Kommentarer till tunneleffekten och övningsuppgift 3:5
|
|
- Gerd Dahlberg
- för 6 år sedan
- Visningar:
Transkript
1 Kommentarer till tunneleffekten och övningsuppgift 3:5 I läroboken Kvantvärldens fenomen diskuteras tunneleffekten på sidorna På sidan 57 föreslås följande approximativa uttryck för transmittansen: T e 2κa 1) där a är barriärens bredd och κ = 2mV o E)/ h 2 2) Det konstateras vidare att E måste ligga nära barriärens topp V o för att transmittansen skall bli stor. Detta illustreras med ett räkneexempel på sidorna Här studeras en elektron som faller in mot en barriär med V o =5eVocha = 1 nm. Ett av de resultat som redovisas är att transmittansen.5 erhålls då V o E = ev. Även om resultatet är matematiskt korrekt, är det fysikaliskt orimligt. Transmittansen kan inte nå värdet.5 för den aktuella barriären och därför är approximationen inte användbar i detta fall. 1.9 Tunnling exakt) Tunnling approximation 1) T Fig. 1. Transmittansen beräknad med hjälp av det approximativa uttrycket i ekvation 1) blå kurva) och exakt enligt ekvation 3) röd kurva). Det korrekta uttrycket för transmittansen är V 2 o 4EV o E) sinh2 ) 1 a 2mV o E)/ h +1) 2 3)
2 vilket ges som svar till övningsuppgift 6 i kapitel 3. Enligt detta uttryck fås maximal transmittans i gränsen E V o. Denna maximala transmittans är T max = 2 h 2 V o ma 2 +2 h 2 4) Med insatta värden på a och V o fås T max =.296. Transmittansen kommer med andra ord aldrig i närheten av.5. I övningsuppgift 5 i kapitel 3 uppmanas studenten att använda approximationen i ekvation 1) för att beräkna för vilken energi transmittansen blir.5 för en barriär med bredden 2 nm och höjden 2 ev. I facit ges svaret E =2. ev, vilket motsvarar toppen av barriären. Den korrekta transmittansen för E = V o =2eVär enligt ekvation 4).187. Större än så kaninte transmittansen bli. Den korrekt beräknade transmittansen visas som funktion av E i figur 1 röd kurva) tillsammans med approximation 1) blå kurva). Nära toppen av barriären divergerar kurvorna dramatiskt. Observera att transmittansen enligt approximationen alltid når värdet 1 då E = V o.området närmast är uppförstorat i figur 2. Här syns tydligt att den korrekt beräknade transmittansen når värdet.187 för E = V o =2eV.Båda kurvorna faller snabbt av mot noll då E minskar och ser ut att sammanfalla för E<1.87 ev Tunnling exakt) Tunnling approximation 1) T Fig. 2. En uppförstoring av figur 1 för T<.2. För att möjliggöra en bättre jämförelse mellan approximationen 1) och den korrekta transmittansen visas i figur 3 den naturliga) logaritmen av T som funktion av elektronens energi. Figuren visar att approximationen i grova drag återger transmittansens exponentiellt växande uppförande, men överensstämmelsen är bristfällig. I gränsen E = har den korrekt beräknade
3 transmittansen värdet noll. Detta visas inte i figur 3, eftersom då går mot. Approximationen ger det ändliga värdet e 2a 2mV o/ h 2 5) vilket för den aktuella barriären resulterar i ln Tunnling logskala exakt) Tunnling logskala approximation 1) Fig. 3. Logaritmen av transmittansen beräknad med hjälp av det approximativa uttrycket i ekvation 1) blå kurva) och exakt enligt ekvation 3) röd kurva). Under en av föreläsningarna härleddes en bättre approximation approximation 2) för transmittansen: T 16EV o E) e 2κa 6) Vo 2 Denna approximation gäller med stor noggrannhet för alla energier som uppfyller villkoret att E<<V o h2 2ma 2 7) I figur 4 visas en jämförelse mellan denna approximation och den korrekt beräknade transmittansen. Överensstämmelsen är mycket god utom då E ligger mycket nära V o =2eV.Figur5 visar en delförstoring av området 1.9 ev <E<2. ev. Här syns tydligt hur approximationen avviker från den korrekt beräknade transmittansen. För approximationen gäller att T och därmed att )då E V o, vilket framgår av ekvation 6). För den aktuella
4 Tunnling logskala exakt) Tunnling logskala approximation 2) Fig. 4. Logaritmen av transmittansen beräknad med hjälp av det approximativa uttrycket i ekvation 6) blå kurva) och exakt enligt ekvation 3) röd kurva). Tunnling logskala exakt) Tunnling logskala approximation 2) Fig. 5. Delförstoring av figur 4 för E>1.9 ev.
5 barriären krävs enligt ekvation 7) att E<<1.995 ev för att approximationen skall gälla och figur 5 visar att approximationen ger mycket tillförlitliga värden för E<1.95 ev. Det kan även konstateras att approximationen ger det korrekta värdet för E =. Transmittansen kan också beräknas för det fall då E > V o,dvs.då elektronens energi är tillräckligt stor för att den skall kunna ta sig förbi barriären utan att tunnla genom den. I detta fall blir transmittansen V 2 o 4EE V o ) sin2 ) 1 a 2mE V o )/ h +1) 2 8) Observera att detta uttryck för transmittansen medför att 2 h 2 V o ma 2 +2 h 2 9) då E = V o, vilket enligt ekvation 4) är identiskt med den maximala transmittansen vid tunnling. Detta innebär att transmittansen som funkltion av elektronens energi är kontinuerlig i punkten E = V o. Till sist ges här några sifferexempel att begrunda. För att transmittansen vid tunnling genom en 1 nm bred barriär skall vara.5 får barriären inte vara högre än.152 ev. För att transmittansen vid tunnling genom en 2 nm bred barriär skall vara.5 får barriären inte vara högre än.38 ev. För att transmittansen vid tunnling genom en 5 ev hög barriär skall vara.5 får barriären inte vara bredare än.175 nm. För att transmittansen vid tunnling genom en 2 ev hög barriär skall vara.5 får barriären inte vara bredare än.276 nm.
Laboration i Tunneltransport. Fredrik Olsen
Laboration i Tunneltransport Fredrik Olsen 9 maj 28 Syfte och Teori I den här laborationen fick vi möjlighet att studera elektrontunnling över enkla och dubbla barriärer. Teorin bakom är den som vi har
Läs merFysikaliska krumsprång i spexet eller Kemister och matematik!
Fysikaliska krumsprång i spexet eller Kemister och matematik! Mats Linder 10 maj 2009 Ingen sammanfattning. Sammanfattning För den hugade har vi knåpat ihop en liten snabbguide till den fysik och kvantmekanik
Läs merNumerisk lösning till den tidsberoende Schrödingerekvationen.
Numerisk lösning till den tidsberoende Schrödingerekvationen. Det är enbart i de enklaste fallen t ex när potentialen är sträckvis konstant som vi kan lösa Schrödingerekvationen analytiskt. I andra fall
Läs merKvantmekanik - Gillis Carlsson
Kvantmekanik - Föreläsning 1 Gillis Carlsson gillis.carlsson@matfys.lth.se LP2 Föreläsningarna i kvantmekanik LP1 V1): Repetition av kvant-nano kursen. Sid 5-84 V2 : V3 : Formalism (I). Sid 109-124, 128-131,
Läs merNpMa3c vt Kravgränser
Kravgränser Provet består av ett muntligt delprov (Del A) och tre skriftliga delprov (Del B, Del C och Del D). Tillsammans kan de ge 66 poäng varav 25 E-, 24 C- och 17 A-poäng. Observera att kravgränserna
Läs merNågra utvalda lösningar till. Kvantvärldens fenomen. -teori och begrepp. Del 1: Partiklar och vågor. Magnus Ögren
Några utvalda lösningar till vantvärldens fenomen -teori och begrepp Del : Partiklar och vågor Magnus Ögren Här följer ett urval av lösningar till några problem från del av boken vantvärldens fenomen -
Läs mera = a a a a a a ± ± ± ±500
4.1 Felanalys Vill man hårddra det hela, kan man påstå att det inte finns några tal i den tillämpade matematiken, bara intervall. Man anger till exempel inte ett uppmätt värde till 134.78 meter utan att
Läs merEn vanlig uppgift är att bestämma max resp min för en trigonometrisk funktion och de x- värden för vilka dessa antas.
Max och min för trigonometriska funktioner En vanlig uppgift är att bestämma max resp min för en trigonometrisk funktion och de x- värden för vilka dessa antas. Ta t.ex y = 12 sin(3x-90) När man ska studera
Läs merUppsala Universitet Matematiska Institutionen Bo Styf. Genomgånget på föreläsningarna
Uppsala Universitet Matematiska Institutionen Bo Styf Envariabelanalys, 10 hp STS, X 010-10-7 Genomgånget på föreläsningarna 11-15. Föreläsning 11, 4/11 010: Här kommer vi in i kapitel 4, som handlar om
Läs merSammanfattning av räkneövning 1 i Ingenjörsmetodik för ME1 och IT1. SI-enheter (MKSA)
Sammanfattning av räkneövning 1 i Ingenjörsmetodik för ME1 och IT1 Torsdagen den 4/9 2008 SI-enheter (MKSA) 7 grundenheter Längd: meter (m), dimensionssymbol L. Massa: kilogram (kg), dimensionssymbol M.
Läs merFysiska institutionen april 1983 Hans Linusson, Carl-Axel Sjöblom, Örjan Skeppstedt januari 1993 FY 2400 april 1998 Distanskurs LEKTION 25.
GÖTEBORGS UNIVERSITET Fysiska institutionen april 1983 Hans Linusson, Carl-Axel Sjöblom, Örjan Skeppstedt januari 1993 FY 2400 april 1998 Distanskurs LEKTION 25 Delkurs 4 KVANTMEKANIK: GRUNDER, TILLÄMPNINGAR
Läs merInterpolation Modellfunktioner som satisfierar givna punkter
Interpolation Modellfunktioner som satisfierar givna punkter Några tillämpningar Animering rörelser, t.ex. i tecknad film Bilder färger resizing Grafik Diskret representation -> kontinuerlig 2 Interpolation
Läs merMatematik 3c Kap 2 Förändringshastighet och derivator
Matematik 3c Kap 2 Förändringshastighet och derivator Inledning Konkretisering av ämnesplan (länk) http://www.ioprog.se/public_html/ämnesplan_matematik/struktur_äm nesplan_matematik/struktur_ämnesplan_matematik.html
Läs merf(x + h) f(x) h f(x) f(x h) h
NUMPROG, D för M, vt 008 Föreläsning N: Numerisk derivering och integrering Inledning: numerisk lösning av analytiska problem Skillnader mellan matematisk analys och numeriska metoder. Grundläggande begrepp
Läs merMoment Viktiga exempel Övningsuppgifter I
Moment Viktiga eempel Övningsuppgifter I Inga Inga Inga Grafritning Vi använder en sjustegsprocess Funktionens definitionsmängd 2 Funktionens skärningspunkter med alarna Asymptoter 4 Stationära punkter
Läs merD 1 u(x, y) = e x (1 + x + y 2 ), D 2 u(x, y) = 2ye x + 1, (x, y) R 2.
Differentialekvationer I Modellsvar till räkneövning 4 De frivilliga uppgifterna U1 och U2 påminner om nyttiga kunskaper, och räknas inte för extrapoäng (fråga vid behov). U1. Sök en potentialfunktion
Läs merLAB 1. FELANALYS. 1 Inledning. 2 Flyttal. 1.1 Innehåll. 2.1 Avrundningsenheten, µ, och maskinepsilon, ε M
TANA21+22/ 5 juli 2016 LAB 1. FELANALYS 1 Inledning I laborationerna används matrishanteringsprogrammet MATLAB. som genomgående använder dubbel precision vid beräkningarna. 1.1 Innehåll Du ska 1. bestämma
Läs merLösningar Heureka 2 Kapitel 14 Atomen
Lösningar Heureka Kapitel 14 Atomen Andreas Josefsson Tullängsskolan Örebro Lo sningar Fysik Heureka Kapitel 14 14.1) a) Kulorna från A kan ramla på B, C, D, eller G (4 möjligheter). Från B kan de ramla
Läs merFAFA Föreläsning 7, läsvecka 3 13 november 2017
FAFA55 2017 Föreläsning 7, läsvecka 3 13 november 2017 Schrödingers ekvation kan tolkas som en ekvation som har sin utgångspunkt i A) konservering av rörelsemängd B) energikonservering C) Newtons andra
Läs merLÖSNINGSFÖRSLAG TILL TENTAMEN 2 SF1664
LÖSNINGSFÖRSLAG TILL TENTAMEN 2 SF1664 Tillämpad envariabelanalys med numeriska metoder för CFATE1 den 1 mars 214 kl 8.-1. 1. Bestäm värdemängden till funktionen f(x) = 2 arctan x + ln (1 + x 2 ), där
Läs merATT KUNNA TILL. MA1203 Matte C Vuxenutbildningen Dennis Jonsson
ATT KUNNA TILL MA1203 Matte C 2011-06-14 Vuxenutbildningen Dennis Jonsson Sida 2 av 5 Att kunna till prov C1 Kunna kvadreringsreglerna! (...utan att titta i formelsamlingen) Kunna konjugatregeln! (...utan
Läs merKartläggningsmaterial för nyanlända elever SVENSKA. Algebra Matematik. 1 2 Steg 3
Kartläggningsmaterial för nyanlända elever Algebra Matematik 1 2 Steg 3 SVENSKA Kartläggningsmaterial för nyanlända elever Algebra åk 3 MA 1. Fortsätt att rita mönstret a) b) 2. Figurerna blir större och
Läs merKan du det här? o o. o o o o. Derivera potensfunktioner, exponentialfunktioner och summor av funktioner. Använda dig av derivatan i problemlösning.
Kan du det här? o o o o o o Vad innebär det att x går mot noll? Vad händer då x går mot oändligheten? Vad betyder sekant, tangent och ändringskvot och vad har dessa begrepp med derivatan att göra? Derivera
Läs merForskningsmetodik 2006 Lektion 3
Forskningsmetodik 6 Lektion Att tänka på i en mätsituation Per Olof Hulth Längden hos studenterna på forskningsmetodik : 76 8 6 6 7 6 7 67 7 8 7 7 7 6 6 77 8 6 6 7 Det blir litet överskådligare om vi ordnar
Läs meru = Ψ y, v = Ψ x. (3)
Föreläsning 8. Blasius gränsskikt Då en en friström, U, möter en plan, mycket tunn platta som är parallell med friströmshastigheten uppkommer den enklaste typen av gränsskikt. För detta gränsskikt är tryckgradienten,
Läs merMälardalens högskola Akademin för utbildning, kultur och kommunikation
Mälardalens högskola Akademin för utbildning, kultur och kommunikation MAA4 Grundläggande kalkyl ÖVN3 Lösningsförslag.6.8 4.3 6.3 Hjälpmedel: Endast skrivmaterial. (Gradskiva är tillåtet.) Poäng: Denna
Läs mer1. (a) Beräkna gränsvärdet (2p) e x + ln(1 x) 1 lim. (b) Beräkna integralen. 4 4 x 2 dx. x 3 (x 1) 2. f(x) = 3. Lös begynnelsevärdesproblemet (5p)
Högskolan i Halmstad Tentamensskrivning ITE/MPE-lab MA2 Envariabelanalys 6 hp Mikael Hindgren Fredagen den 3 januari 27 35-6722 Skrivtid: 5.-2. Inga hjälpmedel. Fyll i omslaget fullständigt och skriv namn
Läs merUPPSALA UNIVERSITET Matematiska institutionen Michael Melgaard. Prov i matematik Prog: Datakand., Frist. kurser Derivator o integraler 1MA014
UPPSALA UNIVERSITET Matematiska institutionen Michael Melgaard Jörgen Östensson Prov i matematik Prog: Datakand., Frist. kurser Derivator o integraler 1MA1 8 3 31 Skrivtid: 8: 13:. Tillåtna hjälpmedel:
Läs mer5 Blandade problem. b(t) = t. b t ln b(t) = e
5 Blandade problem 5.1 Dagens Teori Ett person sätter in 10000 kr på banken vid nyår 2000 till 4% ränta. Teckna en funktion, b(t) för beloppets utveckling. b(t) = 10000 1.04 t Skriv om funktionen med basen
Läs merDel I: Lösningsförslag till Numerisk analys,
Lösningsförslag till Numerisk analys, 2016-08-22. Del I: (1) Nedan följer ett antal påståenden. Använd nyckelbegreppen därunder och ange det begrepp som är mest lämpligt. Skriv rätt bokstav (a)-(l) i luckan
Läs mer1. a) I en fortskridande våg, vad är det som rör sig från sändare till mottagare? Svara med ett ord. (1p)
Problem Energi. a) I en fortskridande våg, vad är det som rör sig från sändare till mottagare? Svara med ett ord. (p) b) Ge en tydlig förklaring av hur frekvens, period, våglängd och våghastighet hänger
Läs merLAB 3. INTERPOLATION. 1 Inledning. 2 Interpolation med polynom. 3 Splineinterpolation. 1.1 Innehåll. 3.1 Problembeskrivning
TANA18/20 mars 2015 LAB 3. INTERPOLATION 1 Inledning Vi ska studera problemet att interpolera givna data med ett polynom och att interpolera med kubiska splinefunktioner, s(x), som är styckvisa polynom.
Läs merb) Om vi antar att eleven är aktiv i en eller flera studentföreningar vad är sannolikheten att det är en kille? (5 p)
Avd. Matematisk statistik TENTAMEN I SF1920 och SF1921 SANNOLIKHETSTEORI OCH STATISTIK, FREDAGEN DEN 8:E JUNI 2018 KL 14.00 19.00. Examinator: Björn-Olof Skytt, 08 790 86 49. Tillåtna hjälpmedel: Formel-
Läs merKompletterande lösningsförslag och ledningar, Matematik 3000 kurs B, kapitel 2
Kapitel.1 101, 10 Exempel som löses i boken. 103 Testa genom att lägga linjalen lodrätt och föra den över grafen. Om den på något ställe skär grafen i mer än en punkt så visar grafen inte en funktion.
Läs merLösningsanvisningar till de icke obligatoriska workoutuppgifterna
Lösningsanvisningar till de icke obligatoriska workoutuppgifterna Linjära system 7. (a) Falskt. Kondition är en egenskap hos problemet oberoende av precisionen i beräkningarna. (b) Falskt. Pivotering påverkar
Läs merLösningar kapitel 10
Lösningar kapitel 0 Endimensionell analys Fabian Ågren, π Lösta uppgifter 0............................................... 0............................................... 0.6..............................................
Läs mer7. Max 0/1/1. Korrekt kombinerad ekvation och påstående i minst två fall med korrekt svar
7. Max 0/1/1 Korrekt kombinerad ekvation och påstående i minst två fall med korrekt svar +1 C PL +1 A PL 8. Max 0/1/1 a) Korrekt svar (Alternativ E: 5 y 3 ) +1 C B b) Godtagbart svar (0) +1 A B 9. Max
Läs merBedömningsanvisningar
Bedömningsanvisningar Exempel på ett godtagbart svar anges inom parentes. Till en del uppgifter är bedömda elevlösningar bifogade för att ange nivån på bedömningen. Om bedömda elevlösningar finns i materialet
Läs merexakt en exponent x som satisfierar ekvationen. Den okända exponent x i ekvationen = kallas logaritm av b i basen a och betecknas x =log
LOGARITMER Definition av begreppet logaritm Betrakta ekvationen =. Om a är ett positivt tal skilt från 1 och b >0 då finns det exakt en exponent x som satisfierar ekvationen. Den okända exponent x i ekvationen
Läs merFöreläsning 9. Absolutstabilitet
Föreläsning 9 Absolutstabilitet Introduktion För att en numerisk ODE-metod ska vara användbar måste den vara konvergent, dvs den numeriska lösningen ska närma sig den exakta lösningen när steglängden går
Läs merPLANCKS KONSTANT. www.zenitlaromedel.se
PLANCKS KONSTANT Uppgift: Materiel: Att undersöka hur fotoelektronernas maximala kinetiska energi beror av frekvensen hos det ljus som träffar fotocellen. Att bestämma ett värde på Plancks konstant genom
Läs merDifferentialekvationer av första ordningen
Föreläsning 1 Differentialekvationer av första ordningen 1.1 Aktuella avsnitt i läroboken 1.1) Differential Equations and Mathematical Models. Speciellt exemplen 3, 4 och 5.) 1.2) Integrals as General
Läs merTentamen i matematisk statistik (92MA31, STN2) kl 08 12
LINKÖPINGS UNIVERSITET MAI Johan Thim Tentamen i matematisk statistik (92MA1, STN2) 21-1-16 kl 8 12 Hjälpmedel är: miniräknare med tömda minnen och formelbladet bifogat. Varje uppgift är värd 6 poäng.
Läs merChecklista för funktionsundersökning
Linköpings universitet Matematiska institutionen TATA41 Envariabelanalys 1 Hans Lundmark 2015-02-10 Checklista för funktionsundersökning 1. Vad är definitionsmängden D f? 2. Har funktionen några uppenbara
Läs merNpMa2a ht Max 0/0/3
14. Max 0/0/3 Godtagbar ansats, t.ex. sätter ut lämpliga beteckningar och tecknar någon ekvation som krävs för bestämning av a +1 A PL med i övrigt godtagbar lösning med korrekt svar ( a = 12 ) +1 A PL
Läs merMa7-Per: Algebra. Det andra arbetsområdet handlar om algebra och samband.
Ma7-Per: Algebra Det andra arbetsområdet handlar om algebra och samband. Syftet med undervisningen är att du ska utveckla din förmåga att: - formulera och lösa problem med hjälp av matematik samt värdera
Läs merKapitel Ekvationsräkning
Kapitel Ekvationsräkning Din grafiska räknare kan lösa följande tre typer av beräkningar: Linjära ekvationer med två till sex okända variabler Högregradsekvationer (kvadratiska, tredjegrads) Lösningsräkning
Läs merModul 4 Tillämpningar av derivata
Institutionen för Matematik SF1625 Envariabelanalys Läsåret 2015/2016 Modul 4 Tillämpningar av derivata Denna modul omfattar kapitel 4 i kursboken Calculus av Adams och Essex och undervisas på tre föreläsningar,
Läs merModeller för dynamiska förlopp
Föreläsning 3 Modeller för dynamiska förlopp 3.1 Aktuella avsnitt i läroboken (.1) Population Models. (.) Equilibrium Solutions and Stability. (.3) Acceleration-Velocity Models. 19 FÖRELÄSNING 3. MODELLER
Läs merVar försiktig med elektricitet, laserstrålar, kemikalier osv. Ytterkläder får av säkerhetsskäl inte förvaras vid laborationsuppställningarna.
Laborationsregler Förberedelser Läs (i god tid före laborationstillfället) igenom laborationsinstruktionen och de teoriavsnitt som laborationen behandlar. Till varje laboration finns ett antal förberedelseuppgifter.
Läs merPraktisk beräkning av SPICE-parametrar för halvledare
SPICE-parametrar för halvledare IH1611 Halvledarkomponenter Ammar Elyas Fredrik Lundgren Joel Nilsson elyas at kth.se flundg at kth.se joelni at kth.se Martin Axelsson maxels at kth.se Shaho Moulodi moulodi
Läs merLösningar del II. Problem II.3 L II.3. u u MeV O. 2m e c2= MeV T += MeV Rekylkärnans energi försummas 14N
Lösningar del II Problem II.3 Kärnan 14 O sönderfaller under utsändning av en positiv elektron till en exciterad nivå i 14 N, vilken i sin tur sönderfaller till grundtillståndet under emission av ett kvantum
Läs merSF1625 Envariabelanalys Lösningsförslag till tentamen DEL A
SF165 Envariabelanalys Lösningsförslag till tentamen 15-4-7 DEL A 1. Låt f(x) = arcsin x + 1 x. A. Bestäm definitionsmängden till funktionen f. B. Bestäm funktionens största och minsta värde. (Om du har
Läs merSF1625 Envariabelanalys Lösningsförslag till tentamen DEL A
SF625 Envariabelanalys Lösningsförslag till tentamen 206-0- DEL A. Betrakta funktionen f som ges av f(x) = x 2 arctan x. A. Bestäm definitionsmängden till f. B. Bestäm de intervall där f är växande respektive
Läs merUtredande uppgifter. 2: Räkna ut utsträckningen av rymdladdningsområdet i de tre fallen i 1 för n-sidan, p-sidan och den totala utsträckningen.
Komponentfysik Övning VT-10 Utredande uppgifter Ia) Rita skisser med nettoladdning, elektriskt fält och bandstruktur för en symmetrisk pn-övergång. b) Rita motsvarande skisser som i (a), men med en pålagd
Läs merSvar till vissa uppgifter från första veckan.
Svar till vissa uppgifter från första veckan. Svar till kortuppgifter F:. Ja! Förhoppningsvis så ser man direkt att g fx) är ett polynom. Vidare så gäller det att g fα) = gfα)) = gβ) = 0. Använd faktorsatsen!
Läs merLennart Carleson. KTH och Uppsala universitet
46 Om +x Lennart Carleson KTH och Uppsala universitet Vi börjar med att försöka uppskatta ovanstående integral, som vi kallar I, numeriskt. Vi delar in intervallet (, ) i n lika delar med delningspunkterna
Läs merLösningsförslag. Högskolan i Skövde (JS, SK) Svensk version Tentamen i matematik
Lösningsförslag Högskolan i Skövde (JS, SK) Svensk version Tentamen i matematik Kurs: MA15G Matematisk Analys MA13G Matematisk analys för ingenjörer Tentamensdag: 9-3-7 kl 8.3-1.3 Hjälpmedel : Inga hjälpmedel
Läs merLösningsförslag Inlämningsuppgift 1 elstatikens grunder
Inst. för fysik och astronomi 017-11-08 1 Lösningsförslag Inlämningsuppgift 1 elstatikens grunder Elektromagnetism I, 5 hp, för ES och W (1FA514) höstterminen 017 (1.1) Laddningen q 1 7,0 10 6 C placeras
Läs merREGLERTEKNIK Laboration 5
6 SAMPLADE SYSTEM 6. Sampling av signaler När man använder en dator som regulator, kan man endast behandla signaler i diskreta tidpunkter. T.ex. mäts systemets utsignal i tidpunkter med visst mellanrum,
Läs merKursutvärdering fysikalisk kemi 9hp ht16
Kursutvärdering fysikalisk kemi hp ht6 respondenter: 5 : Svarsfrekvens: 60,00 %. Arbetsbelastning. Hur många timmar per vecka har du uppskattningsvis ägnat åt att läsa teori och göra övningsuppgifter (ej
Läs merRepetitionsuppgifter inför Matematik 1. Matematiska institutionen Linköpings universitet 2013
Repetitionsuppgifter inför Matematik Matematiska institutionen Linköpings universitet 0 Innehåll De fyra räknesätten Potenser och rötter 7 Algebra 0 4 Facit 4 Repetitionsuppgifter inför Matematik Repetitionsuppgifter
Läs merLaboration 2 M0039M, VT2016
Laboration 2 M0039M, VT2016 Ove Edlund, Staffan Lundberg, TVM 24 februari 2016 1 Teoridel 1.1 Serielösningar till differentialekvationer Den grundläggande idén (se t.ex. utdelat material, Lektion 18) är
Läs merStudietips inför kommande tentamen TEN1 inom kursen TNIU23
Studietips inför kommande tentamen TEN1 inom kursen TNIU23 Lämplig ordning på sammanfattande studier inom denna kurs: Inled med att grundligt studera föreläsningsanteckningarna Därefter läs tillhörande
Läs merKapitel 4: SAMBANDET MELLAN VARIABLER: REGRESSIONSLINJEN
Kapitel 4: SAMBANDET MELLAN VARIABLER: REGRESSIONSLINJEN Spridningsdiagrammen nedan representerar samma korrelationskoefficient, r = 0,8. 80 80 60 60 40 40 20 20 0 0 20 40 0 0 20 40 Det finns dock två
Läs merRelativitetsteorins grunder, våren 2016 Räkneövning 1 Lösningar
> < Relativitetsteorins grunder, våren 2016 Räkneövning 1 Lösningar 1. En myon (en elementarpartikel som liknar elektronen, men är 200 ggr tyngre) bildas i atmosfären på L 0 = 2230 m:s höjd ovanför jordytan.
Läs merÖvningar - Andragradsekvationer
Övningar - Andragradsekvationer Uppgift nr 1 x x = 36 Uppgift nr 2 x² = 64 Uppgift nr 3 0 = x² - 81 Uppgift nr 4 x² = -81 Uppgift nr 5 x² = 7 Ange också närmevärden med 3 decimaler med hjälp av miniräknare.
Läs merAvsnitt 4, introduktion.
KTHs Sommarmatematik Introduktion 4:1 4:1 Avsnitt 4, introduktion. Potensregler. Följande grundläggande potensregler är startpunkten för detta avsnitt: Ex 1: 2 3 2-2 = 2 3-2 =2 1 = 2. Ex 2: 8 4 = (2 3
Läs merH1009, Introduktionskurs i matematik Armin Halilovic
LOGARITMER Definition av begreppet logaritm Betrakta ekvationen aa xx = bb. Om a är ett positivt tal skilt från 1 och b >0 då finns det exakt en exponent x som satisfierar ekvationen. Den okända exponent
Läs merAtt beräkna t i l l v ä x t takter i Excel
Att beräkna t i l l v ä x t takter i Excel Detta kapitel är en liten matematisk vägledning om att beräkna tillväxttakten i Excel. Här visas exempel på potenser och logaritmer och hur dessa funktioner beräknas
Läs merExperimentella metoder 2013, Räkneövning 3
Experimentella metoder 2013, Räkneövning 3 Problem 1: Fem studenter mätte längden av ett rum, deras resultat blev 3,30 m, 2,90 m, 3,70 m, 3,50 m, och 3,10 m. Inga uppgifter om mätnoggrannheten är kända.
Läs merEnvariabelanalys 5B1147 MATLAB-laboration Derivator
Envariabelanalys 5B1147 MATLAB-laboration Derivator Sanna Eskelinen eskelinen.sanna@gmail.com Sonja Hiltunen sonya@gmail.com Handledare: Karim Dao Uppgift 15 Problem: Beräkna numeriskt derivatan till arctan
Läs merAtom- och kärnfysik med tillämpningar -
Atom- och kärnfysik med tillämpningar - Föreläsning 8 Gillis Carlsson gillis.carlsson@matfys.lth.se 19 Oktober, 2012 Föreläsningarna i kvantmekanik LP1 V1: Repetition av kvant-nano kursen. Sid 5-84 V2:
Läs merFotoelektriska effekten
Fotoelektriska effekten Bakgrund År 1887 upptäckte den tyska fysikern Heinrich Hertz att då man belyser ytan på en metallkropp med ultraviolett ljus avges elektriska laddningar från ytan. Noggrannare undersökningar
Läs merAnalys av funktioner och dess derivata i Matlab.
Analys av unktioner oc dess derivata i Matlab. 5B47 Envariabelanalys Ludvig Adlercreutz, ME Hans Lindgren, IT Stockolm den 7 mars 7 Kursledare: Karim Dao Inneåll Uppgit 5...3 Uppgit 6...5 Uppgit 7...7
Läs merAtom- och kärnfysik med tillämpningar -
Atom- och kärnfysik med tillämpningar - Föreläsning 6 Gillis Carlsson gillis.carlsson@matfys.lth.se 10 Oktober, 2013 Föreläsningarna i kvantmekanik LP1 V1 : Repetition av kvant-nano kursen. Sid 5-84 V2
Läs mer6.3 Partikelns kinetik - Härledda lagar Ledningar
6.3 Partikelns kinetik - Härledda lagar Ledningar 6.104 Om du inte tidigare gått igenom illustrationsexempel 6.3.3, gör det först. Låt ϕ vara vinkeln mellan radien till kroppen och vertikalen (det vill
Läs merEXPERIMENTELLT PROBLEM 2 DUBBELBRYTNING HOS GLIMMER
EXPERIMENTELLT PROBLEM 2 DUBBELBRYTNING HOS GLIMMER I detta experiment ska du mäta graden av dubbelbrytning hos glimmer (en kristall som ofta används i polariserande optiska komponenter). UTRUSTNING Förutom
Läs merNp MaB vt Låt k = 0 och rita upp de båda linjerna. Bestäm skärningspunkten mellan linjerna.
Vid bedömning av ditt arbete med uppgift nummer 17 kommer läraren att ta hänsyn till: Hur väl du beräknar och jämför trianglarnas areor Hur väl du motiverar dina slutsatser Hur väl du beskriver hur arean
Läs merM0038M Differentialkalkyl, Lekt 4, H15
M0038M Differentialkalkyl, Lekt 4, H15 Staffan Lundberg Luleå Tekniska Universitet Staffan Lundberg M0038M H15 1/ 28 Lekt 3 Om f (x) = 2 x 2 och g(x) = x + 2, bestäm nedanstående funktion och dess definitionsmängd.
Läs merAndra föreläsningen kapitel 7. Patrik Lundström
Andra föreläsningen kapitel 7 Patrik Lundström Kvantisering i klassisk fysik: Uppkomst av heltalskvanttal För att en stående våg i en ring inte ska släcka ut sig själv krävs att den är tillbaka som den
Läs merMälardalens högskola Akademin för utbildning, kultur och kommunikation
Mälardalens högskola Akademin för utbildning, kultur och kommunikation MAA24 Grundläggande kalkyl ÖVN2 Lösningsförslag 202.08.09 08.30 0.30 Hjälpmedel: Endast skrivmaterial. (Gradskiva är tillåtet.) Poäng:
Läs merBeräkningsuppgift I. Rörelseekvationer och kinematiska ekvationer
1 Beräkningsuppgift I Vi skall studera ett flygplan som rör sig i xz planet, dvs vi har med de frihetsgrader som brukar kallas de longitudinella. Vi har ett koordinatsystem Oxyz fast i flygplanet och ett
Läs merLösningar och kommentarer till uppgifter i 1.1
Lösningar och kommentarer till uppgifter i 1.1 1106 d) 1107 d) 5t(t t 1) t (t 3) + t 3 5t 3 10t 5t (t 3 3t ) + t 3 5t 3 10t 5t t 3 + 3t + t 3 6t 3 7t 5t Kommentarer: Starta med att multiplicera in faktorerna
Läs merSäsongrensning i tidsserier.
Senast ändrad 200-03-23. Säsongrensning i tidsserier. Kompletterande text till kapitel.5 i Tamhane och Dunlop. Inledning. Syftet med säsongrensning är att dela upp en tidsserie i en trend u t, en säsongkomponent
Läs merSF1626 Flervariabelanalys Lösningsförslag till tentamen DEL A
SF1626 Flervariabelanalys Lösningsförslag till tentamen 213-8-22 DEL A 1. Betrakta funktionen f(x, y) ln(x 2 + xy 2 4). a) Bestäm tangentplanet till funktionsytan z f(x, y) i den punkt på ytan där x 1
Läs merb) 2/0/0 b) 2/0/0 Lös ekvationerna. Redovisa din lösning och avrunda ditt svar till tre decimaler b) 4/0/0
Övningsuppgifter; Exponentialekvationer och logaritmer 1) Lös ekvationerna. Svara exakt. x 5 = 11 5 x = 11 2/0/0 2) Lös ekvationerna x 3,5 = 1589 5 2 x = 34 2/0/0 3) Lös ekvationerna. edovisa din lösning
Läs merLösningsförslag till övningsuppgifter, del V
Lösningsförslag till övningsuppgifter, del V Obs! Preliminär version! Ö.1. (a) Vi kan lösa uppgiften genom att helt enkelt räkna ut avståndet mellan vart och ett av de ( 7 ) = 1 paren. Först noterar vi
Läs merBedömningsanvisningar
NpMab vt 01 Bedömningsanvisningar Exempel på ett godtagbart svar anges inom parentes. Till en del uppgifter är bedömda elevlösningar bifogade för att ange nivån på bedömningen. Om bedömda elevlösningar
Läs merTENTAPLUGG.NU AV STUDENTER FÖR STUDENTER. Kursnamn Fysik 1. Datum LP Laboration Balkböjning. Kursexaminator. Betygsgränser.
TENTAPLUGG.NU AV STUDENTER FÖR STUDENTER Kurskod F0004T Kursnamn Fysik 1 Datum LP2 10-11 Material Laboration Balkböjning Kursexaminator Betygsgränser Tentamenspoäng Övrig kommentar Sammanfattning Denna
Läs merLösningsförslag envariabelanalys
Lösningsförslag envariabelanalys 09-06-05. Ekvationen är linjär och har det karakteristiska polynomet pr) = r 4 + r 3 + 5r = r r + r + 5) = r r + i)r + + i). Således ges lösningarna till den homogena ekvationen
Läs mer7E Ma Planering v45-51: Algebra
7E Ma Planering v45-51: Algebra Arbetsform under en vecka: Måndagar (40 min): Genomgång av gemensamma svårigheter i begrepp och metoder. Arbete i grupp med begrepp och metoder. Läxa: Läsa på anteckningar
Läs merKvantmekanik. Kapitel Natalie Segercrantz
Kvantmekanik Kapitel 38-39 Natalie Segercrantz Centrala begrepp Schrödinger ekvationen i en dimension Fotoelektriska effekten De Broglie: partikel-våg dualismen W 0 beror av materialet i katoden minimifrekvens!
Läs merTillämpad vågrörelselära FAF260, 6 hp
Tillämpad vågrörelselära FAF260, 6 hp Inför laborationerna Förberedelser Läs (i god tid före laborationstillfället) igenom laborationsinstruktionen och de teoriavsnitt som laborationen behandlar. Till
Läs merSF1625 Envariabelanalys Tentamen Måndagen den 11 januari 2016
SF625 Envariabelanalys Tentamen Måndagen den januari 206 Skrivtid: 08:00-3:00 Tillåtna hjälpmedel: inga Examinator: Lars Filipsson Tentamen består av nio uppgifter som vardera ger maximalt fyra poäng.
Läs merArbete A3 Bestämning av syrakoefficienten för metylrött
Arbete A3 Bestämning av syrakoefficienten för metylrött 1. INLEDNING Elektromagnetisk strålning, t.ex. ljus, kan växelverka med materia på många olika sätt. Ljuset kan spridas, reflekteras, brytas, passera
Läs merLösningsförslag, preliminär version 0.1, 23 januari 2018
Lösningsförslag, preinär version 0., 3 januari 08 Högskolan i Skövde Tentamen i matematik Kurs: MA5G Matematisk analys MA3G Matematisk analys för ingenjörer Tentamensdag: 08-0-03 kl 4:30-9:30 Hjälpmedel
Läs merTentamen i matematik. f(x) = ln(ln(x)),
Lösningsförslag Högskolan i Skövde (SK, JS) Tentamen i matematik Kurs: MA52G Matematisk Analys MA23G Matematisk analys för ingenjörer Tentamensdag: 203-05- kl 4.30-9.30 Hjälpmedel : Inga hjälpmedel utöver
Läs merKursutvärdering GK1 struktur 7.5hp Ht16
Kursutvärdering GK1 struktur 7.5hp Ht16 respondenter: 82 : 3 Svarsfrekvens: 1,6 % 1. Arbetsbelastning. Hur många timmar per vecka har du uppskattningsvis ägnat åt att läsa teori och göra övningsuppgifter
Läs merStudiehandledning till. MMA121 Matematisk grundkurs. Version 2012-09-03
Studiehandledning till MMA Matematisk grundkurs läsåret 0/ Version 0-09-0 Kursinformation för MMA Mål Avsikten med kursen MMA Matematisk grundkurs är att ge grundläggande kunskaper i matematik, av betydelse
Läs mer