MATEMATISK FORMELSAMLING
|
|
- Henrik Fransson
- för 8 år sedan
- Visningar:
Transkript
1 Institutionen för naturvetenska, teknik och matematik (NAT) Institutionen för teknik och hållbar utveckling (THU) MATEMATISK FORMELSAMLING UPPLAGA 2
2 Innehåll Notation, mängdlära och logik Algebra Komlexa tal Punkter, vektorer och lan i rummet Geometri Trigonometri Några standardgränsvärden Derivator Integraler Di erentialekvationer i
3 Notation, mängdlära och logik Mängder och tal ; tomma mängden, {} Z mängden av heltal, {..., 2,, 0,, 2,...} Z + mängden av ositiva heltal, {, 2, 3,...} Z mängden av negativa heltal, {... 3, 2, } N mängden av naturliga tal, {0,, 2,...} {x 2 Z P } mängden av alla x i Z som ufyller egenskaen P {x 2 Z : P } samma som {x 2 Z P } Q mängden av rationella tal, {/q :, q 2 Z, q6= 0} R mängden av reella tal R + mängden av ositiva reella tal, {x 2 R : x>0} R mängden av negativa reella tal, {x 2 R : x<0} [a, b] det slutna intervallet från a till b, {x 2 R : a ale x ale b} ]a, b[ det öna intervallet från a till b, {x 2 R : a<x<b} (a, b) samma som ]a, b[ C mängden av komlexa tal, {a + ib : a, b 2 R} De ositiva rimtalen ale 00 2, 3, 5, 7,, 3, 7, 9, 23, 29, 3, 37, 4, 43, 47, 53, 59, 6, 67, 7, 73, 79, 83, 89, 97 Symboler från mängdlära A = B A är lika med B A 6= B A är inte lika med B a 2 A elementet a finns i mängden A a 62 A elementet a finns inte i mängden A A [ B unionen av mängderna A och B, {x : x 2 A eller x 2 B} A \ B snittet av mängderna A och B, {x : x 2 A och x 2 B} A B skillnaden mellan mängderna A och B, dvs{x 2 A : x 62 B} A \ B samma som A B B den komlementära mängden till B, om B är en delmängd till den universella mängden U så är B = {x 2U: x 62 B} B c samma som B A B A är en delmängd till B, x 2 A ) x 2 B A B A är en äkta delmängd till B, dvsa B och A 6= B A B den kartesiska rodukten av mängderna A och B, dvs mängden av alla ordnade ar (a, b) sådanaatta 2 A och b 2 B P(A) otensmängden till A, dvsmängden av alla delmängder till A
4 Viktiga likheter inom mängdlära Associativa lagar: (A [ B) [ C = A [ (B [ C) (A \ B) \ C = A \ (B \ C) Kommutativa lagar: A [ B = B [ A A \ B = B \ A Distributiva lagar: A \ (B [ C) =(A \ B) [ (A \ C) A [ (B \ C) =(A [ B) \ (A [ C) De Morgans lagar: A [ B = A \ B A \ B = A [ B Logiska symboler icke _ q eller q ^ q och q ) q imlicerar/medför q, q är ekvivalent med q Viktiga ekvivalenser inom logik Associativa lagar: ( _ q) _ r, _ (q _ r) ( ^ q) ^ r, ^ (q ^ r) Kommutativa lagar: _ q, q _ ^ q, q ^ Distributiva lagar: ^ (q _ r), ( ^ q) _ ( ^ r) _ (q ^ r), ( _ q) ^ ( _ r) De Morgans lagar: ( _ q), ^ q ( ^ q), _ q Logiska ekvivalenser för bevisföring Att bevisa, q är ekvivalent med att bevisa ) q och q ) Att bevisa ) q är ekvivalent med att bevisa q ) 2
5 2 Algebra Symboler för relationer mellan tal a = b a är lika med b a 6= b a är inte lika med b a<b aär (strikt) mindre än b a>b aär (strikt) större än b a ale b a är mindre än eller lika med b a b a är större än eller lika med b a b heltalet a delar heltalet b Viktiga likheter för aritmetik Associativa lagar: (a + b)+c = a +(b + c), (ab)c = a(bc) Kommutativa lagar: a + b = b + a, ab = ba Distributiva lagen: a(b + c) =ab + ac Lagen om nolldelare: Om ab =0såär a =0ellerb =0 Kvadreringsreglerna och konjugatregeln (a + b) 2 = a 2 +2ab + b 2 (a b) 2 = a 2 2ab + b 2 (a + b)(a b) = a 2 b 2 Kubregler (a + b) 3 = a 3 +3a 2 b +3ab 2 + b 3 (a b) 3 = a 3 3a 2 b +3ab 2 b 3 Summor av kuber a 3 + b 3 = (a + b)(a 2 ab + b 2 ) a 3 b 3 = (a b)(a 2 + ab + b 2 ) Andragradsolynom Ekvationen x 2 + x + q =0harrötterna där x + x 2 = x = 2 + r 2 och x x 2 = q 4 q och x 2 = 2 r 2 4 q 3
6 Absolutbelo x = x om x 0 x om x<0 Kvadratrötter a b = ab a 0, b 0 r a a = a 0, b > 0 b b a2 b = a b b 0 Potenser x, y, a, b, reellatala, b > 0, och n ett ositivt heltal a x a y = a x+y a x b x =(ab) x a x a = y ax y (a x ) y = a xy a x a x b = x b a x = a x a 0 = a n = n a Logaritmer För ositiva reella tal x, y, a, b, där a, b 6= gäller där log a xy =log a x +log a y log a x y =log a x log a y lg x y log a x = log a x log a x = log b x log b a lg xy =lgx +lgy =lgx lg y lg x = lg x lg x = ln x ln 0 a y = x, y =log a x 0 y = x, y =lgx e y = x, y =lnx log 0 skrivs oftast lg log e skrivs oftast ln 4
7 Några summationsformler nx r = r= nx r 2 = r= nx r= nx r=0 n(n +) 2 n(n +)(2n +) 6 r 3 = n2 (n +) 2 4 x r = xn+, där det reella talet x 6= x Binomialsatsen där n är ett ositivt heltal, (a + b) n = n = r nx r=0 n a r b n r r n!, n! =n(n ) 3 2 och 0! =. r!(n r)! 5
8 3 Komlexa tal Definition Ett komlext tal z kan skrivas z = a + ib där a och b är reella tal och i är ett tal som ufyller i 2 =. Talen z = a + ib och z = a ib kallas konjugerade. Belo Beloet z av z = a + ib är z = r = a 2 + b 2 Polär form z = r(cos ' + i sin ') =re i', där r = z och ' =arg(z) De Moivre z n = r n cos(n')+i sin(n') = r n e in' Multilikationsregler Om z = r e i' och z 2 = r 2 e i' 2 så är z z 2 = r r 2 e i(' +' 2 ) z = r e i(' ' 2 ) z 2 r 2 6
9 4 Punkter, vektorer och lan i rummet Avståndet mellan unkterna (x,y,z ) och (x 2,y 2,z 2 ) x x y y z z 2 2 Avståndet från unkten (x,y,z ) till lanet ax + by + cz = d ax + by + cz d a2 + b 2 + c 2 Normen (längden) av vektorn a =(a,a 2,a 3 ) q kak = a 2 + a a 2 3 Skalärrodukten av vektorerna a =(a,a 2,a 3 ) och b =(b,b 2,b 3 ) där är vinkeln mellan a och b. a b = a b + a 2 b 2 + a 3 b 3 = kakkbk cos, Projektion av vektorn u å vektorn a roj a u = u a kak 2 a Cauchy Schwarz olikhet u v alekukkvk 7
10 5 Geometri Cirkel r cirkelns radie, A area, O omkrets A = r 2 O =2 r Pyramid B bottenarea, h höjd, V volym V = Bh 3 Rak cirkulär cylinder r radie, h höjd, S mantelarea (ytarea), V volym S =2 rh V = r 2 h Rak cirkulär kon r radie, h höjd, s sida, S mantelarea (ytarea), V volym S = rs V = r2 h 3 Sfär r radie, S mantelarea (ytarea), V volym S =4 r 2 V = 4 r3 3 8
11 6 Trigonometri Rätvinklig triangel sin ' = b c cos ' = a c tan ' = b a c b ' a Enhetscirkeln y (x,y ) P ' O (,0) x sin ' = y cos ' = x tan ' = sin ' cos ' cot ' = cos ' sin ' 9
12 b a c Areasatsen för triangeln area = bc sin 2 Sinussatsen sin a = sin b = sin c Cosinussatsen a 2 = b 2 + c 2 2bc cos Additionsreglerna sin(' + ) = sin' cos +cos' sin sin(' ) = sin' cos cos ' sin cos(' + ) = cos' cos sin ' sin cos(' ) = cos' cos +sin' sin Trigonometriska ettan sin 2 ' +cos 2 ' = Formlerna för dubbla vinkeln sin(2') = 2sin' cos ' cos(2') = cos 2 ' sin 2 ' = 2cos 2 ' = 2sin 2 ' 0
13 Uttryck å formen a sin x + b cos x a sin x + b cos x = r sin(x + y) där r = a 2 + b 2, cosy = a r och sin y = b r Några exakta värden för trigonometriska funktioner Vinkel ' grader radianer sin ' cos ' tan ' /6 / /4 60 / / /2 0 ej def / /4 3 2 / /6 / /6 / / / / /2 0 ej def / /4 3 2 / /6 /
14 7 Några standardgränsvärden lim x!± x =0, lim x!0± x = ± sin x lim x!0 x cos x =, lim x!0 x =0 lim + x x = e, lim x! x n x! e =0 x e x lim x!0 x =, lim x!0 ln( + x) x ln x lim x! x =0 = 2
15 8 Derivator Definition f 0 (a) =lim h!0 f(a + h) f(a) h f(x) =lim x!a x f(a) a Derivator av några funktioner Funktion Derivata x a ax a e x e x e kx ke kx a x,a>0 x ln x log a x sin x a x ln a x 2 x x ln a cos x cos x tan x arctan x arcsin x sin x cos 2 x =+tan2 x +x 2 x 2 3
16 Produktregeln f(x)g(x) 0 = f 0 (x)g(x)+f(x)g 0 (x) Kvotregeln 0 f(x) = f 0 (x)g(x) f(x)g 0 (x) g(x) g(x) 2 Kedjeregeln h(x) =f g(x) h 0 (x) =f 0 g(x) g 0 (x) Derivata av invers funktion d dx f (x) = f 0 f (x) Taylors formel f(x) =f(a)+ f 0 (a)! för något mellan x och a. (x a)+ f 00 (a) 2! (x a) f (n) (a) n! (x a) n + f (n+) ( ) (x a)n+ (n +)! 4
17 9 Integraler Primitiva funktioner Funktion Primitiv funktion x a a + xa+ + c, a 6= e x x sin(x) e x + c ln x + c cos(x)+c cos(x) cos 2 (x) sin 2 (x) x 2 sin(x)+c tan(x)+c cot(x)+c arcsin(x)+c +x 2 arctan(x)+c Partiell integration Z f 0 (x)g(x) dx = f(x)g(x) Z f(x)g 0 (x) dx Rotationsvolymer Rotation kring x-axeln: Z b V = a f(x) 2 dx Rotation kring y-axeln: V =2 Z b a xf(x) dx 5
18 Båglängd s = Z b a q s = x 0 (t) 2 + y 0 (t) 2 dt, x = x(t), y = y(t) Z b a q + f 0 (x) 2 dx, y = f(x) 6
19 0 Di erentialekvationer Första ordningens linjära di erentialekvationer Integrerande faktor till y 0 + g(x)y = h(x) är e G(x),där G(x) = R g(x) dx. Andra ordningens homogena linjära di erentialekvationer Di erentialekvationen y 00 + ay 0 + by =0, där a och b är konstanter har lösningar som ges av: y = Ae r x + Be r 2x om rötterna r och r 2 till karaktäristiska ekvationen är reella och r 6= r 2 ; y =(Ax + B)e rx om rötterna r och r 2 till karaktäristiska ekvationen är reella och r = r 2 = r; y = e x A cos( x)+b sin( x) om rötterna r = + i och r 2 = i till karaktäristiska ekvationen inte är reella. 7
MATEMATISK FORMELSAMLING
Avdelningen för ämnesdidaktik och matematik (DMA) Avdelningen för kvalitetsteknik, maskinteknik och matematik (KMM) MATEMATISK FORMELSAMLING UPPLAGA (Utkast aug, 0) Innehåll Notation, mängdlära och logik........................
MATEMATISK FORMELSAMLING
Avdelningen för ämnesdidaktik och matematik (DMA) Avdelningen för kvalitetsteknik, maskinteknik och matematik (KMM) MATEMATISK FORMELSAMLING UPPLAGA 4 Innehåll Notation, mängdlära och logik........................
Algebra Negativa tal, Parenteser, Potenser, Bråk, Kvadreringsreglerna, Konjugatregeln
Bastermin HT, Matematik Högskolan i Halmstad Version 00-08-0/0-08-5 Bertil Nilsson/Mats Gunnarsson Häfte A Algebra Negativa tal, Parenteser, Potenser, Bråk, Kvadreringsreglerna, Konjugatregeln. Förenkla
MATEMATISK FORMELSAMLING
Avdelningen för matematik och ämnesdidaktik (MOD) MATEMATISK FORMELSAMLING UPPLAGA 5 Innehåll Notation, mängdlära och logik........................ Algebra..................................... 3 3 Komplexa
5B1134 Matematik och modeller Lösningsförslag till tentamen den 11 oktober 2004
KTH Matematik 5B4 Matematik och modeller Lösningsförslag till tentamen den oktober 4. Två av sidlängderna i en triangel är 8 m och m. En av vinklarna är 6. a) Bestäm alla möjliga värden för den tredje
5B1134 Matematik och modeller Lösningsförslag till tentamen den 12 januari 2005
KTH Matematik B Matematik modeller Lösningsförslag till tentamen den januari. a) I en triangel är två av sidlängderna 7 respektive 8 längdeneter vinkeln mellan dessa sidor är. Bestäm den tredje sidans
A1:an Repetition. Philip Larsson. 6 april Kapitel 1. Grundläggande begrepp och terminologi
A1:an Repetition Philip Larsson 6 april 013 1 Kapitel 1. Grundläggande begrepp och terminologi 1.1 Delmängd Om ändpunkterna ska räknas med används symbolerna [ ] och raka sträck. Om ändpunkterna inte skall
5B1134 Matematik och modeller Uppgifter från kontrollskrivningar och tentamina under läsåren och
KTH Matematik 1 5B1134 Matematik och modeller Uppgifter från kontrollskrivningar och tentamina under läsåren 23-24 och 24-25 25-8-31 1 Geometri med trigonometri Övning 1.1 [5B1134:Modell:1] C = (5, 1).
Instuderingsfrågor för Endimensionell analys kurs B1 2011
Instuderingsfrågor för Endimensionell analys kurs B1 2011 Anvisningar Avsikten med följande frågor är att hjälpa dig med självkontroll av dina kunskaper. Om du känner dig osäker på svaren bör du slå upp
5B1134 Matematik och modeller Lösningsförslag till tentamen den 13 januari T = 1 ab sin γ. b sin β = , 956 0, 695 0, 891
KTH Matematik 5B1134 Matematik modeller Lösningsförslag till tentamen den 13 januari 6 1. a) Bestäm sidlängderna i en triangel med vinklarna 44, 63 73 om arean av triangeln är 64 cm. Ange svaren som närmevärden
Instuderingsfrågor för Endimensionell analys kurs B1
Instuderingsfrågor för Endimensionell analys kurs B1 Anvisningar Avsikten med följande frågor är att hjälpa dig med självkontroll av dina kunskaper. Om du känner dig osäker på svaren bör du slå upp motsvarande
Lösningsförslag, preliminär version 0.1, 23 januari 2018
Lösningsförslag, preinär version 0., 3 januari 08 Högskolan i Skövde Tentamen i matematik Kurs: MA5G Matematisk analys MA3G Matematisk analys för ingenjörer Tentamensdag: 08-0-03 kl 4:30-9:30 Hjälpmedel
SF1620 (5B1134) Matematik och modeller Uppgifter från kontrollskrivningar och tentamina under tiden
KTH Matematik 1 SF162 (5B1134) Matematik och modeller Uppgifter från kontrollskrivningar och tentamina under tiden 23-26 27-8-31 1 Geometri med trigonometri Övning 1.1 Rita upp triangeln ABC med A = (1,
KOKBOKEN 3. Håkan Strömberg KTH STH
KOKBOKEN 3 Håkan Strömberg KTH STH Hösten 006 Håkan Strömberg KTH Syd Innehåll Derivatans definition.............................. 5 Uppgift................................. 5 Uppgift.................................
Några saker att tänka på inför dugga 2
LINKÖPINGS UNIVERSITET 17 oktober 017 Matematiska institutionen TATA68 Matematik och tillämpad matematik Några saker att tänka på inför dugga Dugga omfattar HELA kursen, så titta även på de tips som lämnades
v0.2, Högskolan i Skövde Tentamen i matematik
v0., 08-03-3 Högskolan i Skövde Tentamen i matematik Kurs: MA5G Matematisk analys MA3G Matematisk analys för ingenjörer Tentamensdag: 08-0-03 kl 4:30-9:30 Hjälpmedel : Inga hjälpmedel utöver bifogat formelblad.
Planering för Matematik kurs D
Planering för Matematik kurs D Läromedel: Holmström/Smedhamre, Matematik från A till E, kurs D Antal timmar: 9 (7 + ) I nedanstående planeringsförslag tänker vi oss att D-kursen studeras på 9 klocktimmar.
5B1134 Matematik och modeller Uppgifter från kontrollskrivningar och tentamina under läsåren , och
KTH Matematik 1 5B1134 Matematik och modeller Uppgifter från kontrollskrivningar och tentamina under läsåren 23-24, 24-25 och 25-26 26-8-31 1 Geometri med trigonometri Övning 1.1 [5B1134:Modell:1] C =
5B1134 Matematik och modeller Lösningsförslag till tentamen den 29 augusti 2005
KTH Matematik 5B114 Matematik och modeller Lösningsförslag till tentamen den 29 augusti 2005 1. a) Om två av sidorna i en triangel är 5 meter respektive 6 meter. Vilka längder på den tredje sidans längd
4x 2 dx = [polynomdivision] 2x x + 1 dx. (sin 2 (x) ) 2. = cos 2 (x) ) 2. t = cos(x),
Lunds Tekniska Högskola Matematik Helsingborg Lösningar Analys, FMAA5 9-8-9. a) e sinx) cosx) dx e sinx) + C. b) 4x dx polynomdivision] x + x + x + dx x x + ] ln x + + ) ln) + ) ln) ln). c) Trigonometriska
Kontrollskrivning KS1T
Kontrollskrivning KS1T Matematik 2 Kurskod HF100 Skrivtid 8:15-11:15 måndagen 9 februari 2009 Tentamen består av 4 sidor Hjälpmedel: Utdelat formelblad. Räknedosa. Formelsamling Korrekt löst uppgift ger
Moment 10.1,10.2 Viktiga exempel Övningsuppgifter T10.1,T10.2,T10.3a,b,c,e,Ö10.1a-f,Ö10.3b-e
Moment 0.,0. Viktiga exempel 0.-0.5 Övningsuppgifter T0.,T0.,T0.3a,b,c,e,Ö0.a-f,Ö0.3b-e Integraler Definition. F(x) sägs vara primitiv funktion till f(x) på intervallet I om F (x) = f(x) Anmärkning. Det
Block 4 - Funktioner. Funktionsbegreppet Definitionsmängd
Block 4 - Funktioner Funktionsbegreppet Definitionsmängd Värdemängd Grafen för en funktion Polynom Konstanta polynom Linjära polynom Andragradspolynom Potenser, exponential- och logaritmfunktioner Potensfunktioner
Meningslöst nonsens. December 14, 2014
December 4, 204 Fråga. Hur visar man att sin(x) x tan(x)? Fråga. Hur visar man att sin(x) x tan(x)? Fråga 2. Hur visar man att a > lim n a n =? Fråga 2. Hur visar man att a > lim n a n =? Röd: Det är ett
SF1658 Trigonometri och funktioner Lösningsförslag till tentamen den 19 oktober 2009
KTH Matematik SF1658 Trigonometri och funktioner Lösningsförslag till tentamen den 19 oktober 9 1. a) Visa att sin(6 ) = /. () b) En triangel har sidor av längd 5 och 7, och en vinkel är 6 grader. Bestäm
Introduktionskurs i matematik LÄSANVISNINGAR
UPPSALA UNIVERSITET Matematiska institutionen Höstterminen 006 Introduktionskurs i matematik för civilingenjörsprogrammet F Tentamen på Introduktionskursen i matematik äger rum lördagen den 6 september
Föreläsning 1. Kursinformation All viktig information om kursen ska kunna läsas på kursens hemsida
Föreläsning 1 Kursinformation All viktig information om kursen ska kunna läsas på kursens hemsida http://www2.math.uu.se/ rikardo/ baskursen/index.html Mängdlära * En "samling" av tal kallas för en mängd.
Repetitionsuppgifter i matematik
Repetitionsuppgifter i matematik De fyra enkla räknesätten Här övar vi på de fyra räknesätten för hela tal (positiva och negativa), tal i bråkform och tal i decimalform Bestäm de tal på tallinjen, som
LMA222a. Fredrik Lindgren. 17 februari 2014
LMA222a Fredrik Lindgren Matematiska vetenskaper Chalmers tekniska högskola och Göteborgs universitet 17 februari 2014 F. Lindgren (Chalmers&GU) Matematisk analys 17 februari 2014 1 / 68 Outline 1 Lite
för Tekniskt/Naturvetenskapligt Basår
Institutionen för Fysik och Astronomi Tentamen i Matematik D 21-8-16 för Tekniskt/Naturvetenskapligt Basår lärare : Filip Heijkenskjöld, Susanne Mirbt, Lars Nordström Skrivtid: 8.-12. Hjälpmedel: Miniräknare
1.Introduktion i Analys
Pass 1 0.1 Olika tal 1.Introduktion i Analys Naturliga talen N = {0, 1, 2, 3,...}. Ett primtal är ett naturligt tal som är större än 1 och jämnt delbart endast med sig själv och med 1. Sats Varje naturligt
motiveringar. Lämna tydliga svar. 1 (arcsin x) 2 dx: (0.6)
TENTAMENSSKRIVNING LUNDS TEKNISKA HÖGSKOLA MATEMATIK ENDIMENSIONELL ANALYS B (FMAA5)/A3 (FMAA) 74 kl. 83 Inga hjälmedel är tillåtna. För att du skall kunna erhålla full oäng skall dina lösningar vara läsvärda
Kap 5.7, Beräkning av plana areor, rotationsvolymer, rotationsareor, båglängder.
Kap 5.7, 7. 7.. Beräkning av plana areor, rotationsvolymer, rotationsareor, båglängder. 8. (A) Beräkna arean av det ändliga område som begränsas av kurvorna x a. y = + x och y = b. y = x e x och y = x
SF1625 Envariabelanalys
Föreläsning 7 Institutionen för matematik KTH 12 september 2016 Injektiva funktioner En funktion är en regel som till varje tal i definitionsmängden ordnar ett bestämt tal i värdemängden. Injektiva funktioner
x 2 = lim x 2 x 2 x 2 x 2 x x+2 (x + 3)(x + x + 2) = lim x 2 (x + 1)
Matematik Hjälpmedel: Inga Chalmers Tekniska Högskola Tentamen 5--7 kl. 4: 8: Telefonvakt: Samuel Bengmark ankn.: 7-87644 Betygsgränser :a poäng, 4:a poäng, 5:a 4 poäng, max: 5 poäng Tentamensgranskning
PRÖVNINGSANVISNINGAR
PRÖVNINGSANVISNINGAR Prövning i Matematik D Kurskod Ma 104 Gymnasiepoäng 100 Läromedel Prov Muntligt prov Inlämningsuppgift Kontakt med examinator Övrigt Valfri aktuell lärobok för kurs Matematik D t.ex.
DERIVATA. = lim. x n 2 h h n. 2
DERIVATA Läs avsnitten 6.-6.5. Lös övningarna 6.cd, 6.2, 6.3bdf, 6.4abc, 6.5bcd, 6.6bcd, 6.7, 6.9 oc 6.. Läsanvisningar Allmänt gäller som vanligt att bevisen inte ingår i kursen, men det är mycket nyttigt
Uppföljning av diagnostiskt prov Repetition av kursmoment i TNA001-Matematisk grundkurs.
Uppföljning av diagnostiskt prov 06-0- Repetition av kursmoment i TNA00-Matematisk grundkurs. Reella tal, intervall, räta linjer, cirklar Faktorsatsen, faktoriseringar, polynomekvationer Olikheter Ekvationer
MATMAT01b (Matematik 1b)
Sida 1 av 6 MATMAT01b (Matematik 1b) ATT KUNNA TILL PROV MATMAT01b1 - Öka, respektive minska temperaturer - Skriva tal skrivna med text med siffror, Ex två tiondelar = 0,2 - Hitta på två bråk som ger en
SF1625 Envariabelanalys Lösningsförslag till tentamen DEL A
SF1625 Envariabelanalys Lösningsförslag till tentamen 2015-01-12 DEL A 1. Betrakta funktionen f som ges av f(x) = xe 1/x. A. Bestäm definitionsmängden till f. B. Beräkna de fyra gränsvärdena lim x ± f(x)
1. (a) Los ekvationen z 2 4iz 7 + 4i = 0: Rotterna ska ges pa formen a + bi. (b) Rita i det komplexa talplanet alla komplexa tal z som uppfyller
Repetitionsuppgifter Endimensionell analys, Komplexa tal delkurs B2. (a) Los ekvationen z 2 4iz 7 + 4i = 0: Rotterna ska ges pa formen a + bi. (b) Rita i det komplexa talplanet alla komplexa tal z som
Blandade A-uppgifter Matematisk analys
TEKNISKA HÖGSKOLAN Matematik Blandade A-uppgifter Matematisk analys 1 Låt u = i och v = 1 + i Skriv det komplexa talet z = u/v på den polära formen re iϕ Svar: e i π Bestäm de reella tal x för vilka x
Redo för terminstart?
I ij = ρ(r)(r 2 δ ij x i x j )dv V Δx Δp x ħ 2 Redo för terminstart? Hej! Vi från Teknisk fysik hälsar dig välkommen till vårt program. Som nybliven student är du säkert nyfiken på hur det är att studera
Geometri och Trigonometri
Kapitel 5 Geometri och Trigonometri I detta kapitel kommer vi att koncentrera oss på de trigonometriska funktionerna sin x, cos x och tan x. 5. Repetition Här repeteras några viktiga trigonometriska definitioner
5B1134 Matematik och modeller
KTH Matematik 1 5B1134 Matematik och modeller 2006-09-11 2 Andra veckan Trigonometri Veckans begrepp enhetscirkeln, trigonometriska ettan trigonometrisk funktion, sinuskurva period, fasförskjutning, vinkelhastighet
Högskolan i Skövde (SK, JS) Svensk version Tentamen i matematik Lösningsförslag till del I
Högskolan i Skövde (SK, JS) Svensk version Tentamen i matematik Lösningsförslag till del I Kurs: MA15G Matematisk Analys MA13G Matematisk analys för ingenjörer MA71A Matematik för lärare C, delkurs Matematisk
Förberedelser inför lektion 1 (första övningen läsvecka 1) Lektion 1 (första övningen läsvecka 1)
Förberedelser inför lektion 1 (första övningen läsvecka 1) Läs kapitel 0.10.3. Mycket av detta är nog känt sedan tidigare. Om du känner dig osäker på något, läs detta nogrannare. Kapitel 0.6 behöver inte
När vi blickar tillbaka på föregående del av kursen påminns vi av en del moment som man aldrig får tappa bort. x 2 x 1 +2 = 1. x 1
Lathund inför tentan När vi blickar tillbaka på föregående del av kursen påminns vi av en del moment som man aldrig får tappa bort Ekvationer Ekvationer av första och andra graden kommer alltid att kunna
Uppgiftshäfte Matteproppen
Uppgiftshäfte Matteproppen Emma ndersson 0 Joar Lind 0 Sara Lundsten 05 Malin Forsberg 06 UPPSL UNIVERSITET Innehåll Uppdelning av häfte Uppgifter Block. Bråkräkning........................ Uttryck..........................
Frågorna 1 till 6 ska svaras med sant eller falskt och ger vardera 1
ATM-Matematik Mikael Forsberg 6-64 89 6 Matematik med datalogi, mfl. Skrivtid:. Inga hjälpmedel. Lösningarna skall vara fullständiga och lätta att följa. Börja varje ny uppgift på ny sida. Använd ej baksidor.
Tentamen i Matematik 1 HF1901 (6H2901) 22 aug 2011 Tid: :15 Lärare:Armin Halilovic
Tentamen i Matematik HF90 (6H90) aug 0 Tid: 8. : Lärare:Armin Halilovic Hjälpmedel: Formelblad (Inga andra hjälpmedel utöver utdelat formelblad.) Fullständiga lösningar skall presenteras på alla uppgifter.
SF1625 Envariabelanalys Lösningsförslag till tentamen
SF1625 Envariabelanalys Lösningsförslag till tentamen 216-6-1 1. Derivera nedanstående funktioner med avseende på x och ange för vilka x derivatan existerar. Endast svar krävs. A. f(x) = arctan 1 x B.
SF1661 Perspektiv på matematik Tentamen 24 oktober 2013 kl Svar och lösningsförslag. z 11. w 3. Lösning. De Moivres formel ger att
SF11 Perspektiv på matematik Tentamen 4 oktober 013 kl 14.00 19.00 Svar och lösningsförslag (1) Låt z = (cos π + i sin π ) och låt w = 1(cos π 3 + i sin π 3 ). Beräkna och markera talet z11 w 3 z 11 w
Tentamen i matematik. f(x) = ln(ln(x)),
Lösningsförslag Högskolan i Skövde (SK, JS) Tentamen i matematik Kurs: MA52G Matematisk Analys MA23G Matematisk analys för ingenjörer Tentamensdag: 203-05- kl 4.30-9.30 Hjälpmedel : Inga hjälpmedel utöver
Matematik D (MA1204)
Matematik D (MA104) 100 p Betygskriterier med eempeluppgifter Värmdö Gymnasium Betygskriterier enligt Skolverket Kriterier för betyget Godkänd Eleven använder lämpliga matematiska begrepp, metoder och
= 1 h) y 3 = 4(x 1) i) y = 17 j) x = 5. = 1 en ekvation för linjen genom a) (6, 0) och (0, 5) b) (9, 0) och (0, 5)
Matematikcentrum Matematik NF Räta linjen. Ange riktningskoefficient och skärningspunkter me alarna för följane linjer. a) y = 5 b) = y + 5 c) y = 5 + ) + y + = 0 e) y 4 = 0 f) + y = g) y 5 = h) y = 4
Lösningar till MVE017 Matematisk analys i en variabel för I x 3x y = x. 3x2 + 4.
Lösningar till MVE07 Matematisk analys i en variabel för I 8-0-0. (a Division ger y + 5x x 2 + 4 y x x2 + 4. 5x x 2 + 4 dx 5 2 ln(x2 + 4, vilket ger den integrerande faktorn (x 2 + 4 5/2. Ekvationen multipliceras
Lösningsförslag v1.1. Högskolan i Skövde (SK) Svensk version Tentamen i matematik
Lösningsförslag v1.1 Högskolan i Skövde (SK) Svensk version Tentamen i matematik Kurs: MA15G Matematisk Analys MA13G Matematisk analys för ingenjörer Tentamensdag: 1-8-8 kl 8.3-13.3 Hjälpmedel : Inga hjälpmedel
5B1134 Matematik och modeller
KTH Matematik 1 5B1134 Matematik och modeller 5 september 2005 1 Första veckan Geometri med trigonometri Veckans begrepp cirkel, cirkelsegment, sektor, korda båglängd, vinkel, grader, radianer sinus, cosinus,
Repetition, Matematik 2 för lärare. Ï x + 2y - 3z = 1 Ô Ì 3x - y + 2z = a Ô Á. . Beräkna ABT. Beräkna (AB) T
Repetition, Matematik 2 för lärare Ï -2x + y + 2z = 3 1. Ange för alla reella a lösningsmängden till ekvationssystemet Ì ax + 2y + z = 1. Ó x + 3y - z = 4 2. Vad är villkoret på talet a för att ekvationssystemet
i utvecklingen av (( x + x ) n för n =1,2,3º. = 0 där n = 1,2,3,
Repetition Matematik. Bestäm koefficienten vid x i utvecklingen av ((+ x - x ) 5.. Bestäm koefficienten vid x 3 i utvecklingen av (( x + x ) n för n =,,3º. 3. a 5-5a b + 5a3 b - 5a 8b 3 + 5a 6b - 3b 5
Lösningar till Matematisk analys
Lösningar till Matematisk analys 685. Sätt fx x. Rotationskroppens volym är π fx dx π ] x 6 dx π 7 x7 π 7. Rotationskroppens area är summan av arean av kroppens mantelyta och arean av kroppens cirkulära
SF1625 Envariabelanalys
Kursmål och pluggtips Institutionen för matematik KTH Kursmål Kursmålen står på sidan Kursplan mm (länk i menyn). De anger vad man ska kunna för att bli godkänd på kursen. I den här pdf:en går jag igenom
SF1625 Envariabelanalys Tentamen Måndagen den 12 januari 2015
SF1625 Envariabelanalys Tentamen Måndagen den 12 januari 2015 Skrivtid: 08:00-13:00 Tillåtna hjälpmedel: inga Examinator: Lars Filipsson Tentamen består av nio uppgifter som vardera ger maximalt fyra poäng.
Lösningar till Matematik 3000 Komvux Kurs D, MA1204. Senaste uppdatering Dennis Jonsson
, MA104 Senaste uppdatering 009 04 03 Dennis Jonsson Lösningar till Matematik 3000 Komvu Kurs D, MA104 Fler lösningar kommer fortlöpande. Innehåll 110... 6 111... 6 11... 6 1130... 7 1141... 7 114... 8
Envariabelanalys: Vera Koponen. Envariabelanalys, vt Uppsala Universitet. Vera Koponen Föreläsning 5-6
Envariabelanalys: Föreläsning 5-6 Vera Koponen Uppsala Universitet Envariabelanalys, vt 2011 Derivata: allmänt Antag att f (x) är en funktion. Derivata: allmänt Antag att f (x) är en funktion. Derivatan
Ekvationer & Funktioner Ekvationer
Ekvationer & Funktioner Ekvationer Ekvationstyp : Ekvationer av första graden När vi löser ekvationer av första graden använder vi oss av de fyra grundläggande räknesätten för att beräkna x. Vid minus
SF1625 Envariabelanalys Lösningsförslag till tentamen DEL A
SF1625 Envariabelanalys Lösningsförslag till tentamen 214-1-24 DEL A 1. Låt f(x) = e x sin x. A. Bestäm alla kritiska (stationära) punkter till funktionen f. B. Avgör vilka av de kritiska punkterna som
Kursens Kortfrågor med Svar SF1602 Di. Int.
Kursens Kortfrågor med Svar SF62 Di. Int. Allmänt om kortfrågor: Kortfrågorna är ett viktigt sätt för er att engagera matematiken. De kommer att dyka upp på kontrollskrivningar. Syftet är att ni ska gå
Övningsuppgifter. 9 Linjer i planet och rummet Plan i rummet : 32, 33 Övningar4(sida 142) exempel
Detaljplanering: Kurs: Matematik I HF1903, År 2013/14 Period: P1, Rekommenderande uppgifter i boken Matematik för ingenjörer, Rodhe, Sollervall er finns på kursens webbadress : www.sth.kth.se/armin/ar_13_14/hf1903/dirhf1903_13_14.html
GYMNASIEMATEMATIK FÖR LÄKARSTUDENTER
2015-09-02 GYMNASIEMATEMATIK FÖR LÄKARSTUDENTER Nils Karlsson INDEX MATEMATISKA TAL...2 Värdesiffror...2 Absolutbelopp...3 Skala...3 STATISTIK...4 Lägesmått...4 Spridningsmått...4 Normalfördelning...4
Högskolan i Skövde (SK, YW) Svensk version Tentamen i matematik
Högskolan i Skövde (SK, YW) Svensk version Tentamen i matematik Kurs: MA52G Matematisk Analys MA23G Matematisk analys för ingenjörer Tentamensdag: 2-5-5 kl 8.3-3.3 Hjälpmedel : Inga hjälpmedel utöver bifogat
Prov i matematik Distans, Matematik A Analys UPPSALA UNIVERSITET Matematiska institutionen
UPPSALA UNIVERSITET Matematiska institutionen Anders Källström Prov i matematik Distans, Matematik A Analys 6 Skrivtid: -5. Hjälpmedel: Gymnasieformelsamling. Lösningarna skall åtföljas av förklarande
Algebraiska räkningar
Kapitel 1 Algebraiska räkningar 1.1 Addition, subtraktion och multiplikation av (reella) tal För reella tal gäller bl.a. följande enkla räkneregler, som man väl använder utan att speciellt tänka på dem:
Trigonometri. Sidor i boken 26-34
Sidor i boken 6-34 Trigonometri Definition: Gren av matematiken som studerar samband mellan vinklar och sträckor i planet (och rymden). Det grundläggande trigonometriska problemet är att beräkna alla sidor
4. Bestäm eventuella extrempunkter, inflexionspunkter samt horisontella och vertikala asymptoter till y = 1 x 1 + x, och rita funktionens graf.
TM-Matematik Mikael Forsberg 73 1 3 31 Pär Hemström 7 3 57 För ingenjörs och distansstudenter Envariabelanalys ma3a 1 8 Skrivtid: 9:-1:. Inga hjälpmedel. Lösningarna skall vara fullständiga och lätta att
MATEMATIK Datum: 2015-08-19 Tid: eftermiddag Hjälpmedel: inga. Mobiltelefoner är förbjudna. A.Heintz Telefonvakt: Tim Cardilin Tel.
MATEMATIK Datum: 0-08-9 Tid: eftermiddag Chalmers Hjälmedel: inga. Mobiltelefoner är förbjudna. A.Heintz Telefonvakt: Tim Cardilin Tel.: 0703-088304 Lösningar till tenta i TMV036 Analys och linjär algebra
ENVARIABELANALYS, ht 2003 (version 17 nov) Kursansvarig: tel ,
ENVARIABELANALYS, ht 2003 (version 17 nov) Kursansvarig: Georgi.Tchilikov@ide.hh.se, tel.035-167124, http://www.hh.se/staff/getc Ett försök till "strukturering" av innehållet (skrivet i första hand med
Institutionen för Matematik. SF1625 Envariabelanalys. Lars Filipsson. Modul 1
Institutionen för Matematik SF1625 Envariabelanalys Läsåret 2017-2018 Lars Filipsson Modul 1 1. MÅL FÖR MODUL 1 1. Reella tal. Känna till talsystememet och kunna använda notation för mängder och intervall
Lösningsförslag TATM
Lösningsförslag TATM79 016-09-6 1 a) Vi isolerar x + och kvadrerar ekvationen observera att det då bara blir en implikation!): + x + = x x + = x ) x + = x ) = x 1x + 1 x 1 x + 10 = 0 x = 1 6 ± 7 6 Eftersom
SF1620 Matematik och modeller
KTH Teknikvetenskap, Institutionen för matematik 1 SF1620 Matematik och modeller 2007-09-03 1 Första veckan Geometri med trigonometri Till att börja med kom trigometrin till för att hantera och lösa geometriska
S n = (b) Med hjälp av deluppgift (a) beräkna S n. 1 x < 2x 1? i i. och
Uppgift 1 För vilka x R gäller x 4 = 4? Uppgift Låt S n = n k=1 3 k (a) Visa att S n är en geometrisk summa (b) Med hjälp av deluppgift (a) beräkna S n Uppgift 3 Lös ekvationen e x + e x = 3 Uppgift 4
Arkitektur och teknik, Teknisk fysik, Teknisk matematik Antagningsprov MATEMATIK
Chalmers tekniska högskola Matematik- och fysikprovet Arkitektur och teknik, Teknisk fysik, Teknisk matematik Antagningsprov 008 - MATEMATIK 008-05-17, kl. 9.00-1.00 Skrivtid: 180 min Inga hjälpmedel tillåtna.
M0038M Differentialkalkyl, Lekt 17, H15
M0038M Differentialkalkyl, Lekt 17, H15 Staffan Lundberg Luleå Tekniska Universitet Staffan Lundberg M0038M H15 1/ 38 Repetition Lekt 16 Uppskatta (8.2) 1/3 genom att använda differentialer. Svara på bråkform.
SF1625 Envariabelanalys Lösningsförslag till tentamen DEL A
SF625 Envariabelanalys Lösningsförslag till tentamen 206-0- DEL A. Betrakta funktionen f som ges av f(x) = x 2 arctan x. A. Bestäm definitionsmängden till f. B. Bestäm de intervall där f är växande respektive
5B1134 Matematik och modeller
KTH Matematik 1 5B1134 Matematik och modeller 2006-09-04 1 Första veckan Geometri med trigonometri Veckans begrepp cirkel, cirkelsegment, sektor, korda, båglängd, vinkel, grader, radianer, sinus, cosinus,
Tentamen i matematik. f(x) = 1 + e x.
Lösningsförslag Högskolan i Skövde (SK, JS) Tentamen i matematik Kurs: MA52G Matematisk Analys MA23G Matematisk analys för ingenjörer Tentamensdag: 202-03-23 kl 4.30-9.30 Hjälpmedel : Inga hjälpmedel utöver
Uppföljning av diagnostiskt prov HT-2016
Uppföljning av diagnostiskt prov HT-0 Avsnitt Ungefärligen motsvarande uppgifter på diagnosen. Räknefärdighet. Algebra, ekvationer, 8 0. Koordinatsystem, räta linjer 8 0. Funktionerna ln och e.. Trigonometri
SF1625 Envariabelanalys Tentamen Måndagen den 11 januari 2016
SF625 Envariabelanalys Tentamen Måndagen den januari 206 Skrivtid: 08:00-3:00 Tillåtna hjälpmedel: inga Examinator: Lars Filipsson Tentamen består av nio uppgifter som vardera ger maximalt fyra poäng.
Föreläsning 7. SF1625 Envariabelanalys. Hans Thunberg, 13 november 2018
Föreläsning 7 SF1625 Envariabelanalys 13 november 2018 SF1625 CDEPR1, CENMI1, CLGYM TEMI2 HT18 F7 1 / 23 Dagens teman: exponentialfunktioner och logaritmer standardgränsvärden tillväxtproblem SF1625 CDEPR1,
SF1625 Envariabelanalys Lösningsförslag till tentamen DEL A
SF165 Envariabelanalys Lösningsförslag till tentamen 01-1-10 DEL A 1. Låt funktionen f ha definitionsmängden D f =]0, [ och ges av f(x) = e x 1 x. (a) Finn f:s invers f 1. ( p) (b) Finn inversens värdemängd
SF1626 Flervariabelanalys Lösningsförslag till tentamen DEL A
SF1626 Flervariabelanalys Lösningsförslag till tentamen 213-8-22 DEL A 1. Betrakta funktionen f(x, y) ln(x 2 + xy 2 4). a) Bestäm tangentplanet till funktionsytan z f(x, y) i den punkt på ytan där x 1
8.4. Integration av trigonometriska uttryck
68 8 PRIMITIVA FUNKTIONER 8.4. Integration av trigonometriska uttryck Exempel 8.. Bestäm sin 3 x + cos x dx. Trigonometriska ettan tillsammans med ett variabelbyte ger sin 3 x cos + cos x dx = x ( cos
1.1 Den komplexa exponentialfunktionen
TATM79: Föreläsning 8 Komplexa exponentialfunktionen och binomiska ekvationer Johan Thim augusti 07 Komplexa tal på polär form Ett komplex tal z = a+bi kan som bekant betraktas som en punkt i komplexa
Matematiska uppgifter
Årgång 54, 1971 Första häftet 8. Bestäm alla reella tal x sådana att x 1 3 x 1 + < 0 (Svar: {x R: 1 < x < 0} {x R: < x < 3}) 83. Visa att om x > y > 1 så är x y 1 > x y > ln(x/y). 84. Undersök om punkterna
Tentamensproblem i Matematik 1 β. Sammanställda av Tomas Claesson Utskrivna av Kjell Elfström
Tentamensproblem i Matematik β Sammanställda av Tomas Claesson Utskrivna av Kjell Elfström 25 maj 24 . Derivator. För vilka värden på den reella konstanten a gäller att x 3 5x 2 +3x +3 a för alla x? jan
Block 4 - Funktioner. Funktionsbegreppet Definitionsmängd
Block 4 - Funktioner Funktionsbegreppet Definitionsmängd Värdemängd Grafen för en funktion Polynom Konstanta polynom Linjära polynom Andragradspolynom Potenser, exponential- och logaritmfunktioner Potensfunktioner
MVE465. Innehållsförteckning
Lösningar på övningsuppgifter Detta dokument innehåller mina renskrivna lösningar på övningsuppgifter i kursen Linjär algebra och analys fortsättning (). Jag kan inte lova att samtliga lösningar är välformulerade
Tentamen i Flervariabelanalys F/TM, MVE035
Tentamen i Flervariabelanalys F/TM, MVE5 kl.. 8.. jälmedel: Inga, ej räknedosa. Telefon: Lennart Falk, 77 56 För godkänt krävs minst oäng. Betyg : -5 oäng, betyg : 6-7 oäng, betyg 5: 8 oäng eller mera.
2 Matematisk grammatik
MATEMATISK GRAMMATIK Matematisk grammatik.1 Skriva matematik Matematisk grammatik, minst lika kul som det låter, och hur man skriver matematik är nästan lika viktigt som vad man skriver. En grammatisk