MMGD20-TMV216-HT13/Anteckn. Area. Volym. Determinant. Linjär Avbildning vs Matrisalgebra

Save this PDF as:
 WORD  PNG  TXT  JPG

Storlek: px
Starta visningen från sidan:

Download "MMGD20-TMV216-HT13/Anteckn. Area. Volym. Determinant. Linjär Avbildning vs Matrisalgebra"

Transkript

1 Föreläsn Anteckn, Linjär algebra D/HT2013/Genkai Zhang 1 MMGD20-TMV216-HT13/Anteckn Area Volym Determinant Linjär Avbildning vs Matrisalgebra Vi kommer att ha lite annanlunda framställning av teorin för linjära avbildningar, speciellt kommer vi att gå genom teorin med material från olika kapitel av boken Jag skriver ner därför den här (icke finslippade) texten om bland annat, matrisalgebra, linjäravbildning, volymer och determinant 1 Linjär avbildning och matrisalgebra (Kap 2, Kap 31-33, [SL LinAlg]) Matrisalgebra och linjära avbildingar är egentligen samma sak Huvudmålet av kursen kan tolkas som tillämpningar av matrixalgebra på ekvationsystem Att studera matrisalgebra genom linjära avbildningar, dvs betrakta algebraiska beräkningar som geometriska operationer, är ett centralt tema i matematik; kort sagt, vill man omformulera diversa matematiska eller praktiska problem som ett geometriska problem Vi får därifrån intuition och hittar rätta verktyg! Några konkreta exempel har vi minsta-kvadrat-läsning (se Överbestämda system, Kap 56) och diagonalisering av symmetriska matris (se Kap 8) 11 Matrisalgebra (Kap 2) 1 Motivering Vektorekv Ax = b versus skalär ekvation ax = b Vi börjar med en omskrivning av ett system av två ekvationer med två variabler som en matrix ekvation Ax = b Säg (t ex i kursen Diskret Matte) att barnen lillebror A och storbror B har fått 18 kr resp 28 kr att köpa appelsiner (ap) och äpplen (äp) De ska köpa samma antal, säg x st, appelsiner och samma antal y st äpplen, lillebror A får köpa små äpplen/appelsiner och storbror B stora Pristabeln, per st, på en marknad ser ut så här, ap äp små 5 2 stora 8 3 Antalen x, y uppfyller då ett ekvationssystem { 5x + 2y = 18 8x + 3y = 28 För att kunna jämföra systemet med en skalär ekvation ax = b betecknar vi pristabeln som en matris 5 2 P = 8 3

2 Föreläsn Anteckn, Linjär algebra D/HT2013/Genkai Zhang 2 och antalen x och y som en kolonnvektor likaväl summorna 18 och 28 som v = b = x, y Ekvationssystemet ska omskrivas som en kompakt form, en vektorekvation, P v = b Här har vi infört en operation, P v, multiplikationen av en matrix med en vektor 2 Vi kan lösa systemet här med en handberäkning, x = 2, y = 4, dvs v = uppfyller 4 P v = = = P v kan också betraktas som en linjärkombination av kolonner vektorerna i P, P v = =, dvs matrismultiplikationen P v är ingenting mer än en linjärkombination av kolonnvektorerna i P Eftersom en skalär ekvation ax = b kan lösas x = a 1 b (OBS! om a 0) vill vi försöka lösa en allmänn vektorekv Ax = b (med samman antal ekvationer som variabler) som x = A 1 b om A 1 existerar Vi kommer att utvecka en fullständig teori för vektorekv:n Ax = b av godtyckliga antal variabler och ekvationer; den kan kort sammanfattas som: en entydig lösn (speciellt om A 1 existerar så har den alltid en entydig lösning) Ax = b har olösbar lösbar med oändligt många lösningar Mer specifikt ska vi komma fram en metod för att avgöra vilket fall det blir och hur många fria variabler det finns när det är oändligt många lösningar 2 Koefficientmatriser Betrakta ekvsys { x 1 + 2x 2 = 5 3x 1 + 4x 2 = 6

3 Föreläsn Anteckn, Linjär algebra D/HT2013/Genkai Zhang 3 Vi plockar upp koefficienterna som en matris, koefficientmatrisen 1 2 A = 3 4 En lösning (x 1, x 2 ) skall idenifieras som en vektor x = x 1 e 1 + x 2 e 2 = systemet skall skrivas som Ax = b, b = Vi känner oss manade att lösa ekv:n med 5 = 5e e 2 x = A 1 b [ x1 x 2 ], och ekv Men vi behöver först se över reglerna innan vi börjar invertera matriser Vi påminner oss att addition/multiplication av tal uppfyller följande regler (a) a + 0 = a, a0 = 0, a1 = a (b) a(cx) = c(ax) (Konstanten c är fritt fram) (c) (a + b)x = ax + bx, a(x + y) = ax + ay (Distributiviteten) 3 Matrismultiplikation vs linjärkombination Vi behandlar 2 2-matriser - allmänna matriser är egentligen samma x1 Skriv A som två kolonnvektorer A = [a 1 a 2 ] Låt x = Ax = [a 1 a 2 ] som är linjär kombination av a 1, a 2 Ex eller = 7 = [ x1 x 2 x 2 ] = x 1 a 1 + x 2 a 2 (1) = = Den sista är på något sätt snabbare att beräkna, medan den första är begreppsmässigt bättre Matriser som motsvarande 0, 1 blir noll-matriser 0, och identitetmatrisen 1 0 I 2 = I = 0 1 Räkneregler för matriser är exakt samma som tal, så längre man behåller ordningen under multiplikationen - bortsett från skalärmultiplikation som är fritt fram

4 Föreläsn Anteckn, Linjär algebra D/HT2013/Genkai Zhang 4 4 Transponant Låt r vara en radvektor r = [c d] Transponentet r t är kolonnvektorn r t = c d (Omvänt blir transponentet k t av en kolonnvektor k en radvektor) OBS! Matrismultiplikation av radvektor och kolonnvektor vs Inreprodukt En radvektor r multiplicerad med en kolonnvektor k blir ett tal, och är också inreprodukten rk = [r 1 r 2 ] [ k1 k 2 ] = r 1 k 1 + r 2 k 2 = r t k ( här är inreprodukten av kolonnvektorer) Detta kommer att användas av i minst-kvadrat-lösning Transponentet A t av en m n-matrix A definieras som denna n m-matrix vars j:te kolonnen är den j : te raden i A transponerad, dvs A t = [r t 1r t 2 r t m], om A är skriven som m rader (av rad-n-vektorer) r 1 A = r 2 r m (Alternativt: A t är n stycken rad-m-vektorer om A är n stycken kolonn-m-vektorer) Vi gör några små beräkningar av matriser Ex [1 2] 4 = 14, 5 (Se du någon samband mellan resultaten?) [1 1 1] = [1 2] = (förlängning) 4 5 1/4 5/12 = I /3 2 (invertering)

5 Föreläsn Anteckn, Linjär algebra D/HT2013/Genkai Zhang 5 12 Linjära avbildningar (Kap [SL:LinAlg] 5 Påminnelser om linjära funktioner Den enklaste klassen av funktioner är linjära funktioner i en variabel x, dvs, f(x) = ax (eller mer allmänna affina funktioner f(x) = ax + b) Linjära funktioner av två variabler är av form z = f(x, y) = a 1 x + a 2 y Denna kan vi betrakta som en avbildning från planet R 2 av vektorer xe 1 + ye 2 till reella linjen R Definitionsmängden här är R 2 av (x, y) medan värdemängden R av z Även om det är en funktion f : R 2 R 2 från plan till plan är det bra att skilja det ena R 2 från det andra R 2 (Mer viktigt är det i praktiken Se ex 1) Funktionerna ax eller a 1 x 1 + a 2 x 2 är ex på linjära skalära funktioner Vi tittar nu vektorella funktioner av flera variabler, dvs funktioner som har vektorer som värden Given en matris A, till ex 1 2 A = 3 4 så kan vi betrakta den linjära avbildningen x1 y1 x1 + 2 f : x = = y = Ax = x 2 y 2 3x 1 + 4x 2 A kallas då matrisen till f, och betecknas f = f A 6 Räknelagarna för matrisprodukt Av vs linjära egenskaper för f Räknereglerna för matrisprodukten Av kan omformuleras som egenskaper för f : v Av: f(cv) = cf(v), f(u + v) = f(u) + f(v) Sammanfattning: Varje 2 2- matris A definierar en linjär avbildning f A : R 2 R 2 Omvänt har vi följande Sats Varje linjär avbildning f : R 2 R 2 är av formen f A, f = f A, för någon 2 2-matris A som bestäms av A = [f(e 1 ) f(e 2 )] Se senare ex för att se hur man bestämmer matriser för lin avb 13 Determinant Area Volym 7 Geometriska tolkningar av inreprodukt och korsprodukt Geometriska tolkningar av u v och u v kan grovt sammanfattas så här Inreprodukt u v Projektionen av u på v Korsprodukt u v Area av parallellogram spant av u och v samt medurs-motursorienteringen av paret (u, v) (i förhållande till en fix orientering i planet)

6 Föreläsn Anteckn, Linjär algebra D/HT2013/Genkai Zhang 6 Vi kommer att introducera determinanten det(a) för en 3x3-matris som beräknar volymen på en parallellopiped och som omfattar båda inreprodukt och korsprodukt Påminn om korsprodukten: u v definieras som vektorn sådan att (i) u v är ortogonal mot u och v, (ii) den minsta vridning (dvs mellan 0, π) med högra handen från u till v ger tummen siktad åt u v, (iii) Längden av u v är arean av parallellogramen med sidorna u och v Ex Betrakta två vektorer u 1 u = u 1 e 1 +u 2 e 2 = u 1 e 1 +u 2 e 2 +0e 3 = u 2, v = v 1 e 1 +v 2 e 2 = v 1 e 1 +v 2 e 2 +0e 3 = v i xy-planet i xyz-rummet Korsprodukten u v är då parallell med e 3 Mer precist u v = 0 0 = (u 1 v 2 u 2 v 1 )e 3 u 1 v 2 u 2 v 1 Enligt definitionen är u 1 v 2 u 2 v 1, bortsett från tecknet, arean för parallellogramen spant av u, v; den är positiv om (u, v) är moturs och negativ medurs Dvs, talet u 1 v 2 u 2 v 1 beräknar då arean med orientering relativ den given orientering på xy-planet Vi har sett en teknik i matematik där vi kan betrakta ett två-dimensionellt problem i tredimensioner 1 Ett fågelperspektiv 8 Determinant Låt nu vara en 2 matris a b A = c d Def Determinanten det(a) av A definieras som det(a) = ad bc Betrakta A = [u, v] som två ordnade vektorer Enligt beräkningen ovan på korsprodukten (av ũ = u + 0e 3, ṽ = v + 0e 3, dvs u, v lyftades till tre-dim) får följande Sats (Universumet är planet R 2 )det(a) är arean Area(P ) av parallellogramen P som spänns upp av u, v, om paret (u, v) är moturs, det(a) = Area(P ); den är negativ av Area(P ) om paret är medurs, det(a) = Area(P ) 1 Ni vet säkert lite grann om Einsteins relativitetsteori som säger att vi lever i 4-dim iställt för 3? v 1

7 Föreläsn Anteckn, Linjär algebra D/HT2013/Genkai Zhang 7 9 Volym Låt u, v, w vara tre givna vektorer och låt P vara parallellopepiden som de spänner upp (Se figuren 11) Vi söker nu lösningarna till följande fråga Hur beräknar vi volymen av parallellopepiden P mha u, v, w? Vi antar för tillfället att (u, v, w) är höger-hand-orienterad, dvs positiv orienterad Påminn Volym av en parallellopipeden Vol(P) = Basarean Höjden (2) Beteckna parallellogramen som spänns upp av u, v, dvs basen till parallellopepiden sett från w s spets, som B Vol(P) = Area(B) Höjden (3) Låt Enligt (i)-(iii) ovan är längden av n är arean och n är en normalvektor till basen B n := u v (4) Area(B) = n (5) Höjden är då längden av orthgonalprojektionen, säg h, av w på normallinjen Av [Kap 13, Sats 120] i textboken, vet vi Nu samlar vi ihop (3)-(6) och får h = n w n w n, Höjden = h = n 2 n n w Vol(P) = Area(B) Höjden = n n Enligt vårt antangandet av orienteringen blir n w postiv, dvs V = V ol(p) = (u v) w = n w = (u v) w (Alternativt: Beteckna vinkeln mellan n och w som α Då är V = n w cos α = n w = (u v) w) Så får vi Sats Volymen av parallellopepiden P som spänns upp av u, v, w är om de är positivt orienterade, annans blir V ol(p) = (u v) w V ol(p) = (u v) w (6)

8 Föreläsn Anteckn, Linjär algebra D/HT2013/Genkai Zhang 8 Enligt formeln för korsprodukten i koordinater får vi u 2 v 3 u 3 v 2 u v = u 3 v 1 u 1 v 3 u 1 v 2 u 2 v 1 och (u v) w = (u 2 v 3 u 3 v 2 )w 1 + (u 3 v 1 u 1 v 3 )w 2 + (u 1 v 2 u 2 v 1 )w 3 = u 1 v 2 w 3 + u 2 v 3 w 1 + u 3 v 1 w 2 u 3 v 2 w 1 u 1 v 3 w 2 u 2 v 1 w 3 Detta definierar vi som determinant för matrisen och kan beräknas med s k Sarrus regel Def A = [u v w] det(a) = u 1 v 2 w 3 + u 2 v 3 w 1 + u 3 v 1 w 2 u 3 v 2 w 1 u 1 v 3 w 2 u 2 v 1 w 3 Satsen ovan kan omformuleras som om tripeln (u v w) är positivt orienterade Vol(P) = det[u v w] Anmärkning Om A är en övertriangulär matris a 11 a 12 a 13 A = 0 a 22 a a 33 då är produkten av diagonalelementen det(a) = a 22 a 22 a Små beräkningar av det(a) mha radreducering 10 Determinant mha radreducering Radreducering, eller Gauss elliminering, är en metod att lös ekvsys Den kan också använda för att beräkna determinanter Det är samma princip för alla kvadratiska matriser, så beskriver jag här bara för 3 3-matriser För allmänna större matriser, säg 5 5, tar det mycket tid med handberäkningen om de inte har andra specialla egenskaper Man kan använda dator förstås Observera att determianten det(a) för n n-matris A (n = 2, 3) har följande egenskaper:

9 Föreläsn Anteckn, Linjär algebra D/HT2013/Genkai Zhang 9 (1) det(a) = det(a t ) Detta medförs av definitionen Man kan då betrakta A som en kolonn av radvektorer (iställt som kolonnvektorer) om man vill (2) den byter tecken efter omkastning av två rader (eller kolonn), ty att orientering av motsvarance parallellogramen (n = 2) och parallellopepiden (n = 3) ändras, (3) om två rader är det samma så blir den noll, ty det blir en degenererad parallellogramen (dvs ett segment n = 2) med noll area och degenerad parallellopepiden (en kallapad sådan, n = 3) med noll volym (4) som en funktion av tre kolonnvektorer är determinant en linjär funktion i varje kolonn (medan andra kolonner är fasta) (Kort argument för n = 2: Med en fixerad basen u är arean av parallellogramen uv linjärt beroende på höjden, vilken är sin tur linjär beroende på den andra sida v) (3) och (4) tillsammans medför att radoperationen c (i:te raden) + (j:te raden) blir den nya (j:te raden) förändrar ej det(a) Så kan vi genom några radoperationer överföra A till en övertriangulär matris vars determiant är produkt av diagonalen Ex Vi utför radreducering på A = ( 4)rad1+rad2,( 7)rad1+rad3, så får vi det(a) = 3 Fråga/Övn Kan du argumentera utan beräkning att det = 0? Uppgifter med lösning 11 Uppgifter Ex (a) Låt f vara speglingen map linjen L: y = 2x i planet Beräkna matrisen för f (b) I rummet representerar y = 2x + 3z ett plan P Beräkna matrisen för speglingen map P i rummet 2 Lsn: (a) Linjen L: y = 2x kan skrivas som 2x+y = 0 En normal till linjen är n = 1 v1 Speglingen för en godtycklig vektor v = är (se bilden ner) v 2 f(v) = v backad två steg längs normalen

10 Föreläsn Anteckn, Linjär algebra D/HT2013/Genkai Zhang 10 dvi Så att Svar: Matrisen är f(v) = v 2 v n n n n = f(e 1 ) = 1 15 [ v1 v 2 ] 2 2v 1 + v 2 5 3, f(e 4 2 ) = (Anmärkning: Man kan också använda en inriktningsvektor, till ex u =, till linjen 2 och beräkna speglingen mha projektionen på linjen iställt Se [SL, Prop 125]) 2 (b) I rummet har planet y = 2x + 3z, dvs 2x + y 3z = 0 en normal n = 1 3 Speglingen blir det samma som i två dimension, dvs backad två steg längs normalen, f(v) = v 2 v n v 1 n n n = v 2 2 2v v 2 3v v 3 3 Bilderna av enhetsvektorerna blir f(e 1 ) = 1 6 4, f(e 2 ) = , f(e 2 ) = och matrisen för speglingen är / Fråga/Övning Kan du bevisa med geometrisk argument, utan beräkningar, att matriserna A ovan uppfyller A 2 = I, det(a) = 1

11 Föreläsn Anteckn, Linjär algebra D/HT2013/Genkai Zhang 11 Parallellopepiden spännd upp av u, v, w w v B u n

Vektorgeometri för gymnasister

Vektorgeometri för gymnasister Vektorgeometri för gymnasister Per-Anders Svensson http://homepage.lnu.se/staff/psvmsi/vektorgeometri/gymnasiet.html Fakulteten för teknik Linnéuniversitetet Räta linjens och planets ekvationer II Innehåll

Läs mer

Vektorgeometri för gymnasister

Vektorgeometri för gymnasister Vektorgeometri för gymnasister Per-Anders Svensson http://homepage.lnu.se/staff/psvmsi/vektorgeometri/gymnasiet.html Fakulteten för teknik Linnéuniversitetet Areor, vektorprodukter, volymer och determinanter

Läs mer

Vektorgeometri för gymnasister

Vektorgeometri för gymnasister Vektorgeometri för gymnasister Per-Anders Svensson http://homepage.lnu.se/staff/psvmsi/vektorgeometri/gymnasiet.html Fakulteten för teknik Linnéuniversitetet Linjära avbildningar II Innehåll Repetition:

Läs mer

Linjär Algebra M/TD Läsvecka 1

Linjär Algebra M/TD Läsvecka 1 Linjär Algebra M/TD Läsvecka 1 Omfattning: Lay, kapitel 1.1-1.9, Linjära ekvationer i linjär algebra Innehåll: Olika aspekter av linjära ekvationssystem: skärning mellan geometriska objekt, linjärkombination

Läs mer

1 som går genom punkten (1, 3) och är parallell med vektorn.

1 som går genom punkten (1, 3) och är parallell med vektorn. KTH Matematik Extra uppgifter på linjär algebra SF1621 Analytiska metoder och linjär algebra 2 för OPEN och T Förkunskaper Obs en del av detta är repetition från förra kursen Men innan ni ens börjar med

Läs mer

1 Grundläggande kalkyler med vektorer och matriser

1 Grundläggande kalkyler med vektorer och matriser Krister Svanberg, mars 2015 1 Grundläggande kalkyler med vektorer och matriser Trots att läsaren säkert redan behärskar grundläggande vektor- och matriskalkyler, ges här i Kapitel 1 en repetition om just

Läs mer

Linjär algebra på 2 45 minuter

Linjär algebra på 2 45 minuter Linjär algebra på 2 45 minuter π n x F(x) Förberedelser inför skrivningen Den här genomgången täcker förstås inte hela kursen. Bra sätt att lära sig kursen: läs boken, diskutera med kompisar, gå igenom

Läs mer

1. (a) Bestäm alla värden på c som gör att matrisen A(c) saknar invers: 1 0 1. 1 c 1

1. (a) Bestäm alla värden på c som gör att matrisen A(c) saknar invers: 1 0 1. 1 c 1 ATM-Matematik Mikael Forsberg 734-4 3 3 För ingenjörs- och distansstudenter Linjär Algebra ma4a 5 4 Skrivtid: :-4:. Inga hjälpmedel. Lösningarna skall vara fullständiga och lätta att följa. Börja varje

Läs mer

Veckoblad 1, Linjär algebra IT, VT2010

Veckoblad 1, Linjär algebra IT, VT2010 Veckoblad, Linjär algebra IT, VT Under den första veckan ska vi gå igenom (i alla fall stora delar av) kapitel som handlar om geometriska vektorer. De viktigaste teoretiska begreppen och resultaten i kapitlet

Läs mer

Lösningsförslag till skrivningen i Vektorgeometri (MAA702) måndagen den 30 maj 2005

Lösningsförslag till skrivningen i Vektorgeometri (MAA702) måndagen den 30 maj 2005 VÄXJÖ UNIVERSITET Matematiska och systemtekniska institutionen Per-Anders Svensson Lösningsförslag till skrivningen i Vektorgeometri (MAA702) måndagen den 30 maj 2005 Uppgift. Bestäm samtliga vektorer

Läs mer

November 17, 2015 (1) en enda lsg. Obs det A = 1 0. (2) k-parameter lsg. Obs det A = 0. k-kolonner efter sista ledande ettan

November 17, 2015 (1) en enda lsg. Obs det A = 1 0. (2) k-parameter lsg. Obs det A = 0. k-kolonner efter sista ledande ettan Fö 9: November 7, 5 Determinanter och ekvationssystem Betrakta ett linjärt ekvssystem A X = B, där A är en kvadratisk n n)-matris och X, B n )-matriser. Låt C = [A B] utökad matris ). Gausselimination

Läs mer

ax + y + 2z = 3 ay = b 3 (b 3) z = 0 har (a) entydig lösning, (b) oändligt många lösningar och (c) ingen lösning.

ax + y + 2z = 3 ay = b 3 (b 3) z = 0 har (a) entydig lösning, (b) oändligt många lösningar och (c) ingen lösning. UPPSALA UNIVERSITET Matematiska institutionen Anders Johansson Prov i matematik ES, Frist, KandMa LINJÄR ALGEBRA och GEOMETRI I 2010 10 21 Skrivtid: 8.00 13.00. Tillåtna hjälpmedel: Skrivdon. Lösningarna

Läs mer

TMV166/186 Linjär Algebra M/TD 2011/2012 Läsvecka 1. Omfattning. Innehåll 2012-01-20. Lay, kapitel 1.1-1.9, Linjära ekvationer i linjär algebra

TMV166/186 Linjär Algebra M/TD 2011/2012 Läsvecka 1. Omfattning. Innehåll 2012-01-20. Lay, kapitel 1.1-1.9, Linjära ekvationer i linjär algebra TMV166/186 Linjär Algebra M/TD 2011/2012 Läsvecka 1 Omfattning Lay, kapitel 1.1-1.9, Linjära ekvationer i linjär algebra Innehåll Olika aspekter av linjära ekvationssystem 1. skärning mellan geometriska

Läs mer

LINJÄRA AVBILDNINGAR

LINJÄRA AVBILDNINGAR LINJÄRA AVBILDNINGAR Xantcha november 05 Linjära avbildningar Definition Definition En avbildning T : R Ñ R (eller R Ñ R ) är linjär om T pau ` bvq at puq ` bt pvq för alla vektorer u, v P R (eller u,

Läs mer

Mer om analytisk geometri

Mer om analytisk geometri 1 Onsdag v 5 Mer om analytisk geometri Determinanter: Då man har en -matris kan man till den associera ett tal determinanten av som också skrivs Determinanter kommer att repeteras och studeras närmare

Läs mer

Övningar. MATEMATISKA INSTITUTIONEN STOCKHOLMS UNIVERSITET Avd. Matematik. Linjär algebra 2. Senast korrigerad:

Övningar. MATEMATISKA INSTITUTIONEN STOCKHOLMS UNIVERSITET Avd. Matematik. Linjär algebra 2. Senast korrigerad: MATEMATISKA INSTITUTIONEN STOCKHOLMS UNIVERSITET Avd. Matematik Linjär algebra 2 Senast korrigerad: 2006-02-10 Övningar Linjära rum 1. Låt v 1,..., v m vara vektorer i R n. Ge bevis eller motexempel till

Läs mer

SKRIVNING I VEKTORGEOMETRI

SKRIVNING I VEKTORGEOMETRI SKRIVNING I VEKTORGEOMETRI 2014-11-25 1400-1700 Om inget annat uttryckligen sägs, kan koordinaterna för en vektor i antas vara givna i en ON-bas Baser i rummet kan dessutom antas vara positivt orienterade

Läs mer

Vektorgeometri för gymnasister

Vektorgeometri för gymnasister Vektorgeometri för gymnasister Per-Anders Svensson http://homepage.lnu.se/staff/psvmsi/vektorgeometri/gymnasiet.html Fakulteten för teknik Linnéuniversitetet Diagonalisering av linjära avbildningar III

Läs mer

Vektorgeometri för gymnasister

Vektorgeometri för gymnasister Vektorgeometri för gymnasister Per-Anders Svensson http://homepage.lnu.se/staff/psvmsi/vektorgeometri/gymnasiet.html Fakulteten för teknik Linnéuniversitetet Diagonalisering av linjära avbildningar I Innehåll

Läs mer

Subtraktion. Räkneregler

Subtraktion. Räkneregler Matriser En matris är en rektangulär tabell av tal, 1 3 17 4 3 2 14 4 0 6 100 2 Om matrisen har m rader och n kolumner så säger vi att matrisen har storlek m n Index Vi indexerar elementen i matrisen genom

Läs mer

SF1624 Algebra och geometri Lösningsförslag till modelltentamen DEL A

SF1624 Algebra och geometri Lösningsförslag till modelltentamen DEL A SF624 Algebra och geometri Lösningsförslag till modelltentamen DEL A () (a) Använd Gauss-Jordans metod för att bestämma lösningsmängden till ekvationssystemet 2x + 4x 2 + 2x 3 + 2x 4 = 2, 3x + 6x 2 x 3

Läs mer

Föreläsning 13 Linjär Algebra och Geometri I

Föreläsning 13 Linjär Algebra och Geometri I Föreläsning 13 Linjär Algebra och Geometri I Se slide 1: det är i rymden oftast lättast att jobba med parametrar för linjer och ekvationer för plan. Exempel: Låt l : (x, y, z) = (1 t, 3 + t, 4t), t R och

Läs mer

Föreläsningsanteckningar Linjär Algebra II Lärarlyftet

Föreläsningsanteckningar Linjär Algebra II Lärarlyftet Föreläsningsanteckningar Linjär Algebra II Lärarlyftet Per Alexandersson Föreläsning I Timme I: Repetition av matriser, linjära ekvationssystem Linjärt ekvationssystem: x + y + z 3w = 3 2x + y + z 4w =

Läs mer

M = c c M = 1 3 1

M = c c M = 1 3 1 N-institutionen Mikael Forsberg Prov i matematik Matematik med datalogi, mfl. Linjär algebra ma4a Deadline :: 8 9 4 Lösningarna skall vara fullständiga och lätta att följa. Börja varje ny uppgift på ny

Läs mer

Inför tentamen i Linjär algebra TNA002.

Inför tentamen i Linjär algebra TNA002. Inför tentamen i Linjär algebra TNA002. 1. Linjära ekvationssytem (a) Omskrivningen av ekvationssystem på matrisform samt utföra radoperationer. (b) De 3 typer av lösningar som dyker upp vid lösning av

Läs mer

Chalmers tekniska högskola Datum: kl Telefonvakt: Linnea Hietala MVE480 Linjär algebra S

Chalmers tekniska högskola Datum: kl Telefonvakt: Linnea Hietala MVE480 Linjär algebra S MATEMATIK Hjälpmedel: inga Chalmers tekniska högskola Datum: 69 kl 4-8 Tentamen Telefonvakt: Linnea Hietala 55 MVE48 Linjär algebra S Tentan rättas och bedöms anonymt Skriv tentamenskoden tydligt på placeringlista

Läs mer

Föreläsning 3, Linjär algebra IT VT Skalärprodukt

Föreläsning 3, Linjär algebra IT VT Skalärprodukt Föreläsning 3, Linjär algebra IT VT2008 1 Skalärprodukt Denition 1 Låt u oh v vara två vektorer oh låt α vara minsta vinkeln mellan dem Då denierar vi skalärprodukten u v genom u v = u v os α Exempel 1

Läs mer

Linjär algebra på några minuter

Linjär algebra på några minuter Linjär algebra på några minuter Linjära ekvationssystem Ekvationssystem: { Löses på matrisform: ( ) ( ) I det här fallet finns en entydig lösning, vilket betyder att determinanten av koefficientmatrisen

Läs mer

6. Matriser Definition av matriser 62 6 MATRISER. En matris är ett rektangulärt schema av tal: a 11 a 12 a 13 a 1n a 21 a 22 a 23 a 2n A =

6. Matriser Definition av matriser 62 6 MATRISER. En matris är ett rektangulärt schema av tal: a 11 a 12 a 13 a 1n a 21 a 22 a 23 a 2n A = 62 6 MATRISER 6 Matriser 6 Definition av matriser En matris är ett rektangulärt schema av tal: A a a 2 a 3 a n a 2 a 22 a 23 a 2n a m a m2 a m3 a mn Matrisen A säges vara av typ m n, där m är antalet rader

Läs mer

Lite Linjär Algebra 2017

Lite Linjär Algebra 2017 Lite Linjär Algebra 2017 Lektionsanteckningar och sammanfattning Johan Thim, MAI (johan.thim@liu.se) ū ū O z y ū // L : OP + t v x Ortogonalprojektion: ū // = ū v v v v, ū = ū ū //. Innehåll 1 Bakgrund

Läs mer

{ 1, om i = j, e i e j = 0, om i j.

{ 1, om i = j, e i e j = 0, om i j. 34 3 SKALÄPRODUKT 3. Skaläprodukt Definition 3.. Skalärprodukten mellan två vektorer u och v definieras där θ är vinkeln mellan u och v. u v = u v cos θ, Anmärkning 3.. Andra beteckningar för skalärprodukt

Läs mer

Frågorna 1 till 6 ska svaras med ett kryss för varje korrekt påstående. Varje uppgift ger 1 poäng. Använd bifogat formulär för dessa 6 frågor.

Frågorna 1 till 6 ska svaras med ett kryss för varje korrekt påstående. Varje uppgift ger 1 poäng. Använd bifogat formulär för dessa 6 frågor. TM-Matematik Mikael Forsberg 74-4 Matematik med datalogi, mfl. Linjär algebra ma4a 6 Skrivtid: 9:-4:. Inga hjälpmedel. Lösningarna skall vara fullständiga och lätta att följa. Börja varje ny uppgift på

Läs mer

1 De fyra fundamentala underrummen till en matris

1 De fyra fundamentala underrummen till en matris Krister Svanberg, mars 2012 1 De fyra fundamentala underrummen till en matris 1.1 Definition av underrum En given delmängd M av IR n säges vara ett underrum i IR n om följande gäller: För varje v 1 M,

Läs mer

Linjär algebra och geometri I

Linjär algebra och geometri I UPPSALA UNIVERSITET MATEMATISKA INSTITUTIONEN Anders Johansson Linjär algebra och geometri I för Energi, Ma-kand., Frist. Höstterminen 2010 Kurslitteratur H. Anton, C. Rorres, Elementary Linear Algebra

Läs mer

SF1624 Algebra och geometri Lösningsförslag till tentamen DEL A

SF1624 Algebra och geometri Lösningsförslag till tentamen DEL A SF64 Algebra och geometri Lösningsförslag till tentamen 0-0-0 DEL A De tre totalmatriserna 0 3 3 4 0 3 0 0 0 0, 0 3 0 4 4 0 3 0 3 0 0 0 0 och 0 3 0 4 0 3 3 0 0 0 0 0 svarar mot linjära ekvationssystem

Läs mer

Explorativ övning Vektorer

Explorativ övning Vektorer Eplorativ övning Vektorer Syftet med denna övning är att ge grundläggande kunskaper om vektorräkning och dess användning i geometrin Liksom många matematiska begrepp kommer vektorbegreppet från fysiken

Läs mer

14. Minsta kvadratmetoden

14. Minsta kvadratmetoden 58 MINSTA KVADRATMETODEN. Minsta kvadratmetoden Eempel.. Det är inte så svårt att komma åt en trasig lampa på golvet för att byta den. Det är bara att gå fram till den. Hur är det om lampan hänger i taket?

Läs mer

Vektorrum. EX. Plan och linjer i rummet genom origo. Allmänt; mängden av lösningar till AX = 0.

Vektorrum. EX. Plan och linjer i rummet genom origo. Allmänt; mängden av lösningar till AX = 0. Vektorrum Denna kurs handlar till stor del om s k linjära rum eller vektorrum. Dessa kan ses som generaliseringar av R n. Skillnaden består främst i att teorin nu blir mer abstrakt. Detta är själva poängen;

Läs mer

Moment Viktiga exempel Övningsuppgifter

Moment Viktiga exempel Övningsuppgifter Moment Viktiga exempel Övningsuppgifter Inga Inga Inga Linjära ekvationssystem Vi har redan tidigare i kursen stött på linjära ekvationssystem. Nu är stunden kommen till en mera systematisk genomgång.

Läs mer

SF1624 Algebra och geometri Lösningsförslag till tentamen Fredagen den 23 oktober, 2009 DEL A

SF1624 Algebra och geometri Lösningsförslag till tentamen Fredagen den 23 oktober, 2009 DEL A SF1624 Algebra och geometri Lösningsförslag till tentamen Fredagen den 23 oktober, 2009 DEL A (1) (a) Bestäm de övriga rötterna till ekvationen z 3 11z 2 + 43z 65 = 0 när det är känt att en av rötterna

Läs mer

Vektorgeometri för gymnasister

Vektorgeometri för gymnasister Vektorgeometri för gymnasister Per-Anders Svensson http://homepage.lnu.se/staff/psvmsi/vektorgeometri/gymnasiet.html Fakulteten för teknik Linnéuniversitetet Linjära avbildningar I Innehåll En liten tillbakablick:

Läs mer

SF1624 Algebra och geometri Lösningsförslag till modelltentamen DEL A

SF1624 Algebra och geometri Lösningsförslag till modelltentamen DEL A SF1624 Algebra och geometri Lösningsförslag till modelltentamen DEL A (1) Vid lösningen av ekvationssystemet x 1 3x 2 +3x 3 4x 4 = 1, x 2 +x 3 x 4 = 0, 4x 1 +x 2 x 3 2x 4 = 5, kommer man genom Gausselimination

Läs mer

16. Linjära avbildningar

16. Linjära avbildningar 66 6 LINJÄRA AVBILDNINGAR 6. Linjära avbildningar 6.. Linjär avbildning Exempel 6.. Betrakta funktionen f : R R, sådan att där a är en konstant. Då gäller att. f(x + y) =a(x + y) =ax + ay = f(x)+f(y)..

Läs mer

Linjära avbildningar. Definition 1 En avbildning mellan två vektorrum, F : V U, kallas linjär om. EX. Speglingar, rotationer, projektioner i R 3.

Linjära avbildningar. Definition 1 En avbildning mellan två vektorrum, F : V U, kallas linjär om. EX. Speglingar, rotationer, projektioner i R 3. Linjära avbildningar Definition 1 En avbildning mellan två vektorrum, F : V U, kallas linjär om F (v +v ) = F (v)+f (v ) och F (cv) = cf (v) för alla v, v V och alla skalärer c. EX. Speglingar, rotationer,

Läs mer

Vektorgeometri för gymnasister

Vektorgeometri för gymnasister Vektorgeometri för gymnasister Per-Anders Svensson http://homepage.lnu.se/staff/psvmsi/vektorgeometri/gymnasiet.html Fakulteten för teknik Linnéuniversitetet Skalärprodukt Innehåll Skalärprodukt - Inledning

Läs mer

Vektorgeometri för gymnasister

Vektorgeometri för gymnasister Vektorgeometri för gymnasister Per-Anders Svensson http://homepage.lnu.se/staff/psvmsi/vektorgeometri/gymnasiet.html Fakulteten för teknik Linnéuniversitetet Räta linjens och planets ekvationer III Innehåll

Läs mer

2 Funktioner från R n till R m, linjära, inversa och implicita funktioner

2 Funktioner från R n till R m, linjära, inversa och implicita funktioner Nr, feb -5, Amelia Funktioner från R n till R m, linjära, inversa och implicita funktioner.1 Funktioner från R n till R m Vi har i tidigare föreläsningar sett olika tolkningar av funktioner från R n till

Läs mer

17. Övningar ÖVNINGAR Låt F och G vara avbildningar på rummet, som i basen e = {e 1,e 2,e 3 } ges av. x 1 x 2 2x 2 + 3x 3 2x 1 x 3

17. Övningar ÖVNINGAR Låt F och G vara avbildningar på rummet, som i basen e = {e 1,e 2,e 3 } ges av. x 1 x 2 2x 2 + 3x 3 2x 1 x 3 192 17 ÖVNINGAR 17. Övningar 17.1. Låt F och G vara avbildningar på rummet, som i basen e = {e 1,e 2,e 3 } ges av F(eX) = ey = e x 1 x 2 2x 2 + 3x 3 2x 1 x 3, G(eX) = e x 1 x 2 x 2 2 x 2 + x 3 Undersök

Läs mer

Kursplanering för Linjär algebra, HT 2003

Kursplanering för Linjär algebra, HT 2003 Kursplanering för Linjär algebra, HT 2003 Mikael Forsberg 12 augusti 2003 Innehåll 1 Kursbok 2 2 Kursinnehåll 2 2.1 Kursens uppläggning......................... 2 2.2 Målsättning..............................

Läs mer

Moment 5.5 Övningsuppgifter I 5.60a. 5.60b, 5.60.c, 61

Moment 5.5 Övningsuppgifter I 5.60a. 5.60b, 5.60.c, 61 Moment 5.5 Övningsuppgifter I 5.0a. 5.0b, 5.0.c, 1 Linjära ekvationssystem Vi har redan tidigare i kursen stött på linjära ekvationssystem. Nu är stunden kommen till en mera systematisk genomgång. Kvadratiska

Läs mer

Linjär Algebra, Föreläsning 2

Linjär Algebra, Föreläsning 2 Linjär Algebra, Föreläsning 2 Tomas Sjödin Linköpings Universitet Geometriska vektorer, rummen R n och M n 1 En (geometrisk) vektor är ett objekt som har storlek och riktning, men inte någon naturlig startpunkt.

Läs mer

16. Linjära avbildningar

16. Linjära avbildningar 6. Linjära avbildningar 6.. Linjär avbildning Exempel 6.. Betrakta funktionen f : R R, sådan att där a är en konstant. Då gäller att. f(x + y) = a(x + y) = ax + ay = f(x) + f(y). 2. f(λx) = a(λx) = aλx

Läs mer

16.7. Nollrum, värderum och dimensionssatsen

16.7. Nollrum, värderum och dimensionssatsen 86 6 LINJÄRA AVBILDNINGAR 6.7. Nollrum, värderum och dimensionssatsen Definition 6.36. Låt F : V W vara en linjär avbildning.. Nollrummet till F definierar vi som mängden av alla u V som avbildas på nollvektorn,

Läs mer

MATEMATIK GU. LLMA60 MATEMATIK FÖR LÄRARE, GYMNASIET Analys, ht 2014. Block 5, översikt

MATEMATIK GU. LLMA60 MATEMATIK FÖR LÄRARE, GYMNASIET Analys, ht 2014. Block 5, översikt MATEMATIK GU H4 LLMA6 MATEMATIK FÖR LÄRARE, GYMNASIET Analys, ht 24 I block 5 ingår följande avsnitt i Stewart: Kapitel 2, utom avsnitt 2.4 och 2.6; kapitel 4. Block 5, översikt Första delen av block 5

Läs mer

SF1624 Algebra och geometri Lösningsförslag med bedömningskriterier till kontrollskrivning 1 Måndagen den 29 november, 2010

SF1624 Algebra och geometri Lösningsförslag med bedömningskriterier till kontrollskrivning 1 Måndagen den 29 november, 2010 SF624 Algebra och geometri Lösningsförslag med bedömningskriterier till kontrollskrivning Måndagen den 29 november, 200 UPPGIFT () Betrakta det linjära ekvationssystemet x + x 2 + x 3 = 7, x x 3 + x 4

Läs mer

Linjär Algebra M/TD Läsvecka 3

Linjär Algebra M/TD Läsvecka 3 bild 1 Linjär Algebra M/TD Läsvecka 3 Omfattning och Innehåll Lay: 3.1-3.3 Determinanter. Definition, räkneregler och ett par viktiga satser. Huitfeldt: Om lösningsnoggrannhet: vektornorm, matrisnorm bild

Läs mer

Dagens program. Linjära ekvationssystem och matriser

Dagens program. Linjära ekvationssystem och matriser Dagens program Matriser Räkneoperationer och räknelagar Linjära ekvationssystem och matriser Matrisform av ekvationssystem Elementära radoperationer Trappstegsmatriser, rang och lösningsstruktur Matrisinvers,

Läs mer

Stöd inför omtentamen i Linjär algebra TNA002.

Stöd inför omtentamen i Linjär algebra TNA002. LINKÖPINGS UNIVERSITET ITN, Campus Norrköping Univ lekt George Baravdish Stöd inför omtentamen i Linjär algebra TNA002. Läsråd: Detta är ett stöd för dig som vill repetera inför en omtentamen. 1. Börja

Läs mer

Basbyte (variabelbyte)

Basbyte (variabelbyte) Basbyte (variabelbyte) En vektors koordinater beror på valet av bas! Tänk på geometriska vektorer här. v har längden 2 och pekar rakt uppåt i papprets plan. Kan vi då skriva v (, 2)? Om vi valt basvektorer

Läs mer

5 Linjär algebra. 5.1 Addition av matriser 5 LINJÄR ALGEBRA

5 Linjär algebra. 5.1 Addition av matriser 5 LINJÄR ALGEBRA 5 LINJÄR ALGEBRA 5 Linjär algebra En kul gren av matematiken som inte fått speciellt mycket utrymme i gymnasiet men som har många tillämpningsområden inom t.ex. fysik, logistik, ekonomi, samhällsplanering

Läs mer

Linjär algebra och geometri 1

Linjär algebra och geometri 1 UPPSALA UNIVERSITET MATEMATISKA INSTITUTIONEN Ryszard Rubinsztein Oswald Fogelklou Linjär algebra och geometri 1 för K1, W1, KandKe1 Höstterminen 2008 Kurslitteratur H.Anton, C.Rorres, Elementary Linear

Läs mer

Geometriska vektorer

Geometriska vektorer Föreläsning 1, Linjär algebra IT VT2008 1 Geometriska vektorer De begrepp som linjär algebra kretsar kring är vektorer och matriser Dessa svarar mot datorernas fält (`arra') av dimension ett respektive

Läs mer

En vektor är mängden av alla sträckor med samma längd och riktning.

En vektor är mängden av alla sträckor med samma längd och riktning. En vektor är mängden av alla sträckor med samma längd och riktning. Slappdefinition En vektor är en riktad sträcka som får parallellförflyttas. Tänk på vektorn som en pil. Betecknar vektorer med små bokstäver

Läs mer

SF1624 Algebra och geometri Lösningsförslag till tentamen DEL A

SF1624 Algebra och geometri Lösningsförslag till tentamen DEL A SF1624 Algebra och geometri Lösningsförslag till tentamen 2010-10-22 DEL A (1) Uttrycket (x, y, z) (1, 1, 1) + s(1, 3, 0) + t(0, 5, 1) definierar ett plan W i rummet där s och t är reella parametrar. (a)

Läs mer

VEKTORRUMMET R n. 1. Introduktion

VEKTORRUMMET R n. 1. Introduktion VEKTORRUMMET R n RYSZARD RUBINSZTEIN 28--8. Introdktion Låt n vara ett heltal. Med R n kommer vi att beteckna mängden vars element är alla n-tipplar av reella tal (a, a 2,..., a n ), R n = { (a, a 2,...,

Läs mer

2 1 1 s s. M(s) = (b) Beräkna inversen för det minsta positiva heltalsvärdet på s som gör matrisen inverterbar.

2 1 1 s s. M(s) = (b) Beräkna inversen för det minsta positiva heltalsvärdet på s som gör matrisen inverterbar. TM-Matematik Mikael Forsberg 7 Linjär algebra/matematik för ingenjörer maa, maa 5 6 Skrivtid: 9:-:. Inga hjälpmedel förutom pennor, sudd, linjal, gradskiva. Lösningarna skall vara fullständiga och lätta

Läs mer

Läsanvisningar och övningsuppgifter i MAA150, period vt Erik Darpö

Läsanvisningar och övningsuppgifter i MAA150, period vt Erik Darpö Läsanvisningar och övningsuppgifter i MAA150, period vt1 2015 Erik Darpö ii 0. Förberedelser Nedanstående uppgifter är avsedda att användas som ett självdiagnostiskt test. Om du har problem med att lösa

Läs mer

LINJÄR ALGEBRA HT2013. Kurslitteratur: Anton: Elementary Linear Algebra 10:e upplagan.

LINJÄR ALGEBRA HT2013. Kurslitteratur: Anton: Elementary Linear Algebra 10:e upplagan. LINJÄR ALGEBRA HT2013 JONAS WIKLUND Kurslitteratur: Anton: Elementary Linear Algebra 10:e upplagan. 1. LINJÄRA EKVATIONSSYSTEM OCH MATRISER 1.1 Introduktion. Till stor del bör du känna till ekvationslösning

Läs mer

1 Ortogonalitet. 1.1 Skalär produkt. Man kan tala om vinkel mellan vektorer.

1 Ortogonalitet. 1.1 Skalär produkt. Man kan tala om vinkel mellan vektorer. Ortogonalitet Man kan tala om vinkel mellan vektorer.. Skalär produkt Vi definierar längden (eller normen) av en vektor som ett reellt tal 0 (Se boken avsnitt.). Vi definierar skalär produkt (Inner product),

Läs mer

3 1 = t 2 2 = ( 1) ( 2) 1 2 = A(t) = t 1 10 t

3 1 = t 2 2 = ( 1) ( 2) 1 2 = A(t) = t 1 10 t SF624 Algebra och geometri Tentamen med lösningsförslag måndag, 3 mars 207 Betrakta vektorerna P =, Q = 3, u = Låt l vara linjen som går genom 2 0 P och Q och låt l 2 vara linjen som är parallell med u

Läs mer

1.1 Skriv följande vektorsummor som en vektor (a) AB + BC (b) BC + CD + DA.

1.1 Skriv följande vektorsummor som en vektor (a) AB + BC (b) BC + CD + DA. Övningsuppgifter i anslutning till Kapitel. Skriv följande vektorsummor som en vektor a AB + BC b BC + CD + DA..2 Sök i nedanstående figur de vektorer som har samma längd och samma riktning som vektorn

Läs mer

Version 0.82. Linjär algebra kapiltet från ett ODE-kompendium. Mikael Forsberg

Version 0.82. Linjär algebra kapiltet från ett ODE-kompendium. Mikael Forsberg Version.8 Linjär algebra kapiltet från ett ODE-kompendium Mikael Forsberg 8 Den här boken är typsatt av författaren med hjälp av L A TEX. Alla illustrationer är utförda av Mikael Forsberg med hjälp av

Läs mer

En kortfattad redogörelse för Determinantbegreppet

En kortfattad redogörelse för Determinantbegreppet En kortfattad redogörelse för Determinantbegreppet Göran Starius, goran@chalmers.se Matematiska vetenskaper Chalmers/GU 2009 1 Introduktion Vi skall till varje kvadratisk matris A ordna ett tal, som kallas

Läs mer

Studiehandledning till. MAA123 Grundläggande vektoralgebra

Studiehandledning till. MAA123 Grundläggande vektoralgebra Studiehandledning till MAA13 Grundläggande vektoralgebra vid kurstillfället i period 4 läsåret 013/14 Version 014-05- Information om kursen MAA13 Avsikt Avsikten med kursen MAA13 Grundläggande vektoralgebra

Läs mer

October 9, Innehållsregister

October 9, Innehållsregister October 9, 017 Innehållsregister 1 Vektorer 1 1.1 Geometrisk vektor............................... 1 1. Vektor och koordinatsystem.......................... 1 1.3 Skalär produkt (dot eller inner product)...................

Läs mer

Studieanvisningar. H. Anton och C. Rorres: Elementary Linear Algebra, 9:e upplagan. Wiley, 2005 (betecknas A nedan).

Studieanvisningar. H. Anton och C. Rorres: Elementary Linear Algebra, 9:e upplagan. Wiley, 2005 (betecknas A nedan). Uppsala Universitet Matematiska Institutionen Bo Styf Linjär algebra och geometri I, 5 hp (distans) 2-3-7 Studieanvisningar. Kurslitteratur: H. Anton och C. Rorres: Elementary Linear Algebra, 9:e upplagan.

Läs mer

Linjär Algebra 764G01: Kommentarer och läsanvisningar till kursboken

Linjär Algebra 764G01: Kommentarer och läsanvisningar till kursboken Linjär Algebra 764G01: Kommentarer och läsanvisningar till kursboken Här följer kommentarer om sånt i boken som kan behövas förtydligas samt anvisningar om vad som ska läsas, eller snarare vilka delar

Läs mer

x 1 x 2 x 3 x 4 mera allmänt, om A är en (m n)-matris, då ger matrismultiplikationen en avbildning T A : R n R m.

x 1 x 2 x 3 x 4 mera allmänt, om A är en (m n)-matris, då ger matrismultiplikationen en avbildning T A : R n R m. Fredagen 006 Avbildningar Låt A vara matrisen () = 0 0 Till varje vektor X i R får vi vid matrismultiplikationen AX en vektor i R Mera explicit, om X = x x x x är en given punkt i R, då får vi punkten

Läs mer

SF1624 Algebra och geometri Lösningsförslag med bedömningskriterier till kontrollskrivning 2 Fredagen den 28 januari, 2011

SF1624 Algebra och geometri Lösningsförslag med bedömningskriterier till kontrollskrivning 2 Fredagen den 28 januari, 2011 SF1624 Algebra och geometri Lösningsförslag med bedömningskriterier till kontrollskrivning 2 Fredagen den 28 januari, 2011 UPPGIFT (1) Låt V vara mängden av vektorer (x 1, x 2, x 3 ) i R 3 som uppfyller

Läs mer

SF1624 Algebra och geometri

SF1624 Algebra och geometri SF1624 Algebra och geometri Första föreläsningen Mats Boij Institutionen för matematik KTH 26 oktober, 2009 Översikt Kurspresentation Komplexa tal Kursmålen Efter genomgången kurs ska studenten vara förtrogen

Läs mer

Egenvärden och egenvektorer

Egenvärden och egenvektorer Föreläsning 10, Linjär algebra IT VT2008 1 Egenvärden och egenvektorer Denition 1 Antag att A är en n n-matris. En n-vektor v 0 som är sådan att A verkar som multiplikation med ett tal λ på v, d v s Av

Läs mer

Linjär algebra Tio förrätter och två efterrätter Roy Skjelnes

Linjär algebra Tio förrätter och två efterrätter Roy Skjelnes Linjär algebra Tio förrätter och två efterrätter Roy Skjelnes Matematiska Institutionen, KTH Typsatt med L A TEX 2ε och TikZ Kompilerad 8 september 2014 Inledande ord Detta häfte är baserat på en föreläsningsserie

Läs mer

Vektorgeometri för gymnasister

Vektorgeometri för gymnasister Vektorgeometri för gymnasister Per-Anders Svensson http://homepage.lnu.se/staff/psvmsi/vektorgeometri/gymnasiet.html Fakulteten för teknik Linnéuniversitetet Vektorer i planet och i rummet III Innehåll

Läs mer

1.1 MATLABs kommandon för matriser

1.1 MATLABs kommandon för matriser MATLABs kommandon för matriser Det finns en mängd kommandon för att hantera vektorer, matriser och linjära ekvationssystem Vi ger här en kort sammanfattning av dessa kommandon För en mera detaljerad diskussion

Läs mer

SF1624 Algebra och geometri

SF1624 Algebra och geometri Föreläsning 8 Institutionen för matematik KTH 16 november 2016 Matriser och linjära avbildningar Dagens ämnen (kap 3.3 och 3.4): Exempel på linjära avbildningar Nollrum och Bildrum Dimensionssatsen / Rangsatsen

Läs mer

ALA-c Innehåll. 1 Linearization and Stability Uppgift Uppgift Egenvärdesproblemet Uppgift

ALA-c Innehåll. 1 Linearization and Stability Uppgift Uppgift Egenvärdesproblemet Uppgift Vecka ALA-c 6 Innehåll Linearization and Stability RÄKNEÖVNING VECKA. Uppgift 9........................................ Uppgift 9.5...................................... 5 Egenvärdesproblemet 9. Uppgift

Läs mer

Studiehandledning till linjär algebra Avsnitt 3

Studiehandledning till linjär algebra Avsnitt 3 Svante Ekelin Institutionen för matematik KTH 1995 Studiehandledning till linjär algebra Avsnitt 3 Kapitel 4, 9.2 och 5 i Anton/Rorres: Elementary Linear Algebra: Applications version (7:e uppl.) Välkommen

Läs mer

EXEMPEL OCH LÖSNINGAR I LINJÄR ALGEBRA PER ALEXANDERSSON

EXEMPEL OCH LÖSNINGAR I LINJÄR ALGEBRA PER ALEXANDERSSON EXEMPEL OCH LÖSNINGAR I LINJÄR ALGEBRA PER ALEXANDERSSON Sammanfattning. Detta kompendie är främst avsett som ett komplement till Tengstrands Linjär algebra med vektorgeometri, [Ten05]. Materialet innehåller

Läs mer

Linjär Algebra, Föreläsning 8

Linjär Algebra, Föreläsning 8 Linjär Algebra, Föreläsning 8 Tomas Sjödin Linköpings Universitet Linjärkombinationer (repetition) Låt v 1, v 2,..., v n vara vektorer i ett vektorrum V. Givet skalärer λ 1, λ 2,..., λ n R så kallas λ

Läs mer

Linjär algebra. 1 Inledning. 2 Matriser. Analys och Linjär Algebra, del B, K1/Kf1/Bt1. CTH/GU STUDIO 1 TMV036b /2013 Matematiska vetenskaper

Linjär algebra. 1 Inledning. 2 Matriser. Analys och Linjär Algebra, del B, K1/Kf1/Bt1. CTH/GU STUDIO 1 TMV036b /2013 Matematiska vetenskaper CTH/GU STUDIO 1 TMV06b - 2012/201 Matematiska vetenskaper Linjär algebra Analys och Linjär Algebra, del B, K1/Kf1/Bt1 1 Inledning Vi fortsätter även denna läsperiod att arbete med Matlab i matematikkurserna

Läs mer

Föreläsningsanteckningar i linjär algebra

Föreläsningsanteckningar i linjär algebra 1 Föreläsningsanteckningar i linjär algebra Per Jönsson och Stefan Gustafsson Malmö 2013 2 Innehåll 1 Linjära ekvationssystem 5 2 Vektorer 11 3 Linjer och plan 21 4 Skalärprodukt 27 5 Vektorprodukt 41

Läs mer

0 Allmänt. Följande delar behöver man kunna utöver avsnitten som beskrivs senare i dokumentet.

0 Allmänt. Följande delar behöver man kunna utöver avsnitten som beskrivs senare i dokumentet. Linja r algebra TATA (del) Allmänt Följande delar behöver man kunna utöver avsnitten som beskrivs senare i dokumentet. Matrisekvationer och Gauss-elimination o Parameterform Allmänt om vektorer o Räknelagar

Läs mer

Självkoll: Ser du att de två uttrycken är ekvivalenta?

Självkoll: Ser du att de två uttrycken är ekvivalenta? ANTECKNINGAR TILL RÄKNEÖVNING 1 & - LINJÄR ALGEBRA För att verkligen kunna förstå och tillämpa kvantmekaniken så måste vi veta något om den matematik som ligger till grund för formuleringen av vågfunktionen

Läs mer

8. Euklidiska rum 94 8 EUKLIDISKA RUM

8. Euklidiska rum 94 8 EUKLIDISKA RUM 94 8 EUKLIDISKA RUM 8. Euklidiska rum Definition 8.. En skalärprodukt på vektorrummet V är en funktion som till varje par av element u och v i V ordnar ett reellt tal u v eller u v med följande egenskaper:.

Läs mer

P Q = ( 2, 1, 1), P R = (0, 1, 0) och QR = (2, 2, 1). arean = 1 2 P Q P R

P Q = ( 2, 1, 1), P R = (0, 1, 0) och QR = (2, 2, 1). arean = 1 2 P Q P R 1 Matematiska Institutionen KTH Lösningar till några övningar på geometri och vektorer inför lappskrivning nummer 2 på kursen Linjär algebra II, SF1604, vt11. 1. En triangel har hörn i punkterna (1, 2,

Läs mer

Linjär Algebra, Föreläsning 2

Linjär Algebra, Föreläsning 2 Linjär Algebra, Föreläsning 2 Tomas Sjödin Linköpings Universitet Riktade sträckor och Geometriska vektorer En (geometrisk) vektor är ett objekt som har storlek och riktning, men inte någon naturlig startpunkt.

Läs mer

För studenter på distans och campus Linjär algebra ma014a 2014 02 10. ATM-Matematik Mikael Forsberg 0734-41 23 31

För studenter på distans och campus Linjär algebra ma014a 2014 02 10. ATM-Matematik Mikael Forsberg 0734-41 23 31 ATM-Matematik Mikael Forsberg 734-4 3 3 För studenter på distans och campus Linjär algebra maa Skrivtid: 9:-:. Inga hjälpmedel. Lösningarna skall vara fullständiga och lätta att följa. Börja varje ny uppgift

Läs mer

Vektorer. Vektoriella storheter skiljer sig på ett fundamentalt sätt från skalära genom att de förutom storlek också har riktning.

Vektorer. Vektoriella storheter skiljer sig på ett fundamentalt sätt från skalära genom att de förutom storlek också har riktning. Vektorer. 3 / 18 Vektorer är ett mycket viktigt och användbart verktyg för att kunna beskriva sammanhang som innehåller riktade storheter, t.ex. kraft och hastighet. Vektoriella storheter skiljer sig på

Läs mer

Mat-1.1510 Grundkurs i matematik 1, del I

Mat-1.1510 Grundkurs i matematik 1, del I Mängder Det enklaste sättet att beskriva en mängd är att räkna upp de elementen i mängden, tex Mat-11510 Grundkurs i matematik 1, del I G Gripenberg TKK 8 oktober 2009 G Gripenberg (TKK Mat-11510 Grundkurs

Läs mer

SF1624 Algebra och geometri

SF1624 Algebra och geometri Föreläsning 1 Institutionen för matematik KTH 31 oktober 2016 Kurstart för Algebra och geometri Välkomen till kursen, CELTE och CMETE och COPEN!, kursansvarig LFN@KTH.SE Idag ska vi se hur kursen funkar

Läs mer