Tommy Färnqvist, IDA, Linköpings universitet. 1.1 Introduktion ADT graf Datastrukturer...

Storlek: px
Starta visningen från sidan:

Download "Tommy Färnqvist, IDA, Linköpings universitet. 1.1 Introduktion ADT graf Datastrukturer..."

Transkript

1 öreläsning 3 Grfer och grfsökning T71: LG Utskriftsversion v föreläsning i tstrukturer och lgoritmer 17 november 2015 Tommy ärnqvist, I, Linköpings universitet 3.1 Innehåll Innehåll 1 Grfer 1.1 Introduktion T grf tstrukturer Sökning i oriktde grfer 2.1 S S S vs S Grfer 1.1 Introduktion efinition n grf är ett pr (V, ), där V är en mängd noder (eller hörn) är en mängd v pr v noder kllde bågr (eller knter) Noder och bågr är positioner och kn lgr element ng. vertices, edges 3.3 ågtyper Riktd båge ordnt pr v noder (u, v) u är strtnoden, v är slutnoden Oriktd båge oordnt pr v noder {u, v} 1

2 I en riktd grf är ll bågr riktde I en oriktd grf är ll bågr oriktde OR flight 1206 PV OR 849 miles PV 3.4 Vrför skll mn studer grflgoritmer? Tusentls prktisk tillämpningr Hundrtls känd grflgoritmer Intressnt bstrktion med stor tillämpbrhet Gren v dtlogi och diskret mtemtik med mång utmningr 3.5 Protein till protein-interktionsnätverk Jeong et l, Nture Review Genetics 3.6 Internet krtlgt v Opte-projektet Opte Project 3.7 2

3 Vetenskplig klickströmmr miljoner cebook-vänner Visulizing riendship v Pul utler 3.9 n vecks mejl inom nron 3

4 3.10 Utvecklingen hos lobbyingsmrbeten inom The volution of Lobbying olitions v Pierre de Vries från JoSS Visuliztion Symposium Tillämpningr grf kommuniktion krets meknisk finnsiell trnsport internet brädspel socilt nätverk neurlt nätverk proteinnätverk kemisk smmnsättning nod telefon, dtor grind, register, processor led ktie, vlut gtukorsning, flygplts klss -nät pjäserns positioner person, ktör neuron protein molekyl båge fiberoptisk kbel koppling stg, bjälke, fjäder trnsktion väg, flygrutt förbindelse giltigt drg vänskp, reltion synps protein-proteininterktion bindning 3.12 Terminologi n båge hr ändpunkter ( hr ändpunktern U och V ) ågr som slutr i en nod n sägs vr incident (, d och b är incident till V ) Noder kn vr grnnr (U och V är grnnr) Noder hr grd (X hr grd 5) 4

5 Prllell bågr (h och i är prllell bågr) Öglor ( j är en ögl) U c V d W b e X g h i Z j f Y ng. endpoints, incident, djcent, degree, prllel, loops 3.13 Mer terminologi n cykel är en cirkulär sekvens v lternernde noder och bågr. Vrje båge föregås och efterföljs v sin ändpunkter. n enkel cykel är en cykel sådn tt ll dess noder och bågr är distinkt. 1 = (V,b,X,g,Y, f,w,c,u,,v ) är en enkel cykel. 2 = (U,c,W,e,X,g,Y, f,w,d,v,,u) är inte en enkel cykel. V b U c d 2 W e X 1 g h Z f Y ng. cycle, simple cycle 3.14 genskper genskp 1 v deg(v) = 2m evis: Vrje båge räkns två gånger genskp 2 I en oriktd grf utn öglor och prllell bågr gäller m n(n 1)/2 evis: Vrje nod hr mx grd (n 1) Nottion n ntlet noder m ntlet bågr deg(v) är nod v:s grd xempel n = 4 m = 6 deg(v) = Någr lgoritmisk grfproblem Stig. inns det en stig melln s och t? Kortste väg. Vilken är den kortste stigen melln s och t? ykel. inns det en cykel i grfen? ulertur. inns det en cykel som nvänder vrje båge exkt en gång? Hmiltoncykel. inns det en cykel som nvänder vrje nod exkt en gång? 5

6 Konnektivitet. inns det en förbindelse melln ll noder? MST. Vilket är det bäst sättet tt bind smmn ll noder? ikonnektivitet. inns det en nod som gör tt grfen inte hänger smmn om mn tr bort den? Plnritet. Går det tt rit grfen utn tt någr bågr korsr vrndr? Grfisomorfi. Är två grfer identisk bortsett från nmnen på nodern? Utmning. Vilk v problemen ovn är enkl? Svår? Omöjlig tt lös effektivt? T grf e viktigste metodern för oriktde grfer Noder och bågr är positioner lgrr element Åtkomstmetoder endvertices(e): en rry med e:s två ändpunkter opposite(v,e): noden motstt v längs e redjcent(v,w): true omm v och w är grnnr replce(v,x): ersätt elementet i nod v med x replce(e,x): ersätt elementet i båge e med x 3.17 e viktigste metodern för oriktde grfer Uppdteringsmetoder insertvertex(o): sätt in en nod som lgrr elementet o insertdge(v,w,o): sätt in en knt (v,w) som lgrr elementet o removevertex(v): t bort nod v (och dess incident bågr) removedge(e): t bort båge e Itertormetoder incidentdges(v): bågrn incident till v vertices(): ll noder i grfen edges(): ll bågr i grfen tstrukturer åglist n sekvens v noder är en sekvens v positioner för nodobjekt n sekvens v bågr är en sekvens v positioner för bågobjekt Nodobjekt lgrr element och referenser till positioner i nodsekvensen ågobjekt lgrr element, objekt för strtnod, objekt för slutnod och referens till position i bågsekvensen v u b c w d z u v w z b c d

7 Grnnlist Lägger till extr struktur till båglistn Vrje nod hr en sekvens v dess incident bågr med referenser till de incident bågrns bågobjekt ågobjekt utöks med referenser till ssocierde positioner i incidenssekvensen för dess ändpunkter u v b w u v w b 3.20 Grnnmtris Lägger till extr struktur till båglistn Nodobjekten utöks med heltlsnycklr (index) ssocierde med nodern Tvådimensionell grnnrry Referens till bågobjekt för noder som är grnnr null för noder som inte är grnnr v b u w 0 u 1 v 2 w b 3.21 symptotisk prestnd 7

8 n noder, m bågr ing prllell knter ing öglor åglist Grnnlist Grnnmtris minne O(n + m) O(n + m) O(n 2 ) incidentdges(v) O(m) O(deg(v)) O(n) redjcent (v, w) O(m) O(min(deg(v),deg(w)) insertvertex(o) O(n 2 ) insertdge(v, w, o) removevertex(v) O(m) O(deg(v)) O(n 2 ) removedge(e) Sökning i oriktde grfer 2.1 S elgrfer n delgrf S v en grf G är en grf sådn tt Nodern i S är en delmängd v nodern i G ågrn i S är en delmängd v bågrn i G n spännnde delgrf v G är en delgrf som innehåller ll noder i G elgrf Spännnde delgrf ng. subgrph, spnning subgrph 3.23 Konnektivitet n grf är smmnhängnde om det finns en stig melln vrje pr v noder n smmnhängnde komponent i en grf G är en mximl smmnhängnde delgrf v G 8

9 Smmnhängnde grf j smmnhängnde grf med två smmnhängnde komponenter ng. connected, connected component 3.24 Träd och skogr tt (fritt) träd är en oriktd grf T sådn tt T är smmnhängnde T inte hr någr cykler en här definitionen v träd skiljer sig från den för rotde träd n skog är en oriktd grf utn cykler e smmnhängnde komponentern i en skog är träd Träd Skog ng. tree, forest 3.25 Spännnde träd och skogr tt spännnde träd till en smmnhängnde grf är en spännnde delgrf som är ett träd tt spännnde träd är inte unikt om inte ursprungsgrfen är ett träd Spännnde träd hr tillämpningr i design v kommuniktionsnätverk n spännnde skog till en grf är en spännnde delgrf som är en skog Grf Spännnde träd 9

10 ng. spnning tree, spnning forest 3.26 jupetförstsökning jupetförstsökning (S) är en llmän teknik för tt trverser en grf S i en grf G esöker ll noder och bågr i G vgör om G är smmnhängnde eräknr de smmnhängnde komponentern i G eräknr en spännnde skog till G S på en grf med n noder och m bågr tr O(n + m) tid S kn utöks för tt lös ndr grfproblem Hitt och beskriv en stig melln två givn noder i en grf Hitt en cykel i en grf 3.27 lgoritm för S procedure S(G) for ll u G.VRTIS() do STLL(u,UNXPLOR) for ll e G.GS() do STLL(e,UNXPLOR) for ll v G.VRTIS() do if GTLL(v) = UNXPLOR then S(G, v) procedure S(G, v) STLL(v,V ISIT ) for ll e G.ININTGS(v) do if GTLL(e) = UNXPLOR then w OPPOSIT(v, e) if GTLL(w) = UNXPLOR then STLL(e, ISOV RY ) S(G, w) else STLL(e, K) 3.28 xempel outforskd nod besökt nod outforskd båge ''discovery''-båge båge till förfder

11 xempel 3.30 S och lbyrintutforskning lgoritmen för S liknr en klssisk strtegi för tt utforsk lbyrinter Vi märker vrje korsning, hörn och återvändsgränd (nod) vi besöker Vi märker vrje korridor (båge) vi går genom Vi håller red på vägen tillbk till ingången (strtnoden) m.h.. ett snöre (rekursionsstcken) 3.31 genskper genskp 1 S(G,v) besöker ll noder och bågr i den smmnhängnde delen v G som v ingår i genskp 2 discovery -bågrn S(G,v) märker upp utgör ett spännnde träd till den smmnhängnde komponenten v G som v ingår i 3.32 nlys v S Märk/hämt märkning v nod/båge tr tid Vrje nod märks två ggr en gång som UNXPLOR en gång som VISIT 11

12 Vrje båge märks två ggr en gång som UNXPLOR en gång som ISOVRY eller K Metoden incidentdges nrops en gång för vrje nod S körs i tid O(n + m) givet tt grfen är representerd med en grnnlist kom ihåg tt v deg(v) = 2m 3.33 Hitt stigr Vi kn speciliser S-lgoritmen till tt hitt en stig melln två givn noder v och z Vi nropr S(G,v) med v som strtnod Vi nvänder en stck S för tt håll red på vägen från strtnoden till ktuell nod Så snrt vi stöter på målnoden z returnerr vi innehållet på stcken som den sökt stigen procedure PTHS(G, v, z) STLL(v,V ISIT ) S.PUSH(v) if v = z then skriv ut elementen i S return for ll e G.ININTGS(v) do if GTLL(e) = UNXPLOR then w OPPOSIT(v, e) if GTLL(w) = UNXPLOR then STLL(e, ISOV RY ) S.PUSH(e) PTHS(G, w, z) S.POP() // e else STLL(e, K) S.POP() // v 3.34 Hitt cykler Vi kn speciliser S-lgoritmen till tt hitt en enkel cykel Vi nvänder en stck S för tt håll red på vägen från strtnoden till ktuell nod Så snrt vi stöter på en knt (v,w) som leder till en förfder returnerr vi cykeln som innehållet på stcken från toppen till noden w procedure YLS(G, v, z) STLL(v,V ISIT ) S.PUSH(v) for ll e G.ININTGS(v) do if GTLL(e) = UNXPLOR then w OPPOSIT(v, e) S.PUSH(e) if GTLL(w) = UNXPLOR then STLL(e, ISOV RY ) YLS(G, w) S.POP() // e else // hittt cykel repet o S.POP() skriv ut o until o = w return S.POP() // v S reddenförstsökning reddenförstsökning (S) är en llmän teknik för tt trverser en grf S i en grf G 12

13 esöker ll noder och bågr i G vgör om G är smmnhängnde eräknr de smmnhängnde komponentern i G eräknr en spännnde skog till G S på en grf med n noder och m bågr tr O(n + m) tid S kn utöks för tt lös ndr grfproblem Hitt och beskriv en kortste stig melln två givn noder i en grf Hitt en enkel cykel i en grf, om det finns någon 3.36 lgoritm för S procedure S(G) märk ll noder/bågr med UNXPLOR som i S for ll v G.VRTIS() do if GTLL(v) = UNXPLOR then S(G, v) procedure S(G, s) ny tom sekvens;.insrtlst(s); STLL(s,V ISIT ); i 0 while L i.ismpty() do L i+1 ny tom sekvens for ll v L i.lmnts() do for ll e G.ININTGS(v) do if GTLL(e) = UNXPLOR then w OPPOSIT(v, e) if GTLL(w) = UNXPLOR then STLL(e, ISOV RY ) STLL(w,V ISIT ) L i+1.insrtlst(w) else STLL(e,ROSS) i i xempel outforskd nod besökt nod outforskd båge ''discovery''-båge korsnde båge 3.38 xempel 13

14 L 2 L 2 L genskper Låt G s beteckn den smmn-hängnde delen v G som s ingår i genskp 1 S(G,s) besöker ll noder och bågr i G s genskp 2 discovery -bågrn S(G,s) märker upp utgör ett spännnde träd T s till G s genskp 3 ör vrje nod v i L i gäller Stigen i T s från s till v hr i bågr Vrje stig från s till v i G s hr minst i bågr L nlys v S Märk/hämt märkning v nod/båge tr tid Vrje nod märks två ggr en gång som UNXPLOR en gång som VISIT Vrje båge märks två ggr en gång som UNXPLOR en gång som ISOVRY eller ROSS Vrje nod sätts in en gång i en sekvens L i Metoden incidentdges nrops en gång för vrje nod S körs i tid O(n + m) givet tt grfen är representerd med en grnnlist kom ihåg tt v deg(v) = 2m

15 2.3 S vs S Tillämpningr Tillämpningr S S Spännnde träd, smmnhängnde komponenter, stigr, cykler Kortste stigr 2-smmnhängnde komponenter S S L Knter som leder till redn besökt noder båge till förfder w är en förfder till v i trädet v discovery -bågr S korsnde båge w finns i smm nivå som v eller i näst nivå i trädet v discovery -bågr L 2 S

Uppsala universitet Institutionen för lingvistik och filologi. Grundbegrepp: Noder (hörn) och bågar (kanter)

Uppsala universitet Institutionen för lingvistik och filologi. Grundbegrepp: Noder (hörn) och bågar (kanter) Grfer Jokim Nivre Uppsl universitet Institutionen för lingvistik oh filologi Översikt Grunegrepp: Noer (hörn) oh ågr (knter) Grfteoretisk egrepp: Stigr oh ykler Delgrfer oh smmnhängne grfer Rikte oh orikte

Läs mer

Datastrukturer. föreläsning 8. Lecture 6 1

Datastrukturer. föreläsning 8. Lecture 6 1 atastrukturer föreläsning 8 Lecture 6 1 jupet-först sökning (S) och bredden-först sökning (S) Två metoder att genomsöka en graf; två grafiteratorer! Kan även användas för att avgöra om två noder är sammanbundna.

Läs mer

Föreläsning 10. Riktade grafer. Viktade grafer. TDDC91,TDDE22,725G97: DALG. Innehåll. Innehåll Riktade grafer A 10.3

Föreläsning 10. Riktade grafer. Viktade grafer. TDDC91,TDDE22,725G97: DALG. Innehåll. Innehåll Riktade grafer A 10.3 öreläsning 1 Riktade grafer. Viktade grafer. T1,T,G: LG Utskriftsversion av föreläsning i atastrukturer och algoritmer oktober 1 Magnus Nielsen, I, Linköpings universitet 1.1 Innehåll Innehåll 1. 1 Riktade

Läs mer

Föreläsning 11. Riktade grafer. Viktade grafer. TDDC70/91: DALG. Innehåll. Innehåll. 1 Riktade grafer A 11.3

Föreläsning 11. Riktade grafer. Viktade grafer. TDDC70/91: DALG. Innehåll. Innehåll. 1 Riktade grafer A 11.3 Föreläsning 11 Riktade grafer. Viktade grafer. T70/1: ALG Utskriftsversion av föreläsning i atastrukturer och algoritmer 14 oktober 2013 Tommy Färnqvist, IA, Linköpings universitet 11.1 Innehåll Innehåll

Läs mer

Föreläsning 10. Grafer, Dijkstra och Prim

Föreläsning 10. Grafer, Dijkstra och Prim Föreläsning 10 Grafer, Dijkstra och Prim Föreläsning 10 Grafer Representation av grafer Dijkstras algoritm Implementation av Dijkstras algoritm Minimium spanning tree Broarna i Königsberg, Euler, 17 Grafer

Läs mer

Föreläsning 7. Splay-träd. Prioritetsköer och heapar. Union/Find TDDC70/91: DALG. Innehåll. Innehåll. 1 Splay-träd

Föreläsning 7. Splay-träd. Prioritetsköer och heapar. Union/Find TDDC70/91: DALG. Innehåll. Innehåll. 1 Splay-träd Föreläsning 7 Sply-träd. rioritetsköer oh hepr. Union/Find TDDC70/1: DALG Utskriftsversion v föreläsning i Dtstrukturer oh lgoritmer 7 septemer 01 Tommy Färnqvist, IDA, Linköpings universitet 7.1 Innehåll

Läs mer

Föreläsning 10. Grafer, Dijkstra och Prim

Föreläsning 10. Grafer, Dijkstra och Prim Föreläsning 10 Grafer, Dijkstra och Prim Föreläsning 10 Grafer Representation av grafer Dijkstras algoritm Implementation av Dijkstras algoritm Minimium spanning tree Läsanvisning och uppgifter Broarna

Läs mer

Föreläsning 10. Grafer, Dijkstra och Prim

Föreläsning 10. Grafer, Dijkstra och Prim Föreläsning 10 Grafer, Dijkstra och Prim Föreläsning 10 Grafer Representation av grafer Dijkstras algoritm Implementation av Dijkstras algoritm Minimium spanning tree Läsanvisning och uppgifter Broarna

Läs mer

Föreläsning 6 Datastrukturer (DAT037)

Föreläsning 6 Datastrukturer (DAT037) Föreläsning 6 Datastrukturer (DAT037) Fredrik Lindblad 1 15 november 2017 1 Slides skapade av Nils Anders Danielsson har använts som utgångspunkt. Se http://www.cse.chalmers.se/edu/year/2015/course/dat037

Läs mer

RÄKNEOPERATIONER MED VEKTORER. LINJÄRA KOMBINATIONER AV VEKTORER. ----------------------------------------------------------------- Låt u vr en vektor med tre koordinter u. Vi säger tt u är tredimensionell

Läs mer

Föreläsning Datastrukturer (DAT036)

Föreläsning Datastrukturer (DAT036) Föreläsning Datastrukturer (DAT036) Nils Anders Danielsson 2013-11-13 Idag Grafer: Terminologi. Datastrukturer. Topologisk sortering. Kortaste vägen. Bredden först-sökning. Dijkstras algoritm. (Vi får

Läs mer

Föreläsning Datastrukturer (DAT037)

Föreläsning Datastrukturer (DAT037) Föreläsning Datastrukturer (DAT037) Nils Anders Danielsson 2015-11-20 Idag Grafer: Terminologi. Datastrukturer. Topologisk sortering. Kortaste vägen. Bredden först-sökning. Dijkstras algoritm. (Vi får

Läs mer

Uppsala Universitet Matematiska Institutionen Thomas Erlandsson

Uppsala Universitet Matematiska Institutionen Thomas Erlandsson Uppsl Universitet Mtemtisk Institutionen Thoms Erlndsson RÄTA LINJER, PLAN, SKALÄRPRODUKT, ORTOGONALITET MM VERSION MER OM EKVATIONSSYSTEM Linjär ekvtionssystem och den geometri mn kn härled ur dess är

Läs mer

Föreläsning 8 Datastrukturer (DAT037)

Föreläsning 8 Datastrukturer (DAT037) Föreläsning 8 Datastrukturer (DAT037) Fredrik Lindblad 1 2016-11-23 1 Slides skapade av Nils Anders Danielsson har använts som utgångspunkt. Se http://www.cse.chalmers.se/edu/year/2015/course/dat037 Förra

Läs mer

SF1625 Envariabelanalys

SF1625 Envariabelanalys SF1625 Envribelnlys Föreläsning 13 Institutionen för mtemtik KTH 27 september 2017 SF1625 Envribelnlys Anmäl er till tentn Anmäl er till tentn nu. Det görs vi min sidor. Om det inte går, mejl studentexpeditionen

Läs mer

6 Formella språk. Matematik för språkteknologer (5LN445) UPPSALA UNIVERSITET

6 Formella språk. Matematik för språkteknologer (5LN445) UPPSALA UNIVERSITET UPPSALA UNIVERSITET Mtemtik för språkteknologer (5LN445) Institutionen för lingvistik och filologi VT 2014 Förfttre: Mrco Kuhlmnn 2013 (mindre revision Mts Dhllöf 2014) 6 Formell språk Det mänsklig språket

Läs mer

Föreläsning 7 Datastrukturer (DAT037)

Föreläsning 7 Datastrukturer (DAT037) Föreläsning 7 Datastrukturer (DAT037) Fredrik Lindblad 1 2016-11-21 1 Slides skapade av Nils Anders Danielsson har använts som utgångspunkt. Se http://www.cse.chalmers.se/edu/year/2015/course/dat037 Förra

Läs mer

Kan det vara möjligt att med endast

Kan det vara möjligt att med endast ORIO TORIOTO yllene snittet med origmi ed endst någr få vikningr kn mn få frm gyllene snittet och också konstruer en regelbunden femhörning. I ämnren nr 2, 2002 beskrev förfttren hur mn kn rbet med hjälp

Läs mer

Associativa lagen för multiplikation: (ab)c = a(bc). Kommutativa lagen för multiplikation: ab = ba.

Associativa lagen för multiplikation: (ab)c = a(bc). Kommutativa lagen för multiplikation: ab = ba. Rtionell tl Låt oss skiss hur mn definierr de rtionell tlen utifrån heltlen. Förutom tt det ger en inblick i hur mtemtiken är uppbyggd, är dett är ett br exempel på ekvivlensreltioner och ekvivlensklsser.

Läs mer

GEOMETRISKA VEKTORER Vektorer i rummet.

GEOMETRISKA VEKTORER Vektorer i rummet. GEOMETRISKA VEKTORER Vektorer i rummet. v Någr v de storheter som förekommer inom nturvetenskp kn specificers genom tt ders mätetl nges med ett end reellt tl. Exempel på sådn storheter, som klls sklär

Läs mer

Volum av rotationskroppar. Båglängd, rotationsytor. Adams 7.1, 7.2, 7.3

Volum av rotationskroppar. Båglängd, rotationsytor. Adams 7.1, 7.2, 7.3 Volum v rottionskroppr. Båglängd, rottionsytor. Adms 7., 7., 7.3 Volum v rottionskroppr. Båglängd, rottionsytor. Integrtion v rtionell uttryck, prtilbråksuppdelning. Exempel med invers substitutioner.

Läs mer

Sfärisk trigonometri

Sfärisk trigonometri Sfärisk trigonometri Inledning Vi vill nvänd den sfärisk trigonometrin för beräkningr på storcirkelrutter längs jordytn (för sjöfrt och luftfrt). En storcirkel är en cirkel på sfären vrs medelpunkt smmnfller

Läs mer

Föreläsning 11: Grafer, isomorfi, konnektivitet

Föreläsning 11: Grafer, isomorfi, konnektivitet Förläsning 11: Grfr, isomorfi, konnktivitt En orikt nkl grf (V, E) står v hörn, V, oh kntr, E, vilk förinr istinkt nor: ing pilr, ing öglor, int multipl kntr mlln hörn. Två hörn u,v V är grnnr om t finns

Läs mer

SF1625 Envariabelanalys

SF1625 Envariabelanalys Modul 5: Integrler Institutionen för mtemtik KTH 30 november 4 december Integrler Integrler är vd vi sk håll på med denn veck och näst. Vi kommer tt gör följnde: En definition v vd begreppet betyder En

Läs mer

Datastrukturer. föreläsning 7. Maps 1

Datastrukturer. föreläsning 7. Maps 1 Datastrukturer föreläsning 7 Maps 1 Hashtabeller 0 1 2 3 025-612-0001 4 451-229-0004 981-101-0004 Maps 2 Kollisioner vad gör man? Använder hinkar ( hashing in buckets, chaining ) Cellen med index i innehåller

Läs mer

Föreläsning 6 Datastrukturer (DAT037)

Föreläsning 6 Datastrukturer (DAT037) Föreläsning 6 Datastrukturer (DAT037) Fredrik Lindblad 1 2016-11-17 1 Slides skapade av Nils Anders Danielsson har använts som utgångspunkt. Se http://www.cse.chalmers.se/edu/year/2015/course/dat037 Förra

Läs mer

Föreläsning Datastrukturer (DAT037)

Föreläsning Datastrukturer (DAT037) Föreläsning Datastrukturer (DAT037) Nils Anders Danielsson 2015-11-23 Idag Mer om grafer: Minsta uppspännande träd (för oriktade grafer). Djupet först-sökning. Minsta uppspännande träd Träd (utan rot)

Läs mer

Byt till den tjocka linsen och bestäm dess brännvidd.

Byt till den tjocka linsen och bestäm dess brännvidd. LINSER Uppgit: Mteriel: Teori: Att undersök den rytnde örmågn hos olik linser och tt veriier linsormeln Ljuskäll och linser ur Optik-Elin Med hjälp v en lmp och en ländre med ler öppningr år vi ler ljusstrålr,

Läs mer

Föreläsning 6. Slumptal Testa slumptal Slumptal för olika fördelningar Grafer Datastrukturen graf

Föreläsning 6. Slumptal Testa slumptal Slumptal för olika fördelningar Grafer Datastrukturen graf Föreläsning 6 Slumptal Testa slumptal Slumptal för olika fördelningar Grafer Datastrukturen graf Repetition En dator kan inte generera slumptal då den är helt deterministisk, däremot kan den generera pseudo-slumptal

Läs mer

Finaltävling den 20 november 2010

Finaltävling den 20 november 2010 SKOLORNAS MATEMATIKTÄVLING Svensk Mtemtikersmfundet Finltävling den 20 november 2010 Förslg till lösningr Problem 1 Finns det en tringel vrs tre höjder hr måtten 1, 2 respektive 3 längdenheter? Lösning

Läs mer

Ett förspel till Z -transformen Fibonaccitalen

Ett förspel till Z -transformen Fibonaccitalen Ett förspel till Z -trnsformen Fibonccitlen Leonrdo Pisno vnligen klld Leonrdo Fiboncci, den knske störste mtemtiker som Europ frmburit före renässnsen skrev år 10 en bok (Liber bci) i räknelär. J, fktiskt.

Läs mer

Lamellgardin. Nordic Light Luxor INSTALLATION - MANÖVRERING - RENGÖRING

Lamellgardin. Nordic Light Luxor INSTALLATION - MANÖVRERING - RENGÖRING INSTALLATION - MANÖVRERING - RENGÖRING Se till tt lmellgrdinen fästes i ett tillräckligt säkert underlg. Ev motor och styrutrustning skll instllers v behörig elektriker. 1 Montering Luxor monters med de

Läs mer

GOLV. Norgips Golvskivor används som underlag för golv av trä, vinyl, mattor och andra beläggningar. Här de tre viktigaste konstruktionerna

GOLV. Norgips Golvskivor används som underlag för golv av trä, vinyl, mattor och andra beläggningar. Här de tre viktigaste konstruktionerna GOLV Norgips Golvskivor nvänds som underlg för golv v trä, vinyl, mttor och ndr beläggningr. Här de tre viktigste konstruktionern 1. Ett lg golvskivor på träunderlg 2. Flytnde golv med två lg golvskiv

Läs mer

Histogramberäkning på en liten bild. Signal- och Bildbehandling FÖRELÄSNING 9 Histogram och. Olika histogram

Histogramberäkning på en liten bild. Signal- och Bildbehandling FÖRELÄSNING 9 Histogram och. Olika histogram Signl- och Bildehndling FÖRELÄSNING 9 Histogrm och Konnektivitet tröskelsättning Logisk omgivningsopertorer i Binär ildehndling Konnektivitetsevrnde Morfologisk opertioner krympning Diltion (Expnsion)

Läs mer

1. (6p) (a) Använd delmängdskonstruktionen för att tillverka en DFA ekvivalent med nedanstående NFA. (b) Är den resulterande DFA:n minimal? A a b.

1. (6p) (a) Använd delmängdskonstruktionen för att tillverka en DFA ekvivalent med nedanstående NFA. (b) Är den resulterande DFA:n minimal? A a b. UPPSAA UNIVERSITET Mtemtisk institutionen Slling (070-6527523) PROV I MATEMATIK AUTOMATATEORI 18 okt 2012 SKRIVTID: 8-13. HJÄPMEDE: Ing. MOTIVERA AA ÖSNINGAR NOGGRANT. BETYGSGRÄNSER: För etygen 3, 4 respektive

Läs mer

MA2047 Algebra och diskret matematik

MA2047 Algebra och diskret matematik MA2047 Algebra och diskret matematik Något om grafer Mikael Hindgren 26 september 2018 roarna i Königsberg De sju broarna i Königsberg (nuvarande Kaliningrad) på 1700-talet: (a) Königsberg 1652 (b) Graf

Läs mer

1 e x2. lim. x ln(1 + x) lim. 1 (1 x 2 + O(x 4 )) = lim. x 0 x 2 /2 + O(x 3 ) x 2 + O(x 4 ) = lim. 1 + O(x 2 ) = lim = x = arctan x 1

1 e x2. lim. x ln(1 + x) lim. 1 (1 x 2 + O(x 4 )) = lim. x 0 x 2 /2 + O(x 3 ) x 2 + O(x 4 ) = lim. 1 + O(x 2 ) = lim = x = arctan x 1 UPPSALA UNIVERSITET Svr till tent i mtemtik Mtemtisk institutionen Anlys MN Distns Jons Elisson 7-- Skrivtid: - 5. Observer tt problemen inte står i svårighetsordning. All svr sk motivers. Det kn krävs

Läs mer

Uppgiftssamling 5B1493, lektionerna 1 6. Lektion 1

Uppgiftssamling 5B1493, lektionerna 1 6. Lektion 1 Uppgiftssmling 5B1493, lektionern 1 6 Lektion 1 4. (Räkning med oändlig decimlbråk) Låt x = 0, 1 2 3 n och y = 0,b 1 b 2 b 3 b n ( i och b i siffror 0, 1,, 9).. Kn Du beskriv något förfrnde som säkert

Läs mer

Föreläsning Datastrukturer (DAT036)

Föreläsning Datastrukturer (DAT036) Föreläsning Datastrukturer (DAT036) Nils Anders Danielsson 2013-11-18 Idag Mer om grafer: Minsta uppspännande träd (för oriktade grafer). Prims algoritm. Kruskals algoritm. Djupet först-sökning. Cykel

Läs mer

AUBER 95 9 jan LÖSNINGAR STEG 1:

AUBER 95 9 jan LÖSNINGAR STEG 1: AUBER 95 9 jn AR. Den finit utomten nedn ccepterr ett språk L över = {, }. A B ε Konstruer ) ett reguljärt uttryck för L. ) L = ( ( ) ) = ( ) ) en reguljär grmmtik för L S A S A c) en miniml DFA för L.

Läs mer

Magnus Nielsen, IDA, Linköpings universitet

Magnus Nielsen, IDA, Linköpings universitet Föreläsning 6 Sply-trä. rioritetsköer oh hepr. TDDC91,TDDE22,725G97: DALG Utskriftsversion v föreläsning i Dtstrukturer oh lgoritmer 19 septemer 2017 Mgnus Nielsen, IDA, Linköpings universitet 6.1 Innehåll

Läs mer

Kvalificeringstävling den 2 oktober 2007

Kvalificeringstävling den 2 oktober 2007 SKOLORNAS MATEMATIKTÄVLING Svensk Mtemtikersmfundet Kvlifieringstävling den oktober 007 Förslg till lösningr 1 I en skol hr vr oh en v de 0 klssern ett studieråd med 5 ledmöter vrder Per är den ende v

Läs mer

14. MINSTAKVADRATMETODEN

14. MINSTAKVADRATMETODEN 4 MINTAKADRATMETODEN Nu sk vi gå igenom någr olik sätt tt lös ekvtionssystemet Ax Om A är m n mtris med m n så sägs systemet vr överestämt och det sknr då i llmänhet lösningr Istället söker mn en pproximtiv

Läs mer

GEOMETRISKA VEKTORER Vektorer i rummet.

GEOMETRISKA VEKTORER Vektorer i rummet. GEOMETRISKA VEKTORER Vektorer i rummet. v 6 Någr v de storheter som förekommer inom nturvetenskp kn specificers genom tt ders mätetl nges med ett end reellt tl. Exempel på sådn storheter, som klls sklär

Läs mer

Föreläsning 5: Giriga algoritmer. Kruskals och Prims algoritmer

Föreläsning 5: Giriga algoritmer. Kruskals och Prims algoritmer Föreläsning 5: Giriga algoritmer Kruskals och Prims algoritmer Spännande träd: Om G är en sammanhängande graf så är ett spännande träd ett träd som innehåller alla noder i V (G). Viantarattviharkantvikterw(e)

Läs mer

Gör slag i saken! Frank Bach

Gör slag i saken! Frank Bach Gör slg i sken! Frnk ch På kppseglingsbnn ser mn tävlnde båtr stgvänd lite då och då under kryssrn. En del v båtrn seglr för styrbords hlsr och ndr för bbords. Mn kn undr vem som gör rätt och hur mn kn

Läs mer

TNK049 Optimeringslära

TNK049 Optimeringslära TNK49 Optimeringslära Clas Rydergren, ITN Föreläsning 7 Nätverksoptimering Billigaste uppspännande träd (MST) Billigaste väg (SP) Projektnätverk Minkostnadsflödesproblem Agenda Terminologi för grafer/nätverk

Läs mer

PASS 1. RÄKNEOPERATIONER MED DECIMALTAL OCH BRÅKTAL

PASS 1. RÄKNEOPERATIONER MED DECIMALTAL OCH BRÅKTAL PASS. RÄKNEOPERATIONER MED DECIMALTAL OCH BRÅKTAL. Tl, bråktl och decimltl Vd är ett tl för någonting? I de finländsk fmiljern brukr det vnligtvis finns två brn enligt Sttistikcentrlen (http://www.tilstokeskus.fi/tup/suoluk/suoluk_vesto_sv.html).

Läs mer

Föreläsning 7: Trigonometri

Föreläsning 7: Trigonometri ht06 Föreläsning 7: Trigonometri Trigonometrisk identiteter En identitet är en likhet som håller för ll värden på någon vriel. Tex så gäller tt ( + ) + + för ll,. Dett skrivs ilnd som ( + ) + +, men vi

Läs mer

Föreläsning 5: Grafer Del 1

Föreläsning 5: Grafer Del 1 2D1458, Problemlösning och programmering under press Föreläsning 5: Grafer Del 1 Datum: 2006-10-02 Skribent(er): Henrik Sjögren, Patrik Glas Föreläsare: Gunnar Kreitz Den här föreläsningen var den första

Läs mer

Analys o 3D Linjär algebra. Lektion 16.. p.1/53

Analys o 3D Linjär algebra. Lektion 16.. p.1/53 Anlys o 3D Linjär lgebr Lektion 16. p.1/53 . p.2/53 v 3D Linjär lgebr Hr betrktt vektorer v typen etc resp dvs ordnde triplr v typen. reell tl 3D Linjär lgebr Punkt-vektor dulismen En ordnd tripel v typen

Läs mer

Föreläsning 5: Giriga algoritmer. Kruskals och Prims algoritmer

Föreläsning 5: Giriga algoritmer. Kruskals och Prims algoritmer Föreläsning 5: Giriga algoritmer Kruskals och Prims algoritmer Spännande träd: Om G är en sammanhängande graf så är ett spännande träd ett träd som innehåller alla noder i V (G). Viantarattviharkantvikterw(e)

Läs mer

Integraler. 1 Inledning. 2 Beräkningsmetoder. CTH/GU LABORATION 2 MVE /2013 Matematiska vetenskaper

Integraler. 1 Inledning. 2 Beräkningsmetoder. CTH/GU LABORATION 2 MVE /2013 Matematiska vetenskaper CTH/GU LABORATION MVE6 - / Mtemtisk vetenskper Inledning Integrler Iblnd kn mn inte bestämm integrler exkt utn mn får nöj sig med tt beräkn pproximtioner. T.ex. e x dx kn inte beräkns exkt, eftersom det

Läs mer

Tavelpresentation grupp 5E

Tavelpresentation grupp 5E Tvelpresenttion grupp 5E Elis Elmquist, Mtild Hnes, Isk Pettersson, Juli Wennerblom, John Jxing, Boel Brndström, Edvin Cllisen, Cjs Hjolmn 19 februri 2017 1 Multipelintegrler Frmställningen för definitionen

Läs mer

Datastrukturer. föreläsning 7. Maps 1

Datastrukturer. föreläsning 7. Maps 1 Datastrukturer föreläsning 7 Maps 1 Grafer Maps 2 Grafer ett exempel En oriktad graf: Noderna är flygplatser (trebokstavskombinationer) Det finns en båge mellan två noder omm det finns en flyglinje mellan

Läs mer

Vilken rät linje passar bäst till givna datapunkter?

Vilken rät linje passar bäst till givna datapunkter? Vilken rät linje pssr bäst till givn dtpunkter? Anders Källén MtemtikCentrum LTH nderskllen@gmil.com Smmnfttning I det här dokumentet diskuterr vi minst-kvdrtmetoden för skttning v en rät linje till dt.

Läs mer

ORTONORMERAT KOORDINAT SYSTEM. LÄNGDEN AV EN VEKTOR. AVSTÅND MELLEN TVÅ PUNKTER. MITTPUNKT. TYNGDPUNKT. SFÄR OCH KLOT.

ORTONORMERAT KOORDINAT SYSTEM. LÄNGDEN AV EN VEKTOR. AVSTÅND MELLEN TVÅ PUNKTER. MITTPUNKT. TYNGDPUNKT. SFÄR OCH KLOT. Armin Hlilovi: EXTRA ÖVNINGAR v Vektorer oh koordinter i D-rummet ORTONORMERAT KOORDINAT SYSTEM LÄNGDEN AV EN VEKTOR AVSTÅND MELLEN TVÅ PUNKTER MITTPUNKT TYNGDPUNKT SFÄR OCH KLOT INLEDNING För tt bild

Läs mer

Skriv tydligt! Uppgift 1 (5p)

Skriv tydligt! Uppgift 1 (5p) 1(1) IF1611 Ingenjörsmetodik för IT och ME, HT 1 Tentmen Gäller även studenter som är registrerde på B1116 Torsdgen den 1 okt, 1, kl. 14.-19. Skriv tydligt! Skriv nmn och personnummer på ll inlämnde ppper!

Läs mer

Föreläsning Datastrukturer (DAT036)

Föreläsning Datastrukturer (DAT036) Föreläsning Datastrukturer (DAT036) Nils Anders Danielsson 2012-11-13 Idag Mer om grafer: Topologisk sortering. Kortaste vägen. Bredden först-sökning. Dijkstras algoritm. Floyd-Warshall. Topologisk sortering

Läs mer

Magnus Nielsen, IDA, Linköpings universitet

Magnus Nielsen, IDA, Linköpings universitet Föreläsning 7 Introduktion till sortering TDDC91,TDDE22,725G97: DALG Utskriftsversion av föreläsning i Datastrukturer och algoritmer 24 september 2018 Magnus Nielsen, IDA, Linköpings universitet 7.1 1

Läs mer

Matris invers, invers linjär transformation.

Matris invers, invers linjär transformation. Mtris invers, invers linjär trnsformtion. Påminnelse om mtris beräkningr: ddition, multipliktion med sklärer och mtrisprodukt Algebrisk egenskper hos mtrisddition och multipliktion med ett tl (Ly Sts..,

Läs mer

Listor = generaliserade strängar. Introduktion till programmering SMD180. Föreläsning 8: Listor. Fler listor. Listindexering.

Listor = generaliserade strängar. Introduktion till programmering SMD180. Föreläsning 8: Listor. Fler listor. Listindexering. 1 Introduktion till progrmmering SMD180 Föreläsning 8: Listor 2 Listor = generliserde strängr Strängr = sekvenser v tecken Listor = sekvenser v vd som helst [10, 20, 30, 40] # en list v heltl ["spm", "ungee",

Läs mer

SF1626 Flervariabelanalys Tentamen 8 juni 2011, Svar och lösningsförslag

SF1626 Flervariabelanalys Tentamen 8 juni 2011, Svar och lösningsförslag SF166 Flervribelnlys Tentmen 8 juni 11, 8. - 13. Svr och lösningsförslg Del A (1 estäm en ekvtion för tngentplnet till ytn z + y z 3 1 i punkten (, y, (1, 1,. (3p b Punkten (, y, z (1.1,.9, t ligger på

Läs mer

LINJÄR ALGEBRA II LEKTION 1

LINJÄR ALGEBRA II LEKTION 1 LINJÄR ALGEBRA II LEKTION JOHAN ASPLUND INNEHÅLL. VEKTORRUM OCH DELRUM Hel kursen Linjär Algebr II hndlr om vektorrum och hur vektorrum (eller linjär rum, som de iblnd klls) beter sig. Tidigre hr mn ntgligen

Läs mer

Föreläsning 8 Datastrukturer (DAT037)

Föreläsning 8 Datastrukturer (DAT037) Föreläsning 8 Datastrukturer (DAT037) Fredrik Lindblad 1 22 november 2017 1 Slides skapade av Nils Anders Danielsson har använts som utgångspunkt. Se http://www.cse.chalmers.se/edu/year/2015/course/dat037

Läs mer

Tillämpning - Ray Tracing och Bézier Ytor. TANA09 Föreläsning 3. Icke-Linjära Ekvationer. Ekvationslösning. Tillämpning.

Tillämpning - Ray Tracing och Bézier Ytor. TANA09 Föreläsning 3. Icke-Linjära Ekvationer. Ekvationslösning. Tillämpning. TANA09 Föreläsning 3 Tillämpning - Ry Trcing och Bézier Ytor z = B(x, y) q o Ekvtionslösning Tillämpning Existens Itertion Konvergens Intervllhlveringsmetoden Fixpuntsitertion Newton-Rphsons metod Anlys

Läs mer

Sammanfattning, Dag 9

Sammanfattning, Dag 9 Smmnfttning, Dg 9 Idg studerde vi begrepp sklärprudokt (eller innerprodukt), norm och ortogonlitet på ett llmänt vektorrum. Vi börjde med en kort repetition på smm begrep för vektorrummet R 3. I rummet

Läs mer

Induktion LCB 2000/2001

Induktion LCB 2000/2001 Indution LCB 2/2 Ersätter Grimldi 4. Reursion och indution; enl fll n 2 En tlföljd n nturligtvis definiers genom tt mn nger en explicit formel för uträning v n dess 2 element, som till exempel n 2 () n

Läs mer

MATEMATISKT INNEHÅLL UPPGIFT METOD. Omvandla mellan olika längdenheter. METOD BEGREPP RESONEMANG. Ta reda på omkrets. 5 Vilken omkretsen har figuren?

MATEMATISKT INNEHÅLL UPPGIFT METOD. Omvandla mellan olika längdenheter. METOD BEGREPP RESONEMANG. Ta reda på omkrets. 5 Vilken omkretsen har figuren? Kn du dett? Uppgiftern här är tänkt tt nvänds för utvärdering v hur elevern tillägnt sig kpitlets mtemtisk innehåll. Låt elevern, prvis eller i mindre grupper, lös uppgiftern tillsmmns och förklr för vrndr

Läs mer

Integralen. f(x) dx exakt utan man får nöja sig med att beräkna

Integralen. f(x) dx exakt utan man får nöja sig med att beräkna CTH/GU STUDIO TMVb - / Mtemtisk vetenskper Integrlen Anlys och Linjär Algebr, del B, K/Kf/Bt Inledning Mn kn inte lltid bestämm integrler f() d ekt utn mn får nöj sig med tt beräkn pproimtioner. T.e. e

Läs mer

Tentamen Programmeringsteknik II Skrivtid: Skriv läsligt! Använd inte rödpenna! Skriv bara på framsidan av varje papper.

Tentamen Programmeringsteknik II Skrivtid: Skriv läsligt! Använd inte rödpenna! Skriv bara på framsidan av varje papper. Tentmen Progrmmeringsteknik II 014-10-4 Skrivtid: 1400 1900 Tänk på följnde Skriv läsligt! Använd inte rödpenn! Skriv r på frmsidn v vrje ppper. Börj lltid ny uppgift på nytt ppper. Lägg uppgiftern i ordning.

Läs mer

Materiens Struktur. Lösningar

Materiens Struktur. Lösningar Mteriens Struktur Räkneövning 1 Lösningr 1. I ntriumklorid är vrje N-jon omgiven v sex Cl-joner. Det intertomär vståndet är,8 Å. Ifll tomern br skulle växelverk med Coulombväxelverkn oh br med de närmste

Läs mer

V1. Intervallet [a,b] är ändligt, dvs gränserna a, b är reella tal och INTE ±. är begränsad i intervallet [a,b].

V1. Intervallet [a,b] är ändligt, dvs gränserna a, b är reella tal och INTE ±. är begränsad i intervallet [a,b]. Armin Hlilovic: ETRA ÖVNINGAR Generliserde integrler GENERALISERADE INTEGRALER När vi definierr Riemnnintegrl f ( ) d ntr vi tt följnde två krv är uppfylld: V. Intervllet [,] är ändligt, dvs gränsern,

Läs mer

Diskreta stokastiska variabler

Diskreta stokastiska variabler Definitioner: Diskret stokstisk vribler Utfllet i ett slumpmässigt försök i form v ett reellt tl, betrktt innn försöket utförts, klls för stokstisk vribel eller slumpvribel (oft betecknd ξ, η ) Ett resultt

Läs mer

Geometri. 4. Fyra kopior av en rätvinklig triangel kan alltid sättas ihop till en kvadrat med hål som i följande figur varför?

Geometri. 4. Fyra kopior av en rätvinklig triangel kan alltid sättas ihop till en kvadrat med hål som i följande figur varför? Geometri 1. Linjen är isektris till vinkeln. Sträkorn, oh är lik lång. Hur stor är vinkeln? vgör utn mätningr! 4. Fyr kopior v en rätvinklig tringel kn lltid sätts ihop till en kvdrt med hål som i följnde

Läs mer

Analys grundkurs B lab 1. Stefan Gustafsson Per Jönsson Fakulteten för Teknik och Samhälle, 2013

Analys grundkurs B lab 1. Stefan Gustafsson Per Jönsson Fakulteten för Teknik och Samhälle, 2013 Anlys grundkurs B lb 1 Stefn Gustfsson Per Jönsson Fkulteten för Teknik och Smhälle, 13 1 Viktig informtion om lbortionern Lbortionsdelen på kursen i kursen Anlys grundkurs B exminers genom tt mn gör två

Läs mer

Kmerobjektiv oc elokusering Zoomobjektiv Ett kmerobjektiv sk normlt vbil ett objekt som beinner sig på någr meters vstån på en ilm i en krtig örminskning. Det innebär tt okllängen på et objektiv mn sk

Läs mer

============================================================ V1. Intervallet [a,b] är ändligt, dvs gränserna a, b är reella tal och INTE.

============================================================ V1. Intervallet [a,b] är ändligt, dvs gränserna a, b är reella tal och INTE. GENERALISERADE INTEGRALER ============================================================ När vi definierr Riemnnintegrl ntr vi tt följnde två krv är uppfylld: V. Intervllet [,] är ändligt, dvs gränsern,

Läs mer

Tommy Färnqvist, IDA, Linköpings universitet

Tommy Färnqvist, IDA, Linköpings universitet Föreläsning 8 Sortering och urval TDDC70/91: DALG Utskriftsversion av föreläsning i Datastrukturer och algoritmer 1 oktober 2013 Tommy Färnqvist, IDA, Linköpings universitet 8.1 Innehåll Innehåll 1 Sortering

Läs mer

N = {i}: noder (hörn) Graf: G = (N, B) Definitioner. Väg: Sekvens av angränsande bågar. Cykel: Väg som startar och slutar i samma nod.

N = {i}: noder (hörn) Graf: G = (N, B) Definitioner. Väg: Sekvens av angränsande bågar. Cykel: Väg som startar och slutar i samma nod. Polyeder 0 x, 0 x, 0 x, x + x + x, x + x + x Grafdefinitioner N = {i}: noder (hörn) = {(i, j)}, i N, j N: bågar (kanter) Graf: G = (N, ) efinitioner Väg: Sekvens av angränsande bågar. ykel: Väg som startar

Läs mer

MATEMATIKPROV, LÅNG LÄROKURS BESKRIVNING AV GODA SVAR

MATEMATIKPROV, LÅNG LÄROKURS BESKRIVNING AV GODA SVAR MATEMATIKPROV, LÅNG LÄROKURS 905 BESKRIVNING AV GODA SVAR De beskrivningr v svrens innehåll och poängsättningr som ges här är inte bindnde för studentexmensnämndens bedömning Censorern beslutr om de kriterier

Läs mer

Matematisk statistik för B, K, N, BME och Kemister. Matematisk statistik slumpens matematik. Exempel: Utsläpp från Källby reningsverk.

Matematisk statistik för B, K, N, BME och Kemister. Matematisk statistik slumpens matematik. Exempel: Utsläpp från Källby reningsverk. Mtemtisk sttistik för B, K, N, BME och Kemister Föreläsning 1 John Lindström 1 september 2014 John Lindström - johnl@mths.lth.se FMS086/MASB02 F1 2/26 Exempel Tillämpningr Signlbehndling Mtemtisk sttistik

Läs mer

Mat-1.1510 Grundkurs i matematik 1, del III

Mat-1.1510 Grundkurs i matematik 1, del III Mt-.50 Grundkurs i mtemtik, del III G. Gripenberg TKK december 00 G. Gripenberg TKK) Mt-.50 Grundkurs i mtemtik, del III december 00 / 59 Vribelbyte F gx))g x) dx = d F gx)) dx dx = / b F gx)) = F gb))

Läs mer

Grundläggande matematisk statistik

Grundläggande matematisk statistik Grundläggnde mtemtisk sttistik Diskret och kontinuerlig slumpvribler Uwe Menzel, 208 uwe.menzel@slu.se; uwe.menzel@mtstt.de www.mtstt.de Diskret och kontinuerlig slumpvribler Slumpvribel (s.v.): vribel

Läs mer

V1. Intervallet [a,b] är ändligt, dvs gränserna a, b är reella tal och INTE ±. är begränsad i intervallet [a,b].

V1. Intervallet [a,b] är ändligt, dvs gränserna a, b är reella tal och INTE ±. är begränsad i intervallet [a,b]. Armin Hlilovic: ETRA ÖVNINGAR Generliserde integrler GENERALISERADE INTEGRALER När vi definierr Riemnnintegrl f ( ) d ntr vi tt följnde två krv är uppfylld: V. Intervllet [,] är ändligt, dvs gränsern,

Läs mer

Area([a; b] [c; d])) = (b a)(d c)

Area([a; b] [c; d])) = (b a)(d c) Aren och integrl Summor Huvudämne i föreläsningen är reor v gurer i plnet och integrler. Integrl är ett egrepp som låter de nier reor v gurer i plnet, och speciellt eräkn reor melln grfer v funktioner

Läs mer

Campingpolicy för Tanums kommun

Campingpolicy för Tanums kommun 1(8) Cmpingpolicy för Tnums kommun 1. Bkgrund Strömstds och Tnums kommuner diskuterde gemensmt sin syn på cmpingverksmhetern i respektive kommun år 2003 och kunde då se ett stort behov v tt en likrtd syn

Läs mer

Algoritmer och datastrukturer, föreläsning 11

Algoritmer och datastrukturer, föreläsning 11 lgoritmer och datastrukturer, föreläsning 11 enna föreläsning behandlar grafer. En graf har en mängd noder (vertex) och en mängd bågar (edge). Ett exempel är: E F G H Z enna graf har följande mängd av

Läs mer

Läsanvisningar för MATEMATIK I, ANALYS

Läsanvisningar för MATEMATIK I, ANALYS Läsnvisningr för MATEMATIK I, ANALYS Läsnvisningrn är tänkt i först hnd för dig som läser kursen mtemtik I på distns, och de sk vägled dig på din res genom nlysen. Stoffet är i stort sett portionert på

Läs mer

UPPTÄCK OCH DEFINIERA SAMBANDET MELLAN TVÅ OMRÅDEN SOM DELAS AV GRAFEN TILL EN POTENSFUNKTION

UPPTÄCK OCH DEFINIERA SAMBANDET MELLAN TVÅ OMRÅDEN SOM DELAS AV GRAFEN TILL EN POTENSFUNKTION OLIVI KVRNLÖ UPPTÄCK OCH DEINIER SMNDET MELLN TVÅ OMRÅDEN SOM DELS V GREN TILL EN POTENSUNKTION Konsultudrg rågeställning I den här ugiften sk vi undersök smbndet melln reorn i en kvdrt med sidn l.e. i

Läs mer

19 Integralkurvor, potentialer och kurvintegraler i R 2 och R 3

19 Integralkurvor, potentialer och kurvintegraler i R 2 och R 3 Nr9,3mj-5,Ameli 9 Integrlkurvor, potentiler och kurvintegrler i R och R 3 9. Integrlkurvor En integrlkurv r(t) ((t), (t)) till ett vektorfält F(, ) är en kurv där vektorfältet är en tngent till kurvn i

Läs mer

Matematiska uppgifter

Matematiska uppgifter Element Årgång 59, 976 Årgång 59, 976 Först häftet 3020. Lös på enklste sätt ekvtionssystemet (Svr: x = v = 2 och y = u = 2) x + 7y + 3v + 5u = 6 8x + 4y + 6v + 2u = 6 2x + 6y + 4v + 8u = 6 5x + 3y + 7v

Läs mer

Tillämpning av integraler

Tillämpning av integraler CTH/GU LABORATION 3 MVE6 - /3 Mtemtisk vetenskper Inledning Tillämpning v integrler Vi skll se på två tillämpningr v integrler. Först ren oh volymen v rottionskropp sedn omkretsen v en ellips. Rottionskroppr

Läs mer

Uppsala Universitet Matematiska Institutionen Bo Styf. Sammanfattning av föreläsningarna 5-7.

Uppsala Universitet Matematiska Institutionen Bo Styf. Sammanfattning av föreläsningarna 5-7. Uppsl Universitet Mtemtisk Institutionen Bo Styf LAoG I, 5 hp ES, KndM, MtemA -9-6 Smmnfttning v föreläsningrn 5-7. Föreläsningrn 5 7, 7/9 6/9 : Det kommer, liksom i lärooken, inte tt finns utrymme för

Läs mer

Mer av livet. Riksten Friluftsstad.

Mer av livet. Riksten Friluftsstad. i n h Mer v livet. Riksten Friluftsst. v i r r 0 e e 20100818 20:34:58 Skön småstskänsl Riksten Friluftsst växer och blir en stsel me skön småstskänsl. Me fler byggherrr och rkitekter kommer en nturlig

Läs mer

Algebraiska uttryck: Introduktionskurs i matematik. Räknelagar: a = b a. a b. Potenser: 1. = ( n gånger )

Algebraiska uttryck: Introduktionskurs i matematik. Räknelagar: a = b a. a b. Potenser: 1. = ( n gånger ) Intrduktinskurs i mtemtik 1 v 5 Algerisk uttrk: Räknelgr: lgen distriutiv lgr ssitiv lgr kmmuttiv, Ptenser: 1 n L n gånger --------------------------------------- n udd tl, jämnt tl n, n n n 4 4.. ---------------------------------------

Läs mer

Kontrollskrivning 3 till Diskret Matematik SF1610, för CINTE1, vt 2019 Examinator: Armin Halilovic Datum: 2 maj

Kontrollskrivning 3 till Diskret Matematik SF1610, för CINTE1, vt 2019 Examinator: Armin Halilovic Datum: 2 maj Kontrollskrivning 3 till Diskret Mtemtik SF60, för CINTE, vt 209 Emintor: Armin Hlilovic Dtum: 2 mj Version B Resultt: Σ p P/F Etr Bonus Ing hjälpmedel tillåtn Minst 8 poäng ger godkänt Godkänd KS nr n

Läs mer

Tyngdkraftfältet runt en (stor) massa i origo är. F(x, y, z) =C (x 2 + y 2 + z 2 ) 3 2

Tyngdkraftfältet runt en (stor) massa i origo är. F(x, y, z) =C (x 2 + y 2 + z 2 ) 3 2 Nr 7, pril -, Ameli 7 Linjeintegrler 7. Idéer och smmnhng I en enkelintegrl summers värden v en funktion v en vriel f() längs ett visst intervll. I en duelintegrl summers värden v en funktion v två vriler

Läs mer

Tentamen 1 i Matematik 1, HF dec 2016, kl. 8:00-12:00

Tentamen 1 i Matematik 1, HF dec 2016, kl. 8:00-12:00 Tentmen i Mtemtik, HF9 9 dec 6, kl. 8:-: Emintor: Armin Hlilovic Undervisnde lärre: Erik Melnder, Jons Stenholm, Elis Sid För godkänt betyg krävs v m poäng. Betygsgränser: För betyg A, B, C, D, E krävs,

Läs mer

Definition 1 En funktion (eller avbildning ) från en mängd A till en mängd B är en regel som till några element i A ordnar högst ett element i B.

Definition 1 En funktion (eller avbildning ) från en mängd A till en mängd B är en regel som till några element i A ordnar högst ett element i B. Deinitionsmängd FUNKTIONER. DEFINITIONSMÄNGD OCH VÄRDEMÄNGD. Deinition En unktion (eller vbildning ) rån en mängd A till en mängd B är en regel som till någr element i A ordnr högst ett element i B. Att

Läs mer