 och p = 0 8 m -3 V n = 000 nm 3 och L n 0 nm, V p = 0 mm 3 och L p =, mm c) För N D =,00 7 m -3 : n =,00 7 m -3 och p = 0 5 m -3 V n =,0 nm 3 och L n,0 nm, V p = 0 cm 3 och L p =, cm a) E F = -0,3 ev b) E F = -0,08 ev c) E F = 0,0 ev 3a) U bi = 0,83 V b) d n = 0,75 μm c) d p = 75 pm d) p n (d n ) = 5,0 7 m -3 e) n p (-d p ) = 5,0 3 m -3 f) I p = 0,3mA och I n =,9 μa g) C j = 4 nf h) C diff = 4,7 nf j) C j = 6 nf och C diff = 0 nf 4b) U bi = 0,7 V. c) N A = 4,40 0 m -3 d) N D =,80 3 m -3 5a) p n0 =,40 8 m -3 och n p0 =,30 m -3 b) U a = 0,55V c) I n =, A och I p = 0,44 ma d) Elektronbidraget till strömmen är ca 800 ggr större än hålbidraget, vilket gör att vi kan försumma hålströmmen. e) U n = 8μV f) I % = 0,3 ka och I 5% =,6 ka g) U a% = 0,70 V och U a 5% = 0,74 V h) U a% < U bi och därför teoretiskt möjligt. U a 5% > U bi och därför teoretiskt omöjligt. Uppdaterad: () Anders Gustafsson

4 Ia) Kapacitans betyder en ändring av laddning med spänning. Utarmningskapacitansen uppstår p.g.a. rymdladdningen. Positiv laddning på n-sidan och negativ laddnings på p-sidan i ett arrangemang som liknar en plattkondensator. Det som skiljer utarmningskapacitansen från plattkondensatorn är att laddningen på plattkondensatorn är fria laddningar, medan utarmningskapacitansen består av rymdladdning, där en ändring av laddningen sker genom att ändra av utsträckningen av rymdladdningsområdet, vilket betyder att avståndet i plattkondensatorn ändras. Det i sin tur innebär att kapacitansen ändras med spänningen över dioden. Kapacitansen ökar med framspänning (kortare utarmningsområde) och minskar med backspännings (längre utarmningsområde). Diffusionskapacitansen uppstår p.g.a. överskottsladdningen i de neutrala delarna av dioden. I och med att laddningen ändras med framspänning så ger det en kapacitans. Eftersom överskottladdningen bara finns vid framspänning så finns bara difusionskapacitansen vid framspänning. En skillnad mot den vanliga kapacitansen är att det rör sig om en obalanserad ladding, som i en vanlig plattkondensator. b) Utarmningskapacitansen finns vid alla spänningar över dioden, den minskar med backspänning och ökar med framspänning. Diffusionskapacitansen finns bara vid framspänning och ökar med framspänning. Eftersom den ökar snabbare än utarmningskapacitansen så kommer den att dominera vid större framspänningar. II: Kring utarmningsområdet i en pn-övergång finns det kraftiga gradienter av laddningsbärare. Utan pålagd spänning så håller den inbyggda spänningen isär områdena med olika laddningsbärarkoncentrationer. När man lägger på en framspänning på dioden så minskar man barriären och en del av de många majoritetsladdningsbärarna på den ena sidan kan ta sig över till andra sidan övergången där dom är minoritetsladdningsbärare. Det är just den här processen som kallas minoritetsladdningsbärarinjektion. III: Utarmningskapacitansen har ett omvänt linjär beroende (ett genom utsträckningen) på rymdladdningsområdets utsträckning och utsträckningen beror på roten ur skillnaden mellan den inbyggda spänningen och den pålagda spänningen. Det gör att om man plottar ett genom kapacitansen i kvadrat [/C ] som funktion av pålagd spänning så får man dopningskoncentrationen på den lågdopade sidan ur lutningen på den räta linjen som plotten bör vara. Om man extrapolerar linjen tills den skär x-axeln. Skärningen med x-axeln händer när den inbyggda spänningen är lika stor som den pålagda, vilket alltså ger den inbyggda spänningen. Har man den inbyggda spänningen och en av dopningskoncentrationerna så kan man få fram den andra dopningkoncentrationen. IV: Den vanliga strömmen i dioden är en ren diffusionsström, som beror på hur de injicerade minoritetsladdningsbärarna diffunderar när de väl kommer in i de neutrala delarna av dioden. Här har man en idealitetsfaktor på ett (m = ). Vid låga framspänningar så kommer alla laddningsbärare som injiceras i rymdladdningsområdet att rekombinera med laddningsbärare från andra sidan. Inga laddningsbärare tar sig över rymdladdningsområdet. Här har man en idealitetsfaktor på två (m = ). Vid höga framspänningar så är den injicerade minoritetsladdningsbärarkoncentrationen i samma storleksordning som dopningskoncentrationen. Det rör sig inte längre om en ren diffusionsström i den neutrala delen av dioden, utan en kombination av diffusions- och driftström. Det påverkar idealitetsfaktorn som nu är två (m = ). Uppdaterad: () Anders Gustafsson

5 : Arsenik har en valenselektron mer än kisel, vilket betyder att det är en n i =,00 6 m -3 donator. I de flesta fall är majoritetsladdningsbärarkoncentrationen lika med koncentrationen av dopatomer. I det här fallet gäller att n = N D. För att räkna fram koncentrationen av laddningsbärare behöver vi massverkans lag: n p = n i, d.v.s. p = n i N D. Volymen som en laddningsbärare upptar ges av inversen på koncentrationen: V = n och längden på motsvarande kub ges av tredje roten ur volymen: L = 3 V. a) För N D =,00 0 m -3 är n =,00 0 m -3 och p = =0 m -3 V n = 0 0 =, m 3 = 0,00 μm 3 och L n = 3 0,0 = 0,544 = 0, μm V p = 0 =, m 3 = 0-3 mm 3 och L p = = 0,00 mm = 00 μm b) För N D =,00 4 m -3 : n =,00 4 m -3 och p = =,008 m -3 V n = 0 4 =,0 0-4 m 3 = 000 nm 3 3 och L n = 000 = 0 nm V p = 0 8 =,0 0-8 m 3 = 0 mm 3 och 3 L p = 0 =,544 =, mm c) För N D =,00 7 m -3 : n =,00 7 m -3 och p = = 05 m -3 V n = 0 7 =, m 3 =,0 nm 3 3 och L n = =,0 nm V p = 0 5 =,0 0-5 m 3 = 0 cm 3 och 3 L p = 0 =,544 =, cm I det sista fallet behöver vi alltså en volym på över 0 cm 3 för hitta ett enda hål Uppdaterad: () Anders Gustafsson

6 : Fermi-nivån ges av: n i =,00 6 m -3 E g =, ev E F = E C + E V + kt ln N D n kt = 0,059 ev i om vi använder ledningsbandskanten, E C, som referens kan vi skriva om formeln som: E F = kt ln N D n i E g (relativt E c ),0 a) N D =,00 0 m : E F = 0,059 ln 0 6, = -0,3645 = -0,3 ev, d.v.s. 0,3 ev under ledningsbandkanten.,0 b) N D =,00 4 m : E F = 0,059 ln 0 6, = -0,07790 = -0,08 ev,0 c) N D =,00 7 m : E F = 0,059 ln 0 6, = 0,000 = 0,0 ev, d.v.s. Ferminivån ligger över ledningsbandskanten. Det är en konsekvens av den mycket höga dopningskoncentrationen a) Den inbyggda spänningen, U bi, ges av dopningskoncentrationerna: U bi = U t ln N A N D n i U bi = 0,059 ln = 0,8349 = 0,83 V b) Utarmningsområdets utsträckning på n-sidan i en p + n-diod med pålagd spänning ges av:d n = r 0 U bi U a ( ) e N D. d n =,8 8,85 0 ( 0,8349 0,4) 0,75 μm, = 7, m = n i =,00 6 m -3 E g =, ev U t = 0,059 ev N A =,00 5 m -3 N D =,00 m -3 W p =,0 μm = 0-6 m W n = 30 μm = 30-5 m A =,00-4 m m = μ p = 0,35 m /s μ n = 0,045 m /s U a = 0,40 V r =,8 0 = 8,850 - F/m e =,600-9 As Uppdaterad: () Anders Gustafsson

7 c) I en p + n-diod kan utsträckningen av utarmningsområdet på den högdopade p-sidan fås fram från utsträckningen på n-sidan och dopningskoncentrationerna: d p = d n N D N A d p = 0, = 7, μm = 75 pm Vilket är mycket mindre än d n. Vi kan därför försumma utsträckningen på p-sidan d) Den injicerade laddningsbärarkoncentrationen på n-sidan ges av injektionslagen, för hål: p n (d n ) = n i N D e U a U t 0,4 p n (d n ) = 03 e 0,059 = 5, = 5,0 7 m -3 0 e) Den injicerade laddningsbärarkoncentrationen på p-sidan ges också av injektionslagen, för elektroner den här gången: n p (d p ) = n i U a U t N A e 0,4 p n (-d p ) = 03 e 0,059 = 5, = 5,0 3 m f) Strömmen beror på både elektron och hålbidragen till strömmen. I en p + n-diod förutsätter man normalt att elektronbidraget är försumbart. För säkerhets skull testar vi det i beräkningen. I p = e A U t μ p n i U a U e t W n N D och I n = e A U t μ n n U a i U e t W p N A I p =, ,059 0, e 0,4 0, = 3, A = 0,3 ma I n =, ,059 0, e 0,4 0, =, A =,9 μa Vi ser att I p >> I n och strömmen beror enbart på hålbidraget. g) Utarmningskapacitansen hos en p + n-diod ges av: C j = r 0 A d n C j =,8 8, , =, F = 4 nf Uppdaterad: () Anders Gustafsson

8 h) Diffusionskapacitansen beror på derivatan av strömmen i dioden och finns i princip bara i framriktningen. För en p + n-diod handlar det om hålströmmen: C diff = I p U W n t μ p C diff = 3,7 04 0,059 ( 30 5 ) 0,045 = 4, F = 4,7 nf i) Båda kapacitanserna är ungefär lika stora. När vi ökar spänningen så kommer I att öka exponentiellt [exp(u a /U t )] och därmed kommer C diff att öka exponentiellt. Samtidigt kommer d n att minska [ U bi U a ], men betydligt långsammare. C j ökar därför, men betydligt långsammare än C diff, vilket leder till att den senare dominerar vid större framspänningar. j) För att räkna fram kapacitanserna vid en framspänning av 0,5 V behöver vi kombinera ett par formler: C j = r 0 A där d n = r 0 ( U bi U a ), vilket ger: C j = r 0 A e N D d n e N D ( U bi U a ) C j =,8 8, ( ), ( 0,8349 0,5) =, F = 6 nf På samma sätt för diffusionskapacitansen: C diff = I p U W n där: t μ p I p = e A U t μ p n i U a U e t W n N D, vilket ger: C diff = e A n i U a W n U e t U t N D C diff =, ,5 0,0590 e 0,059 =, F = 0, μf Dessa bekräftar resonemanget om kapacitanserna i (i) Uppdaterad: () Anders Gustafsson

9 4 Kapacitansen vid backspänning och vid små framspänningar av en n + p-diod ges av utarmningskapacitansen: d p = C j = r 0 A d p där r 0 ( U bi U a ), vilket ger: e N A C j = r 0 A e N A. Vi kan skriva om det ( U bi U a ) som: C = ( U bi U a ) j r 0 A. Det gör att om e N A vi plottar /C som funktion av U a så bör vi få en rät linje med en negativ lutning som beror på N D. Linjen kommer dessutom att skära x-axeln vid U bi. /c VU aa a) Plotta /C som funktion av U a och anpassa en rät linje genom mätpunkterna. n i = 0 6 m -3 A =,00-8 m r =,8 0 = 8,850 - F/m e =,600-9 As b) Vi använder linjen i (a) för att bestämma den inbyggda spänningen, U bi. Linjen skär x-axeln i punkten U bi. Ur diagrammet kan vi bestämma skärningspunkten till 0,7 V. c) Använd även linjen för att bestämma dopningen på n-sidan. Lutningskoefficienten på linjen är: = r 0 A => N A = e N A r 0 A e Ur kurvan får vi lutningen =,70 4 V/As och det gör att vi kan lösa ut N A : N A =,8 8, ,60 0 9,7 0 4 = 40 0 m -3 ( ) = 4, = d) Med kännedom om den inbyggda spänningen och acceptorkoncentrationen på p-sidan kan vi räkna ut donatorkoncentrationen på n-sidan genom att skriva om ekvationen för den inbyggda spänningen: N D = n i N A e U bi U t ,7 N D = 4,4 0 0 e 0,059 =, = 0 3 m -3 Koncentrationerna med N D >>N A är konsistent med en n + p-diod. Uppdaterad: () Anders Gustafsson

10 5a) Minoritetsladdningsbärarkoncentrationen ges av dopkoncentrationen och massverkans lag: p n 0 = n i och n p0 = n i p n 0 = 03 4,0 3 =, =,40 8 m -3 n p0 = 03 4,40 0 =,77 0 =,30 m -3 N D N A : n i = 0 6 m -3 U t = 0,059 ev N A = 4,40 0 m -3 N D = 4,0 3 m -3 W p = 0 μm = 0-5 m W n = 0 μm = 0-5 m A = 50-5 m μ p = 0,045 m /Vs μ n = 0,35 m /Vs b) För att få fram spänningen som krävs för att lyfta minoritetsladdningsbärarkoncentrationen på p-sidan till dopkoncentrationen behöver skiva om injektionslagen: n p (d p ) = n i U t n p (d p ) = N A till U a = U t ln N A. n i 4,4 00 U a = 0,059 ln 0 6 = 0,55384 = 0,55 V e( Ua ), där N A c) Elektronströmmen ges av den vanliga strömmen för en n + p-diod: I n = e A U t μ n n i e( Ua U t ). W p N A I n =, ,059 0, ,4 0 0 e( 0,55 0,059) =,33 =, A Hålströmmen ges av samma uttryck som strömmen för en p + n-diod: I p = e A U t μ p n i e( Ua U t ) W n N D I n =, ,059 0, ,0 3 e ( 0,55 0,059) = 4, A = = 0,44 ma d) Kvoten mellan elektronströmmen och hålströmmen i det här fallet är:, = 795,5. det gör att vi definitivt kan bortse från hålbidraget till strömmen i dioden. 4 4,4 0 Alternativt kan man ta kvoten mellan ekvationerna för de två strömmarna. Eftersom de båda är snarlika så blir kvoten ganska enkel: I n I p I n I p = μ n N D μ p N A. Med insatta värden blir det: 0,35 4,03 = = 795,5 Det är samma resultat som kvoten mellan de två strömmarna i 0 0,045 4,4 0 uppgift (c). Uppdaterad: () Anders Gustafsson

11 e) Spänningsfallet för elektronströmmen över det neutrala området på n-sidan ges av ohms lag: U n = R n I n = W n I n A = W n I n A = W n I n e μ n N D A 0 5, U n =, ,35 4, =, V = 8 μv f) Strömmen genom dioden som motsvarar ett spänningsfall över den neutrala delen av n-sidan som är respektive 5 % av U bi fås också genom ohms lag: I x = x U bi = x U bi e μ n N D A R n W n I % = 0,0 0,73, ,35 4, = 33,648 A = 0,3 ka I 5% = 0,05 0,73, ,350 4, = 68,4 A =,6 ka g) För at få fram framspänningarna som ger strömmarna i (e) måste vi skriva om formeln för W p N A I n strömmen i (c): U a = U t ln e A U t μ n n + i 0 5 4, , U a% = 0,059 ln, = 0,698 = 0,70 V 3 0,059 0, , , U a 5% = 0,059 ln, = 0,7398 = 0,74 V 3 0,059 0,35 0 h) U a% är teoretiskt möjligt eftersom spänningen är lägre än U bi. Det kräver en spänning över diodens kontakter som är (U a +U n ): 0, ,00,73 = 0,7 V, vilket inte är betydligt högre den spänning som ligger över själva övergången. Det gör att vi kan bortse från spänningsfallet över de neutrala områdena. U a 5% är omöjligt eftersom spänningen över själva övergången i så fall behöver vara högre än U bi. Vi kan alltså inte få den strömmen ur dioden genom injektion. Uppdaterad: () Anders Gustafsson

2: Räkna ut utsträckningen av rymdladdningsområdet i de två fallen i 1 för n-sidan, p-sidan och den totala utsträckningen.

2: Räkna ut utsträckningen av rymdladdningsområdet i de två fallen i 1 för n-sidan, p-sidan och den totala utsträckningen. Komponentfysik Uppgifter pn del 1 VT-15 Utredande uppgifter Ia) Rita skisser med nettoladdning, elektriskt fält och bandstruktur för en symmetrisk pn-övergång. b) Rita motsvarande skisser som i a), men

Läs mer

Laboration: pn-övergången

Laboration: pn-övergången LTH: FASTA TILLSTÅNDETS FYSIK Komponentfysik för E Laboration: pn-övergången Utförd datum Inlämnad datum Grupp:... Laboranter:...... Godkänd datum Handledare: Retur Datum: Återinlämnad Datum: Kommentarer

Läs mer

Tentamen i Komponentfysik ESS030, ETI240/0601 och FFF090

Tentamen i Komponentfysik ESS030, ETI240/0601 och FFF090 011-01-10 08 00-13 00 Tentamen i Komponentfysik ESS030, ETI40/0601 och FFF090 Hjälpmedel: TEFYMA, ordlista, beteckningslista, formelsamlingar och räknare. Max 5p, för godkänt krävs 10p. Om inget annat

Läs mer

Lösningar Tenta

Lösningar Tenta Lösningar Tenta 110525 1) a) Driftström: Elektriskt laddade partiklar (elektroner och hål) rör sig i ett elektriskt fält. Detta ger upphov till en ström som följer ohms lag. Diffusion: Elektroner / hål

Läs mer

Föreläsning 9 Bipolära Transistorer II

Föreläsning 9 Bipolära Transistorer II Föreläsning 9 Bipolära Transistorer II Funktion bipolär transistor Småsignal-modell Hybrid-p 1 Komponentfysik - Kursöversikt Bipolära Transistorer pn-övergång: kapacitanser Optokomponenter pn-övergång:

Läs mer

Komponentfysik ESS030. Den bipolära transistorn

Komponentfysik ESS030. Den bipolära transistorn Komponentfysik ESS030 Den bipolära transistorn T- 2016 Syfte Syftet med denna laboration är att studenten ska bekanta sig med den grundläggande fysiken i en bipolär transistor. Det fundamentala byggblocket

Läs mer

Föreläsning 2 - Halvledare

Föreläsning 2 - Halvledare Föreläsning 2 - Halvledare Historisk definition Atom Molekyl - Kristall Metall-Halvledare-Isolator lektroner Hål Intrinsisk halvledare effekt av temperatur 1 Komponentfysik - Kursöversikt Bipolära Transistorer

Läs mer

Föreläsning 2 - Halvledare

Föreläsning 2 - Halvledare Föreläsning 2 - Halvledare Historisk definition Atom Molekyl - Kristall Metall-Halvledare-Isolator Elektroner Hål Intrinsisk halvledare effekt av temperatur Donald Judd, untitled 1 Komponentfysik - Kursöversikt

Läs mer

När man förklarar experiment för andra finns det en bra sekvens att följa:

När man förklarar experiment för andra finns det en bra sekvens att följa: Den inledande teoridelen ska läsas av alla studenter före laborationstillfället. Tänk igenom och lös förberedelseuppgifterna innan labben! De mest relevanta kapitlena i kompendiet är kapitel 6 och 7 om

Läs mer

När man förklarar experiment för andra finns det en bra sekvens att följa:

När man förklarar experiment för andra finns det en bra sekvens att följa: Den inledande teoridelen ska läsas av alla studenter före laborationstillfället. Tänk igenom och lös förberedelseuppgifterna innan labben det kommer ni att ha nytta av. De mest relevanta kapitlena i kompendiet

Läs mer

Optiska och elektriska egenskaper hos pn- övergången

Optiska och elektriska egenskaper hos pn- övergången FASTA TILLSTÅNDETS FYSIK och ELEKTRONISKA MATERIAL 2013 Optiska och elektriska egenskaper hos pn- övergången Den inledande teoridelen ska läsas av alla studenter före laborationstillfället. Tänk igenom

Läs mer

Föreläsning 1. Metall: joner + gas av klassiska elektroner. l = v th =1/ Materialegenskaper

Föreläsning 1. Metall: joner + gas av klassiska elektroner. l = v th =1/ Materialegenskaper Föreläsning 1 Vi gick igenom kapitel 2.1 och (nästan hela) 2.2. Vi betraktade en mycket enkel modell av en metall, där valenselektronerna antas bilda en klassisk gas. Vid ändliga temperaturer rör sig elektronerna

Läs mer

Föreläsning 1. Metall: joner + gas av klassiska elektroner. e m Et. m dv dt = ee v(t) =v(0) 1 2 mv2 th = 3 2 kt. Likafördelningslagen:

Föreläsning 1. Metall: joner + gas av klassiska elektroner. e m Et. m dv dt = ee v(t) =v(0) 1 2 mv2 th = 3 2 kt. Likafördelningslagen: Föreläsning 1 Vi började med en väldigt kort repetition av några grundbegrepp inom ellära. Sedan gick vi igenom kapitel 2.1 och började med kapitel 2.2. Vi betraktade en mycket enkel modell av en metall,

Läs mer

Föreläsning 13 Fälteffekttransistor III

Föreläsning 13 Fälteffekttransistor III Föreläsning 13 Fälteffekttransistor III pmo måsignal FET A, f t MO-Kondensator 014-05-19 Föreläsning 13, Komponentfysik 014 1 Komponentfysik - Kursöversikt Bipolära Transistorer pn-övergång: kapacitanser

Läs mer

Föreläsning 11 Fälteffekttransistor II

Föreläsning 11 Fälteffekttransistor II Föreläsning 11 Fälteffekttransistor Fälteffekt Tröskelspänning Beräkning av strömmen Storsignal, D Kanallängdsmodulation Flatband-shift pmosfet 013-05-03 Föreläsning 11, Komponentfysik 013 1 Komponentfysik

Läs mer

Labb-PM MCC086 Mikroelektronik 2016

Labb-PM MCC086 Mikroelektronik 2016 Labb-PM MCC086 Mikroelektronik 2016 Syfte med labben: Att få praktisk och experimentell erfarenhet av mätningar på pn-dioden och MOSFET, samt uppleva komponenternas egenskaper. Mäta på dioder och transistorer

Läs mer

Komponentfysik Introduktion. Kursöversikt. Varför Komponentfysik? Hålltider --- Ellära, Elektriska fält och potentialer

Komponentfysik Introduktion. Kursöversikt. Varför Komponentfysik? Hålltider --- Ellära, Elektriska fält och potentialer Komponentfysik 2012 Introduktion Kursöversikt Varför Komponentfysik? Hålltider Ellära, Elektriska fält och potentialer 1 Lite om mig själv Erik Lind (Erik.Lind@eit.lth.se) Civ. Ing. i Teknisk Fysik Doktorerade

Läs mer

Praktisk beräkning av SPICE-parametrar för halvledare

Praktisk beräkning av SPICE-parametrar för halvledare SPICE-parametrar för halvledare IH1611 Halvledarkomponenter Ammar Elyas Fredrik Lundgren Joel Nilsson elyas at kth.se flundg at kth.se joelni at kth.se Martin Axelsson maxels at kth.se Shaho Moulodi moulodi

Läs mer

Föreläsning 9 Bipolära Transistorer II

Föreläsning 9 Bipolära Transistorer II Föreläsning 9 ipolära Transistorer Funktion bipolär transistor Småsignal-modell Hybrid-p Designparametrar 1 Komponentfysik - Kursöversikt ipolära Transistorer pn-övergång: kapacitanser Optokomponenter

Läs mer

Lablokalerna är i samma korridor som där ni gjorde lab1.

Lablokalerna är i samma korridor som där ni gjorde lab1. Den inledande teoridelen ska läsas av alla studenter före laborationstillfället. Tänk igenom och lös förberedelseuppgifterna innan labben det kommer ni att ha nytta av. De mest relevanta kapitel i kompendiet

Läs mer

Föreläsning 6: Opto-komponenter

Föreläsning 6: Opto-komponenter Föreläsning 6: Opto-komponenter Opto-komponent Interaktion ljus - halvledare Fotoledare Fotodiod / Solcell Lysdiod Halvledarlaser 1 Komponentfysik - Kursöversikt Bipolära Transistorer pn-övergång: kapacitanser

Läs mer

Den bipolä rä tränsistorn

Den bipolä rä tränsistorn Komponentfysik ESS3 Laborationshandledning av: Martin Berg Elvedin Memišević Den bipolä rä tränsistorn VT-213 Syfte Syftet med denna laboration är att studenten ska bekanta sig med den grundläggande fysiken

Läs mer

Kap 2. Elektroner som partikel

Kap 2. Elektroner som partikel Kap. Elektroner som partikel.1 ström, spridning och diffusion Antar elektronerna som en klassisk gas. I denna model har elektronerna ensdast kinetisk energi (termisk) kraften. Laddningsbärare kommer separeras

Läs mer

Ett materials förmåga att leda elektrisk ström beror på två förutsättningar:

Ett materials förmåga att leda elektrisk ström beror på två förutsättningar: Bandmodellen Som vi såg i föreläsningen om atommodeller lägger sig elektronerna runt en atom i ett gasformigt ämne i väldefinierade energinivåer. Dessa kan vara svåra att beräkna, men är i allmänhet experimentellt

Läs mer

Föreläsning 6: Opto-komponenter

Föreläsning 6: Opto-komponenter Föreläsning 6: Opto-komponenter Opto-komponent Interaktion ljus - halvledare Fotoledare Fotodiod / Solcell Lysdiod Halvledarlaser Dan Flavin 2014-04-02 Föreläsning 6, Komponentfysik 2014 1 Komponentfysik

Läs mer

Physics to Go! Part 1. 2:a på Android

Physics to Go! Part 1. 2:a på Android Physics to Go! Part 1 2:a på Android Halvledare Halvledare Halvledare V V V Grupp V: Si, Ge Transistorer, CCD, solceller, indirekt bandgap Grupp -V: GaP, GaAs, ngaasp LED, lasrar, detektorer Grupp -N:

Läs mer

Lösningsförslag till deltentamen i IM2601 Fasta tillståndets fysik. Onsdagen den 30 maj, Teoridel Ê Á Ê. B B T Ë k B T Ê. exp m BBˆ.

Lösningsförslag till deltentamen i IM2601 Fasta tillståndets fysik. Onsdagen den 30 maj, Teoridel Ê Á Ê. B B T Ë k B T Ê. exp m BBˆ. Lösningsförslag till deltentamen i IM60 Fasta tillståndets fysik Paramagnetism i ett tvånivåsystem Onsdagen den 30 maj, 0 Teoridel. a) För m S = - är m S z = -m B S z = +m B och energin blir U = -m B B

Läs mer

HALVLEDARE. Inledning

HALVLEDARE. Inledning HALVLEDARE Inledning Halvledare har varit den i särklass viktigaste materialkategorin för den högteknologiska utvecklingen under 1900-talet. Man kan också säga att inget annat exempel kan mer tydligt visa

Läs mer

Fler uppgifter på andragradsfunktioner

Fler uppgifter på andragradsfunktioner Fler uppgifter på andragradsfunktioner 1 I grafen nedan visas tre andragradsfunktioner. Bestäm a,b och c för p(x) = ax 2 + bx + c genom att läsa av lämpliga punkter i grafen. 10 5 1 3 5 Figur 1: 2 Vi har

Läs mer

Vad är elektricitet?

Vad är elektricitet? Vad är elektricitet? Vad är elektricitet? Grundämnenas elektriska egenskaper avgörs av antalet elektroner i det yttersta skalet - valenselektronerna! Skol-modellen av en Kiselatom. Kisel med atomnumret

Läs mer

Dagens tema är exponentialfunktioner. Egentligen inga nyheter, snarare repetition. Vi vet att alla exponentialfunktioner.

Dagens tema är exponentialfunktioner. Egentligen inga nyheter, snarare repetition. Vi vet att alla exponentialfunktioner. Dagens tema är exponentialfunktioner. Egentligen inga nyheter, snarare repetition. Vi vet att alla exponentialfunktioner f(x) = C a x kan, om man så vill, skrivas om, med basen e, till Vi vet också att

Läs mer

Repetition: Nätanalys för AC. Repetition: Elektricitetslära. Repetition: Halvledarkomponenterna

Repetition: Nätanalys för AC. Repetition: Elektricitetslära. Repetition: Halvledarkomponenterna FÖRELÄSNING 2 Repetition: Nätanalys för AC Repetition: Elektricitetslära Repetition: Halvledarkomponenterna Per Larsson-Edefors, Chalmers tekniska högskola EDA351 Kretselektronik 1(49) Repetition: Nätanalys

Läs mer

Kapacitansmätning av MOS-struktur

Kapacitansmätning av MOS-struktur Kapacitansmätning av MOS-struktur MOS står för Metal Oxide Semiconductor. Figur 1 beskriver den MOS vi hade på labben. Notera att figuren inte är skalenlig. I vår MOS var alltså: M: Nickel, O: hafniumoxid

Läs mer

Introduktion till halvledarteknik

Introduktion till halvledarteknik Introduktion till halvledarteknik Innehåll 4 Excitation av halvledare Optisk absorption och excitation Luminiscens Rekombination Diffusion av laddningsbärare Optisk absorption och excitation E k hv>e g

Läs mer

a e d) Hur varierar det elektriska fältet när vi går ett varv runt kretsen (medurs) från a till e (med batteriet inkopplat enligt figuren)?

a e d) Hur varierar det elektriska fältet när vi går ett varv runt kretsen (medurs) från a till e (med batteriet inkopplat enligt figuren)? Förord Många av övningsuppgifterna illustrerar eller ger nya aspekter på de teorier vi diskuterar snarare än att träna på användning av formler, även om det finns några sådana uppgifter också. De flesta

Läs mer

Vad är elektricitet?

Vad är elektricitet? Vad är elektricitet? Vad är elektricitet? Grundämnenas elektriska egenskaper avgörs av antalet elektroner i det yttersta skalet - valenselektronerna! Skol-modellen av en Kiselatom. Kisel med atomnumret

Läs mer

TSTE20 Elektronik 01/31/ :24. Nodanalys metod. Nodanalys, exempel. Dagens föreläsning. 0. Förenkla schemat 1. Eliminera ensamma spänningskällor

TSTE20 Elektronik 01/31/ :24. Nodanalys metod. Nodanalys, exempel. Dagens föreläsning. 0. Förenkla schemat 1. Eliminera ensamma spänningskällor 0/3/204 0:24 Nodanalys metod 0. Förenkla schemat. liminera ensamma TST20 lektronik 2. Jorda en nod 3. nför nodpotentialer 4. nför referensriktningar på strömmarna i nätet 5. Sätt upp ekvation för varje

Läs mer

3.9. Övergångar... (forts: Halvledare i kontakt)

3.9. Övergångar... (forts: Halvledare i kontakt) 3.9. Övergångar... (forts: Halvledare i kontakt) [Understanding Physics: 20.9-20.12] Utjämningen av Ferminivåerna för två ledare i kontakt med varandra gäller också för två halvledare i kontakt med varandra.

Läs mer

Tentamen ellära 92FY21 och 27

Tentamen ellära 92FY21 och 27 Tentamen ellära 92FY21 och 27 2014-06-04 kl. 8 13 Svaren anges på separat papper. Fullständiga lösningar med alla steg motiverade och beteckningar utsatta ska redovisas för att få full poäng. Poängen för

Läs mer

Föreläsning 11 Bipolära Transistorer I. BJT Bipolar JuncDon Transistor. FunkDon bipolär transistor. DC operadon, strömförstärkning

Föreläsning 11 Bipolära Transistorer I. BJT Bipolar JuncDon Transistor. FunkDon bipolär transistor. DC operadon, strömförstärkning Föreläsning 11 ipolära ransistorer J ipolar JuncDon ransistor FunkDon bipolär transistor Geometri npn D operadon, strömförstärkning OperaDonsmoder Early- effekten pnp transistor G. alla 1 deal transistor

Läs mer

Elektronik 2015 ESS010

Elektronik 2015 ESS010 Elektronik 2015 ESS010 Föreläsning 16 Halvledare PN-diod: likriktare Information inför tentamen Repetition 2015-10-21 Föreläsning 16, Elektronik 2015 1 USA Chicago Notre Dame New Orleans Tunneltransistorer

Läs mer

Tentamen i Matematik 1 HF aug 2012 Tid: Lärare: Armin Halilovic

Tentamen i Matematik 1 HF aug 2012 Tid: Lärare: Armin Halilovic Tentamen i Matematik HF70 6 aug 0 Tid: 3. 7. Lärare: Armin Halilovic Hjälpmedel: Formelblad (Inga andra hjälpmedel utöver utdelat formelblad.) Fullständiga lösningar skall presenteras på alla uppgifter.

Läs mer

Laboration Photovoltic Effect Diode IV -Characteristics Solide State Physics. 16 maj 2005

Laboration Photovoltic Effect Diode IV -Characteristics Solide State Physics. 16 maj 2005 Laboration Photovoltic Effect Diode I -Characteristics Solide State Physics Farid Bonawiede Michael Litton Johan Mörtberg fabo2@kth.se litton@kth.se jmor2@kth.se 16 maj 25 1 I denna laboration ska vi förklara

Läs mer

Funktioner. Räta linjen

Funktioner. Räta linjen Sidor i boken 14-143, 145-147 Funktioner. Räta linjen Här följer en dialog mellan studenten Tor-Björn (hädanefter kallad TB) och hans lärare i matematik Karl-Ture Hansson (nedan kallad KTH). När vi möter

Läs mer

KAPITEL 2 MTU AB

KAPITEL 2 MTU AB KAPITEL 2 MTU AB 2007 29 HALVLEDARE De komponenter som vi hittills behandlat är motstånd av olika slag, lampor samt batterier. Det kan diskuteras om batteriet ska kallas komponent. Motstånd är den komponent

Läs mer

Laboration i Tunneltransport. Fredrik Olsen

Laboration i Tunneltransport. Fredrik Olsen Laboration i Tunneltransport Fredrik Olsen 9 maj 28 Syfte och Teori I den här laborationen fick vi möjlighet att studera elektrontunnling över enkla och dubbla barriärer. Teorin bakom är den som vi har

Läs mer

Repetition inför kontrollskrivning 2

Repetition inför kontrollskrivning 2 Sidor i boken Repetition inför kontrollskrivning 2 Problem 1. I figuren ser du två likformiga trianglar. En sida i den större och motsvarande i den mindre är kända. Beräkna arean av den mindre triangeln.

Läs mer

Föreläsning 8 Bipolära Transistorer I

Föreläsning 8 Bipolära Transistorer I Föreläsning 8 iolära ransistorer Funktion biolär transistor Geometri nn D oeration, strömförstärkning Oerationsmoder Early-effekten n transistor G. alla 1 Komonentfysik - Kursöversikt iolära ransistorer

Läs mer

FFY616. Halvledarteknik. Laboration 4 DIODER

FFY616. Halvledarteknik. Laboration 4 DIODER Halvledarteknik Laboration 4 DIODER Målet med denna laboration är att du skall lära dig hur olika typer av dioder fungerar och hur man kan använda dem Laborant: Godkänt den.. av. M. K. Friesel, I. Albinsson

Läs mer

Kap 5.7, Beräkning av plana areor, rotationsvolymer, rotationsareor, båglängder.

Kap 5.7, Beräkning av plana areor, rotationsvolymer, rotationsareor, båglängder. Kap 5.7, 7. 7.. Beräkning av plana areor, rotationsvolymer, rotationsareor, båglängder. 8. (A) Beräkna arean av det ändliga område som begränsas av kurvorna x a. y = + x och y = b. y = x e x och y = x

Läs mer

3.8. Halvledare. [Understanding Physics: 20.8-20.11] Den moderna fysikens grunder, Tom Sundius 2009 1

3.8. Halvledare. [Understanding Physics: 20.8-20.11] Den moderna fysikens grunder, Tom Sundius 2009 1 3.8. Halvledare [Understanding Physics: 20.8-20.11] Som framgår av fig. 20.27, kan energigapet i en halvledare uttryckas E g = E c E v, där E c är den lägsta energin i ledningsbandet och E v den högsta

Läs mer

Föreläsning 7 Fälteffek1ransistor IV

Föreläsning 7 Fälteffek1ransistor IV Föreläsning 7 Fälteffek1ransistor IV PMOS Småsignal FET A, f t MOS- Kondensator D/MOS- kamera Flash- minne 1 PMOS U Gate U - 0.V 1.0V 0.4V Source Isolator SiO Drain U - 1V P ++ N- typ semiconductor P ++

Läs mer

SF1625 Envariabelanalys Lösningsförslag till tentamen DEL A

SF1625 Envariabelanalys Lösningsförslag till tentamen DEL A SF1625 Envariabelanalys Lösningsförslag till tentamen 214-1-24 DEL A 1. Låt f(x) = e x sin x. A. Bestäm alla kritiska (stationära) punkter till funktionen f. B. Avgör vilka av de kritiska punkterna som

Läs mer

P Q = ( 2, 1, 1), P R = (0, 1, 0) och QR = (2, 2, 1). arean = 1 2 P Q P R

P Q = ( 2, 1, 1), P R = (0, 1, 0) och QR = (2, 2, 1). arean = 1 2 P Q P R 1 Matematiska Institutionen KTH Lösningar till några övningar på geometri och vektorer inför lappskrivning nummer 2 på kursen Linjär algebra II, SF1604, vt11. 1. En triangel har hörn i punkterna (1, 2,

Läs mer

Mätning av Halleffekten och elektriska ledningsförmågan som funktion av temperaturen hos halvledarna InSb / Ge.

Mätning av Halleffekten och elektriska ledningsförmågan som funktion av temperaturen hos halvledarna InSb / Ge. Laborationsinstruktion laboration Halvledarfysik UPPSALA UNVERSTET delkurs Fasta tillståndets fysik 1 lokal 4319 innehåll delkurskod 1TG100 labkod HF UPPGFTER: Mätning av Halleffekten och elektriska ledningsförmågan

Läs mer

Tentamen i Elektronik grundkurs ETA007 för E

Tentamen i Elektronik grundkurs ETA007 för E Lars-Erik Cederlöf Tentamen i Elektronik grundkurs ETA007 för E 003-0-4 Tentamen omfattar poäng. 3 poäng per uppgift. 0 poäng ger godkänd tentamen. Tillåtet hjälpmedel är räknedosa. För full poäng krävs

Läs mer

Försättsblad till skriftlig tentamen vid Linköpings Universitet

Försättsblad till skriftlig tentamen vid Linköpings Universitet Försättsblad till skriftlig tentamen vid Linköpings Universitet (fylls i av ansvarig) Datum för tentamen 110326 Sal TER1 Tid 8-12 Kurskod Provkod BFL122 TEN1 Kursnamn/benämning Fysik B för tekniskt basår,

Läs mer

Införa begreppen ström, strömtäthet och resistans Ohms lag Tillämpningar på enkla kretsar Energi och effekt i kretsar

Införa begreppen ström, strömtäthet och resistans Ohms lag Tillämpningar på enkla kretsar Energi och effekt i kretsar Kapitel: 25 Ström, motstånd och emf (Nu lämnar vi elektrostatiken) Visa under vilka villkor det kan finnas E-fält i ledare Införa begreppet emf (electromotoric force) Beskriva laddningars rörelse i ledare

Läs mer

Spolen. LE1460 Analog elektronik. Måndag kl i Omega. Allmänna tidsförlopp. Kapitel 4 Elkretsanalys.

Spolen. LE1460 Analog elektronik. Måndag kl i Omega. Allmänna tidsförlopp. Kapitel 4 Elkretsanalys. F6 E460 Analog elektronik Måndag 005--05 kl 3.5 7.00 i Omega Allmänna tidsförlopp. Kapitel 4 Elkretsanalys. Spolen addningar i rörelse ger pphov till magnetfält. Detta gäller alltid. Omvändningen är ej

Läs mer

STOCKHOLMS UNIVERSITET FYSIKUM

STOCKHOLMS UNIVERSITET FYSIKUM STOCKHOLMS UNIVERSITET FYSIKUM Tentamensskrivning i Fysikexperiment, 7,5 hp, för FK2002 Onsdagen den 15 december 2010 kl. 9-14. Skrivningen består av två delar A och B. Del A innehåller enkla frågor och

Läs mer

Tentamen för FYSIK (TFYA68), samt ELEKTROMAGNETISM (9FY321)

Tentamen för FYSIK (TFYA68), samt ELEKTROMAGNETISM (9FY321) Tentamen för FYK (TFYA68), samt LKTROMAGNTM (9FY31) 013-10-1 kl. 14.00-19.00 Tillåtna hjälpmedel: Physics Handbook (Nordling, Österman) - egna bokmärken ok, dock ej formler, anteckningar miniräknare -

Läs mer

Namn Klass Personnummer (ej fyra sista)

Namn Klass Personnummer (ej fyra sista) Prövning matematik 4 april 06 (prövningstillfälle 6) Namn Klass Personnummer (ej fyra sista) Mobiltelefonnummer e-post SKRIV TYDLIGT! Alla papper ska förses med namn och återlämnas Skriv tydligt. Oläsliga

Läs mer

Den räta linjens ekvation

Den räta linjens ekvation Den räta linjens ekvation Här följer en dialog mellan studenten Tor-Björn (hädanefter kallad TB) och hans lärare i matematik Karl-Ture Hansson (nedan kallad KTH). När vi möter dem för första gången är

Läs mer

Elektricitetslära och magnetism - 1FY808

Elektricitetslära och magnetism - 1FY808 Linnéuniversitetet Institutionen för datavetenskap, fysik och matematik Laborationshäfte för kursen Elektricitetslära och magnetism - 1FY808 Ditt namn:... eftersom labhäften far runt i labsalen. 1 1. Instrumentjämförelse

Läs mer

Statistiska samband: regression och korrelation

Statistiska samband: regression och korrelation Statistiska samband: regression och korrelation Vi ska nu gå igenom något som kallas regressionsanalys och som innebär att man identifierar sambandet mellan en beroende variabel (x) och en oberoende variabel

Läs mer

Atomer, ledare och halvledare. Kapitel 40-41

Atomer, ledare och halvledare. Kapitel 40-41 Atomer, ledare och halvledare Kapitel 40-41 Centrala begrepp Kvantiserade energinivåer i atomer Elektronspinn och finstruktur Elektronen i en atom både banimpulsmoment, som karakteriseras av kvanttalet

Läs mer

Matematik 3 Digitala övningar med TI-82 Stats, TI-84 Plus och TI-Nspire CAS

Matematik 3 Digitala övningar med TI-82 Stats, TI-84 Plus och TI-Nspire CAS Matematik 3 Digitala övningar med TI-8 Stats, TI-84 Plus och TI-Nspire CAS Matematik 3 digitala övningar med TI-8 Stat, TI-84 Plus och TI Nspire CAS Vi ger här korta instruktioner där man med fördel kan

Läs mer

Spänningsfallet över ett motstånd med resistansen R är lika med R i(t)

Spänningsfallet över ett motstånd med resistansen R är lika med R i(t) Tillämpningar av differentialekvationer, LR kretsar TILLÄMPNINGAR AV DIFFERENTIAL EKVATIONER LR KRETSAR Låt vara strömmen i nedanstående LR krets (som innehåller element en spole med induktansen L henry,

Läs mer

Denna våg passerar mikrofonen, studsar mot väggen och passerar åter mikrofonen efter tiden

Denna våg passerar mikrofonen, studsar mot väggen och passerar åter mikrofonen efter tiden Lösning till inlämningsuppgift 1 Beskriv först ljudtrycket för den infallande vågen som en funktion av tiden. Eftersom trycket ökar linjärt mellan sågtandsvågens språng och eftersom periodtiden är T=1

Läs mer

Funktioner Exempel på uppgifter från nationella prov, Kurs A E

Funktioner Exempel på uppgifter från nationella prov, Kurs A E Funktioner Exempel på uppgifter från nationella prov, Kurs A E Uppgifter ur Nationella prov Kurs A Ur del II utan räknare: När en frysbox stängs av stiger temperaturen. Följande formel kan användas för

Läs mer

Fysiska institutionen Department of Physics INSTRUKTION TILL LABORATIONEN

Fysiska institutionen Department of Physics INSTRUKTION TILL LABORATIONEN Fysiska institutionen Department of Physics INSTRUKTION TILL LABORATIONEN 2008-04-10 KONDENSATORFÖRSÖK ------------------------------------------------------------------------------------------------------------------------

Läs mer

Gruppledtrådar 6-2A (i samband med sidorna 50-60) Ledtråd 2 Den har 4 begränsningsytor (B). Ledtråd 1 Polyedern är regelbunden.

Gruppledtrådar 6-2A (i samband med sidorna 50-60) Ledtråd 2 Den har 4 begränsningsytor (B). Ledtråd 1 Polyedern är regelbunden. Gruppledtrådar 6-2A (i samband med sidorna 50-60) Polyedern är regelbunden. Den har 4 begränsningsytor (B). Polyedern har 4 hörn (H). Antal kanter (K) kan beräknas med formeln B + H K = 2 Begränsningsytorna

Läs mer

Prov i Matematik Prog: NV, Lär., fristående Analys MN UPPSALA UNIVERSITET Matematiska institutionen Michael Melgaard, tel

Prov i Matematik Prog: NV, Lär., fristående Analys MN UPPSALA UNIVERSITET Matematiska institutionen Michael Melgaard, tel UPPSALA UNIVERSITET Matematiska institutionen Michael Melgaard, tel 070 4 4075 Prov i Matematik Prog: NV, Lär., fristående Analys MN 006-05-4 Skrivtid: 5 0. Hjälpmedel: Skrivdon. Lösningarna skall åtföljas

Läs mer

Uppföljning av diagnostiskt prov Repetition av kursmoment i TNA001-Matematisk grundkurs.

Uppföljning av diagnostiskt prov Repetition av kursmoment i TNA001-Matematisk grundkurs. Uppföljning av diagnostiskt prov 06-0- Repetition av kursmoment i TNA00-Matematisk grundkurs. Reella tal, intervall, räta linjer, cirklar Faktorsatsen, faktoriseringar, polynomekvationer Olikheter Ekvationer

Läs mer

Moment 1 - Analog elektronik. Föreläsning 1 Transistorn del 1

Moment 1 - Analog elektronik. Föreläsning 1 Transistorn del 1 Moment 1 - Analog elektronik Föreläsning 1 Transistorn del 1 Jan Thim 1 F1: Transistorn del 1 Innehåll: Historia Funktion Karakteristikor och parametrar Transistorn som förstärkare Transistorn som switch

Läs mer

Gamla tentemensuppgifter

Gamla tentemensuppgifter Inte heller idag någon ny teori! Gamla tentemensuppgifter 1 Bestäm det andragradspolynom vars kurva skär x-axeln i x = 3 och x = 1 och y-axeln i y = 3 f(x) = (x 3)(x + 1) = x x 3 är en bra start, men vi

Läs mer

Svar: Inbromsningssträckan ökar med 10 m eller som Sören Törnkvist formulerar svaret på s 88 i sin bok Fysik per vers :

Svar: Inbromsningssträckan ökar med 10 m eller som Sören Törnkvist formulerar svaret på s 88 i sin bok Fysik per vers : FYSIKTÄVLINGEN KVALIFICERINGS- OCH LAGTÄVLING 1 februari 001 LÖSNINGSFÖRSLAG SVENSKA FYSIKERSAMFNDET 1. Enligt energiprincipen är det rörelseenergin som bromsas bort i friktionsarbetet. Detta ger mv sambandet

Läs mer

Moment Viktiga exempel Övningsuppgifter I

Moment Viktiga exempel Övningsuppgifter I Moment Viktiga eempel Övningsuppgifter I Inga Inga Inga Grafritning Vi använder en sjustegsprocess Funktionens definitionsmängd 2 Funktionens skärningspunkter med alarna Asymptoter 4 Stationära punkter

Läs mer

Matematiska Institutionen L osningar till v arens lektionsproblem. Uppgifter till lektion 9:

Matematiska Institutionen L osningar till v arens lektionsproblem. Uppgifter till lektion 9: Uppsala Universitet Matematiska Institutionen Inger Sigstam Envariabelanalys, hp --6 Uppgifter till lektion 9: Lösningar till vårens lektionsproblem.. Ett fönster har formen av en halvcirkel ovanpå en

Läs mer

1. Förklara, utifrån definitioner, trigonometriska samband samt det faktum att π 12 = 1 2 π6, varför följande likhet måste gälla exakt : p 2+ arccos

1. Förklara, utifrån definitioner, trigonometriska samband samt det faktum att π 12 = 1 2 π6, varför följande likhet måste gälla exakt : p 2+ arccos HiH / Georgi Tchilikov ENVARIABELANALYS 5p för LGr&LGy 8 augusti, 9.-. Hjälpmedel: Bifogat formelblad. Miniräknare, dock endast för test och kontroll av resultat. Betygsgränser: p. för Godkänd, 8p. för

Läs mer

y y 1 = k(x x 1 ) f(x) = 3 x

y y 1 = k(x x 1 ) f(x) = 3 x Räta linjen på olika former Här ska vi bara påpeka att förutom k-form, den som vi är mest vana vid y = k y + m finns också allmän form: ax + by + c = 0 där a och b är konstanter, som inte någon står för

Läs mer

Prov 3 2014-10-13. (b) Hur stor är kraften som verkar på en elektron mellan plattorna? [1/0/0]

Prov 3 2014-10-13. (b) Hur stor är kraften som verkar på en elektron mellan plattorna? [1/0/0] Namn: Område: Elektromagnetism Datum: 13 Oktober 2014 Tid: 100 minuter Hjälpmedel: Räknare och formelsamling. Betyg: E: 25. C: 35, 10 på A/C-nivå. A: 45, 14 på C-nivå, 2 på A-nivå. Tot: 60 (34/21/5). Instruktioner:

Läs mer

x 1 1/ maximum

x 1 1/ maximum a), 1 1 Definitionsmängd: 1,1 En funktion kan ha lokal maximum eller lokal minimum endast i punkter x av följande tre typer: (i) stationära punkter (punkter där 0) (ii) ändpunkter till (endast de ändpunkter

Läs mer

Förstärkning Large Signal Voltage Gain A VOL här uttryckt som 8.0 V/μV. Lägg märke till att förstärkningen är beroende av belastningsresistans.

Förstärkning Large Signal Voltage Gain A VOL här uttryckt som 8.0 V/μV. Lägg märke till att förstärkningen är beroende av belastningsresistans. Föreläsning 3 20071105 Lambda CEL205 Analoga System Genomgång av operationsförstärkarens egenskaper. Utdelat material: Några sidor ur datablad för LT1014 LT1013. Sidorna 1,2,3 och 8. Hela dokumentet (

Läs mer

Ellära och Elektronik Moment AC-nät Föreläsning 4

Ellära och Elektronik Moment AC-nät Föreläsning 4 Ellära och Elektronik Moment AC-nät Föreläsning 4 Kapacitans och Indktans Uppladdning av en kondensator Medelvärde och Effektivvärde Sinsvåg över kondensator och spole Copyright 8 Börje Norlin Kondensatorer

Läs mer

M0038M Differentialkalkyl, Lekt 4, H15

M0038M Differentialkalkyl, Lekt 4, H15 M0038M Differentialkalkyl, Lekt 4, H15 Staffan Lundberg Luleå Tekniska Universitet Staffan Lundberg M0038M H15 1/ 28 Lekt 3 Om f (x) = 2 x 2 och g(x) = x + 2, bestäm nedanstående funktion och dess definitionsmängd.

Läs mer

Uppgift 1. (SUBPLOT) (Läs gärna help, subplot innan du börjar med uppgiften.) 1 A) Testa och förklara hur nedanstående kommandon fungerar.

Uppgift 1. (SUBPLOT) (Läs gärna help, subplot innan du börjar med uppgiften.) 1 A) Testa och förklara hur nedanstående kommandon fungerar. INLÄMNINGSUPPGIFT 2 Linjär algebra och analys Kurskod: HF1006, HF1008 Skolår: 2016/17 armin@kth.se www.sth.kth.se/armin Redovisas under sista två (av totalt fem) labbövningar i Analys-delen. Preliminärt:

Läs mer

M0038M Differentialkalkyl, Lekt 7, H15

M0038M Differentialkalkyl, Lekt 7, H15 M0038M Differentialkalkyl, Lekt 7, H15 Staffan Lundberg Luleå Tekniska Universitet Staffan Lundberg M0038M H15 1/ 21 Tentamen M0038M Tentamensdatum 2015-10-28 Sista anmälningsdag 2015-10-08 Tentamensanmälan

Läs mer

WALLENBERGS FYSIKPRIS

WALLENBERGS FYSIKPRIS WALLENBERGS FYSIKPRIS KVALIFICERINGS- OCH LAGTÄVLING 8 januari 1 SVENSKA FYSIKERSAMFUNDET LÖSNINGSFÖRSLAG 1. Ballongens volym är V = πr h = 3,14 3 1,5 m 3 = 4,4 m 3. Lyftkraften från omgivande luft är

Läs mer

Föreläsnng 1 2005-11-02 Sal alfa. 08.15 12.00

Föreläsnng 1 2005-11-02 Sal alfa. 08.15 12.00 LE1460 Föreläsnng 1 2005-11-02 Sal alfa. 08.15 12.00 pprop. Föreslagen kurslitteratur Elkretsanalys av Gunnar Petersson KTH Det finns en många böcker inom detta område. Dorf, Svoboda ntr to Electric Circuits

Läs mer

Tentamen i Fysik TEN 1:2 Tekniskt basår 2009-04-14

Tentamen i Fysik TEN 1:2 Tekniskt basår 2009-04-14 Tentamen i Fysik TEN 1: Tekniskt basår 009-04-14 1. En glaskolv med propp har volymen 550 ml. När glaskolven vägs har den massan 56, g. Därefter pumpas luften i glaskolven bort med en vakuumpump. Därefter

Läs mer

Rättade inlämningsuppgifter hämtas på Kents kontor Föreläsning 4 Må 11.00-11.30, 12.30-13.15 Kent Palmkvist To 11.00-11.30, 12.30-13.

Rättade inlämningsuppgifter hämtas på Kents kontor Föreläsning 4 Må 11.00-11.30, 12.30-13.15 Kent Palmkvist To 11.00-11.30, 12.30-13. /5/14 15:56 Praktisk info, forts. Löst uppgift Fyll i ett konvolut (återanvänds tills uppgiften godkänd TTE Elektronik Konvolut hittas ovanpå den svarta brevlåda som svar lämnas i vart brevlåda placerad

Läs mer

Strålningsfält och fotoner. Våren 2013

Strålningsfält och fotoner. Våren 2013 Strålningsfält och fotoner Våren 2013 1. Fält i rymden Vi har lärt oss att beräkna elektriska fält utgående från laddningarna som orsakar dem Kan vi härleda nånting åt andra hållet? 2 1.1 Gauss lag Låt

Läs mer

Denna tentamen består av två delar. Först sex enklare uppgifter, som vardera ger maximalt 2 poäng. Andra delen består av tre uppgifter, som

Denna tentamen består av två delar. Först sex enklare uppgifter, som vardera ger maximalt 2 poäng. Andra delen består av tre uppgifter, som Akademin för utbildning, kultur och kommunikation Avdelningen för tillämpad matematik Eaminator: Jan Eriksson sin( + ) sin + + n 6 LÖSNINGAR TILL TENTAMEN I MATEMATIK MAA1 och MMA1 Basutbildning II i matematik

Läs mer

Lösningar Kap 7 Elektrisk energi, spänning och ström. Andreas Josefsson. Tullängsskolan Örebro

Lösningar Kap 7 Elektrisk energi, spänning och ström. Andreas Josefsson. Tullängsskolan Örebro Lösningar Kap 7 Elektrisk energi, spänning och ström Andreas Josefsson Tullängsskolan Örebro Lösningar Fysik 1 Heureka: kap 7 7.1) Om kulan kan "falla" från A till B minskar dess potentiella elektriska

Läs mer

Matematik CD för TB = 5 +

Matematik CD för TB = 5 + Föreläsning 4 70 a) Vi delar figuren i två delar, en triangel (på toppen) och en rektangel. Summan av dessa två figurers area ger den eftersökta. Vi behöver följande formler: A R = b h A T = b h Svar:

Läs mer

x 4 a b X c d Figur 1. Funktionsgrafen y = f (x).

x 4 a b X c d Figur 1. Funktionsgrafen y = f (x). Konveitet En funktionsgraf, som inte är en rät linje, böjer ofta av åt ett bestämt håll i ett visst intervall. För en funktion som är deriverbar två gånger kan man med hjälp av andraderivatan ta reda på

Läs mer

Kan du det här? o o. o o o o. Derivera potensfunktioner, exponentialfunktioner och summor av funktioner. Använda dig av derivatan i problemlösning.

Kan du det här? o o. o o o o. Derivera potensfunktioner, exponentialfunktioner och summor av funktioner. Använda dig av derivatan i problemlösning. Kan du det här? o o o o o o Vad innebär det att x går mot noll? Vad händer då x går mot oändligheten? Vad betyder sekant, tangent och ändringskvot och vad har dessa begrepp med derivatan att göra? Derivera

Läs mer

Komponentfysik. - En introduktion. Anders Gustafsson Fasta tillståndets fysik Lunds Tekniska Högskola

Komponentfysik. - En introduktion. Anders Gustafsson Fasta tillståndets fysik Lunds Tekniska Högskola Komponentfysik - En introduktion Anders Gustafsson Fasta tillståndets fysik Lunds Tekniska Högskola Sjunde reviderade upplagan 2011 Halvledarkomponenter finns i ett antal olika former. Bilden nedan visar

Läs mer