Säsongrensning i tidsserier.

Save this PDF as:
 WORD  PNG  TXT  JPG

Storlek: px
Starta visningen från sidan:

Download "Säsongrensning i tidsserier."

Transkript

1 Senast ändrad Säsongrensning i tidsserier. Kompletterande text till kapitel.5 i Tamhane och Dunlop. Inledning. Syftet med säsongrensning är att dela upp en tidsserie i en trend u t, en säsongkomponent s t och en slumpkomponent ɛ t : x t = u t + s t + ɛ t, t =, 2,... T, där T = tidsseriens längd. Trenden är en långsiktig förändring i seriens nivå. Säsongkomponenten är en periodisk avvikelse från trenden. Den antas bero endast på säsongen. Om vi exempelvis har månadsvisa data antar vi att säsongkomponenten är densamma för alla februari, oavsett år. Om periodens längd är m kan vi uttrycka detta så här: s t = s t+m = s t+2m..., för alla index där vi har data. Slumpkomponenten, slutligen, är den slumpmässiga variationen utöver trend och säsongkomponent. Vi illustrerar med ett exempel. Det dataset vi använder är hämtat ur Andersson, Jorner och Ågren, Regressions- och tidsserieanalys. Exemplet handlar i likhet med det i Tamhane och Dunlop om försäljning av bilar, men i vårt exempel har vi data för varje kvartal, inte bara årsvis. Det kommer att visa sig att bilförsäljningen varierar en del med tiden på året. I denna tidsserie har vi således en säsongkomponent med periodlängd m =. Nedanstående tabell visar den totala försäljningen av bilar i Sverige under tioårsperioden 98:-990:, dvs fr o m kvartal år 98 t o m kvartal år 990. Försäljningen är uttryckt i 980 års priser (miljoner kronor) Kvartal Kvartal Kvartal Kvartal

2 Grafiskt ser försäljningssiffrorna ut så här. På den vågräta axeln har vi infört en variabel t för löpande tid: vi låter t = svara mot 98:, t = 2 mot 98:2,... t = 0 mot 990:. Bilar Milj kr Bilar t 2 Centrerade glidande medelvärden. I läroboken Tamhane och Dunlop beskrivs hur man kan använda glidande medelvärden (moving averages) för att. göra prediktioner, och 2. jämna ut en kurva (smoothing) så att en eventuell övergripande trend framträder tydligare. I det senare fallet får man, men de utjämningsmetoder som beskrivs i Tamhane och Dunlop, en utjämnad kurva som tenderar att vara förskjuten till höger i förhållande till den ursprungliga kurvan. Detta syns tydligt i Fig..20 på sidan 5. Orsaken är att exempelvis det utjämnade värdet för 993 (i Fig..20) är ett medelvärde av värdena för 99, 992 och 993 och således påverkas även av trenden under de båda tidigare åren, vars värden återfinns till vänster om den punkt på den streckade kurvan som svarar mot 993. Om vi vill beräkna en trend som ligger i fas med den ursprungliga tidsserien måste vi därför använda centrerade glidande medelvärden, som symmetriskt väger in värden före och efter den aktuella tidpunkten. Nära tidsseriens ändpunkter kommer dessa medelvärden att involvera observationer som inte finns. Vi betraktar då det utjämnade värdet som ett saknat värde, så att den utjämnade tidsserien blir något kortare än den ursprungliga. Det enklaste är att ta medelvärdet av ett udda antal w = 2k + observationer: MA t = x t k + x t k x t + x t + x t x t+k + x t+k 2k + för t = k +, k T k, där T betecknar tidsseriens längd., Mera allmänt kan man tänka sig vikter c 0, c,... c k : MA t = c k x t k c x t + c 0 x t + c x t c k x t+k. 2

3 Här måste vi kräva att c k i=0 c i =. I de flesta fall kräver man också att c i 0. 3 Utjämning av säsongvariation med glidande medelvärden. Det finns en tredje användning av glidande medelvärden: man kan använda dem för att jämna ut säsongvariation. Detta kräver emellertid att man ger lika vikt åt varje säsong, så att inte olika säsonger dominerar vid olika tidpunkter i det glidande medelvärdet. I vårt exempel måste alltså varje kvartal ha samma vikt. Om vi dessutom vill beräkna centrerade glidande medelvärden, kan vi således inte använda den enkla metoden att ta medelvärdet av ett udda antal observationer: perioden är ju, ett jämnt tal. Istället använder vi följande glidande medelvärde MA t = x t 2 + 2x t + 2x t + 2x t+ + x t+2 8 för t = 3, Ett liknande glidande medelvärde går naturligtvis att räkna ut för godtyckliga jämna perioder. I tabellform blir resultatet följande (avrundat till hela miljoner): Kvartal Kvartal Kvartal Kvartal , En graf över de glidande medelvärdena ser ut såhär: MA Milj kr MA t Uppenbarligen har proceduren även haft effekten att släta ut lokala variationer. Ibland kan man emellertid vilja ha dessa kvar, utan att förvillas av säsongvariation. Det är detta som är syftet med säsongrensning. 3

4 Säsongrensning. När man genomför en säsongrensning, räknar man först ut trenden. Denna är förstås inte någon objektiv storhet; distinktionen mellan vad som är lokala variationer ( slump ) och vad som är trend beror i mångt och mycket på vad man vet om datas uppkomst, och kanske också på vad man vill använda data till. Det finns därför ett antal olika sätt att räkna ut trend, och de ger inte samma resultat. En möjlighet är att anpassa en regressionslinje till data. En annan är att använda glidande medelvärden, och det är detta vi ska göra här. (I Andersson, Jorner och Ågren utförs dock en mera komplicerad form av säsongrensning på detta dataset.) Vi använder härvid ett glidande medelvärde som inte bara jämnar ut lokala variationer, utan också tar bort säsongvariationen. Se ovan! För att återgå till exemplet, så har vi således just räknat ur trenden u t. Hur får vi tag i säsongkomponenten? Den borde vara den medelmåttiga avvikelsen från trenden för varje kvartal. Vi sätter därför s j = 9 t j mod (x t u t ), j =, 2, 3,. Vi har nämligen 9 observationer av trenden, och därmed av x t u t, för varje kvartal. (I början av tidsserien går kvartal och 2 bort, och i slutet 3 och.) Vi får följande värden på säsongkomponenten för de fyra kvartalen: s = 2.9, s 2 = 52.8, s 3 = 793.0, s = 55.. Nu skulle man kunna tro att säsongkomponenten över en period skulle ha medelvärdet noll, eftersom den representerar avvikelse från trenden, men detta stämmer inte exakt beroende på att observationerna i början och slutet av serien inte ingår med samma vikt som de andra vid beräkning av trenden u t. I vårt fall får vi i själva verket s = s j = 5.6. j= Vi subtraherar därför detta medelvärde från säsongkomponenten och definierar den justerade säsongkomponenten s j = s j s, j =, 2, 3,. Detta ger s = 37.5, s 2 = 506.3, s 3 = 808.6, s = Av dessa värden (eller för all del av de ojusterade) ser man att om man bortser från trend och lokala variationer så tenderar folk att köpa minst bilar under kvartal 3, alltså under månaderna juli, augusti och september, dvs under semestern och strax efter. Flest bilar köper de under kvartal 2, alltså under månaderna april, maj och juni. Kanske vill man ha en ny bil att åka på semester i? Den säsongrensade serien r t fås nu genom att man subtraherar säsongkomponenterna från den ursprungliga tidsserien: r t = x t s t,

5 där vi definierat s t för alla t =, 2,... T genom att sätta s t = s j om t j mod. Vi har alltså r = x , r 2 = x , r 3 = x , r = x 39.8, r 5 = x etc. Vi får tabellen Kvartal Kvartal Kvartal Kvartal Notera att den rensade serien har värden även i början och slutet av serien. Vi har att r t = x t s j = u t + ɛ t för t = 3, dvs bortsett från början och slutet är den rensade serien trend plus slumpkomponent. De lokala variationerna finns alltså kvar, för den händelse man vill kunna studera dem utan att störas av säsongvariation. I exemplet har den rensade serien följande utseende: Rensad 7000,0 6000,0 5000,0 Milj kr 000,0 3000,0 2000,0 000,0 0,0 Rensad t 5

6 5 Övningsuppgift. I tabellen nedan står angiven elenergiförbrukningen per kvartal (enhet: GWh) i ett litet samhälle: År Kvartal Kvartal 2 Kvartal 3 Kvartal a) Beskriv hur man uppskattar tidsseriens trend med hjälp av centrerade glidande medelvärden. b) Räkna ut det första glidande medelvärdet. c) Övriga trendvärden ges av nedanstående tabell; symbolen står för det värde som du har räknat ut i i b). Uppskatta säsongkomponenten! År Kvartal Kvartal 2 Kvartal 3 Kvartal , , ,875 50, ,25 9, d) Gör en tabell över den säsongrensade serien. 6

Regressions- och Tidsserieanalys - F8

Regressions- och Tidsserieanalys - F8 Regressions- och Tidsserieanalys - F8 Klassisk komponentuppdelning, kap 7.1.-7.2. Linda Wänström Linköpings universitet November 26 Wänström (Linköpings universitet) F8 November 26 1 / 23 Klassisk komponentuppdelning

Läs mer

Tidsserier, forts från F16 F17. Tidsserier Säsongrensning

Tidsserier, forts från F16 F17. Tidsserier Säsongrensning Tidsserier Säsongrensning F7 Tidsserier forts från F6 Vi har en variabel som varierar över tiden Ex folkmängd omsättning antal anställda (beroende variabeln/undersökningsvariabeln) Vi studerar den varje

Läs mer

ÖVNINGSUPPGIFTER KAPITEL 7

ÖVNINGSUPPGIFTER KAPITEL 7 ÖVNINGSUPPGIFTER KAPITEL 7 TIDSSERIEDIAGRAM OCH UTJÄMNING 1. En omdebatterad utveckling under 90-talet gäller den snabba ökningen i VDlöner. Tabellen nedan visar genomsnittlig kompensation för direktörer

Läs mer

Vad Betyder måtten MAPE, MAD och MSD?

Vad Betyder måtten MAPE, MAD och MSD? Vad Betyder måtten MAPE, MAD och MSD? Alla tre är mått på hur bra anpassningen är och kan användas för att jämföra olika modeller. Den modell som har lägst MAPE, MAD och/eller MSD har bäst anpassning.

Läs mer

Lektionsanteckningar 11-12: Normalfördelningen

Lektionsanteckningar 11-12: Normalfördelningen Lektionsanteckningar 11-12: Normalfördelningen När utfallsrummet för en slumpvariabel kan anta vilket värde som helst i ett givet intervall är variabeln kontinuerlig. Det är väsentligt att utfallsrummet

Läs mer

Kapitel 4: SAMBANDET MELLAN VARIABLER: REGRESSIONSLINJEN

Kapitel 4: SAMBANDET MELLAN VARIABLER: REGRESSIONSLINJEN Kapitel 4: SAMBANDET MELLAN VARIABLER: REGRESSIONSLINJEN Spridningsdiagrammen nedan representerar samma korrelationskoefficient, r = 0,8. 80 80 60 60 40 40 20 20 0 0 20 40 0 0 20 40 Det finns dock två

Läs mer

Räkneövning 4. Om uppgifterna. 1 Uppgift 1. Statistiska institutionen Uppsala universitet. 14 december 2016

Räkneövning 4. Om uppgifterna. 1 Uppgift 1. Statistiska institutionen Uppsala universitet. 14 december 2016 Räkneövning 4 Statistiska institutionen Uppsala universitet 14 december 2016 Om uppgifterna Uppgift 2 kan med fördel göras med Minitab. I de fall en gur för tidsserien efterfrågas kan du antingen göra

Läs mer

34% 34% 13.5% 68% 13.5% 2.35% 95% 2.35% 0.15% 99.7% 0.15% -3 SD -2 SD -1 SD M +1 SD +2 SD +3 SD

34% 34% 13.5% 68% 13.5% 2.35% 95% 2.35% 0.15% 99.7% 0.15% -3 SD -2 SD -1 SD M +1 SD +2 SD +3 SD 6.4 Att dra slutsatser på basis av statistisk analys en kort inledning - Man har ett stickprov, men man vill med hjälp av det få veta något om hela populationen => för att kunna dra slutsatser som gäller

Läs mer

En typisk medianmorot

En typisk medianmorot Karin Landtblom En typisk medianmorot I artikeln Läget? Tja det beror på variablerna! i Nämnaren 1:1 beskrivs en del av problematiken kring lägesmått och variabler med några vanliga missförstånd som lätt

Läs mer

Tidsserier. Tre modeller för tidsserier är den multiplikativa, additiva och säsongdummymetoden.

Tidsserier. Tre modeller för tidsserier är den multiplikativa, additiva och säsongdummymetoden. Tidsserier Tre modeller för tidsserier är den multiplikativa, additiva och säsongdummymetoden. Den allmänna formeln för den additiva modellen:, och för den multiplikativa modellen:, där T står för trend,

Läs mer

Prediktera. Statistik för modellval och prediktion. Trend? - Syrehalt beroende på kovariater. Sambands- och trendanalys

Prediktera. Statistik för modellval och prediktion. Trend? - Syrehalt beroende på kovariater. Sambands- och trendanalys Statistik för modellval och prediktion att beskriva, förklara och förutsäga Georg Lindgren Prediktera Matematisk statistik, Lunds universitet stik för modellval och prediktion p.1/28 Statistik för modellval

Läs mer

Tillämpad statistik (A5), HT15 Föreläsning 24: Tidsserieanalys III

Tillämpad statistik (A5), HT15 Föreläsning 24: Tidsserieanalys III Tillämpad statistik (A5), HT15 Föreläsning 24: Tidsserieanalys III Sebastian Andersson Statistiska institutionen Senast uppdaterad: 16 december 2015 är en prognosmetod vi kan använda för serier med en

Läs mer

Prognoser. ekonomisk-teoretisk synvinkel. Sunt förnuft i kombination med effektiv matematik ger i regel de bästa prognoserna.

Prognoser. ekonomisk-teoretisk synvinkel. Sunt förnuft i kombination med effektiv matematik ger i regel de bästa prognoserna. Prognoser Prognoser i tidsserier: Gissa ett framtida värde i tidsserien killnad gentemot prognoser i regression: Det framtida värdet tillhör inte dataområdet. ftet med en prognosmodell är att göra prognos,

Läs mer

Statistiska samband: regression och korrelation

Statistiska samband: regression och korrelation Statistiska samband: regression och korrelation Vi ska nu gå igenom något som kallas regressionsanalys och som innebär att man identifierar sambandet mellan en beroende variabel (x) och en oberoende variabel

Läs mer

Finns det över huvud taget anledning att förvänta sig något speciellt? Finns det en generell fördelning som beskriver en mätning?

Finns det över huvud taget anledning att förvänta sig något speciellt? Finns det en generell fördelning som beskriver en mätning? När vi nu lärt oss olika sätt att karaktärisera en fördelning av mätvärden, kan vi börja fundera över vad vi förväntar oss t ex för fördelningen av mätdata när vi mätte längden av en parkeringsficka. Finns

Läs mer

F11. Kvantitativa prognostekniker

F11. Kvantitativa prognostekniker F11 Kvantitativa prognostekniker samt repetition av kursen Kvantitativa prognostekniker Vi har gjort flera prognoser under kursen Prognoser baseras på antagandet att historien upprepar sig Trenden följer

Läs mer

TENTAMEN I REGRESSIONS- OCH TIDSSERIEANALYS,

TENTAMEN I REGRESSIONS- OCH TIDSSERIEANALYS, TENTAMEN I REGRESSIONS- OCH TIDSSERIEANALYS, 204-0-3 Skrivtid: kl 8-2 Hjälpmedel: Räknedosa. Bowerman, B.J., O'Connell, R, Koehler, A.: Forecasting, Time Series and Regression. 4th ed. Duxbury, 2005 som

Läs mer

Sammanfattningar Matematikboken X

Sammanfattningar Matematikboken X Sammanfattningar Matematikboken X KAPITEL 1 TAL OCH RÄKNING Naturliga tal Med naturliga tal menas talen 0, 1,,, Jämna tal 0,,, 6, 8 Udda tal 1,,, 7 Tallinje Koordinater En tallinje kan t ex användas för

Läs mer

Räkneövning 5. Sebastian Andersson Statistiska institutionen Uppsala universitet 7 januari För Uppgift 2 kan man med fördel ta hjälp av Minitab.

Räkneövning 5. Sebastian Andersson Statistiska institutionen Uppsala universitet 7 januari För Uppgift 2 kan man med fördel ta hjälp av Minitab. Räkneövning 5 Sebastian Andersson Statistiska institutionen Uppsala universitet 7 januari 016 1 Om uppgifterna För Uppgift kan man med fördel ta hjälp av Minitab. I de fall en figur för tidsserien efterfrågas

Läs mer

Regressions- och Tidsserieanalys - F7

Regressions- och Tidsserieanalys - F7 Regressions- och Tidsserieanalys - F7 Tidsserieregression, kap 6.1-6.4 Linda Wänström Linköpings universitet November 25 Wänström (Linköpings universitet) F7 November 25 1 / 28 Tidsserieregressionsanalys

Läs mer

Stokastiska Processer och ARIMA. Patrik Zetterberg. 19 december 2012

Stokastiska Processer och ARIMA. Patrik Zetterberg. 19 december 2012 Föreläsning 7 Stokastiska Processer och ARIMA Patrik Zetterberg 19 december 2012 1 / 22 Stokastiska processer Stokastiska processer är ett samlingsnamn för Sannolikhetsmodeller för olika tidsförlopp. Stokastisk=slumpmässig

Läs mer

Justeringar och tillägg till Svar till numeriska uppgifter i Andersson, Jorner, Ågren: Regressions- och tidsserieanalys, 3:uppl.

Justeringar och tillägg till Svar till numeriska uppgifter i Andersson, Jorner, Ågren: Regressions- och tidsserieanalys, 3:uppl. LINKÖPINGS UNIVERSITET 73G71 Statistik B, 8 hp Institutionen för datavetenskap Civilekonomprogrammet, t 3 Avdelningen för Statistik/ANd HT 009 Justeringar och tillägg till Svar till numeriska uppgifter

Läs mer

Tisdag v. 2. Speglingar, translationer och skalningar

Tisdag v. 2. Speglingar, translationer och skalningar 1 Tisdag v 2 Speglingar, translationer och skalningar Ofta i matematik och i matematiska kurser är det så att man måste kunna några grundläggande exempel utantill och man måste kunna några regler som säger

Läs mer

Kort om mätosäkerhet

Kort om mätosäkerhet Kort om mätosäkerhet Henrik Åkerstedt 14 oktober 2014 Introduktion När man gör en mätning, oavsett hur noggrann man är, så får man inte exakt rätt värde. Alla mätningar har en viss osäkerhet. Detta kan

Läs mer

Sänkningen av parasitnivåerna i blodet

Sänkningen av parasitnivåerna i blodet 4.1 Oberoende (x-axeln) Kön Kön Längd Ålder Dos Dos C max Parasitnivå i blodet Beroende (y-axeln) Längd Vikt Vikt Vikt C max Sänkningen av parasitnivåerna i blodet Sänkningen av parasitnivåerna i blodet

Läs mer

, s a. , s b. personer från Alingsås och n b

, s a. , s b. personer från Alingsås och n b Skillnader i medelvärden, väntevärden, mellan två populationer I kapitel 8 testades hypoteser typ : µ=µ 0 där µ 0 var något visst intresserant värde Då användes testfunktionen där µ hämtas från, s är populationsstandardavvikelsen

Läs mer

Vägledning till statistisk redovisning i NFTS försöksdokumentation

Vägledning till statistisk redovisning i NFTS försöksdokumentation 1(5) Fältforsk 2013-12-09 Vägledning till statistisk redovisning i NFTS försöksdokumentation Inledning Det här dokumentet beskriver hur de statisiska resultat som redovisas i NFTS försöksdokumentation

Läs mer

Beskrivande statistik

Beskrivande statistik Beskrivande statistik Tabellen ovan visar antalet allvarliga olyckor på en vägsträcka under 15 år. år Antal olyckor 1995 36 1996 20 1997 18 1998 26 1999 30 2000 20 2001 30 2002 27 2003 19 2004 24 2005

Läs mer

Algebra & Ekvationer. Svar: Sammanfattning Matematik 2

Algebra & Ekvationer. Svar: Sammanfattning Matematik 2 Algebra & Ekvationer Algebra & Ekvationer Parenteser En parentes När man multiplicerar en term med en parentes måste man multiplicera båda talen i parentesen. Förenkla uttrycket 42 9. 42 9 4 2 4 9 8 36

Läs mer

Checklista för funktionsundersökning

Checklista för funktionsundersökning Linköpings universitet Matematiska institutionen TATA41 Envariabelanalys 1 Hans Lundmark 2015-02-10 Checklista för funktionsundersökning 1. Vad är definitionsmängden D f? 2. Har funktionen några uppenbara

Läs mer

DATORÖVNING 6: CENTRALA GRÄNSVÄRDES-

DATORÖVNING 6: CENTRALA GRÄNSVÄRDES- DATORÖVNING 6: CENTRALA GRÄNSVÄRDES- SATSEN OCH FELMARGINALER I denna datorövning ska du använda Minitab för att empiriskt studera hur den centrala gränsvärdessatsen fungerar, samt empiriskt utvärdera

Läs mer

Kapitel 4. Funktioner. 4.1 Definitioner

Kapitel 4. Funktioner. 4.1 Definitioner Kapitel 4 Funktioner I det här kapitlet kommer vi att undersöka funktionsbegreppet. I de första sektionerna genomgås definitionen av begreppet funktion och vissa egenskaper som funktioner har. I slutet

Läs mer

Lösa ekvationer på olika sätt

Lösa ekvationer på olika sätt Lösa ekvationer på olika sätt I denna aktivitet ska titta närmare på hur man kan lösa ekvationer på olika sätt. I kurserna lär du dig att lösa första- och andragradsekvationer exakt med algebraiska metoder.

Läs mer

Föreläsning G60 Statistiska metoder

Föreläsning G60 Statistiska metoder Föreläsning 3 Statistiska metoder 1 Dagens föreläsning o Samband mellan två kvantitativa variabler Matematiska samband Statistiska samband o Korrelation Svaga och starka samband När beräkna korrelation?

Läs mer

Hur länge ska fisken vara i dammen?

Hur länge ska fisken vara i dammen? Hur länge ska fisken vara i dammen? Frågeställning Uppgift 10 fiskodling Uppgiften går ut på att ta reda på hur länge ett stim fisk ska växa upp i en fiskodling för att få den maximala vikten tillsammans.

Läs mer

2301 OBS! x används som beteckning för både vinkeln x och som x-koordinat

2301 OBS! x används som beteckning för både vinkeln x och som x-koordinat 2301 OBS! x används som beteckning för både vinkeln x och som x-koordinat A Punkten P har koordinaterna x och y P = (x, y) i enhetscirkeln gäller att { x = cos x y = sin x P = (cos x, sin x) För vinkeln

Läs mer

Facit till Extra övningsuppgifter

Facit till Extra övningsuppgifter LINKÖPINGS UNIVERSITET Institutionen för datavetenskap Statistik, ANd 732G71 STATISTIK B, 8hp Civilekonomprogrammet, t3, Ht 09 Extra övningsuppgifter Facit till Extra övningsuppgifter 1. Modellen är en

Läs mer

SF1625 Envariabelanalys Lösningsförslag till tentamen DEL A

SF1625 Envariabelanalys Lösningsförslag till tentamen DEL A SF165 Envariabelanalys Lösningsförslag till tentamen 15-4-7 DEL A 1. Låt f(x) = arcsin x + 1 x. A. Bestäm definitionsmängden till funktionen f. B. Bestäm funktionens största och minsta värde. (Om du har

Läs mer

Två innebörder av begreppet statistik. Grundläggande tankegångar i statistik. Vad är ett stickprov? Stickprov och urval

Två innebörder av begreppet statistik. Grundläggande tankegångar i statistik. Vad är ett stickprov? Stickprov och urval Två innebörder av begreppet statistik Grundläggande tankegångar i statistik Matematik och statistik för biologer, 10 hp Informationshantering. Insamling, ordningsskapande, presentation och grundläggande

Läs mer

Anvisningar till del 2 av den obligatoriska inlämningsuppgiften (HT 2007)

Anvisningar till del 2 av den obligatoriska inlämningsuppgiften (HT 2007) Statistiska Institutionen Gebrenegus Ghilagaber & Nicklas Pettersson 007-1-06 Anvisningar till del av den obligatoriska inlämningsuppgiften (HT 007) Den obligatoriska inlämningsuppgiften består av två

Läs mer

Föreläsning 4. NDAB01 Statistik; teori och tillämpning i biologi

Föreläsning 4. NDAB01 Statistik; teori och tillämpning i biologi Föreläsning 4 Statistik; teori och tillämpning i biologi 1 Dagens föreläsning o Icke-parametriska test Mann-Whitneys test (kap 8.10 8.11) Wilcoxons test (kap 9.5) o Transformationer (kap 13) o Ev. Andelar

Läs mer

Föreläsning 7. NDAB01 Statistik; teori och tillämpning i biologi

Föreläsning 7. NDAB01 Statistik; teori och tillämpning i biologi Föreläsning 7 Statistik; teori och tillämpning i biologi 1 Dagens föreläsning o Fortsättning envägs-anova Scheffes test (kap 11.4) o Tvåvägs-ANOVA Korsade faktorer (kap 12.1, 12.3) Randomiserade blockförsök

Läs mer

Laboration 5: Regressionsanalys. 1 Förberedelseuppgifter. 2 Enkel linjär regression DATORLABORATION 5 MATEMATISK STATISTIK FÖR I, FMS 012, HT-08

Laboration 5: Regressionsanalys. 1 Förberedelseuppgifter. 2 Enkel linjär regression DATORLABORATION 5 MATEMATISK STATISTIK FÖR I, FMS 012, HT-08 LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK Laboration 5: Regressionsanalys DATORLABORATION 5 MATEMATISK STATISTIK FÖR I, FMS 012, HT-08 Syftet med den här laborationen är att du skall

Läs mer

Lösningar och kommentarer till uppgifter i 2.2

Lösningar och kommentarer till uppgifter i 2.2 Lösningar och kommentarer till uppgifter i 2.2 2202 Beräkna Detta ger f(3 + h) f(3) då f(x) x 2 (3 + h) 2 3 2 h 2 + 6h 6 + h 6 h 0 Vi har därmed bestämt riktningskoefficienten (k-värdet) för tangenten

Läs mer

Kapitel 17: HETEROSKEDASTICITET, ROBUSTA STANDARDFEL OCH VIKTNING

Kapitel 17: HETEROSKEDASTICITET, ROBUSTA STANDARDFEL OCH VIKTNING Kapitel 17: HETEROSKEDASTICITET, ROBUSTA STANDARDFEL OCH VIKTNING När vi gör en regressionsanalys så bygger denna på vissa antaganden: Vi antar att vi dragit ett slumpmässigt sampel från en population

Läs mer

Föreläsning G60 Statistiska metoder

Föreläsning G60 Statistiska metoder Föreläsning 4 Statistiska metoder 1 Dagens föreläsning o Sannolikhet Vad är sannolikhet? o Slumpvariabel o Sannolikhetsfördelningar Binomialfördelning Normalfördelning o Stickprov och population o Centrala

Läs mer

f(x) = x 2 g(x) = x3 100

f(x) = x 2 g(x) = x3 100 När vi nu ska lära oss att skissa kurvor är det bra att ha en känsla för vad som händer med kurvan när vi sätter in stora tal. Inledningsvis är det ju polynom vi ska studera. Här ska vi se vad som händer

Läs mer

SF1905 Sannolikhetsteori och statistik: Lab 2 ht 2011

SF1905 Sannolikhetsteori och statistik: Lab 2 ht 2011 Avd. Matematisk statistik Tobias Rydén 2011-09-30 SF1905 Sannolikhetsteori och statistik: Lab 2 ht 2011 Förberedelser. Innan du går till laborationen, läs igenom den här handledningen. Repetera också i

Läs mer

Regressions- och Tidsserieanalys - F1

Regressions- och Tidsserieanalys - F1 Regressions- och Tidsserieanalys - F1 Kap 3: Enkel linjär regression Linda Wänström Linköpings universitet November 4, 2013 Wänström (Linköpings universitet) F1 November 4, 2013 1 / 25 Statistik B, 8 hp

Läs mer

6-2 Medelvärde och median. Namn:

6-2 Medelvärde och median. Namn: 6-2 Medelvärde och median. Namn: Inledning Du har nu lärt dig en hel del om datainsamling och presentation av data i olika sorters diagram. I det här kapitlet skall du studera hur man kan karaktärisera

Läs mer

2320 a. Svar: C = 25. Svar: C = 90

2320 a. Svar: C = 25. Svar: C = 90 2320 a Utgå ifrån y = sin x Om vi subtraherar 25 från vinkeln x, så kommer den att "senareläggas" med 25 och således förskjuts grafen åt höger y = sin(x 25 ) Svar: C = 25 b Utgå ifrån y = sin x Om vi adderar

Läs mer

Kompletterande lösningsförslag och ledningar, Matematik 3000 kurs B, kapitel 2

Kompletterande lösningsförslag och ledningar, Matematik 3000 kurs B, kapitel 2 Kapitel.1 101, 10 Exempel som löses i boken. 103 Testa genom att lägga linjalen lodrätt och föra den över grafen. Om den på något ställe skär grafen i mer än en punkt så visar grafen inte en funktion.

Läs mer

Lektionsanteckningar 2: Matematikrepetition, tabeller och diagram

Lektionsanteckningar 2: Matematikrepetition, tabeller och diagram Lektionsanteckningar 2: Matematikrepetition, tabeller och diagram 2.1 Grundläggande matematik 2.1.1 Potensfunktioner xmxn xm n x x x x 3 4 34 7 x x m n x mn x x 4 3 x4 3 x1 x x n 1 x n x 3 1 x 3 x0 1 1

Läs mer

Regressions- och Tidsserieanalys - F1

Regressions- och Tidsserieanalys - F1 Regressions- och Tidsserieanalys - F1 Kap 3: Enkel linjär regression Linda Wänström Linköpings universitet May 4, 2015 Wänström (Linköpings universitet) F1 May 4, 2015 1 / 25 Regressions- och tidsserieanalys,

Läs mer

MVE051/MSG Föreläsning 7

MVE051/MSG Föreläsning 7 MVE051/MSG810 2016 Föreläsning 7 Petter Mostad Chalmers November 23, 2016 Överblick Deskriptiv statistik Grafiska sammanfattningar. Numeriska sammanfattningar. Estimering (skattning) Teori Några exempel

Läs mer

Forskningsmetodik 2006 Lektion 3

Forskningsmetodik 2006 Lektion 3 Forskningsmetodik 6 Lektion Att tänka på i en mätsituation Per Olof Hulth Längden hos studenterna på forskningsmetodik : 76 8 6 6 7 6 7 67 7 8 7 7 7 6 6 77 8 6 6 7 Det blir litet överskådligare om vi ordnar

Läs mer

LULEÅ TEKNISKA UNIVERSITET Ämneskod S0006M Institutionen för matematik Datum Skrivtid

LULEÅ TEKNISKA UNIVERSITET Ämneskod S0006M Institutionen för matematik Datum Skrivtid LULEÅ TEKNISKA UNIVERSITET Ämneskod S0006M Institutionen för matematik Datum 2008-12-22 Skrivtid 0900 1400 Tentamen i: Statistik 1, 7.5 hp Antal uppgifter: 5 Krav för G: 11 Lärare: Jour: Robert Lundqvist,

Läs mer

Kapitel Ekvationsräkning

Kapitel Ekvationsräkning Kapitel Ekvationsräkning Din grafiska räknare kan lösa följande tre typer av beräkningar: Linjära ekvationer med två till sex okända variabler Högregradsekvationer (kvadratiska, tredjegrads) Lösningsräkning

Läs mer

ÖVNINGSUPPGIFTER KAPITEL 2

ÖVNINGSUPPGIFTER KAPITEL 2 ÖVNINGSUPPGIFTER KAPITEL 2 DATAMATRISEN 1. Datamatrisen nedan visar ett utdrag av ett datamaterial för USA:s 50 stater. Stat Befolkningsmängd Inkomst Marijuana Procent män (miljoner) per person lagligt?

Läs mer

Bearbetning och Presentation

Bearbetning och Presentation Bearbetning och Presentation Vid en bottenfaunaundersökning i Nydalasjön räknade man antalet ringmaskar i 5 vattenprover. Följande värden erhölls:,,,4,,,5,,8,4,,,0,3, Det verkar vara diskreta observationer.

Läs mer

Regressions- och Tidsserieanalys - F5

Regressions- och Tidsserieanalys - F5 Regressions- och Tidsserieanalys - F5 Linda Wänström Linköpings universitet November 20 Wänström (Linköpings universitet) F5 November 20 1 / 24 Modellbygge - vilka oberoende variabler ska vara med i modellen?

Läs mer

Tillämpad statistik (A5), HT15 Föreläsning 22: Tidsserieanalys I

Tillämpad statistik (A5), HT15 Föreläsning 22: Tidsserieanalys I Tillämpad statistik (A5), HT15 Föreläsning 22: Tidsserieanalys I Sebastian Andersson Statistiska institutionen Senast uppdaterad: 15 december 2015 Data kan generellt sett delas in i tre kategorier: 1 Tvärsnittsdata:

Läs mer

Övningshäfte till kursen Regressionsanalys och tidsserieanalys

Övningshäfte till kursen Regressionsanalys och tidsserieanalys Övningshäfte till kursen Regressionsanalys och tidsserieanalys Linda Wänström April 8, 2011 1 Enkel linjär regressionsanalys (baserad på uppgift 2.3 i Andersson, Jorner, Ågren (2009)) Antag att följande

Läs mer

STOCKHOLMS UNIVERSITET HT 2007 Statistiska institutionen Johan Andersson

STOCKHOLMS UNIVERSITET HT 2007 Statistiska institutionen Johan Andersson 1 STOCKHOLMS UNIVERSITET HT 2007 Statistiska institutionen Johan Andersson Skriftlig tentamen på momentet Statistisk dataanalys III (SDA III, statistiska metoder) 3 högskolepoäng, ingående i kursen Undersökningsmetodik

Läs mer

Att beräkna t i l l v ä x t takter i Excel

Att beräkna t i l l v ä x t takter i Excel Att beräkna t i l l v ä x t takter i Excel Detta kapitel är en liten matematisk vägledning om att beräkna tillväxttakten i Excel. Här visas exempel på potenser och logaritmer och hur dessa funktioner beräknas

Läs mer

Tillämpad statistik (A5), HT15 Föreläsning 6: Några övriga urvalsmetoder

Tillämpad statistik (A5), HT15 Föreläsning 6: Några övriga urvalsmetoder Tillämpad statistik (A5), HT15 Föreläsning 6: Några övriga smetoder Ronnie Pingel Statistiska institutionen Senast uppdaterad: 2015-11-11 Några övriga smetoder OSU-UÅ (med eller utan stratifiering) förutsätter

Läs mer

Tabeller och figurer / Ilkka Norri / TY Kielikeskus

Tabeller och figurer / Ilkka Norri / TY Kielikeskus Tabeller och figurer / Ilkka Norri / TY Kielikeskus En tabell består av tabellrubrik > kort, ska ge all information som läsaren behöver tabellhuvud > rubriktexter för uppgiftsgrupperingarna som inleds

Läs mer

Tentamen Tillämpad statistik A5 (15hp)

Tentamen Tillämpad statistik A5 (15hp) Uppsala universitet Statistiska institutionen A5 2014-08-26 Tentamen Tillämpad statistik A5 (15hp) 2014-08-26 UPPLYSNINGAR A. Tillåtna hjälpmedel: Miniräknare Formelsamlingar: A4/A8 Tabell- och formelsamling

Läs mer

Mälardalens högskola Akademin för utbildning, kultur och kommunikation

Mälardalens högskola Akademin för utbildning, kultur och kommunikation Mälardalens högskola Akademin för utbildning, kultur och kommunikation MAA24 Grundläggande kalkyl ÖVN2 Lösningsförslag 202.06.5 4.30 6.30 Hjälpmedel: Endast skrivmaterial. (Gradskiva är tillåtet.) Poäng:

Läs mer

Matematik 3 Digitala övningar med TI-82 Stats, TI-84 Plus och TI-Nspire CAS

Matematik 3 Digitala övningar med TI-82 Stats, TI-84 Plus och TI-Nspire CAS Matematik 3 Digitala övningar med TI-8 Stats, TI-84 Plus och TI-Nspire CAS Matematik 3 digitala övningar med TI-8 Stat, TI-84 Plus och TI Nspire CAS Vi ger här korta instruktioner där man med fördel kan

Läs mer

Analys av medelvärden. Jenny Selander , plan 3, Norrbacka, ingång via den Samhällsmedicinska kliniken

Analys av medelvärden. Jenny Selander , plan 3, Norrbacka, ingång via den Samhällsmedicinska kliniken Analys av medelvärden Jenny Selander jenny.selander@ki.se 524 800 29, plan 3, Norrbacka, ingång via den Samhällsmedicinska kliniken Jenny Selander, Kvant. metoder, FHV T1 december 20111 Innehåll Normalfördelningen

Läs mer

2 Dataanalys och beskrivande statistik

2 Dataanalys och beskrivande statistik 2 Dataanalys och beskrivande statistik Vad är data, och vad är statistik? Data är en samling fakta ur vilken man kan erhålla information. Statistik är vetenskapen (vissa skulle kalla det konst) om att

Läs mer

Gamla tentor (forts) ( x. x ) ) 2 x1

Gamla tentor (forts) ( x. x ) ) 2 x1 016-10-10 Gamla tentor - 016 1 1 (forts) ( x ) x1 x ) ( 1 x 1 016-10-10. En liten klinisk ministudie genomförs för att undersöka huruvida kostomläggning och ett träningsprogram lyckas sänka blodsockernivån

Läs mer

Del 12 Genomsnittsberäkning

Del 12 Genomsnittsberäkning Del 12 Genomsnittsberäkning Innehåll Asiatiska optioner... 3 Asiatiska optioner i strukturerade produkter... 3 Hur fungerar det?... 3 Effekt på avkastningen... 4 Effekt på volatilitet... 4 Effekt på löptid...

Läs mer

Elementa om Variansanalys

Elementa om Variansanalys Elementa om Variansanalys för kursen sf9, Statistik för bioteknik Harald Lang 06 Envägs variansanalys. Kapitel tio beskrev metoder för att testa om x,, xk och y, ym kommer från fördelningar med samma väntevärde

Läs mer

Moment Viktiga exempel Övningsuppgifter I

Moment Viktiga exempel Övningsuppgifter I Moment Viktiga eempel Övningsuppgifter I Inga Inga Inga Grafritning Vi använder en sjustegsprocess Funktionens definitionsmängd 2 Funktionens skärningspunkter med alarna Asymptoter 4 Stationära punkter

Läs mer

9-2 Grafer och kurvor Namn:.

9-2 Grafer och kurvor Namn:. 9-2 Grafer och kurvor Namn:. Inledning I föregående kapitel lärde du dig vad som menas med koordinatsystem och hur man kan visa hur matematiska funktioner kan visas i ett koordinatsystem. Det är i och

Läs mer

Lektion 1: Fördelningar och deskriptiv analys

Lektion 1: Fördelningar och deskriptiv analys Density Lektion 1: Fördelningar och deskriptiv analys 1.,3 Uniform; Lower=1; Upper=6,3,2,2,1,, 1 2 3 X 4 6 7 Figuren ovan visar täthetsfunktionen för en likformig fördelning. Kurvan antar värdet.2 över

Läs mer

STOCKHOLMS UNIVERSITET VT 2008 Statistiska institutionen Linda Wänström

STOCKHOLMS UNIVERSITET VT 2008 Statistiska institutionen Linda Wänström 1 STOCKHOLMS UNIVERSITET VT 2008 Statistiska institutionen Linda Wänström Skriftlig tentamen på momentet Statistisk dataanalys III (SDA III) 3 högskolepoäng, ingående i kursen Undersökningsmetodik och

Läs mer

732G71 Statistik B. Föreläsning 7. Bertil Wegmann. IDA, Linköpings universitet. Bertil Wegmann (IDA, LiU) 732G71, Statistik B 1 / 29

732G71 Statistik B. Föreläsning 7. Bertil Wegmann. IDA, Linköpings universitet. Bertil Wegmann (IDA, LiU) 732G71, Statistik B 1 / 29 732G71 Statistik B Föreläsning 7 Bertil Wegmann IDA, Linköpings universitet Bertil Wegmann (IDA, LiU) 732G71, Statistik B 1 / 29 Detaljhandelns försäljning (fasta priser, kalenderkorrigerat) Bertil Wegmann

Läs mer

Stockholmskonjunkturen hösten 2004

Stockholmskonjunkturen hösten 2004 Stockholmskonjunkturen hösten 2004 Förord Syftet med följande sidor är att ge en beskrivning av konjunkturläget i Stockholms län hösten 2004. Läget i Stockholmsregionen jämförs med situationen i riket.

Läs mer

DATORÖVNING 2: SIMULERING

DATORÖVNING 2: SIMULERING UPPSALA UNIVERSITET Matematiska institutionen Måns Thulin - thulin@math.uu.se Matematisk statistik Statistik för ingenjörer VT 2013 DATORÖVNING 2: SIMULERING Innehåll 1 Inledning 1 2 Inledande exempel

Läs mer

Tentamen för kursen. Linjära statistiska modeller. 16 augusti 2007 9 14

Tentamen för kursen. Linjära statistiska modeller. 16 augusti 2007 9 14 STOCKHOLMS UNIVERSITET MATEMATISK STATISTIK Tentamen för kursen Linjära statistiska modeller 16 augusti 2007 9 14 Examinator: Anders Björkström, tel. 16 45 54, bjorks@math.su.se Återlämning: Rum 312, hus

Läs mer

Kontinuerliga funktioner. Ytterligare en ekvivalent formulering av supremumaxiomet

Kontinuerliga funktioner. Ytterligare en ekvivalent formulering av supremumaxiomet Kontinuerliga funktioner. Ytterligare en ekvivalent formulering av supremumaxiomet är följande: SATS. (Intervallinkapslingssatsen) Låt I k = [a k, b k ], k = 1, 2,... vara en avtagande följd av slutna

Läs mer

Statistik B Regressions- och tidsserieanalys Föreläsning 1

Statistik B Regressions- och tidsserieanalys Föreläsning 1 Statistik B Regressions- och tidsserieanalys Föreläsning Kurskod: 732G7, 8 hp Lärare och examinator: Ann-Charlotte (Lotta) Hallberg Lärare och lektionsledare: Isak Hietala Labassistenter Kap 3,-3,6. Läs

Läs mer

Linnéuniversitetet Institutionen för datavetenskap, fysik och matematik Per-Anders Svensson

Linnéuniversitetet Institutionen för datavetenskap, fysik och matematik Per-Anders Svensson Linnéuniversitetet Institutionen för datavetenskap, fysik och matematik Per-Anders Svensson Tentamen i Matematikens utveckling, 1MA163, 7,5hp fredagen den 28 maj 2010, klockan 8.00 11.00 Tentamen består

Läs mer

732G71 Statistik B. Föreläsning 9. Bertil Wegmann. December 1, IDA, Linköpings universitet

732G71 Statistik B. Föreläsning 9. Bertil Wegmann. December 1, IDA, Linköpings universitet 732G71 Statistik B Föreläsning 9 Bertil Wegmann IDA, Linköpings universitet December 1, 2016 Bertil Wegmann (IDA, LiU) 732G71, Statistik B December 1, 2016 1 / 20 Metoder för att analysera tidsserier Tidsserieregression

Läs mer

Spridningsdiagram (scatterplot) Fler exempel. Korrelation (forts.) Korrelation. Enkel linjär regression. Enkel linjär regression (forts.

Spridningsdiagram (scatterplot) Fler exempel. Korrelation (forts.) Korrelation. Enkel linjär regression. Enkel linjär regression (forts. Spridningsdiagram (scatterplot) En scatterplot som visar par av observationer: reklamkostnader på -aeln and försäljning på -aeln ScatterplotofAdvertising Ependitures ()andsales () 4 Fler eempel Notera:

Läs mer

AKSTAT och sjukfallsregistret i Linda

AKSTAT och sjukfallsregistret i Linda AKSTAT och sjukfallsregistret i Linda av Laura Larsson 25 november 2002 IFAU (Institutet för arbetsmarknadspolitisk utvärdering), Kyrkogårdsgatan 6, Box 513, 751 20 Uppsala. Tel: 018-471 70 82, e-post:

Läs mer

Konfidensintervall i populationsbaserade studier varför behövs de? Therese Andersson Sandra Eloranta

Konfidensintervall i populationsbaserade studier varför behövs de? Therese Andersson Sandra Eloranta Konfidensintervall i populationsbaserade studier varför behövs de? Therese Andersson Sandra Eloranta Bakgrund Populations-baserad cancerpatientöverlevnad skattas med hjälp av data från det svenska cancer

Läs mer

Summakonsistent säsongrensning

Summakonsistent säsongrensning Summakonsistent säsongrensning Presentation av projektarbete på SCB av Suad Elezović Statistiska institutionen,stockholms universitet 14 Oktober 2009 2009-10-14 Suad Elezović PCA/MFFM-S 1 Säsongrensning

Läs mer

Användbara indikatorer

Användbara indikatorer Användbara indikatorer Teknisk analys består egentligen av två delar: grafisk analys (chartism) och numerisk analys. Den första baseras på en direkt observationer av kurserna och volymerna, och formationer

Läs mer

Bästa skottläge på en fotbollsplan längs långsidan

Bästa skottläge på en fotbollsplan längs långsidan Bästa skottläge på en fotbollsplan längs långsidan Frågeställningen lyder: Vad är det bästa skottläget? för en spelare som befinner sig på en rak linje på en fotbollsplan. Det är alltså en vinkel som söks,

Läs mer

Ledtidsanpassa standardavvikelser för efterfrågevariationer

Ledtidsanpassa standardavvikelser för efterfrågevariationer Handbok i materialstyrning - Del B Parametrar och variabler B 43 Ledtidsanpassa standardavvikelser för efterfrågevariationer I affärssystem brukar standardavvikelser för efterfrågevariationer eller prognosfel

Läs mer

Stokastiska processer med diskret tid

Stokastiska processer med diskret tid Stokastiska processer med diskret tid Vi tänker oss en följd av stokastiska variabler X 1, X 2, X 3,.... Talen 1, 2, 3,... räknar upp tidpunkter som förflutit från startpunkten 1. De stokastiska variablerna

Läs mer

Kompletterande lösningsförslag och ledningar, Matematik 3000 kurs A, kapitel 4. b) = 3 1 = 2

Kompletterande lösningsförslag och ledningar, Matematik 3000 kurs A, kapitel 4. b) = 3 1 = 2 Kapitel.1 101, 102 Exempel som löses i boken 10 a) x= 1 11+ x= 11+ 1 = 2 c) x= 11 7 x= 7 11 = 77 b) x= 5 x 29 = 5 29 = 6 d) x= 2 26 x= 26 2= 1 10 a) x= 6 5+ 9 x= 5+ 9 6= 5+ 5= 59 b) a = 8a 6= 8 6= 2 6=

Läs mer

Graärgning och kromatiska formler

Graärgning och kromatiska formler Graärgning och kromatiska formler Henrik Bäärnhielm, d98-hba 2 mars 2000 Sammanfattning I denna uppsats beskrivs, för en ickematematiker, färgning av grafer samt kromatiska formler för grafer. Det hela

Läs mer

Vetenskaplig metod och statistik

Vetenskaplig metod och statistik Vetenskaplig metod och statistik Innehåll Vetenskaplighet Hur ska man lägga upp ett experiment? Hur hanterar man felkällor? Hur ska man tolka resultatet från experimentet? Experimentlogg Att fundera på

Läs mer

Övningsuppgifter till föreläsning 2 Variabler och uttryck

Övningsuppgifter till föreläsning 2 Variabler och uttryck Sid 1 (5) Övningsuppgifter till föreläsning 2 Variabler och uttryck Syfte Syftet med övningsuppgifterna är att träna på: Aritmetik, variabler, tilldelning, scanf och printf Generellt Diskutera gärna uppgifterna

Läs mer

Statistisk undersökningsmetodik (Pol. kand.)

Statistisk undersökningsmetodik (Pol. kand.) TENTAMEN Tentamensdatum 2008-10-02 Statistisk undersökningsmetodik (Pol. kand.) Namn:.. Personnr:.. Tentakod: Obs! Var noga med att skriva din tentakod på varje lösningsblad som du lämnar in. Skrivtid

Läs mer