Föreläsning 6. Slumptal Testa slumptal Slumptal för olika fördelningar Grafer Datastrukturen graf
|
|
- Stina Jonsson
- för 8 år sedan
- Visningar:
Transkript
1 Föreläsning 6 Slumptal Testa slumptal Slumptal för olika fördelningar Grafer Datastrukturen graf
2 Repetition En dator kan inte generera slumptal då den är helt deterministisk, däremot kan den generera pseudo-slumptal som kan fås att upplevas som slumptal: #include <stdio.h> #include <stdlib.h> #include <time.h> int main(void){ srand(time(null)); //Anropas EN gång för att sätta frö int tarning1 = rand()%6+1; //blir slumptal 1-6 int tarning2 = rand()%6+1; printf( Du fick %d och %d",tarning1, tarning2); return 0; } rand() beräknar nästa slumptal i serien. Resultatet blir mellan 0 och RAND_MAX
3 Pseudoslumptal Om inte hårdvarustöd finns kan en dator som är deterministisk inte skapa riktiga slumptal. Istället börjar den med ett frö (ett tal) och kan med detta beräkna en sekvens tal som saknar eller nästan saknar mönster. Vid varje beräkning erhålles ett nytt frö som kan användas till beräkning av nästa slumptal. Detta nya frö kan vara men bör helst inte vara det beräknade slumptalet. Förr eller senare kommer beräkningen att generera ett frö det redan tidigare använt och man har då fastnat i en loop. Antalet slumptal man kan beräkna innan detta händer är slumptalsgeneratorns period.
4 Kvalitetskrav Perioden lång Fördelningen likformig (alla tal lika sannolika, vanliga) Slumptal nära varandra ska vara oberoende (sannolikheten att få ett visst tal ska inte bero på vad vi fått innan) Effektiv
5 Linjär kongruensgenerator Har brister men är snabb och kräver nästan inget minne. Använder slumptalet som frö till nästa slumptal. Beräknas med: x n = (a x n-1 +c) mod m där a, c och m är konstanter som ska väljas med omsorg. Sätts m till en jämn tvåpotens blir modulus operationen snabbast. int rnd(int *seed){ long long a; a=(long long) 16807* *seed; *seed=(int)(a% ); return *seed; }
6 Additiv kongruensgenerator x n = x n-j + x n-k mod m med j = 24 och k = 55 fungerar bra men kräver 55 startvärden. m=2 31
7 Chi-square-test Vi kastar en vanlig tärning 1200 gånger och noterar resultatet. Vi förväntar oss knappast: Låt oss säga att vi får: Är tärningen ok? Ett chi-square-test jämför tärningens resultat med det statistiska för att ge ett mått på hur sannolikt det är. För att det ska vara alls rimligt att göra ett chi-square-test bör förväntade antalet per utfall vara minst 5.
8 Som mått på avvikelsen använder vi: Vilket ger oss V = 5,18 Detta värde använder vi för att läsa av raden för rätt antal frihetsgrader i följande tabell. Antal frihetsgrader är antalet möjliga utfall -1, i vårt fall 5.
9 Vårt värde hamnade mellan 4,351 och 6,626 En korrekt tärning ska enligt tabellen hamna under 6,626 i 75% av fallen. Hade vi hamnat över 6,626 hade det alltså varit lite osannolikt men inte exceptionellt. Det hade ju hänt i 25% av gångerna man gjorde experimentet med en riktig tärning. Att vi kom över 4,351 är inte alls konstigt men det hade inte varit konstigt att komma under heller. En korrekt tärning hade kommit under 50% av gångerna man gjorde försöket. Hade vi fått under 0,5543 eller över 15,09 hade det varit lite oroande. Det händer bara i 1% av försöken. Därmed inte sagt att slumptalsgeneratorn är dålig. För att säkerställa detta behöver man göra fler försök.
10 Gap test Om vi kastar en tärning och får: 11111,22222,33333, osv känns det kanske inte så där jätteslumpmässigt även om chi-square-testet ovan ger ok. Man kan då analysera avståndet mellan tal nära varandra (ex. avståndet mellan samma siffra). Man gör då statistik på vilket avstånd tal som är på ett visst avstånd från varandra är och gör sedan ett chi-squar test på denna statistik. Mer om detta finns i boken.
11 Ej rektangelfördelade slumptal De inbyggda slumptalen i C och i många andra miljöer är rektangelfördelade, dvs alla tal i ett intervall är lika sannolika. När vi vill simulera verkligheten är det vanligt att vi har andra fördelningar. Tex är längden hos människor snarare normalfördelade runt ett medelvärde
12 Normalfördelade slumptal
13 Exponentialfördelade slumptal
14 Poissonfördelning
15 Generera poissonfördelade slumptal
16 Grafer Grafteori är en gren inom matematiken som är mycket användbar inom datalogi. Vi ska här ge en översikt som ingång till ämnet och hjälp inför problemlösning under kursens andra del. Vi börjar med lite begrepp. Graf (graph) - En mängd V av noder (vertices) och en mängd E av bågar (edges) sådan att ändpunkterna på varje båge i E finns i V. En graf skrivs G = (V, E). Ett exempel: G = ({a, b, c, d}, {(a, c), (b, d), (b, c), (a, d)}) Broarna i Königsberg 1736
17 Riktad graf (digraf) en graf där varje båge är riktad väg (path), en vandring i grafen där alla noder är olika (undantag: första och sista kan vara samma). sluten väg (closed path) väg där den första och sista noden är samma. Kallas också cykel (cycle). förbindelsematris (adjacency matrix) har lika många rader och kolumner som antalet noder i grafen. Talet 1 i rad i och kolumn j betyder att det går en båge mellan nod i och nod j. Talet 0 betyder att i samma position i matrisen betyder att ingen båge finns mellan dessa noder. Förbindelsematrisen för grafen ovan:
18 sammanhängande graf (connected graph) är en graf där det finns en väg mellan alla par av noder. brygga (bridge) är en båge, sådan om den tas bort så är inte längre grafen sammanhängande. intilliggande noder (adjacent vertices) Två noder som sammanbinds av en båge. komplett graf (complete graph) en graf där varje par av noder har en gemensam båge. gradtal (degree) Givet en nod v, säger vi att deg(v) är antalet bågar som är anslutna till denna nod v. avstånd (distance) Givet två noder v och w den kortaste vägen d(v,w) mellan dessa noder. diameter (diameter) Det största avståndet d(v,w) som finns i en sammanhängande graf. Euler tur (Euler tour) En sluten väg som går genom samtliga grafens bågar precis en gång. skog (forest) en graf utan cykler (slutna vägar). Om skogen är sammanhängande är det ett träd.
19 Hamilton tur (Hamilton cycle) En sluten väg som besöker samtliga grafens noder precis en gång. isomorfi (isomorphic) Två grafer med samma matematiska struktur (samma förbindelsematris). ordning (order) antal noder i grafen viktad graf (weighted graph) en graf där där varje båge tilldelats ett tal som kallas för vikten, kostnaden eller avståndet. Spelar en stor roll i datalogin. I motsvarande förbindelsematris placerar vi in kostnaden istället för 1.
20 Tillämpningar Födesscheman Sociala nätverk Vägnät Datornätverk Transporter Kartografi - att måla kartor. Noderna är länder och bågarna är gränser. Binära sökträd
21 Graf som ADT Exempel på operationer: Sätta in en nod Sätta in en båge Ta bort en nod Ta bort en båge Söker upp en nod i grafen Bestämmer grannarna till en given nod Beror på tillämpning se tex binära sökträdet som är en graf
22 Implementering av graf (hur lagrar vi informationen) Enklast möjligast? (men krävande man måste söka igenom hela varje gång man vill hitta en förbindelse): Förbindelsematris. Effektiv och enkel att slå i men slösaktig på minne. (Blir vårt val i kursen) En array med pekare till länkade listor som innehåller de noder som respektive nod har bågar till. effektivare att slå i än förslag ett och mindre minneskrävande än förbindelsematrisen.
23 Inlämningsuppgifter Följande uppgifter redovisas senast tisdag den 12 februari och kan inte redovisas senare: 6.2, 6.11
Föreläsning 10. Grafer, Dijkstra och Prim
Föreläsning 10 Grafer, Dijkstra och Prim Föreläsning 10 Grafer Representation av grafer Dijkstras algoritm Implementation av Dijkstras algoritm Minimium spanning tree Broarna i Königsberg, Euler, 17 Grafer
Läs merFöreläsning 10. Grafer, Dijkstra och Prim
Föreläsning 10 Grafer, Dijkstra och Prim Föreläsning 10 Grafer Representation av grafer Dijkstras algoritm Implementation av Dijkstras algoritm Minimium spanning tree Läsanvisning och uppgifter Broarna
Läs merFöreläsning 10. Grafer, Dijkstra och Prim
Föreläsning 10 Grafer, Dijkstra och Prim Föreläsning 10 Grafer Representation av grafer Dijkstras algoritm Implementation av Dijkstras algoritm Minimium spanning tree Läsanvisning och uppgifter Broarna
Läs merIndicerade variabler
Indicerade variabler ARRAYER kan vara VEKTORARRAYER eller MATRISARRAYER Deklaration och användning av array (=vektorarray) Array och for-loop Slumptal Arrayer i två dimensioner (= matrisarray, matris)
Läs merIndexerade variabler
Indexerade variabler Vad har vi lärt oss så här långt Den första sammansatta (compound) datatypen: matris. Att arbeta med 1-dimensionella matriser. Att arbeta med flerdimensionella matriser. Matriser med
Läs merTrädstrukturer och grafer
Översikt Trädstrukturer och grafer Trädstrukturer Grundbegrepp Binära träd Sökning i träd Grafer Sökning i grafer Programmering tillämpningar och datastrukturer Varför olika datastrukturer? Olika datastrukturer
Läs merArrays (indicerade variabler) Föreläsning 6
Arrays (indicerade variabler) Föreläsning 6 Dagens kluring int i; scanf("%d", &i); switch(i) case 1: printf("1"); case 2: printf("2"); case 3: printf("3"); break; case 4: printf("4"); break; case 5: printf("5");
Läs merMA2047 Algebra och diskret matematik
MA2047 Algebra och diskret matematik Något om grafer Mikael Hindgren 26 september 2018 roarna i Königsberg De sju broarna i Königsberg (nuvarande Kaliningrad) på 1700-talet: (a) Königsberg 1652 (b) Graf
Läs merArrays (indicerade variabler) Föreläsning 4
Arrays (indicerade variabler) Föreläsning 4 Dagens kluring Hitta felet (ska skriva ut 10,9,8,7,6,5,4,3,2,1): int n; for(n=10;n0;n--) for(m=0;m
Läs merGrafer, allmänt. Med datastrukturen graf menas vanligen: en mängd av noder (vertices) och en mängd av bågar (edges).
Grafer, allmänt Allmänt Med datastrukturen graf menas vanligen: en mängd av noder (vertices) och en mängd av bågar (edges). En graf kan vara riktad (directed) eller oriktad (undirected). En graf kan vara
Läs merGrafer. 1 Grafer. Grunder i matematik och logik (2015) 1.1 Oriktade grafer. Marco Kuhlmann
Marco Kuhlmann 1 En graf är en struktur av prickar förbundna med streck. Ett tidsenligt exempel på en sådan struktur är ett social nätverk, där prickarna motsvarar personer och en streck mellan två prickar
Läs merFöreläsning Datastrukturer (DAT036)
Föreläsning Datastrukturer (DAT036) Nils Anders Danielsson 2013-11-13 Idag Grafer: Terminologi. Datastrukturer. Topologisk sortering. Kortaste vägen. Bredden först-sökning. Dijkstras algoritm. (Vi får
Läs merSlumptal och Simulering
Kapitel 6 Slumptal och Simulering 6.1 Slump och Slumptal Det finns många tillämpningar i datalogin, ska vi se i detta kapitel, där slumpen är till stor hjälp eller är nödvändig. Utan att gå närmare in
Läs merFöreläsning Datastrukturer (DAT037)
Föreläsning Datastrukturer (DAT037) Nils Anders Danielsson 2015-11-20 Idag Grafer: Terminologi. Datastrukturer. Topologisk sortering. Kortaste vägen. Bredden först-sökning. Dijkstras algoritm. (Vi får
Läs merFöreläsning Datastrukturer (DAT037)
Föreläsning Datastrukturer (DAT037) Nils Anders Danielsson 2015-11-23 Idag Mer om grafer: Minsta uppspännande träd (för oriktade grafer). Djupet först-sökning. Minsta uppspännande träd Träd (utan rot)
Läs merGraphs (chapter 14) 1
Graphs (chapter ) Terminologi En graf är en datastruktur som består av en mängd noder (vertices) och en mängd bågar (edges) en båge är ett par (a, b) av två noder en båge kan vara cyklisk peka på sig själv
Läs merC++ Slumptalsfunktioner + switch-satsen
C++ Slumptalsfunktioner + switch-satsen Veckans avsnitt består av ett antal lite udda funktioner man kan ha nytta av när man skriver program. Det är en slumptalsgenerator och lite annat smått och gott.
Läs merFöreläsning 6 Datastrukturer (DAT037)
Föreläsning 6 Datastrukturer (DAT037) Fredrik Lindblad 1 15 november 2017 1 Slides skapade av Nils Anders Danielsson har använts som utgångspunkt. Se http://www.cse.chalmers.se/edu/year/2015/course/dat037
Läs merDatastrukturer och Algoritmer D0041D
Luleå Tekniska Universitet 19 mars 2014 Laborationsrapport Laboration 3 Datastrukturer och Algoritmer D0041D Primms Algoritm Namn E-mail Magnus Björk magbjr-3@ltu.student.se Handledare Felix Hansson Primms
Läs merSimulering av Poissonprocesser Olle Nerman, Grupprojekt i MSG110,GU HT 2015 (max 5 personer/grupp)
Simulering av Poissonprocesser Olle Nerman, 2015-09-28 Grupprojekt i MSG110,GU HT 2015 (max 5 personer/grupp) Frågeställning: Hur åstadkommer man en realisering av en Poissonprocess på ett tidsintervall
Läs merFöreläsning 6 Datastrukturer (DAT037)
Föreläsning 6 Datastrukturer (DAT037) Fredrik Lindblad 1 2016-11-17 1 Slides skapade av Nils Anders Danielsson har använts som utgångspunkt. Se http://www.cse.chalmers.se/edu/year/2015/course/dat037 Förra
Läs merFöreläsning 8 Datastrukturer (DAT037)
Föreläsning 8 Datastrukturer (DAT037) Fredrik Lindblad 1 2016-11-23 1 Slides skapade av Nils Anders Danielsson har använts som utgångspunkt. Se http://www.cse.chalmers.se/edu/year/2015/course/dat037 Förra
Läs merFöreläsning Datastrukturer (DAT036)
Föreläsning Datastrukturer (DAT036) Nils Anders Danielsson 2013-11-18 Idag Mer om grafer: Minsta uppspännande träd (för oriktade grafer). Prims algoritm. Kruskals algoritm. Djupet först-sökning. Cykel
Läs merFöreläsning Datastrukturer (DAT036)
Föreläsning Datastrukturer (DAT036) Nils Anders Danielsson 2012-11-13 Idag Mer om grafer: Topologisk sortering. Kortaste vägen. Bredden först-sökning. Dijkstras algoritm. Floyd-Warshall. Topologisk sortering
Läs merSlump och statistik med Scratch. Se video
Se video I lektionen simuleras hundratals tärningskast på kort tid. Eleverna får skapa en statistikapplikation och lära sig att skapa och modifiera algoritmer. Måns Jonasson, Internetstiftelsen, har arbetat
Läs merFöreläsning 7 Datastrukturer (DAT037)
Föreläsning 7 Datastrukturer (DAT037) Fredrik Lindblad 1 2016-11-21 1 Slides skapade av Nils Anders Danielsson har använts som utgångspunkt. Se http://www.cse.chalmers.se/edu/year/2015/course/dat037 Förra
Läs merKaliningrad) låg vid bägge sidor av floden Pregel samt på
Grunder i matematik och logik (2018) Grafteori Marco Kuhlmann Grafteori är det område inom matematiken som undersöker egenskaper hos grafer. Inom grafteorin har begreppet graf en annan betydelse än graf
Läs merSlump och statistik med Scratch
Lektionen handlar om att simulera tärningskast och skapa en statistikapplikation genom att arbeta med modifiera algoritmer. Lektionsförfattare: Måns Jonasson En digital lektion från https://digitalalektioner.iis.se
Läs merGrafer och grannmatriser
Föreläsning 2, Linjär algebra IT VT2008 Som avslutning på kursen ska vi knyta samman linjär algebra med grafteori och sannolikhetsteori från första kursen. Resultatet blir så kallade slumpvandringar på
Läs merSimulering. Introduktion. Exempel: Antag att någon kastar tärning
Simulering Introduktion Eempel: Antag att någon kastar tärning a) Vad är sannolikheten att på fyra kast få två seor? b) Vad är sannolikheten att på kast få mellan och 5 seor och där summan av de 5 första
Läs merLösningar Datastrukturer TDA
Lösningar Datastrukturer TDA416 2016 12 21 roblem 1. roblem 2. a) Falskt. Urvalssortering gör alltid samma mängd av jobb. b) Sant. Genom att ha en referens till sista och första elementet, kan man nå både
Läs merFörsta sidan är ett försättsblad (laddas ned från kurshemsidan) Alla frågor som nns i uppgiftstexten är besvarade
HT 2011 Inlämningsuppgift 1 Statistisk teori med tillämpningar Instruktioner Ett av problemen A, B eller C tilldelas gruppen vid första övningstillfället. Rapporten ska lämnas in senast 29/9 kl 16.30.
Läs merUppgifter 6: Grafteori
Grunder i matematik och logik (2017) Uppgifter 6: Grafteori Marco Kuhlmann Nivå 6.01 nge antalet noder och bågar. a) b) a) 7 noder, 10 bågar b) 9 noder, 10 bågar 6.02 nge gradtalet för varje nod. a) b)
Läs merTNK049 Optimeringslära
TNK49 Optimeringslära Clas Rydergren, ITN Föreläsning 7 Nätverksoptimering Billigaste uppspännande träd (MST) Billigaste väg (SP) Projektnätverk Minkostnadsflödesproblem Agenda Terminologi för grafer/nätverk
Läs merFöreläsning 9. Repetition och exempelproblem
Föreläsning 9 Repetition och exempelproblem /* Calculation of distance when travelling at speed 25 m/s */ #include int distance,speed,time; speed = 25; printf("hur lang tid? "); scanf("%d", &time);
Läs merDatastrukturer. föreläsning 8. Lecture 6 1
atastrukturer föreläsning 8 Lecture 6 1 jupet-först sökning (S) och bredden-först sökning (S) Två metoder att genomsöka en graf; två grafiteratorer! Kan även användas för att avgöra om två noder är sammanbundna.
Läs merSannolikhetsteori. Måns Thulin. Uppsala universitet Statistik för ingenjörer 23/ /14
1/14 Sannolikhetsteori Måns Thulin Uppsala universitet thulin@math.uu.se Statistik för ingenjörer 23/1 2013 2/14 Dagens föreläsning Relativa frekvenser Matematik för händelser Definition av sannolikhet
Läs merNäst nästa gång: Nästa gång: mer grafer (kap 10) Grafer 1 1. ! uppspännande träd. ! minimala uppspännande träd. ! Prims algoritm. !
F9 Läsanvisning: kap 10 + dessa OH (Obs att OH bilderna tar upp mer än boken) intro till grafer (bara handskrivet och tavla) definitioner och terminologi representationer djupet först bredden först Nästa
Läs merInledande programmering med C# (1DV402) Tärningarna ska kastas
Tärningarna ska kastas Upphovsrätt för detta verk Detta verk är framtaget i anslutning till kursen Inledande programmering med C# vid Linnéuniversitetet. Du får använda detta verk så här: Allt innehåll
Läs merNedan redovisas resultatet med hjälp av ett antal olika diagram (pkt 1-6):
EM-fotboll 2012 några grafer Sport är en verksamhet som genererar mängder av numerisk information som följs med stort intresse EM i fotboll är inget undantag och detta dokument visar några grafer med kommentarer
Läs merKap.6 Grafer. Egenskaper: Handskakningslemmat och Eulers formel Sats om eulerkrets/väg Isomorfi och representation av grafer Graffärgning
Kap.6 Grafer Allmänna begrepp: graf, delraf, multigraf, enkelgraf, riktad graf, nodsgrad vandring, väg, stig, krets, cykel sammanhängande graf, sammanhängande komponenter Speciella grafer: komplett graf,
Läs merFöreläsning Datastrukturer (DAT036)
Föreläsning Datastrukturer (DAT036) Nils Anders Danielsson 2013-11-25 Idag Starkt sammanhängande komponenter Duggaresultat Sökträd Starkt sammanhängande komponenter Uppspännande skog Graf, och en möjlig
Läs merFöreläsning 8 Datastrukturer (DAT037)
Föreläsning 8 Datastrukturer (DAT037) Fredrik Lindblad 1 22 november 2017 1 Slides skapade av Nils Anders Danielsson har använts som utgångspunkt. Se http://www.cse.chalmers.se/edu/year/2015/course/dat037
Läs merDatastrukturer, algoritmer och programkonstruktion (DVA104, VT 2015) Föreläsning 6
Datastrukturer, algoritmer och programkonstruktion (DVA104, VT 2015) Föreläsning 6? DAGENS AGENDA Komplexitet Ordobegreppet Komplexitetsklasser Loopar Datastrukturer Några nyttiga regler OBS! Idag jobbar
Läs merMatematikcentrum 1(7) Matematisk Statistik Lunds Universitet Per-Erik Isberg. Laboration 1. Simulering
Matematikcentrum (7) Matematisk Statistik Lunds Universitet Per-Erik Isberg Laboration Simulering HT 006 Introduktion Syftet med laborationen är dels att vi skall bekanta oss med lite av de olika funktioner
Läs merTDDC30. Objektorienterad programmering i Java, datastrukturer och algoritmer. Föreläsning 8 Erik Nilsson, Institutionen för Datavetenskap, LiU
TDDC30 Objektorienterad programmering i Java, datastrukturer och algoritmer. Föreläsning 8 Erik Nilsson, Institutionen för Datavetenskap, LiU På denna föreläsning: Träd Traversering Insättning, borttagning
Läs merLaboration 2: 1 Syfte. 2 Väntevärde och varians hos en s.v. X med fördelningen F X (x) MATEMATISK STATISTIK, AK FÖR BYGG, FMS 601, HT-08
LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK MATEMATISK STATISTIK, AK FÖR BYGG, FMS 601, HT-08 Laboration 2: Om väntevärden och fördelningar 1 Syfte I denna laboration skall vi försöka
Läs merLösningar till tentamensskrivning för kursen Linjära statistiska modeller. 14 januari
STOCKHOLMS UNIVERSITET MATEMATISK STATISTIK Lösningar till tentamensskrivning för kursen Linjära statistiska modeller 14 januari 2010 9 14 Examinator: Anders Björkström, tel. 16 45 54, bjorks@math.su.se
Läs merTENTAMEN: Algoritmer och datastrukturer. Läs detta! Uppgifterna är inte avsiktligt ordnade efter svårighetsgrad.
1 (8) TENTAMEN: Algoritmer och datastrukturer Läs detta! Uppgifterna är inte avsiktligt ordnade efter svårighetsgrad. Börja varje uppgift på ett nytt blad. Skriv ditt namn och personnummer på varje blad
Läs merAbstrakta datastrukturer
Föreläsning 2 Datastrukturer Abstrakta datastrukturer Stack Stack implementerad med array Länkad lista Stack implementerad med länkad lista Inlämningsuppgifter Datastrukturer En datastruktur är en struktur
Läs merMatematisk statistik 9 hp Föreläsning 3: Transformation och simulering
Matematisk statistik 9 hp Föreläsning 3: Transformation och simulering Anna Lindgren 8+9 september 216 Anna Lindgren - anna@maths.lth.se FMS12/MASB3: transform 1/11 Stokastisk variabel Kvantil Stokastisk
Läs merträd dag graf båge och vikt Grafer definitioner och terminologi
F9 Läsanvisning: kap 0 + dessa OH (Obs att OH bilderna tar upp mer än boken) intro till grafer (bara handskrivet och tavla) definitioner och terminologi representationer djupet först bredden först Nästa
Läs merFöreläsning 5. Träd Binära träd Binärt sökträd som ADT Implementering av binärt sökträd Travestera binärt sökträd Sökning Insättning/borttagning
Föreläsning 5 Träd Binära träd Binärt sökträd som ADT Implementering av binärt sökträd Travestera binärt sökträd Sökning Insättning/borttagning Terminologi - träd Ett träd i datalogi består av en rotnod
Läs merFöreläsning 7. Felrättande koder
Föreläsning 7 Felrättande koder Antag att vi vill skicka ett meddelande som består av bokstäver a,b,c,d. Vi kan koda a,b,c,d. Antag att det finns en viss sannolikhet att en bit i ett meddelande som skickas
Läs merKontrollera att följande punkter är uppfyllda innan rapporten lämnas in: Första sidan är ett försättsblad (laddas ned från kurshemsidan)
Statistiska institutionen VT 2012 Inlämningsuppgift 1 Statistisk teori med tillämpningar Instruktioner Ett av problemen A, B eller C tilldelas gruppen vid första övningstillfället. Rapporten ska lämnas
Läs merSF1901 Sannolikhetsteori och statistik I
SF1901 Sannolikhetsteori och statistik I Jimmy Olsson Föreläsning 3 4 november 2016 1 / 28 Idag Förra gången Stokastiska variabler (Kap. 3.2) Diskret stokastisk variabel (Kap. 3.3 3.4) Kontinuerlig stokastisk
Läs merStora talens lag eller det jämnar ut sig
Stora talens lag eller det jämnar ut sig kvensen för krona förändras när vi kastar allt fler gånger. Valda inställningar på räknaren Genom att trycka på så kan man göra ett antal inställningar på sin räknare.
Läs merTMS136. Föreläsning 4
TMS136 Föreläsning 4 Kontinuerliga stokastiska variabler Kontinuerliga stokastiska variabler är stokastiska variabler som tar värden i intervall av den reella axeln Det kan handla om längder, temperaturer,
Läs merFöreläsning 11. Giriga algoritmer
Föreläsning 11 Giriga algoritmer Föreläsning 11 Giriga algoritmer Användning Växelproblemet Kappsäcksproblemet Schemaläggning Färgläggning Handelsresandeproblemet Giriga algoritmer (Greedy algorithms)
Läs merValfritt läromedel för kurs Matematik B Exempel: Räkna med Vux B, Gleerups förlag. Tag kontakt med examinator om du har frågor
Våren 010 PRÖVNINGSANVISNINGAR Prövning i Matematik B Kurskod MA 10 Gymnasiepoäng 50 Läromedel Prov Muntligt prov Valfritt läromedel för kurs Matematik B Exempel: Räkna med Vux B, Gleerups förlag Skriftligt
Läs merEnkla uppgifter. Uppgift 1. Uppgift 2
Enkla uppgifter Dessa 10 ganska enkla uppgifter är till för dig som känner att du ännu inte kommit igång med kursen. I samtliga uppgifter behövs en enkel loop, for eller while. Beräkningarna är i allmänhet
Läs merKapitel 4 Sannolikhetsfördelningar Sid Föreläsningsunderlagen är baserade på underlag skrivna av Karl Wahlin
Kapitel 4 Sannolikhetsfördelningar Sid 79-14 Föreläsningsunderlagen är baserade på underlag skrivna av Karl Wahlin Slumpvariabel En variabel för vilken slumpen bestämmer utfallet. Slantsingling, tärningskast,
Läs merN = {i}: noder (hörn) Graf: G = (N, B) Definitioner. Väg: Sekvens av angränsande bågar. Cykel: Väg som startar och slutar i samma nod.
Polyeder 0 x, 0 x, 0 x, x + x + x, x + x + x Grafdefinitioner N = {i}: noder (hörn) = {(i, j)}, i N, j N: bågar (kanter) Graf: G = (N, ) efinitioner Väg: Sekvens av angränsande bågar. ykel: Väg som startar
Läs merAtt förstå hur man konstruerar modulära program Att kunna skapa nya funktioner Att förstå hur data skickas mellan funktioner
Lektion 4, del 1, kapitel 10 Funktioner i JavaScript Inlärningsmål Att förstå hur man konstruerar modulära program Att kunna skapa nya funktioner Att förstå hur data skickas mellan funktioner Introduktion
Läs merDEL I. Matematiska Institutionen KTH
1 Matematiska Institutionen KTH Lösning till tentamensskrivning på kursen Diskret Matematik, moment A, för D2 och F, SF1631 och SF1630, den 25 mars 2008. DEL I 1. (3p Bestäm antalet binära ord av längd
Läs merMatematik för språkteknologer (5LN445) Institutionen för lingvistik och filologi VT 2014 Författare: Marco Kuhlmann 2013
UPPSALA UNIVERSITET Matematik för språkteknologer (5LN445) Institutionen för lingvistik och filologi VT 2014 Författare: Marco Kuhlmann 2013 4 Grafer En graf är en struktur av prickar förbundna med streck.
Läs merFÖRELÄSNING 3:
FÖRELÄSNING 3: 26-4-3 LÄRANDEMÅL Fördelningsfunktion Empirisk fördelningsfunktion Likformig fördelning Bernoullifördelning Binomialfördelning Varför alla dessa fördelningar? Samla in data Sammanställ data
Läs merFöreläsning 3, Matematisk statistik Π + E
Repetition Kvantil Presentation Slumptal Transformer Inversmetoden Föreläsning 3, Matematisk statistik Π + E Sören Vang Andersen 13 november 2014 Sören Vang Andersen - sva@maths.lth.se FMS012 F3 1/19 Repetition
Läs merMatematikcentrum 1(6) Matematisk Statistik Lunds Universitet MASB11 - Biostatistisk grundkurs VT2014, lp3. Laboration 2. Fördelningar och simulering
Matematikcentrum 1(6) Matematisk Statistik Lunds Universitet MASB11 - Biostatistisk grundkurs VT2014, lp3 Laboration 2 Fördelningar och simulering Introduktion 2014-02-06 Syftet med laborationen är dels
Läs merMagnus Nielsen, IDA, Linköpings universitet
Föreläsning ADT Map/Dictionary, hashtabeller TDDC9,TDDE22,725G97: DALG Utskriftsversion av föreläsning i Datastrukturer och algoritmer 7 september 208 Magnus Nielsen, IDA, Linköpings universitet. ADT Map/Dictionary.
Läs merVälkommen till Matematik 3 för lärare!
Välkommen till Matematik 3 för lärare! Nu: Statistik för lärare + Linjär algebra + datorlabbar Antagen? Registrerad? För er som läser första ämnet nu (MAxx eller FYMA): Hållbar Utveckling med Människan
Läs merFöreläsning 4 Datastrukturer (DAT037)
Föreläsning 4 Datastrukturer (DAT037) Fredrik Lindblad 1 2016-11-10 1 Slides skapade av Nils Anders Danielsson har använts som utgångspunkt Se http://wwwcsechalmersse/edu/year/2015/course/dat037 Förra
Läs merFöreläsning 8 SLUMPTAL, SIMULERING + INTRODUKTION TILL VEKTORER
Föreläsning 8 SLUMPTAL, SIMULERING + INTRODUKTION TILL VEKTORER Från laboration 3 till 4 I laboration 3 har du implementerat klasser implementerat metoder i klasserna I laboration 4 kommer du att implementera
Läs merFöreläsning 1 Datastrukturer (DAT037)
Föreläsning 1 Datastrukturer (DAT037) Fredrik Lindblad 1 30 oktober 2017 1 Slides skapade av Nils Anders Danielsson har använts som utgångspunkt. Se http://www.cse.chalmers.se/edu/year/2015/course/dat037
Läs mer4 Diskret stokastisk variabel
4 Diskret stokastisk variabel En stokastisk variabel är en variabel vars värde bestäms av utfallet av ett slumpmässigt försök. En stokastisk variabel betecknas ofta med X, Y eller Z (i läroboken används
Läs merStokastisk geometri. Lennart Råde. Chalmers Tekniska Högskola och Göteborgs Universitet
Stokastisk geometri Lennart Råde Chalmers Tekniska Högskola och Göteborgs Universitet Inledning. I geometrin studerar man geometriska objekt och deras inbördes relationer. Exempel på geometriska objekt
Läs merLaboration 4: Stora talens lag, Centrala gränsvärdessatsen och enkla punktskattningar
LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK DATORLABORATION 4 MATEMATISK STATISTIK, FÖR I/PI, FMS 121/2, HT-3 Laboration 4: Stora talens lag, Centrala gränsvärdessatsen och enkla punktskattningar
Läs merTentamen TAIU07 Matematiska beräkningar med MATLAB för MI
TEKNISKA HÖGSKOLAN I LINKÖPING Matematiska institutionen Beräkningsmatematik/Fredrik Berntsson Tentamen TAIU07 Matematiska beräkningar med MATLAB för MI Tid: 14-18, 14:e Mars, 2017 Provkod: TEN1 Hjälpmedel:
Läs merIntroduktion till programmering SMD180. Föreläsning 9: Tupler
Introduktion till programmering Föreläsning 9: Tupler 1 1 Sammansatta datatyper Strängar Sekvenser av tecken Icke muterbara Syntax: "abcde" Listor Sekvenser av vad som helst Muterbara Syntax: [1, 2, 3]
Läs meröversiktskurs (5DV031)
Programmeringsteknisk översiktskurs (5DV031) Föreläsning 5 Innehåll Indexerade variabler Arrayer, sortering Läsanvisningar: Kapitel 6.1-6.3 Ett problem Hur sparas data T.ex. när man vill spara resultaten
Läs merTentamen Datastrukturer för D2 DAT 035
Tentamen Datastrukturer för D2 DAT 035 17 december 2005 Tid: 8.30-12.30 Ansvarig: Peter Dybjer, tel 7721035 eller 405836 Max poäng på tentamen: 60. (Bonuspoäng från övningarna tillkommer.) Betygsgränser:
Läs merMatematikcentrum 1(7) Matematisk Statistik Lunds Universitet MASB11 - Biostatistisk grundkurs HT2007. Laboration. Simulering
Matematikcentrum 1(7) Matematisk Statistik Lunds Universitet MASB11 - Biostatistisk grundkurs HT007 Laboration Simulering Grupp A: 007-11-1, 8.15-.00 Grupp B: 007-11-1, 13.15-15.00 Introduktion Syftet
Läs merBelopp Belopp > procent
Dagens problem Försäljarprovision Lönen för en försäljare är helt grundad på provision, direkt kopplad till den omsättning han lyckas skapa under en månad. Tabellen nedan anger procentsatser för olika
Läs mer1 Stora talens lag. Laboration 2 Matematisk statistik allmän kurs, MASA01:A, HT Teori. 1.2 Uppgifter
Lunds universitet Matematikcentrum Matematisk statistik Laboration 2 Matematisk statistik allmän kurs, MASA01:A, HT-15 Syftet med denna laboration är att du skall bli förtrogen med två viktiga områden
Läs merTAIU07 Matematiska beräkningar med Matlab
TAIU07 Matematiska beräkningar med Matlab Datorlektion 2. Villkor och Repetition 1 Logiska uttryck Uppgift 1.1 Låt a=3 och b=6 Vad blir resultatet av testerna ab? Uppgift 1.2 Låt a, b,
Läs mer17.1 Kontinuerliga fördelningar
7. Kontinuerliga fördelningar En SV X är kontinuerlig om F X (x) är kontinuerlig för alla x F X (x) är deriverbar med kontinuerlig derivata för alla x utom eventuellt för ändligt många värden Som vi tidigare
Läs merLaboration 3: Stora talens lag, centrala gränsvärdessatsen och enkla punktskattningar
Lunds tekniska högskola Matematikcentrum Matematisk statistik Laboration 3 Matematisk statistik AK för CDIFysiker, FMS012/MASB03, HT15 Laboration 3: Stora talens lag, centrala gränsvärdessatsen och enkla
Läs merTentamen TANA17 Matematiska beräkningar Provkod: DAT1 Godkänd: 8p av totalt 20p Tid: 21:a April klockan
MAI/Linköpings universitet Fredrik Berntsson Tentamen TANA17 Matematiska beräkningar Provkod: DAT1 Godkänd: 8p av totalt 20p Tid: 21:a April klockan 8.00-12.00 Redovisning Lös först uppgifterna i Matlab.
Läs merProgrammering, grundkurs, 8.0 hp, Elektro, KTH, hösten Detta är andra problemlösningsföreläsningen, vi diskuterar problemen ur Problem II.
Detta är andra problemlösningsföreläsningen, vi diskuterar problemen ur Problem II. Första problemet: Frekvenstabell Skriv ett program som slumpar ett tärningskast n gånger. Programmet skall därefter skriva
Läs merLUNDS UNIVERSITET 1(6) STATISTISKA INSTITUTIONEN Per-Erik Isberg
LUNDS UNIVERSITET 1(6) STATISTISKA INSTITUTIONEN Per-Erik Isberg Simulering i MINITAB Det finns goda möjligheter att utföra olika typer av simuleringar i Minitab. Gemensamt för dessa är att man börjar
Läs merBMI = (vikt i kg) / (längd i m) 2. Lösningsförslag
HI1024 TEN2 2013-10-28 Betygsgränser: Fx-8, E-9, D-11, C-12, B-14, A-16 (MAX-18) Generella rättningsnormer: Mycket dåliga variabelnamn ger -1p totalt på provet vid andra tillfället Inga eller dåliga kommentarer
Läs merDatastrukturer. föreläsning 9. Maps 1
Datastrukturer föreläsning 9 Maps 1 Grafer och grafalgoritmer Hur implementerar man grafer? Hur genomsöker (traverserar) man grafer? Hur genomsöker man viktade grafer (och hittar kortaste vägen)? Hur beräknar
Läs merUppgift 1 ( Betyg 3 uppgift )
2008-03-12.kl.14-19 Uppgift 1 ( Betyg 3 uppgift ) Du skall skriva ett program som läser igenom en textfil som heter FIL.TXT och skriver ut alla rader där det står ett decimaltal först på raden. Decimaltal
Läs merFöreläsning 7: Punktskattningar
Föreläsning 7: Punktskattningar Matematisk statistik David Bolin Chalmers University of Technology April 7, 2014 Projektuppgift Projektet går ut på att genomföra ett statistiskt försök och analysera resultaten.
Läs merGrafer MST Top. sortering Starkt samm. komponenter Kortaste avstånd. Grafalgoritmer 1. Douglas Wikström KTH Stockholm
Grafalgoritmer 1 Douglas Wikström KTH Stockholm popup-help@csc.kth.se Oriktade och riktade grafer Definition. En oriktad graf består av en mängd noder V och en mängd kanter E, där en kant är ett oordnat
Läs mer1.1 Diskret (Sannolikhets-)fördelning
Föreläsning III. Diskret (Sannolikhets-)fördelning Med diskret menas i matematik, att något antar ett ändligt antal värden eller uppräkneligt oändligt med värden e.vis {, 2, 3,...}. Med fördelning menas
Läs merLabora&v matema&k - för en varierad undervisning
Labora&v matema&k - för en varierad undervisning Per Berggren & Maria Lindroth 2012-02- 23 Lgr11- Matema&ska förmågor Genom undervisningen i ämnet matematik ska eleverna sammanfattningsvis ges förutsättningar
Läs merSF1920/SF1921 Sannolikhetsteori och statistik 6,0 hp Föreläsning 1 Mängdlära Grundläggande sannolikhetsteori Kombinatorik Deskriptiv statistik
SF1920/SF1921 Sannolikhetsteori och statistik 6,0 hp Föreläsning 1 Mängdlära Grundläggande sannolikhetsteori Kombinatorik Deskriptiv statistik Jörgen Säve-Söderbergh Information om kursen Kom ihåg att
Läs merFÖRELÄSNING 11 DATALOGI I
Föreläsning I07 FÖRELÄSNING DATALOGI I Grafer Beatrice Åkerblom beatrice@dsv.su.se Institutionen för Data- och Systemvetenskap SU/KTH Föreläsning I07 Läsanvisningar Michael Main Data Structures & Other
Läs merF3 Introduktion Stickprov
Utrotningshotad tandnoting i arktiska vatten Inferens om väntevärde baserat på medelvärde och standardavvikelse Matematik och statistik för biologer, 10 hp Tandnoting är en torskliknande fisk som lever
Läs mer