Mätning av Halleffekten och elektriska ledningsförmågan som funktion av temperaturen hos halvledarna InSb / Ge.

Save this PDF as:
 WORD  PNG  TXT  JPG

Storlek: px
Starta visningen från sidan:

Download "Mätning av Halleffekten och elektriska ledningsförmågan som funktion av temperaturen hos halvledarna InSb / Ge."

Transkript

1 Laborationsinstruktion laboration Halvledarfysik UPPSALA UNVERSTET delkurs Fasta tillståndets fysik 1 lokal 4319 innehåll delkurskod 1TG100 labkod HF UPPGFTER: Mätning av Halleffekten och elektriska ledningsförmågan som funktion av temperaturen hos halvledarna nsb / Ge. LTTERATUR: Tipler, Llewellyn, Modern Physics, kap HANDLEDARE: Klas Gunnarsson ) November 2010 namn handledarens kommentarer årskurs inskrivningsår utförd den grupp godkänd den signum 1

2 FÖRBEREDELSEUPPGFTER Lös dessa problem och lämna in dem till din handledare vid laborationstillfället. 1. Hur ökas ledningsförmågan hos en halvledare (förutom att öka dopningsnivån)? Jämför med vad som gäller för en metall. 2. Kan en halvledare leda elektricitet vid 0K? 3. Härled koncentrationen av hål i valensbandet vid termisk jämvikt. 4. Visa hur bandgapet kan bestämmas ur ett diagram över ln(σ) som funktion av 1/T. 5. Diskutera hur dopningen kan bestämmas ur ett diagram över ln(n) som funktion av 1/T. 1

3 NTRODUKTON Halvledare är en grupp material vars elektriska ledningsförmåga ligger mellan den för metaller och isolatorer. En halvledares resistivitet är starkt temperaturberoende. Man kan ändra den elektriska ledningsförmågan hos en ren halvledarkristall genom att tillföra en kontrollerad koncentration av orenheter; detta kallas dopning. Om t ex en kiselkristall dopas med fosfor, kommer fyra av fosforatomens fem valenselektroner att bilda kovalenta bindningar med omgivande kiselatomer. Den återstående valenselektronen blir löst bunden till fosforatomen. Om elektronen tillförs energi blir den fri och doneras till ledningsbandet; kiselkristallen är då n-dopad. Kristaller kan även p-dopas, med atomer som ger gittret fria hål. De mest använda halvledarmaterialen är kisel (Si), germanium (Ge) och galliumarsenid (GaAs). den här laborationen ska halvledaren indiumantimonids (nsb) eller germaniums (Ge) elektriska egenskaper undersökas m h a Halleffekten. Både nsb-plattan och Ge-plattan är n-dopade. Dopningskoncentration, bandgap och elektronmobilitetens temperaturberoende ska bestämmas för den valda halvledaren. Läs mer om Hall effekten och halvledare i Tipler och Llewellyn kap B -e v x B a v x B c v e -e E b U H z y x U R Figur 1. Uppkomst av Halleffekt i en halvledarplatta. 2

4 TEOR För att analysera halvledarmaterial kan Halleffekten användas. Resistiviteten och Hallkonstanten, R H, mäts som funktion av temperaturen och med dessa värden kan sedan koncentrationen av laddningsbärare samt deras mobilitet beräknas. Laddningsbärare med hastigheten v och laddningen q påverkas i ett magnetfält B av Lorentzkraften F = qv B. Genom en enkel betraktelse av kraftbalansen mellan Lorentzkraften och den elektriska kraften qe i y-riktningen, kan följande samband påvisas: qv B = qe (1) q är -e för elektroner och +e för hål, där e = enhetsladdningen. den här laborationen kommer U R och U H (se figur 1) att mätas som funktion av temperaturen. Med beteckningar enligt figur 1 samt med sambandet mellan strömtätheten j och drifthastigheten v fås följande. = abj (2) j = nqv (3) U H = Eb (4) n = koncentrationen av laddningsbärare (antal/volymsenhet) nsättning av (2), (3) och (4) i (1) ger q abnq B = q U H b (5) d v s n = B U H qa (6) eller om Hallkonstanten R H sökes: R H = 1 nq = au H B (7) 3

5 Förutsättningar för ovanstående enkla härledningar är att endast en laddningsbärartyp förekommer samt att drifthastigheten kan anses vara konstant. Om både elektroner och hål är laddningsbärare (vilket är fallet i en halvledare) måste deras respektive mobiliteter (μ n och μ p ) tas med i härledningen. Slututtrycket för R H blir i detta fall R H = 1 e p k 2 n (kn + p) 2 (8) där k = μ n/ μ p, n = koncentrationen av elektroner och p = koncentrationen av hål. den här laborationen då vi har n-dopade halvledare är elektronerna majoritetladdningsbärare och följande gäller för alla aktuella temperaturer i detta experiment: n > p (9) α n >> α p (10) d v s ekv (8) kan reduceras till ekv (7). Spänningsfallet U R (se figur 1) över plattan kan uttryckas: U R = R = ρ c ab = c σab (11) där konduktiviteten σ är σ = U R c ab (12) Men konduktiviteten kan i det här fallet, då vi har elektroner som majoritetladdningsbärare, uttryckas som σ = neμ n (13) d v s mobiliteten kan beräknas om (6) och (12) insättes i (13): μ n = σ ne = U H c U R B b (14) Mobilitetens temperaturberoende kan vid höga temperaturer beskrivas enligt μ n = CT α (15) där α är mobilitetens temperaturexponent (C är en konstant). 4

6 LABORATONSUTFÖRANDE nsb U H U R U T B Termoelementets referenslödställe svatt en M P p M G M = Stor Newport-elektromagnet P = Provhållare innehållande halvledarhallplatta LN 2 = Dewarkärl med flytande kväve p = Prob för mätning av magnetfält G = Gaussmeter B = Magnetström genom elektromagneterna = Provström U H = Hallspänning U R = Resistiv spänning U T = Termospänning LN 2 Figur 2. Principskiss över laborationsuppställningen för nsb. På Hallplattan är tunna trådar fastlödda för att U H och U R ska kunna uppmätas då en ström passerar genom plattan, se Figur 3. För att skydda Hallplattan och trådarna då de kyls är plattan monterad i en provhållare av mässing. Var mycket försiktig med provhållaren. Om den utsätts för stötar spricker hallplattan! De tunna trådarna är fastlödda på kablar som kommer ut ur provhållaren via en genomföring. Dessa kablar har olika färger och vid laborationsuppställningen finns en översikt som visar hur ni mäter på er hallplatta. Provhållaren får inte öppnas eftersom den måste vara kvävetät. På Hallplattan finns ett termoelement monterat (se figur 3) vars referenslödställe finns utanför provhållaren. Vid uppställningen finns termoelementets kalibreringstabell (mv till o C). 5

7 Termoelement c Hallplatta av n- dopad nsb b a U H U R Figur 3. Hallplattans geometri och mätpunkter för UH, UR och samt termoelementets placering. 1. Koppla enligt Figur 2. Glöm inte att anteckna mått på plattan (a,b och c). 2. Placera termoelementets referenslödställe i isvatten och kontrollera provets temperatur. 3. Lägg på en provström på 20 ma som ni sedan försöker att hålla oförändrad under mätningen. Om strömmen driver notera då under hela mätningen de nya värdena. 4. nnan provet kyls och ett magnetfält läggs på, läs av U R och U H med provström på 20 ma. U H borde vara noll om B = 0, men lödpunkterna på plattan är förmodligen inte vinkelräta mot strömmen, och därför visar U H en del av U R. Använd följande korrektion: U H U H ( B = 0) ( T ) = U H, Mät ( T ) U R ( T ) U ( B = 0 R 5. Koppla på en magnetström på ca 2 A, vilket ger ett magnetfält på 1000 Gauss vid positionen där provet kommer placeras. 6. Kyl genom att sakta sänka ner provhållaren i det flytande kvävet samt kontrollera termospänningen. Håll preparatströmmen oförändrad. Vänta tills lägsta möjliga temperatur har uppnåtts. Förbered en tabell inför mätningarna medan ni väntar på att provet ska kylas ned. Tabellen bör innehålla kolumner U H, mät, U R samt prov som ni mäter vid varje 0.1 mv från U T motsvarande lägsta möjliga temperatur (~ 5.3 mv) till motsvarande för rumstemperatur. 6

8 7. Ta ur provhållaren ur dewarkärlet och placera den med hallplattan vinkelrätt mot magnetfältet och i rätt höjd mellan elektromagneterna. Placera provet enligt märkningarna som visar hur provet sitter i provhållaren. 8. Gör första mätningen av U H, mät, U R, och U T vid lägsta möjliga temperatur. Mät sedan vid var tionde grad (varje 0.1 mv) upp till rumstemperatur. Vid låga temperaturer ändras värdena snabbt, så förbered tabellen innan du på börjar mätningen. 7

9 LABORATONSUTFÖRANDE Ge Figur 4. Principskiss över laborationsuppställningen för Ge. 1. Koppla utrustningen enligt Figur 4. Låt dock provet stå vid sidan om magneten så länge. 2. Mät Hallspänningen, U H, som funktion av provströmmen. a. Sätt det magnetiska fältet till 250 mt, mha kaliberingstabell. b. Sätt displayen på modulen i ström -läge. c. Mät Hallspänningen som funktion av provströmmen mellan -30 ma och 30 ma i steg om ungefär 5 ma. d. Presentera resultatet med tabell och plot. 8

10 3. Mät Hallspänningen, U H, som funktion av B. a. Sätt provströmmen till 30 ma b. Variera fältet från -300 mt till 300 mt i steg enligt kaliberingstabellen. c. Resultatet används för att beräkna Hallkonstanten R H vid rumstemperatur. d. Presentera även resultatet med tabell och plot. 4. Mät U H och U R som funktion av temperaturen. a. Sätt provströmmen till 30 ma och det magnetiska fältet till 300 mt. b. Starta mätningen genom att aktivera värmning med on/off knappen på baksidan av modulen. Mät från rumstemperatur upp till 170 C, i steg om 5 C. Registrera U H och U R. c. Använd resultatet till uppgift 1-6 under rapportskrivning. Provets dimensioner: Tjocklek = 1 mm Längd = 20 mm Bredd = 10 mm 1 Gauss = 10-4 T 9

11 RAPPORTSKRVNNG Skriv en fullständig rapport per student. Förutom de obligatoriska delarna skall rapporten innehålla följande punkter: 1. Tabell över primärvärden, de experimentella U T, U R, U H (mät), U H (korr), T, samt de beräknade n, σ, och μ n. Ange dessutom prov, B, a, b och c. ( För Ge-platta behövs ej U T, U H (korr) ) 2. Diagram över: ln(σ) som funktion av 1/T ln(n) som funktion av 1/T ln(μ n ) som funktion av ln(t) 3. Härledning av hur man beräknar bandgapet och dopningsgraden. (Använd förberedelse uppgifter) 4. Ange det experimentella värdet på bandgapet och jämför med tabellvärde (Physics Handbook). 5. Ange det experimentella värdet på dopningsgraden. 6. Bestäm mobilitetens temperaturexponent α ur diagrammet ln(μ n ) som funktion av ln(t). Jämför med teori! 7. Diskutera de fysikaliska orsakerna till att kisel och inte exempelvis nsb, har blivit det dominerande halvledarmaterialet för elektronikkomponenter. 8. Lösningar till förberedelseuppgifterna. 10

I princip gäller det att mäta ström-spänningssambandet, vilket tillsammans med kännedom om provets geometriska dimensioner ger sambandet.

I princip gäller det att mäta ström-spänningssambandet, vilket tillsammans med kännedom om provets geometriska dimensioner ger sambandet. Avsikten med laborationen är att studera de elektriska ledningsmekanismerna hos i första hand halvledarmaterial. Från mätningar av konduktivitetens temperaturberoende samt Hall-effekten kan en hel del

Läs mer

HALVLEDARE. Inledning

HALVLEDARE. Inledning HALVLEDARE Inledning Halvledare har varit den i särklass viktigaste materialkategorin för den högteknologiska utvecklingen under 1900-talet. Man kan också säga att inget annat exempel kan mer tydligt visa

Läs mer

Med ett materials elektriska egenskaper förstår man helt allmänt dess ledningsförmåga, konduktans, och resistans Ohms lag:

Med ett materials elektriska egenskaper förstår man helt allmänt dess ledningsförmåga, konduktans, och resistans Ohms lag: 530117 Materialfysik Ht 2010 8. Materials elektriska egenskaper 8.1 Bandstruktur 8.1.1. Allmänt Med ett materials elektriska egenskaper förstår man helt allmänt dess ledningsförmåga, konduktans, och resistans

Läs mer

HALVLEDARES ELEKTRISKA KONDUKTIVITET

HALVLEDARES ELEKTRISKA KONDUKTIVITET HALVLEDARES ELEKTRISKA KONDUKTIVITET 1 Inledning I fasta ämnen ockuperar ämnens elektroner s.k. energiband. För goda elektriska ledare är det översta ockuperade energibandet endast delvis fyllt vilket

Läs mer

Föreläsning 2 - Halvledare

Föreläsning 2 - Halvledare Föreläsning 2 - Halvledare Historisk definition Atom Molekyl - Kristall Metall-Halvledare-Isolator Elektroner Hål Intrinsisk halvledare effekt av temperatur Donald Judd, untitled 1 Komponentfysik - Kursöversikt

Läs mer

Föreläsning 2 - Halvledare

Föreläsning 2 - Halvledare Föreläsning 2 - Halvledare Historisk definition Atom Molekyl - Kristall Metall-Halvledare-Isolator lektroner Hål Intrinsisk halvledare effekt av temperatur 1 Komponentfysik - Kursöversikt Bipolära Transistorer

Läs mer

Vad är elektricitet?

Vad är elektricitet? Vad är elektricitet? Vad är elektricitet? Grundämnenas elektriska egenskaper avgörs av antalet elektroner i det yttersta skalet - valenselektronerna! Skol-modellen av en Kiselatom. Kisel med atomnumret

Läs mer

Införa begreppen ström, strömtäthet och resistans Ohms lag Tillämpningar på enkla kretsar Energi och effekt i kretsar

Införa begreppen ström, strömtäthet och resistans Ohms lag Tillämpningar på enkla kretsar Energi och effekt i kretsar Kapitel: 25 Ström, motstånd och emf (Nu lämnar vi elektrostatiken) Visa under vilka villkor det kan finnas E-fält i ledare Införa begreppet emf (electromotoric force) Beskriva laddningars rörelse i ledare

Läs mer

Ett materials förmåga att leda elektrisk ström beror på två förutsättningar:

Ett materials förmåga att leda elektrisk ström beror på två förutsättningar: Bandmodellen Som vi såg i föreläsningen om atommodeller lägger sig elektronerna runt en atom i ett gasformigt ämne i väldefinierade energinivåer. Dessa kan vara svåra att beräkna, men är i allmänhet experimentellt

Läs mer

Tentamen ellära 92FY21 och 27

Tentamen ellära 92FY21 och 27 Tentamen ellära 92FY21 och 27 2014-06-04 kl. 8 13 Svaren anges på separat papper. Fullständiga lösningar med alla steg motiverade och beteckningar utsatta ska redovisas för att få full poäng. Poängen för

Läs mer

Vad är elektricitet?

Vad är elektricitet? Vad är elektricitet? Vad är elektricitet? Grundämnenas elektriska egenskaper avgörs av antalet elektroner i det yttersta skalet - valenselektronerna! Skol-modellen av en Kiselatom. Kisel med atomnumret

Läs mer

Välkomna till kursen i elektroniska material! Martin Leijnse

Välkomna till kursen i elektroniska material! Martin Leijnse Välkomna till kursen i elektroniska material! Martin Leijnse Information Innehåll: fasta tillståndets fysik med fokus på halvledarfysik. Dioder, solceller, transistorer... Lärare: Martin Leijnse (föreläsare,

Läs mer

Lågtemperaturfysik. Maria Ekström. November Första utgåvan

Lågtemperaturfysik. Maria Ekström. November Första utgåvan F7 Lågtemperaturfysik Maria Ekström November 2014 - Första utgåvan Syfte Målet är att använda lågtemperaturfysik för studera hur den elektriska ledningsförmågan hos olika typer av material ändras med temperatur.

Läs mer

Sensorer, effektorer och fysik. Grundläggande fysikaliska begrepp som är viktiga inom mättekniken

Sensorer, effektorer och fysik. Grundläggande fysikaliska begrepp som är viktiga inom mättekniken Sensorer, effektorer och fysik Grundläggande fysikaliska begrepp som är viktiga inom mättekniken Innehåll Grundläggande begrepp inom mekanik. Elektriskt fält och elektrisk potential. Gauss lag Dielektrika

Läs mer

Försättsblad Tentamen (Används även till tentamenslådan.) Måste alltid lämnas in. OBS! Eventuella lösblad måste alltid fästas ihop med tentamen.

Försättsblad Tentamen (Används även till tentamenslådan.) Måste alltid lämnas in. OBS! Eventuella lösblad måste alltid fästas ihop med tentamen. Försättsblad Tentamen (Används även till tentamenslådan.) Måste alltid lämnas in. OBS! Eventuella lösblad måste alltid fästas ihop med tentamen. Institution DFM Skriftligt prov i delkurs Fastatillståndsfysik

Läs mer

Inst. för Fysik och materialvetenskap MAGNETISKA FÄLT

Inst. för Fysik och materialvetenskap MAGNETISKA FÄLT Inst. för Fysik och materialvetenskap INSTRUKTION TILL LABORATIONEN MAGNETISKA FÄLT för kursen Elektromagnetism I ------------------------------------------------------------------------------------------------------------------------

Läs mer

Elektronik 2015 ESS010

Elektronik 2015 ESS010 Elektronik 2015 ESS010 Föreläsning 16 Halvledare PN-diod: likriktare Information inför tentamen Repetition 2015-10-21 Föreläsning 16, Elektronik 2015 1 USA Chicago Notre Dame New Orleans Tunneltransistorer

Läs mer

Atomer, ledare och halvledare. Kapitel 40-41

Atomer, ledare och halvledare. Kapitel 40-41 Atomer, ledare och halvledare Kapitel 40-41 Centrala begrepp Kvantiserade energinivåer i atomer Elektronspinn och finstruktur Elektronen i en atom både banimpulsmoment, som karakteriseras av kvanttalet

Läs mer

3.8. Halvledare. [Understanding Physics: 20.8-20.11] Den moderna fysikens grunder, Tom Sundius 2009 1

3.8. Halvledare. [Understanding Physics: 20.8-20.11] Den moderna fysikens grunder, Tom Sundius 2009 1 3.8. Halvledare [Understanding Physics: 20.8-20.11] Som framgår av fig. 20.27, kan energigapet i en halvledare uttryckas E g = E c E v, där E c är den lägsta energin i ledningsbandet och E v den högsta

Läs mer

Tentamen: Baskurs B i Fysik, del1, 4p 2007-03-23 kl. 08.00-13.00

Tentamen: Baskurs B i Fysik, del1, 4p 2007-03-23 kl. 08.00-13.00 Institutionen för teknik, fysik och matematik Nils Olander och Herje Westman Tentamen: Baskurs B i Fysik, del1, 4p 2007-03-23 kl. 08.00-13.00 Max: 30 p A-uppgifterna 1-8 besvaras genom att ange det korrekta

Läs mer

Introduktion till halvledarteknik

Introduktion till halvledarteknik Introduktion till halvledarteknik Innehåll 4 Excitation av halvledare Optisk absorption och excitation Luminiscens Rekombination Diffusion av laddningsbärare Optisk absorption och excitation E k hv>e g

Läs mer

Lösningar Tenta

Lösningar Tenta Lösningar Tenta 110525 1) a) Driftström: Elektriskt laddade partiklar (elektroner och hål) rör sig i ett elektriskt fält. Detta ger upphov till en ström som följer ohms lag. Diffusion: Elektroner / hål

Läs mer

Laborationer i miljöfysik. Solcellen

Laborationer i miljöfysik. Solcellen Laborationer i miljöfysik Solcellen Du skall undersöka elektrisk ström, spänning och effekt från en solcellsmodul under olika förhållanden, och ta reda på dess verkningsgrad under olika förutsättningar.

Läs mer

Kvantbrunnar Kvantiserade energier och tillstånd

Kvantbrunnar Kvantiserade energier och tillstånd Kvantbrunnar Kvantiserade energier och tillstånd Inledning Syftet med denna laboration är att undersöka kvantiseringen av energitillstånd i kvantbrunnar. Till detta används en java-applet som hittas på

Läs mer

Tentamen i Komponentfysik ESS030, ETI240/0601 och FFF090

Tentamen i Komponentfysik ESS030, ETI240/0601 och FFF090 011-01-10 08 00-13 00 Tentamen i Komponentfysik ESS030, ETI40/0601 och FFF090 Hjälpmedel: TEFYMA, ordlista, beteckningslista, formelsamlingar och räknare. Max 5p, för godkänt krävs 10p. Om inget annat

Läs mer

Förslag: En laddad partikel i ett magnetfält påverkas av kraften F = qvb, dvs B = F qv = 0.31 T.

Förslag: En laddad partikel i ett magnetfält påverkas av kraften F = qvb, dvs B = F qv = 0.31 T. 1. En elektron rör sig med v = 100 000 m/s i ett magnetfält. Den påverkas av en kraft F = 5 10 15 N vinkelrätt mot rörelseriktningen. Rita figur och beräkna den magnetiska flödestätheten. Förslag: En laddad

Läs mer

BANDGAP 2009-11-17. 1. Inledning

BANDGAP 2009-11-17. 1. Inledning 1 BANDGAP 9-11-17 1. nledning denna laboration studeras bandgapet i två halvledare, kisel (Si) och galliumarsenid (GaAs) genom mätning av transmissionen av infrarött ljus genom en tunn skiva av respektive

Läs mer

r 2 Arbetet är alltså endast beroende av start- och slutpunkt. Det följer av att det elektriska fältet är konservativt ( E = 0).

r 2 Arbetet är alltså endast beroende av start- och slutpunkt. Det följer av att det elektriska fältet är konservativt ( E = 0). 1 Föreläsning 2 Motsvarar avsnitten 2.4 2.5 i Griffiths. Arbete och potentiell energi (Kap. 2.4) r 1 r 2 C Låt W vara det arbete som måste utföras mot ett givet elektriskt fält E, då en laddning Q flyttas

Läs mer

Metallers resistivitet vid 0 K

Metallers resistivitet vid 0 K SUPRALEDNING Vad händer med en metalls ledningsförmåga vid 0 K? Jag har i föreläsningen om metallers egenskaper visat kurvor på en metalls resistans som funktion av temperaturen. Resistansen sjunker med

Läs mer

Komponentfysik Introduktion. Kursöversikt. Varför Komponentfysik? Hålltider --- Ellära, Elektriska fält och potentialer

Komponentfysik Introduktion. Kursöversikt. Varför Komponentfysik? Hålltider --- Ellära, Elektriska fält och potentialer Komponentfysik 2012 Introduktion Kursöversikt Varför Komponentfysik? Hålltider Ellära, Elektriska fält och potentialer 1 Lite om mig själv Erik Lind (Erik.Lind@eit.lth.se) Civ. Ing. i Teknisk Fysik Doktorerade

Läs mer

Magnetiska fält laboration 1FA514 Elektimagnetism I

Magnetiska fält laboration 1FA514 Elektimagnetism I Magnetiska fält laboration 1FA514 Elektimagnetism I Utförs av: William Sjöström 19940404 6956 Oskar Keskitalo 19941021 4895 Uppsala 2015 05 09 Sammanfattning När man leder ström genom en spole så bildas

Läs mer

Övningsuppgifter/repetition inom elektromagnetism + ljus (OBS: ej fullständig)

Övningsuppgifter/repetition inom elektromagnetism + ljus (OBS: ej fullständig) Övningsuppgifter/repetition inom elektromagnetism + ljus (OBS: ej fullständig) Elektrostatik 1. Ange Faradays lag i elektrostatiken. 2. Vad är kravet för att ett vektorfält F är konservativt? 3. En låda

Läs mer

Lecture 6 Atomer och Material

Lecture 6 Atomer och Material Lecture 6 Atomer och Material Bandstruktur Ledare Isolatorer Halvledare Påminnelse Elektronerna ordnas i skal (n) och subskal (l) En elektron specificeras med 4 kvanttalen n,lm l,m s Två elektroner kan

Läs mer

BANDGAP 2013-02-06. 1. Inledning

BANDGAP 2013-02-06. 1. Inledning 1 BANDGAP 13--6 1. Inledning I denna laboration studeras bandgapet i två halvledare, kisel (Si) och galliumarsenid (GaAs) genom mätning av transmissionen av infrarött ljus genom en tunn skiva av respektive

Läs mer

Elektricitetslära och magnetism - 1FY808. Lab 3 och Lab 4

Elektricitetslära och magnetism - 1FY808. Lab 3 och Lab 4 Linnéuniversitetet Institutionen för fysik och elektroteknik Elektricitetslära och magnetism - 1FY808 Lab 3 och Lab 4 Ditt namn:... eftersom labhäften far runt i labsalen. 1 Laboration 3: Likström och

Läs mer

Laboration i Tunneltransport. Fredrik Olsen

Laboration i Tunneltransport. Fredrik Olsen Laboration i Tunneltransport Fredrik Olsen 9 maj 28 Syfte och Teori I den här laborationen fick vi möjlighet att studera elektrontunnling över enkla och dubbla barriärer. Teorin bakom är den som vi har

Läs mer

WORKSHOP: EFFEKTIVITET OCH ENERGIOMVANDLING

WORKSHOP: EFFEKTIVITET OCH ENERGIOMVANDLING WORKSHOP: EFFEKTIVITET OCH ENERGIOMVANDLING Energin i vinden som blåser, vattnet som strömmar, eller i solens strålar, måste omvandlas till en mera användbar form innan vi kan använda den. Tyvärr finns

Läs mer

Vad är KiselGermanium?

Vad är KiselGermanium? Vad är KiselGermanium? Kiselgermanium, eller SiGe, får nog sägas vara den nya teknologin på modet inom området integrerade kretsar för radiofrekvenser, RF-ASIC. Det kan vara på sin plats med en genomgång

Läs mer

1( ), 2( ), 3( ), 4( ), 5( ), 6( ), 7( ), 8( ), 9( )

1( ), 2( ), 3( ), 4( ), 5( ), 6( ), 7( ), 8( ), 9( ) Inst. för Fysik och materialvetenskap Ola Hartmann Tentamen i ELEKTROMAGNETISM I 2008-10-08 Skrivtid: 5 tim. för Kand_Fy 2 och STS 3. Hjälpmedel: Physics Handbook, formelblad i Elektricitetslära, räknedosa

Läs mer

Sensorer och elektronik. Grundläggande ellära

Sensorer och elektronik. Grundläggande ellära Sensorer och elektronik Grundläggande ellära Innehåll Grundläggande begrepp inom mekanik Elektriskt fält och elektrisk potential Dielektrika och kapacitans Ström och strömtäthet Ohms lag och resistans

Läs mer

Strålningsfält och fotoner. Våren 2013

Strålningsfält och fotoner. Våren 2013 Strålningsfält och fotoner Våren 2013 1. Fält i rymden Vi har lärt oss att beräkna elektriska fält utgående från laddningarna som orsakar dem Kan vi härleda nånting åt andra hållet? 2 1.1 Gauss lag Låt

Läs mer

Laboration: pn-övergången

Laboration: pn-övergången LTH: FASTA TILLSTÅNDETS FYSIK Komponentfysik för E Laboration: pn-övergången Utförd datum Inlämnad datum Grupp:... Laboranter:...... Godkänd datum Handledare: Retur Datum: Återinlämnad Datum: Kommentarer

Läs mer

Tentamen i : Vågor,plasmor och antenner. Totala antalet uppgifter: 6 Datum:

Tentamen i : Vågor,plasmor och antenner. Totala antalet uppgifter: 6 Datum: Tentamen i : Vågor,plasmor och antenner Kurs: MTF108 Totala antalet uppgifter: 6 Datum: 2006-05-27 Examinator/Tfn: Hans Åkerstedt/491280/Åke Wisten070/5597072 Skrivtid: 9.00-15.00 Jourhavande lärare/tfn:

Läs mer

Energidiagram enligt FEM

Energidiagram enligt FEM MEALLER emperaturens inverkan på elektrontillståndens fyllnadsgrad i en frielektronmetall I grundtillståndet besätter elektronerna de lägsta N e /2 st tillstånden med två elektroner i varje tillstånd.

Läs mer

Laborationer i miljöfysik. Solcellen

Laborationer i miljöfysik. Solcellen Laborationer i miljöfysik Solcellen Du skall undersöka elektrisk ström, spänning och effekt från en solcellsmodul under olika förhållanden, och ta reda på dess verkningsgrad under olika förutsättningar.

Läs mer

Lektion 1: Automation. 5MT001: Lektion 1 p. 1

Lektion 1: Automation. 5MT001: Lektion 1 p. 1 Lektion 1: Automation 5MT001: Lektion 1 p. 1 Lektion 1: Dagens innehåll Electricitet 5MT001: Lektion 1 p. 2 Lektion 1: Dagens innehåll Electricitet Ohms lag Ström Spänning Motstånd 5MT001: Lektion 1 p.

Läs mer

Försättsblad till skriftlig tentamen vid Linköpings Universitet

Försättsblad till skriftlig tentamen vid Linköpings Universitet Försättsblad till skriftlig tentamen vid Linköpings Universitet Datum för tentamen 2010-12-20 Sal (1) Om tentan går i flera salar ska du bifoga ett försättsblad till varje sal och ringa in vilken sal som

Läs mer

Magnetfält och magnetiska krafter. Emma Björk

Magnetfält och magnetiska krafter. Emma Björk Magnetfält och magnetiska krafter Emma Björk Magnetfält och magnetiska krafter Beskriva permanentmagneters beteende Samband magnetism-laddning i rörelse Ta fram uttryck för magnetisk kraft på laddning

Läs mer

Komponentfysik ESS030. Den bipolära transistorn

Komponentfysik ESS030. Den bipolära transistorn Komponentfysik ESS030 Den bipolära transistorn T- 2016 Syfte Syftet med denna laboration är att studenten ska bekanta sig med den grundläggande fysiken i en bipolär transistor. Det fundamentala byggblocket

Läs mer

Föreläsning 6: Opto-komponenter

Föreläsning 6: Opto-komponenter Föreläsning 6: Opto-komponenter Opto-komponent Interaktion ljus - halvledare Fotoledare Fotodiod / Solcell Lysdiod Halvledarlaser 1 Komponentfysik - Kursöversikt Bipolära Transistorer pn-övergång: kapacitanser

Läs mer

Om inget annat anges så gäller det kisel och rumstemperatur (300K)

Om inget annat anges så gäller det kisel och rumstemperatur (300K) Komponentfysik Övning 3 VT-0 Om inget annat anges så gäller det kisel och rumstemperatur (300K) Utredande uppgifter: I: En diod har två typer av kapacitanser, utarmningskapacitans och diffusionskapacitans.

Läs mer

Lösningsförslag till deltentamen i IM2601 Fasta tillståndets fysik. Onsdagen den 30 maj, Teoridel Ê Á Ê. B B T Ë k B T Ê. exp m BBˆ.

Lösningsförslag till deltentamen i IM2601 Fasta tillståndets fysik. Onsdagen den 30 maj, Teoridel Ê Á Ê. B B T Ë k B T Ê. exp m BBˆ. Lösningsförslag till deltentamen i IM60 Fasta tillståndets fysik Paramagnetism i ett tvånivåsystem Onsdagen den 30 maj, 0 Teoridel. a) För m S = - är m S z = -m B S z = +m B och energin blir U = -m B B

Läs mer

Linnéuniversitetet. Naturvetenskapligt basår. Laborationsinstruktion 1 Kaströrelse och rörelsemängd

Linnéuniversitetet. Naturvetenskapligt basår. Laborationsinstruktion 1 Kaströrelse och rörelsemängd Linnéuniversitetet VT2013 Institutionen för datavetenskap, fysik och matematik Program: Kurs: Naturvetenskapligt basår Fysik B Laborationsinstruktion 1 Kaströrelse och rörelsemängd Uppgift: Att bestämma

Läs mer

Material föreläsning 6. HT2 7,5 p halvfart Janne Carlsson

Material föreläsning 6. HT2 7,5 p halvfart Janne Carlsson Material föreläsning 6 HT2 7,5 p halvfart Janne Carlsson Tisdag 6:e December 10:15 16:00 PPU105 Material Förmiddagens agenda Termiska egenskaper ch 12-13 Paus Elektriska, magnetiska och optiska egenskaper

Läs mer

Resistansen i en tråd

Resistansen i en tråd Resistansen i en tråd Inledning Varför finns det trådar av koppar inuti sladdar? Går det inte lika bra med någon annan tråd? Bakgrund Resistans är detsamma som motstånd och alla material har resistans,

Läs mer

TENTAMEN. Institution: DFM, Fysik Examinator: Pieter Kuiper. Datum: 1 november 2010

TENTAMEN. Institution: DFM, Fysik Examinator: Pieter Kuiper. Datum: 1 november 2010 TENTAMEN Institution: DFM, Fysik Examinator: Pieter Kuiper Namn:... Adress:... Datum: 1 november 2010... Tid: Plats: Kurskod: 1FY805 Personnummer: Kurs/provmoment: Fasta Tillståndets Fysik I Hjälpmedel:

Läs mer

Final i Wallenbergs fysikpris

Final i Wallenbergs fysikpris Final i Wallenbergs fysikpris 5-6 mars 011. Teoriprov. Lösningsförslag. 1) Fysikern Hilda leker med en protonstråle i en vakuumkammare. Hon accelererar protonerna från stillastående med en protonkanon

Läs mer

Prov Fysik B Lösningsförslag

Prov Fysik B Lösningsförslag Prov Fysik B Lösningsförslag DEL I 1. Högerhandsregeln ger ett cirkulärt magnetfält med riktning medurs. Kompass D är därför korrekt. 2. Orsaken till den i spolen inducerade strömmen kan ses som stavmagnetens

Läs mer

IN Inst. för Fysik och materialvetenskap ---------------------------------------------------------------------------------------------- INSTRUKTION TILL LABORATIONEN INDUKTION ---------------------------------------------------------------------------------------------

Läs mer

Halvledare och funktionella material i vår vardag. Mikael Syväjärvi. Linköpings universitet Underlag för sommarkurs juni-augusti 2007.

Halvledare och funktionella material i vår vardag. Mikael Syväjärvi. Linköpings universitet Underlag för sommarkurs juni-augusti 2007. Mikael Syväjärvi Linköpings universitet Underlag för sommarkurs juni-augusti 2007 Version 070619 msy@ifm.liu.se; people.ifm.liu.se/misyv Innehåll: Halvledare vad är det och vad används de till? Grundläggande

Läs mer

Tentamen i ELEKTROMAGNETISM I, för W2 och ES2 (1FA514)

Tentamen i ELEKTROMAGNETISM I, för W2 och ES2 (1FA514) Uppsala universitet Institutionen för fysik och astronomi Kod: Program: Tentamen i ELEKTROMAGNETISM I, 2016-03-19 för W2 och ES2 (1FA514) Kan även skrivas av studenter på andra program där 1FA514 ingår

Läs mer

Laboration: Optokomponenter

Laboration: Optokomponenter LTH: FASTA TILLSTÅNDETS FYSIK Komponentfysik för E Laboration: Optokomponenter Utförd datum Inlämnad datum Grupp:... Laboranter:...... Godkänd datum Handledare: Retur Datum: Återinlämnad Datum: Kommentarer

Läs mer

Zeemaneffekt. Projektlaboration, Experimentell kvantfysik, FK5013

Zeemaneffekt. Projektlaboration, Experimentell kvantfysik, FK5013 Zeemaneffekt Projektlaboration, Experimentell kvantfysik, FK5013 Introduktion En del energinivåer i en atom kan ha samma energi, d.v.s. energinivåerna är degenererade. Degenereringen kan brytas genom att

Läs mer

Mät resistans med en multimeter

Mät resistans med en multimeter elab003a Mät resistans med en multimeter Namn Datum Handledarens sign Laboration Resistans och hur man mäter resistans Olika ämnen har olika förmåga att leda den elektriska strömmen Om det finns gott om

Läs mer

Bra tabell i ert formelblad

Bra tabell i ert formelblad Bra tabell i ert formelblad Vi har gått igenom hur magnetfält alstrar krafter, kap. 7. Vi har gått igenom hur strömmar alstrar magnetfält, kap. 8. Återstår att lära sig hur strömmarna alstras. Tidigare

Läs mer

Svaren på förståelsedelen skall ges på tesen som skall lämnas in.

Svaren på förståelsedelen skall ges på tesen som skall lämnas in. Dugga i Elektromagnetisk fältteori F. för F2. EEF031 2005-11-19 kl. 8.30-12.30 Tillåtna hjälpmedel: BETA, Physics Handbook, Formelsamling i Elektromagnetisk fältteori, Valfri kalkylator men inga egna anteckningar

Läs mer

Solar cells. 2.0 Inledning. Utrustning som används i detta experiment visas i Fig. 2.1.

Solar cells. 2.0 Inledning. Utrustning som används i detta experiment visas i Fig. 2.1. Solar cells 2.0 Inledning Utrustning som används i detta experiment visas i Fig. 2.1. Figure 2.1 Utrustning som används i experiment E2. Utrustningslista (se Fig. 2.1): A, B: Två solceller C: Svart plastlåda

Läs mer

Miljöfysik. Föreläsning 6. Solel Solcellsanläggningar Halvledare En pn-övergång I-U karakteristik för solceller

Miljöfysik. Föreläsning 6. Solel Solcellsanläggningar Halvledare En pn-övergång I-U karakteristik för solceller Miljöfysik Föreläsning 6 Solel Solcellsanläggningar Halvledare En pn-övergång I-U karakteristik för solceller I-U karakteristik för solceller Förluster En solcells verkningsgrad Hur solceller påverkar

Läs mer

Kaströrelse. 3,3 m. 1,1 m

Kaströrelse. 3,3 m. 1,1 m Kaströrelse 1. En liten kula, som vi kallar kula 1, släpps ifrån en höjd över marken. Exakt samtidigt skjuts kula 2 parallellt med marken ifrån samma höjd som kula 1. Luftmotståndet som verkar på kulorna

Läs mer

Chalmers Tekniska Högskola Tillämpad Fysik Igor Zoric

Chalmers Tekniska Högskola Tillämpad Fysik Igor Zoric Chalmers Tekniska Högskola 2002 05 28 Tillämpad Fysik Igor Zoric Tentamen i Fysik för Ingenjörer 2 Elektricitet, Magnetism och Optik Tid och plats: Tisdagen den 28/5 2002 kl 8.45-12.45 i V-huset Examinator:

Läs mer

Föreläsning 11 Fälteffekttransistor II

Föreläsning 11 Fälteffekttransistor II Föreläsning 11 Fälteffekttransistor Fälteffekt Tröskelspänning Beräkning av strömmen Storsignal, D Kanallängdsmodulation Flatband-shift pmosfet 013-05-03 Föreläsning 11, Komponentfysik 013 1 Komponentfysik

Läs mer

attraktiv repellerande

attraktiv repellerande Magnetism, kap. 24 Eleonora Lorek Magnetism, introduktion Magnetism ordet kommer från Magnesia, ett område i antika Grekland där man hittade konstiga stenar som kunde lyfta upp järn. Idag är magnetism

Läs mer

Att välja rätt strömtång (tångamperemeter) Börja med att besvara följande;

Att välja rätt strömtång (tångamperemeter) Börja med att besvara följande; Att välja rätt strömtång (tångamperemeter) Börja med att besvara följande; Är det AC eller DC ström som ska mätas? (DC tänger är kategoriserade som AC/DC tänger eftersom de mäter både lik- och växelström.)

Läs mer

Kap 2. Elektroner som partikel

Kap 2. Elektroner som partikel Kap. Elektroner som partikel.1 ström, spridning och diffusion Antar elektronerna som en klassisk gas. I denna model har elektronerna ensdast kinetisk energi (termisk) kraften. Laddningsbärare kommer separeras

Läs mer

Linnéuniversitetet Institutionen för fysik och elektroteknik

Linnéuniversitetet Institutionen för fysik och elektroteknik Linnéuniversitetet Institutionen för fysik och elektroteknik Ht2015 Program: Naturvetenskapligt basår Kurs: Fysik Bas 1 delkurs 1 Laborationsinstruktion 1 Densitet Namn:... Lärare sign. :. Syfte: Träna

Läs mer

Strålningsfält och fotoner. Kapitel 23: Faradays lag

Strålningsfält och fotoner. Kapitel 23: Faradays lag Strålningsfält och fotoner Kapitel 23: Faradays lag Faradays lag Tidsvarierande magnetiska fält inducerar elektriska fält, eller elektrisk spänning i en krets. Om strömmen genom en solenoid ökar, ökar

Läs mer

Sammanfattning av räkneövning 1 i Ingenjörsmetodik för ME1 och IT1. SI-enheter (MKSA)

Sammanfattning av räkneövning 1 i Ingenjörsmetodik för ME1 och IT1. SI-enheter (MKSA) Sammanfattning av räkneövning 1 i Ingenjörsmetodik för ME1 och IT1 Torsdagen den 4/9 2008 SI-enheter (MKSA) 7 grundenheter Längd: meter (m), dimensionssymbol L. Massa: kilogram (kg), dimensionssymbol M.

Läs mer

Fotoelektriska effekten

Fotoelektriska effekten Fotoelektriska effekten Bakgrund År 1887 upptäckte den tyska fysikern Heinrich Hertz att då man belyser ytan på en metallkropp med ultraviolett ljus avges elektriska laddningar från ytan. Noggrannare undersökningar

Läs mer

Elektricitet och magnetism

Elektricitet och magnetism Elektricitet och magnetism Eldistribution Laddning Ett grundläggande begrepp inom elektricitetslära är laddning. Under 1700-talet fann forskarna två sorters laddning POSITIV laddning och NEGATIV laddning

Läs mer

3.7 Energiprincipen i elfältet

3.7 Energiprincipen i elfältet 3.7 Energiprincipen i elfältet En laddning som flyttas från en punkt med lägre potential till en punkt med högre potential får även större potentialenergi. Formel (14) gav oss sambandet mellan ändring

Läs mer

Instuderingsfrågor, Griffiths kapitel 4 7

Instuderingsfrågor, Griffiths kapitel 4 7 Joakim Edsjö 15 oktober 2007 Fysikum, Stockholms Universitet Tel.: 08-55 37 87 26 E-post: edsjo@physto.se Instuderingsfrågor, Griffiths kapitel 4 7 Teoretisk Kvantmekanik II HT 2007 Tanken med dessa frågor

Läs mer

Föreläsning 13 Fälteffekttransistor III

Föreläsning 13 Fälteffekttransistor III Föreläsning 13 Fälteffekttransistor III pmo måsignal FET A, f t MO-Kondensator 014-05-19 Föreläsning 13, Komponentfysik 014 1 Komponentfysik - Kursöversikt Bipolära Transistorer pn-övergång: kapacitanser

Läs mer

Stockholms Tekniska Gymnasium Prov Fysik 2 Mekanik

Stockholms Tekniska Gymnasium Prov Fysik 2 Mekanik Prov Fysik 2 Mekanik För samtliga uppgifter krävs om inte annat står antingen en tydlig och klar motivering eller fullständig lösning och att det går att följa lösningsgången. Fråga 1: Keplers tredje lag

Läs mer

När man förklarar experiment för andra finns det en bra sekvens att följa:

När man förklarar experiment för andra finns det en bra sekvens att följa: Den inledande teoridelen ska läsas av alla studenter före laborationstillfället. Tänk igenom och lös förberedelseuppgifterna innan labben! De mest relevanta kapitlena i kompendiet är kapitel 6 och 7 om

Läs mer

4-1 Hur lyder Schrödingerekvationen för en partikel som rör sig i det tredimensionella

4-1 Hur lyder Schrödingerekvationen för en partikel som rör sig i det tredimensionella KVANTMEKANIKFRÅGOR Griffiths, Kapitel 4-6 Tanken med dessa frågor är att de ska belysa de centrala delarna av kursen och tjäna som kunskapskontroll och repetition. Kapitelreferenserna är till Griffiths.

Läs mer

Sammanfattning av räkneövning 1 i Ingenjörsmetodik för ME1 och IT1. SI-enheter (MKSA)

Sammanfattning av räkneövning 1 i Ingenjörsmetodik för ME1 och IT1. SI-enheter (MKSA) Sammanfattning av räkneövning 1 i Ingenjörsmetodik för ME1 och IT1 Torsdagen den 3/9 2009 SI-enheter (MKSA) 7 grundenheter Längd: meter (m), dimensionssymbol L. Massa: kilogram (kg), dimensionssymbol M.

Läs mer

Miljöfysik vt2009. Mikael Syväjärvi, IFM

Miljöfysik vt2009. Mikael Syväjärvi, IFM Miljöfysik vt2009 Mikael Syväjärvi, IFM Energisituation I Sverige Cirka 150 TWh elektricitet 150 000 000 000 kwh 20 000 kwh per månad för hus 20-30% av energi belysning i hem Medelvärde - ca 20% hem, kontor,

Läs mer

Optokomponenter Laborationshandledning

Optokomponenter Laborationshandledning ESS030 Komponentfysik för E Optokomponenter Laborationshandledning FASTA TLLSTÅNDETS FYSK LTH Komponentfysik för E Optokomponenter modern elektronik används både elektriska och optiska signaler för överföring

Läs mer

Prov 3 2014-10-13. (b) Hur stor är kraften som verkar på en elektron mellan plattorna? [1/0/0]

Prov 3 2014-10-13. (b) Hur stor är kraften som verkar på en elektron mellan plattorna? [1/0/0] Namn: Område: Elektromagnetism Datum: 13 Oktober 2014 Tid: 100 minuter Hjälpmedel: Räknare och formelsamling. Betyg: E: 25. C: 35, 10 på A/C-nivå. A: 45, 14 på C-nivå, 2 på A-nivå. Tot: 60 (34/21/5). Instruktioner:

Läs mer

11. Halvledare. [HH 5, Kittel 8, AM 28] Fasta tillståndets fysik, Kai Nordlund 2015 1

11. Halvledare. [HH 5, Kittel 8, AM 28] Fasta tillståndets fysik, Kai Nordlund 2015 1 11. Halvledare [HH 5, Kittel 8, AM 28] All modern datorteknologi baserar sig helt på halvledande materials fysik. Detta är ett bemärkningsvärt faktum, om man tänker på att den allra första transistorn

Läs mer

EXPERIMENTELLT PROV ONSDAG Provet omfattar en uppgift som redovisas enligt anvisningarna. Provtid: 180 minuter. Hjälpmedel: Miniräknare.

EXPERIMENTELLT PROV ONSDAG Provet omfattar en uppgift som redovisas enligt anvisningarna. Provtid: 180 minuter. Hjälpmedel: Miniräknare. EXPERIMENTELLT PROV ONSDAG 2011-03-16 Provet omfattar en uppgift som redovisas enligt anvisningarna. Provtid: 180 minuter. Hjälpmedel: Miniräknare. OBS! Tabell- och formelsamling får EJ användas. Skriv

Läs mer

Oscillerande dipol i ett inhomogent magnetfält

Oscillerande dipol i ett inhomogent magnetfält Ú Institutionen för fysik 2014 08 11 Kjell Rönnmark Oscillerande dipol i ett inhomogent magnetfält Syfte Magnetisk dipol och harmonisk oscillator är två mycket viktiga modeller inom fysiken. Laborationens

Läs mer

Föreläsning 5, clickers

Föreläsning 5, clickers Föreläsning 5, clickers Gungbrädan 1 kg 2 kg A. Kommer att tippa åt höger B. Kommer att tippa åt vänster ⱱ C. Väger jämnt I en kastparabel A. är accelerationen störst alldeles efter uppkastet B. är accelerationen

Läs mer

4:2 Ellära: ström, spänning och energi. Inledning

4:2 Ellära: ström, spänning och energi. Inledning 4:2 Ellära: ström, spänning och energi. Inledning Det samhälle vi lever i hade inte utvecklats till den höga standard som vi ser nu om inte vi hade lärt oss att utnyttja elektricitet. Därför är det viktigt

Läs mer

Magnetiska fält. Magnetiska fält. Magnetiska fält. Magnetiska fält. Två strömförande ledningar kraftpåverkar varandra!

Magnetiska fält. Magnetiska fält. Magnetiska fält. Magnetiska fält. Två strömförande ledningar kraftpåverkar varandra! 38! 39! Två strömförande ledningar kraftpåverkar varandra! i 1! i 2! Krafterna beror av i 1 och i 2 och av geometrin! 40! Likaså kraftpåverkas en laddning Q som rör sig i närheten av en strömförande ledning!

Läs mer

KOMPONENTKÄNNEDOM. Laboration E165 ELEKTRO. UMEÅ UNIVERSITET Tillämpad fysik och elektronik Anton Holmlund Personalia:

KOMPONENTKÄNNEDOM. Laboration E165 ELEKTRO. UMEÅ UNIVERSITET Tillämpad fysik och elektronik Anton Holmlund Personalia: UMEÅ UNIVESITET Tillämpad fysik och elektronik nton Holmlund 1997-03-14 KOMPONENTKÄNNEDOM Laboration E165 ELEKTO Personalia: Namn: Kurs: Datum: Återlämnad (ej godkänd): ättningsdatum Kommentarer Godkänd:

Läs mer

Fysik (TFYA72) Ellära (92FY FY27) Emma Björk

Fysik (TFYA72) Ellära (92FY FY27) Emma Björk Fysik (TFYA7) Ellära (9FY1 + 9FY7) Emma Björk Elektromagnetism Kursupplägg 8 föreläsningar 8 lektioner 4 seminarier (endast 9FY11 och 9FY17) Vågrörelselära (endast TFYA7) 4 föreläsningar 4 lektioner Experimentell

Läs mer

Introduktion. Torsionspendel

Introduktion. Torsionspendel Chalmers Tekniska Högskola och Göteborgs Universitet November 00 Fysik och teknisk fysik Kristian Gustafsson och Maj Hanson (Anpassat för I1 av Göran Niklasson) Svängningar Introduktion I mekanikkursen

Läs mer

Rotationsrörelse laboration Mekanik II

Rotationsrörelse laboration Mekanik II Rotationsrörelse laboration Mekanik II Utförs av: William Sjöström Oskar Keskitalo Uppsala 2015 04 19 Sida 1 av 10 Sammanfattning För att förändra en kropps rotationshastighet så krävs ett vridmoment,

Läs mer